]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/super.c
Merge branch 'linus' into percpu-cpumask-x86-for-linus-2
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/parser.h>
28 #include <linux/smp_lock.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/marker.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <asm/uaccess.h>
42
43 #include "ext4.h"
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "namei.h"
48 #include "group.h"
49
50 struct proc_dir_entry *ext4_proc_root;
51
52 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
53 unsigned long journal_devnum);
54 static int ext4_commit_super(struct super_block *sb,
55 struct ext4_super_block *es, int sync);
56 static void ext4_mark_recovery_complete(struct super_block *sb,
57 struct ext4_super_block *es);
58 static void ext4_clear_journal_err(struct super_block *sb,
59 struct ext4_super_block *es);
60 static int ext4_sync_fs(struct super_block *sb, int wait);
61 static const char *ext4_decode_error(struct super_block *sb, int errno,
62 char nbuf[16]);
63 static int ext4_remount(struct super_block *sb, int *flags, char *data);
64 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
65 static int ext4_unfreeze(struct super_block *sb);
66 static void ext4_write_super(struct super_block *sb);
67 static int ext4_freeze(struct super_block *sb);
68
69
70 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
71 struct ext4_group_desc *bg)
72 {
73 return le32_to_cpu(bg->bg_block_bitmap_lo) |
74 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
75 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
76 }
77
78 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
79 struct ext4_group_desc *bg)
80 {
81 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
82 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
83 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
84 }
85
86 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
87 struct ext4_group_desc *bg)
88 {
89 return le32_to_cpu(bg->bg_inode_table_lo) |
90 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
91 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
92 }
93
94 __u32 ext4_free_blks_count(struct super_block *sb,
95 struct ext4_group_desc *bg)
96 {
97 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
98 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
99 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
100 }
101
102 __u32 ext4_free_inodes_count(struct super_block *sb,
103 struct ext4_group_desc *bg)
104 {
105 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
106 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
107 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
108 }
109
110 __u32 ext4_used_dirs_count(struct super_block *sb,
111 struct ext4_group_desc *bg)
112 {
113 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
114 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
115 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
116 }
117
118 __u32 ext4_itable_unused_count(struct super_block *sb,
119 struct ext4_group_desc *bg)
120 {
121 return le16_to_cpu(bg->bg_itable_unused_lo) |
122 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
123 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
124 }
125
126 void ext4_block_bitmap_set(struct super_block *sb,
127 struct ext4_group_desc *bg, ext4_fsblk_t blk)
128 {
129 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
130 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
131 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
132 }
133
134 void ext4_inode_bitmap_set(struct super_block *sb,
135 struct ext4_group_desc *bg, ext4_fsblk_t blk)
136 {
137 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
138 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
139 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
140 }
141
142 void ext4_inode_table_set(struct super_block *sb,
143 struct ext4_group_desc *bg, ext4_fsblk_t blk)
144 {
145 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
146 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
147 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
148 }
149
150 void ext4_free_blks_set(struct super_block *sb,
151 struct ext4_group_desc *bg, __u32 count)
152 {
153 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
154 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
155 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
156 }
157
158 void ext4_free_inodes_set(struct super_block *sb,
159 struct ext4_group_desc *bg, __u32 count)
160 {
161 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
162 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
163 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
164 }
165
166 void ext4_used_dirs_set(struct super_block *sb,
167 struct ext4_group_desc *bg, __u32 count)
168 {
169 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
170 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
171 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
172 }
173
174 void ext4_itable_unused_set(struct super_block *sb,
175 struct ext4_group_desc *bg, __u32 count)
176 {
177 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
178 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
179 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
180 }
181
182 /*
183 * Wrappers for jbd2_journal_start/end.
184 *
185 * The only special thing we need to do here is to make sure that all
186 * journal_end calls result in the superblock being marked dirty, so
187 * that sync() will call the filesystem's write_super callback if
188 * appropriate.
189 */
190 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
191 {
192 journal_t *journal;
193
194 if (sb->s_flags & MS_RDONLY)
195 return ERR_PTR(-EROFS);
196
197 /* Special case here: if the journal has aborted behind our
198 * backs (eg. EIO in the commit thread), then we still need to
199 * take the FS itself readonly cleanly. */
200 journal = EXT4_SB(sb)->s_journal;
201 if (journal) {
202 if (is_journal_aborted(journal)) {
203 ext4_abort(sb, __func__,
204 "Detected aborted journal");
205 return ERR_PTR(-EROFS);
206 }
207 return jbd2_journal_start(journal, nblocks);
208 }
209 /*
210 * We're not journaling, return the appropriate indication.
211 */
212 current->journal_info = EXT4_NOJOURNAL_HANDLE;
213 return current->journal_info;
214 }
215
216 /*
217 * The only special thing we need to do here is to make sure that all
218 * jbd2_journal_stop calls result in the superblock being marked dirty, so
219 * that sync() will call the filesystem's write_super callback if
220 * appropriate.
221 */
222 int __ext4_journal_stop(const char *where, handle_t *handle)
223 {
224 struct super_block *sb;
225 int err;
226 int rc;
227
228 if (!ext4_handle_valid(handle)) {
229 /*
230 * Do this here since we don't call jbd2_journal_stop() in
231 * no-journal mode.
232 */
233 current->journal_info = NULL;
234 return 0;
235 }
236 sb = handle->h_transaction->t_journal->j_private;
237 err = handle->h_err;
238 rc = jbd2_journal_stop(handle);
239
240 if (!err)
241 err = rc;
242 if (err)
243 __ext4_std_error(sb, where, err);
244 return err;
245 }
246
247 void ext4_journal_abort_handle(const char *caller, const char *err_fn,
248 struct buffer_head *bh, handle_t *handle, int err)
249 {
250 char nbuf[16];
251 const char *errstr = ext4_decode_error(NULL, err, nbuf);
252
253 BUG_ON(!ext4_handle_valid(handle));
254
255 if (bh)
256 BUFFER_TRACE(bh, "abort");
257
258 if (!handle->h_err)
259 handle->h_err = err;
260
261 if (is_handle_aborted(handle))
262 return;
263
264 printk(KERN_ERR "%s: aborting transaction: %s in %s\n",
265 caller, errstr, err_fn);
266
267 jbd2_journal_abort_handle(handle);
268 }
269
270 /* Deal with the reporting of failure conditions on a filesystem such as
271 * inconsistencies detected or read IO failures.
272 *
273 * On ext2, we can store the error state of the filesystem in the
274 * superblock. That is not possible on ext4, because we may have other
275 * write ordering constraints on the superblock which prevent us from
276 * writing it out straight away; and given that the journal is about to
277 * be aborted, we can't rely on the current, or future, transactions to
278 * write out the superblock safely.
279 *
280 * We'll just use the jbd2_journal_abort() error code to record an error in
281 * the journal instead. On recovery, the journal will compain about
282 * that error until we've noted it down and cleared it.
283 */
284
285 static void ext4_handle_error(struct super_block *sb)
286 {
287 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
288
289 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
290 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
291
292 if (sb->s_flags & MS_RDONLY)
293 return;
294
295 if (!test_opt(sb, ERRORS_CONT)) {
296 journal_t *journal = EXT4_SB(sb)->s_journal;
297
298 EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT;
299 if (journal)
300 jbd2_journal_abort(journal, -EIO);
301 }
302 if (test_opt(sb, ERRORS_RO)) {
303 printk(KERN_CRIT "Remounting filesystem read-only\n");
304 sb->s_flags |= MS_RDONLY;
305 }
306 ext4_commit_super(sb, es, 1);
307 if (test_opt(sb, ERRORS_PANIC))
308 panic("EXT4-fs (device %s): panic forced after error\n",
309 sb->s_id);
310 }
311
312 void ext4_error(struct super_block *sb, const char *function,
313 const char *fmt, ...)
314 {
315 va_list args;
316
317 va_start(args, fmt);
318 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
319 vprintk(fmt, args);
320 printk("\n");
321 va_end(args);
322
323 ext4_handle_error(sb);
324 }
325
326 static const char *ext4_decode_error(struct super_block *sb, int errno,
327 char nbuf[16])
328 {
329 char *errstr = NULL;
330
331 switch (errno) {
332 case -EIO:
333 errstr = "IO failure";
334 break;
335 case -ENOMEM:
336 errstr = "Out of memory";
337 break;
338 case -EROFS:
339 if (!sb || EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)
340 errstr = "Journal has aborted";
341 else
342 errstr = "Readonly filesystem";
343 break;
344 default:
345 /* If the caller passed in an extra buffer for unknown
346 * errors, textualise them now. Else we just return
347 * NULL. */
348 if (nbuf) {
349 /* Check for truncated error codes... */
350 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
351 errstr = nbuf;
352 }
353 break;
354 }
355
356 return errstr;
357 }
358
359 /* __ext4_std_error decodes expected errors from journaling functions
360 * automatically and invokes the appropriate error response. */
361
362 void __ext4_std_error(struct super_block *sb, const char *function, int errno)
363 {
364 char nbuf[16];
365 const char *errstr;
366
367 /* Special case: if the error is EROFS, and we're not already
368 * inside a transaction, then there's really no point in logging
369 * an error. */
370 if (errno == -EROFS && journal_current_handle() == NULL &&
371 (sb->s_flags & MS_RDONLY))
372 return;
373
374 errstr = ext4_decode_error(sb, errno, nbuf);
375 printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n",
376 sb->s_id, function, errstr);
377
378 ext4_handle_error(sb);
379 }
380
381 /*
382 * ext4_abort is a much stronger failure handler than ext4_error. The
383 * abort function may be used to deal with unrecoverable failures such
384 * as journal IO errors or ENOMEM at a critical moment in log management.
385 *
386 * We unconditionally force the filesystem into an ABORT|READONLY state,
387 * unless the error response on the fs has been set to panic in which
388 * case we take the easy way out and panic immediately.
389 */
390
391 void ext4_abort(struct super_block *sb, const char *function,
392 const char *fmt, ...)
393 {
394 va_list args;
395
396 printk(KERN_CRIT "ext4_abort called.\n");
397
398 va_start(args, fmt);
399 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
400 vprintk(fmt, args);
401 printk("\n");
402 va_end(args);
403
404 if (test_opt(sb, ERRORS_PANIC))
405 panic("EXT4-fs panic from previous error\n");
406
407 if (sb->s_flags & MS_RDONLY)
408 return;
409
410 printk(KERN_CRIT "Remounting filesystem read-only\n");
411 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
412 sb->s_flags |= MS_RDONLY;
413 EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT;
414 if (EXT4_SB(sb)->s_journal)
415 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
416 }
417
418 void ext4_warning(struct super_block *sb, const char *function,
419 const char *fmt, ...)
420 {
421 va_list args;
422
423 va_start(args, fmt);
424 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ",
425 sb->s_id, function);
426 vprintk(fmt, args);
427 printk("\n");
428 va_end(args);
429 }
430
431 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp,
432 const char *function, const char *fmt, ...)
433 __releases(bitlock)
434 __acquires(bitlock)
435 {
436 va_list args;
437 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
438
439 va_start(args, fmt);
440 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
441 vprintk(fmt, args);
442 printk("\n");
443 va_end(args);
444
445 if (test_opt(sb, ERRORS_CONT)) {
446 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
447 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
448 ext4_commit_super(sb, es, 0);
449 return;
450 }
451 ext4_unlock_group(sb, grp);
452 ext4_handle_error(sb);
453 /*
454 * We only get here in the ERRORS_RO case; relocking the group
455 * may be dangerous, but nothing bad will happen since the
456 * filesystem will have already been marked read/only and the
457 * journal has been aborted. We return 1 as a hint to callers
458 * who might what to use the return value from
459 * ext4_grp_locked_error() to distinguish beween the
460 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
461 * aggressively from the ext4 function in question, with a
462 * more appropriate error code.
463 */
464 ext4_lock_group(sb, grp);
465 return;
466 }
467
468
469 void ext4_update_dynamic_rev(struct super_block *sb)
470 {
471 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
472
473 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
474 return;
475
476 ext4_warning(sb, __func__,
477 "updating to rev %d because of new feature flag, "
478 "running e2fsck is recommended",
479 EXT4_DYNAMIC_REV);
480
481 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
482 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
483 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
484 /* leave es->s_feature_*compat flags alone */
485 /* es->s_uuid will be set by e2fsck if empty */
486
487 /*
488 * The rest of the superblock fields should be zero, and if not it
489 * means they are likely already in use, so leave them alone. We
490 * can leave it up to e2fsck to clean up any inconsistencies there.
491 */
492 }
493
494 /*
495 * Open the external journal device
496 */
497 static struct block_device *ext4_blkdev_get(dev_t dev)
498 {
499 struct block_device *bdev;
500 char b[BDEVNAME_SIZE];
501
502 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
503 if (IS_ERR(bdev))
504 goto fail;
505 return bdev;
506
507 fail:
508 printk(KERN_ERR "EXT4-fs: failed to open journal device %s: %ld\n",
509 __bdevname(dev, b), PTR_ERR(bdev));
510 return NULL;
511 }
512
513 /*
514 * Release the journal device
515 */
516 static int ext4_blkdev_put(struct block_device *bdev)
517 {
518 bd_release(bdev);
519 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
520 }
521
522 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
523 {
524 struct block_device *bdev;
525 int ret = -ENODEV;
526
527 bdev = sbi->journal_bdev;
528 if (bdev) {
529 ret = ext4_blkdev_put(bdev);
530 sbi->journal_bdev = NULL;
531 }
532 return ret;
533 }
534
535 static inline struct inode *orphan_list_entry(struct list_head *l)
536 {
537 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
538 }
539
540 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
541 {
542 struct list_head *l;
543
544 printk(KERN_ERR "sb orphan head is %d\n",
545 le32_to_cpu(sbi->s_es->s_last_orphan));
546
547 printk(KERN_ERR "sb_info orphan list:\n");
548 list_for_each(l, &sbi->s_orphan) {
549 struct inode *inode = orphan_list_entry(l);
550 printk(KERN_ERR " "
551 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
552 inode->i_sb->s_id, inode->i_ino, inode,
553 inode->i_mode, inode->i_nlink,
554 NEXT_ORPHAN(inode));
555 }
556 }
557
558 static void ext4_put_super(struct super_block *sb)
559 {
560 struct ext4_sb_info *sbi = EXT4_SB(sb);
561 struct ext4_super_block *es = sbi->s_es;
562 int i, err;
563
564 ext4_mb_release(sb);
565 ext4_ext_release(sb);
566 ext4_xattr_put_super(sb);
567 if (sbi->s_journal) {
568 err = jbd2_journal_destroy(sbi->s_journal);
569 sbi->s_journal = NULL;
570 if (err < 0)
571 ext4_abort(sb, __func__,
572 "Couldn't clean up the journal");
573 }
574 if (!(sb->s_flags & MS_RDONLY)) {
575 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
576 es->s_state = cpu_to_le16(sbi->s_mount_state);
577 ext4_commit_super(sb, es, 1);
578 }
579 if (sbi->s_proc) {
580 remove_proc_entry("inode_readahead_blks", sbi->s_proc);
581 remove_proc_entry(sb->s_id, ext4_proc_root);
582 }
583
584 for (i = 0; i < sbi->s_gdb_count; i++)
585 brelse(sbi->s_group_desc[i]);
586 kfree(sbi->s_group_desc);
587 kfree(sbi->s_flex_groups);
588 percpu_counter_destroy(&sbi->s_freeblocks_counter);
589 percpu_counter_destroy(&sbi->s_freeinodes_counter);
590 percpu_counter_destroy(&sbi->s_dirs_counter);
591 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
592 brelse(sbi->s_sbh);
593 #ifdef CONFIG_QUOTA
594 for (i = 0; i < MAXQUOTAS; i++)
595 kfree(sbi->s_qf_names[i]);
596 #endif
597
598 /* Debugging code just in case the in-memory inode orphan list
599 * isn't empty. The on-disk one can be non-empty if we've
600 * detected an error and taken the fs readonly, but the
601 * in-memory list had better be clean by this point. */
602 if (!list_empty(&sbi->s_orphan))
603 dump_orphan_list(sb, sbi);
604 J_ASSERT(list_empty(&sbi->s_orphan));
605
606 invalidate_bdev(sb->s_bdev);
607 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
608 /*
609 * Invalidate the journal device's buffers. We don't want them
610 * floating about in memory - the physical journal device may
611 * hotswapped, and it breaks the `ro-after' testing code.
612 */
613 sync_blockdev(sbi->journal_bdev);
614 invalidate_bdev(sbi->journal_bdev);
615 ext4_blkdev_remove(sbi);
616 }
617 sb->s_fs_info = NULL;
618 kfree(sbi);
619 return;
620 }
621
622 static struct kmem_cache *ext4_inode_cachep;
623
624 /*
625 * Called inside transaction, so use GFP_NOFS
626 */
627 static struct inode *ext4_alloc_inode(struct super_block *sb)
628 {
629 struct ext4_inode_info *ei;
630
631 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
632 if (!ei)
633 return NULL;
634 #ifdef CONFIG_EXT4_FS_POSIX_ACL
635 ei->i_acl = EXT4_ACL_NOT_CACHED;
636 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
637 #endif
638 ei->vfs_inode.i_version = 1;
639 ei->vfs_inode.i_data.writeback_index = 0;
640 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
641 INIT_LIST_HEAD(&ei->i_prealloc_list);
642 spin_lock_init(&ei->i_prealloc_lock);
643 /*
644 * Note: We can be called before EXT4_SB(sb)->s_journal is set,
645 * therefore it can be null here. Don't check it, just initialize
646 * jinode.
647 */
648 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode);
649 ei->i_reserved_data_blocks = 0;
650 ei->i_reserved_meta_blocks = 0;
651 ei->i_allocated_meta_blocks = 0;
652 ei->i_delalloc_reserved_flag = 0;
653 spin_lock_init(&(ei->i_block_reservation_lock));
654 return &ei->vfs_inode;
655 }
656
657 static void ext4_destroy_inode(struct inode *inode)
658 {
659 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
660 printk("EXT4 Inode %p: orphan list check failed!\n",
661 EXT4_I(inode));
662 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
663 EXT4_I(inode), sizeof(struct ext4_inode_info),
664 true);
665 dump_stack();
666 }
667 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
668 }
669
670 static void init_once(void *foo)
671 {
672 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
673
674 INIT_LIST_HEAD(&ei->i_orphan);
675 #ifdef CONFIG_EXT4_FS_XATTR
676 init_rwsem(&ei->xattr_sem);
677 #endif
678 init_rwsem(&ei->i_data_sem);
679 inode_init_once(&ei->vfs_inode);
680 }
681
682 static int init_inodecache(void)
683 {
684 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
685 sizeof(struct ext4_inode_info),
686 0, (SLAB_RECLAIM_ACCOUNT|
687 SLAB_MEM_SPREAD),
688 init_once);
689 if (ext4_inode_cachep == NULL)
690 return -ENOMEM;
691 return 0;
692 }
693
694 static void destroy_inodecache(void)
695 {
696 kmem_cache_destroy(ext4_inode_cachep);
697 }
698
699 static void ext4_clear_inode(struct inode *inode)
700 {
701 #ifdef CONFIG_EXT4_FS_POSIX_ACL
702 if (EXT4_I(inode)->i_acl &&
703 EXT4_I(inode)->i_acl != EXT4_ACL_NOT_CACHED) {
704 posix_acl_release(EXT4_I(inode)->i_acl);
705 EXT4_I(inode)->i_acl = EXT4_ACL_NOT_CACHED;
706 }
707 if (EXT4_I(inode)->i_default_acl &&
708 EXT4_I(inode)->i_default_acl != EXT4_ACL_NOT_CACHED) {
709 posix_acl_release(EXT4_I(inode)->i_default_acl);
710 EXT4_I(inode)->i_default_acl = EXT4_ACL_NOT_CACHED;
711 }
712 #endif
713 ext4_discard_preallocations(inode);
714 if (EXT4_JOURNAL(inode))
715 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal,
716 &EXT4_I(inode)->jinode);
717 }
718
719 static inline void ext4_show_quota_options(struct seq_file *seq,
720 struct super_block *sb)
721 {
722 #if defined(CONFIG_QUOTA)
723 struct ext4_sb_info *sbi = EXT4_SB(sb);
724
725 if (sbi->s_jquota_fmt)
726 seq_printf(seq, ",jqfmt=%s",
727 (sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold" : "vfsv0");
728
729 if (sbi->s_qf_names[USRQUOTA])
730 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
731
732 if (sbi->s_qf_names[GRPQUOTA])
733 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
734
735 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA)
736 seq_puts(seq, ",usrquota");
737
738 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)
739 seq_puts(seq, ",grpquota");
740 #endif
741 }
742
743 /*
744 * Show an option if
745 * - it's set to a non-default value OR
746 * - if the per-sb default is different from the global default
747 */
748 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
749 {
750 int def_errors;
751 unsigned long def_mount_opts;
752 struct super_block *sb = vfs->mnt_sb;
753 struct ext4_sb_info *sbi = EXT4_SB(sb);
754 struct ext4_super_block *es = sbi->s_es;
755
756 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
757 def_errors = le16_to_cpu(es->s_errors);
758
759 if (sbi->s_sb_block != 1)
760 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
761 if (test_opt(sb, MINIX_DF))
762 seq_puts(seq, ",minixdf");
763 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
764 seq_puts(seq, ",grpid");
765 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
766 seq_puts(seq, ",nogrpid");
767 if (sbi->s_resuid != EXT4_DEF_RESUID ||
768 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
769 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
770 }
771 if (sbi->s_resgid != EXT4_DEF_RESGID ||
772 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
773 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
774 }
775 if (test_opt(sb, ERRORS_RO)) {
776 if (def_errors == EXT4_ERRORS_PANIC ||
777 def_errors == EXT4_ERRORS_CONTINUE) {
778 seq_puts(seq, ",errors=remount-ro");
779 }
780 }
781 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
782 seq_puts(seq, ",errors=continue");
783 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
784 seq_puts(seq, ",errors=panic");
785 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
786 seq_puts(seq, ",nouid32");
787 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
788 seq_puts(seq, ",debug");
789 if (test_opt(sb, OLDALLOC))
790 seq_puts(seq, ",oldalloc");
791 #ifdef CONFIG_EXT4_FS_XATTR
792 if (test_opt(sb, XATTR_USER) &&
793 !(def_mount_opts & EXT4_DEFM_XATTR_USER))
794 seq_puts(seq, ",user_xattr");
795 if (!test_opt(sb, XATTR_USER) &&
796 (def_mount_opts & EXT4_DEFM_XATTR_USER)) {
797 seq_puts(seq, ",nouser_xattr");
798 }
799 #endif
800 #ifdef CONFIG_EXT4_FS_POSIX_ACL
801 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
802 seq_puts(seq, ",acl");
803 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
804 seq_puts(seq, ",noacl");
805 #endif
806 if (!test_opt(sb, RESERVATION))
807 seq_puts(seq, ",noreservation");
808 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
809 seq_printf(seq, ",commit=%u",
810 (unsigned) (sbi->s_commit_interval / HZ));
811 }
812 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
813 seq_printf(seq, ",min_batch_time=%u",
814 (unsigned) sbi->s_min_batch_time);
815 }
816 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
817 seq_printf(seq, ",max_batch_time=%u",
818 (unsigned) sbi->s_min_batch_time);
819 }
820
821 /*
822 * We're changing the default of barrier mount option, so
823 * let's always display its mount state so it's clear what its
824 * status is.
825 */
826 seq_puts(seq, ",barrier=");
827 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
828 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
829 seq_puts(seq, ",journal_async_commit");
830 if (test_opt(sb, NOBH))
831 seq_puts(seq, ",nobh");
832 if (test_opt(sb, I_VERSION))
833 seq_puts(seq, ",i_version");
834 if (!test_opt(sb, DELALLOC))
835 seq_puts(seq, ",nodelalloc");
836
837
838 if (sbi->s_stripe)
839 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
840 /*
841 * journal mode get enabled in different ways
842 * So just print the value even if we didn't specify it
843 */
844 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
845 seq_puts(seq, ",data=journal");
846 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
847 seq_puts(seq, ",data=ordered");
848 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
849 seq_puts(seq, ",data=writeback");
850
851 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
852 seq_printf(seq, ",inode_readahead_blks=%u",
853 sbi->s_inode_readahead_blks);
854
855 if (test_opt(sb, DATA_ERR_ABORT))
856 seq_puts(seq, ",data_err=abort");
857
858 ext4_show_quota_options(seq, sb);
859 return 0;
860 }
861
862
863 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
864 u64 ino, u32 generation)
865 {
866 struct inode *inode;
867
868 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
869 return ERR_PTR(-ESTALE);
870 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
871 return ERR_PTR(-ESTALE);
872
873 /* iget isn't really right if the inode is currently unallocated!!
874 *
875 * ext4_read_inode will return a bad_inode if the inode had been
876 * deleted, so we should be safe.
877 *
878 * Currently we don't know the generation for parent directory, so
879 * a generation of 0 means "accept any"
880 */
881 inode = ext4_iget(sb, ino);
882 if (IS_ERR(inode))
883 return ERR_CAST(inode);
884 if (generation && inode->i_generation != generation) {
885 iput(inode);
886 return ERR_PTR(-ESTALE);
887 }
888
889 return inode;
890 }
891
892 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
893 int fh_len, int fh_type)
894 {
895 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
896 ext4_nfs_get_inode);
897 }
898
899 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
900 int fh_len, int fh_type)
901 {
902 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
903 ext4_nfs_get_inode);
904 }
905
906 /*
907 * Try to release metadata pages (indirect blocks, directories) which are
908 * mapped via the block device. Since these pages could have journal heads
909 * which would prevent try_to_free_buffers() from freeing them, we must use
910 * jbd2 layer's try_to_free_buffers() function to release them.
911 */
912 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, gfp_t wait)
913 {
914 journal_t *journal = EXT4_SB(sb)->s_journal;
915
916 WARN_ON(PageChecked(page));
917 if (!page_has_buffers(page))
918 return 0;
919 if (journal)
920 return jbd2_journal_try_to_free_buffers(journal, page,
921 wait & ~__GFP_WAIT);
922 return try_to_free_buffers(page);
923 }
924
925 #ifdef CONFIG_QUOTA
926 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
927 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
928
929 static int ext4_write_dquot(struct dquot *dquot);
930 static int ext4_acquire_dquot(struct dquot *dquot);
931 static int ext4_release_dquot(struct dquot *dquot);
932 static int ext4_mark_dquot_dirty(struct dquot *dquot);
933 static int ext4_write_info(struct super_block *sb, int type);
934 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
935 char *path, int remount);
936 static int ext4_quota_on_mount(struct super_block *sb, int type);
937 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
938 size_t len, loff_t off);
939 static ssize_t ext4_quota_write(struct super_block *sb, int type,
940 const char *data, size_t len, loff_t off);
941
942 static struct dquot_operations ext4_quota_operations = {
943 .initialize = dquot_initialize,
944 .drop = dquot_drop,
945 .alloc_space = dquot_alloc_space,
946 .reserve_space = dquot_reserve_space,
947 .claim_space = dquot_claim_space,
948 .release_rsv = dquot_release_reserved_space,
949 .get_reserved_space = ext4_get_reserved_space,
950 .alloc_inode = dquot_alloc_inode,
951 .free_space = dquot_free_space,
952 .free_inode = dquot_free_inode,
953 .transfer = dquot_transfer,
954 .write_dquot = ext4_write_dquot,
955 .acquire_dquot = ext4_acquire_dquot,
956 .release_dquot = ext4_release_dquot,
957 .mark_dirty = ext4_mark_dquot_dirty,
958 .write_info = ext4_write_info,
959 .alloc_dquot = dquot_alloc,
960 .destroy_dquot = dquot_destroy,
961 };
962
963 static struct quotactl_ops ext4_qctl_operations = {
964 .quota_on = ext4_quota_on,
965 .quota_off = vfs_quota_off,
966 .quota_sync = vfs_quota_sync,
967 .get_info = vfs_get_dqinfo,
968 .set_info = vfs_set_dqinfo,
969 .get_dqblk = vfs_get_dqblk,
970 .set_dqblk = vfs_set_dqblk
971 };
972 #endif
973
974 static const struct super_operations ext4_sops = {
975 .alloc_inode = ext4_alloc_inode,
976 .destroy_inode = ext4_destroy_inode,
977 .write_inode = ext4_write_inode,
978 .dirty_inode = ext4_dirty_inode,
979 .delete_inode = ext4_delete_inode,
980 .put_super = ext4_put_super,
981 .write_super = ext4_write_super,
982 .sync_fs = ext4_sync_fs,
983 .freeze_fs = ext4_freeze,
984 .unfreeze_fs = ext4_unfreeze,
985 .statfs = ext4_statfs,
986 .remount_fs = ext4_remount,
987 .clear_inode = ext4_clear_inode,
988 .show_options = ext4_show_options,
989 #ifdef CONFIG_QUOTA
990 .quota_read = ext4_quota_read,
991 .quota_write = ext4_quota_write,
992 #endif
993 .bdev_try_to_free_page = bdev_try_to_free_page,
994 };
995
996 static const struct export_operations ext4_export_ops = {
997 .fh_to_dentry = ext4_fh_to_dentry,
998 .fh_to_parent = ext4_fh_to_parent,
999 .get_parent = ext4_get_parent,
1000 };
1001
1002 enum {
1003 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1004 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1005 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1006 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1007 Opt_reservation, Opt_noreservation, Opt_noload, Opt_nobh, Opt_bh,
1008 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1009 Opt_journal_update, Opt_journal_dev,
1010 Opt_journal_checksum, Opt_journal_async_commit,
1011 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1012 Opt_data_err_abort, Opt_data_err_ignore,
1013 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1014 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota,
1015 Opt_ignore, Opt_barrier, Opt_err, Opt_resize, Opt_usrquota,
1016 Opt_grpquota, Opt_i_version,
1017 Opt_stripe, Opt_delalloc, Opt_nodelalloc,
1018 Opt_inode_readahead_blks, Opt_journal_ioprio
1019 };
1020
1021 static const match_table_t tokens = {
1022 {Opt_bsd_df, "bsddf"},
1023 {Opt_minix_df, "minixdf"},
1024 {Opt_grpid, "grpid"},
1025 {Opt_grpid, "bsdgroups"},
1026 {Opt_nogrpid, "nogrpid"},
1027 {Opt_nogrpid, "sysvgroups"},
1028 {Opt_resgid, "resgid=%u"},
1029 {Opt_resuid, "resuid=%u"},
1030 {Opt_sb, "sb=%u"},
1031 {Opt_err_cont, "errors=continue"},
1032 {Opt_err_panic, "errors=panic"},
1033 {Opt_err_ro, "errors=remount-ro"},
1034 {Opt_nouid32, "nouid32"},
1035 {Opt_debug, "debug"},
1036 {Opt_oldalloc, "oldalloc"},
1037 {Opt_orlov, "orlov"},
1038 {Opt_user_xattr, "user_xattr"},
1039 {Opt_nouser_xattr, "nouser_xattr"},
1040 {Opt_acl, "acl"},
1041 {Opt_noacl, "noacl"},
1042 {Opt_reservation, "reservation"},
1043 {Opt_noreservation, "noreservation"},
1044 {Opt_noload, "noload"},
1045 {Opt_nobh, "nobh"},
1046 {Opt_bh, "bh"},
1047 {Opt_commit, "commit=%u"},
1048 {Opt_min_batch_time, "min_batch_time=%u"},
1049 {Opt_max_batch_time, "max_batch_time=%u"},
1050 {Opt_journal_update, "journal=update"},
1051 {Opt_journal_dev, "journal_dev=%u"},
1052 {Opt_journal_checksum, "journal_checksum"},
1053 {Opt_journal_async_commit, "journal_async_commit"},
1054 {Opt_abort, "abort"},
1055 {Opt_data_journal, "data=journal"},
1056 {Opt_data_ordered, "data=ordered"},
1057 {Opt_data_writeback, "data=writeback"},
1058 {Opt_data_err_abort, "data_err=abort"},
1059 {Opt_data_err_ignore, "data_err=ignore"},
1060 {Opt_offusrjquota, "usrjquota="},
1061 {Opt_usrjquota, "usrjquota=%s"},
1062 {Opt_offgrpjquota, "grpjquota="},
1063 {Opt_grpjquota, "grpjquota=%s"},
1064 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1065 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1066 {Opt_grpquota, "grpquota"},
1067 {Opt_noquota, "noquota"},
1068 {Opt_quota, "quota"},
1069 {Opt_usrquota, "usrquota"},
1070 {Opt_barrier, "barrier=%u"},
1071 {Opt_i_version, "i_version"},
1072 {Opt_stripe, "stripe=%u"},
1073 {Opt_resize, "resize"},
1074 {Opt_delalloc, "delalloc"},
1075 {Opt_nodelalloc, "nodelalloc"},
1076 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1077 {Opt_journal_ioprio, "journal_ioprio=%u"},
1078 {Opt_err, NULL},
1079 };
1080
1081 static ext4_fsblk_t get_sb_block(void **data)
1082 {
1083 ext4_fsblk_t sb_block;
1084 char *options = (char *) *data;
1085
1086 if (!options || strncmp(options, "sb=", 3) != 0)
1087 return 1; /* Default location */
1088 options += 3;
1089 /*todo: use simple_strtoll with >32bit ext4 */
1090 sb_block = simple_strtoul(options, &options, 0);
1091 if (*options && *options != ',') {
1092 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1093 (char *) *data);
1094 return 1;
1095 }
1096 if (*options == ',')
1097 options++;
1098 *data = (void *) options;
1099 return sb_block;
1100 }
1101
1102 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1103
1104 static int parse_options(char *options, struct super_block *sb,
1105 unsigned long *journal_devnum,
1106 unsigned int *journal_ioprio,
1107 ext4_fsblk_t *n_blocks_count, int is_remount)
1108 {
1109 struct ext4_sb_info *sbi = EXT4_SB(sb);
1110 char *p;
1111 substring_t args[MAX_OPT_ARGS];
1112 int data_opt = 0;
1113 int option;
1114 #ifdef CONFIG_QUOTA
1115 int qtype, qfmt;
1116 char *qname;
1117 #endif
1118
1119 if (!options)
1120 return 1;
1121
1122 while ((p = strsep(&options, ",")) != NULL) {
1123 int token;
1124 if (!*p)
1125 continue;
1126
1127 token = match_token(p, tokens, args);
1128 switch (token) {
1129 case Opt_bsd_df:
1130 clear_opt(sbi->s_mount_opt, MINIX_DF);
1131 break;
1132 case Opt_minix_df:
1133 set_opt(sbi->s_mount_opt, MINIX_DF);
1134 break;
1135 case Opt_grpid:
1136 set_opt(sbi->s_mount_opt, GRPID);
1137 break;
1138 case Opt_nogrpid:
1139 clear_opt(sbi->s_mount_opt, GRPID);
1140 break;
1141 case Opt_resuid:
1142 if (match_int(&args[0], &option))
1143 return 0;
1144 sbi->s_resuid = option;
1145 break;
1146 case Opt_resgid:
1147 if (match_int(&args[0], &option))
1148 return 0;
1149 sbi->s_resgid = option;
1150 break;
1151 case Opt_sb:
1152 /* handled by get_sb_block() instead of here */
1153 /* *sb_block = match_int(&args[0]); */
1154 break;
1155 case Opt_err_panic:
1156 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1157 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1158 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
1159 break;
1160 case Opt_err_ro:
1161 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1162 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1163 set_opt(sbi->s_mount_opt, ERRORS_RO);
1164 break;
1165 case Opt_err_cont:
1166 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1167 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1168 set_opt(sbi->s_mount_opt, ERRORS_CONT);
1169 break;
1170 case Opt_nouid32:
1171 set_opt(sbi->s_mount_opt, NO_UID32);
1172 break;
1173 case Opt_debug:
1174 set_opt(sbi->s_mount_opt, DEBUG);
1175 break;
1176 case Opt_oldalloc:
1177 set_opt(sbi->s_mount_opt, OLDALLOC);
1178 break;
1179 case Opt_orlov:
1180 clear_opt(sbi->s_mount_opt, OLDALLOC);
1181 break;
1182 #ifdef CONFIG_EXT4_FS_XATTR
1183 case Opt_user_xattr:
1184 set_opt(sbi->s_mount_opt, XATTR_USER);
1185 break;
1186 case Opt_nouser_xattr:
1187 clear_opt(sbi->s_mount_opt, XATTR_USER);
1188 break;
1189 #else
1190 case Opt_user_xattr:
1191 case Opt_nouser_xattr:
1192 printk(KERN_ERR "EXT4 (no)user_xattr options "
1193 "not supported\n");
1194 break;
1195 #endif
1196 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1197 case Opt_acl:
1198 set_opt(sbi->s_mount_opt, POSIX_ACL);
1199 break;
1200 case Opt_noacl:
1201 clear_opt(sbi->s_mount_opt, POSIX_ACL);
1202 break;
1203 #else
1204 case Opt_acl:
1205 case Opt_noacl:
1206 printk(KERN_ERR "EXT4 (no)acl options "
1207 "not supported\n");
1208 break;
1209 #endif
1210 case Opt_reservation:
1211 set_opt(sbi->s_mount_opt, RESERVATION);
1212 break;
1213 case Opt_noreservation:
1214 clear_opt(sbi->s_mount_opt, RESERVATION);
1215 break;
1216 case Opt_journal_update:
1217 /* @@@ FIXME */
1218 /* Eventually we will want to be able to create
1219 a journal file here. For now, only allow the
1220 user to specify an existing inode to be the
1221 journal file. */
1222 if (is_remount) {
1223 printk(KERN_ERR "EXT4-fs: cannot specify "
1224 "journal on remount\n");
1225 return 0;
1226 }
1227 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL);
1228 break;
1229 case Opt_journal_dev:
1230 if (is_remount) {
1231 printk(KERN_ERR "EXT4-fs: cannot specify "
1232 "journal on remount\n");
1233 return 0;
1234 }
1235 if (match_int(&args[0], &option))
1236 return 0;
1237 *journal_devnum = option;
1238 break;
1239 case Opt_journal_checksum:
1240 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1241 break;
1242 case Opt_journal_async_commit:
1243 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT);
1244 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1245 break;
1246 case Opt_noload:
1247 set_opt(sbi->s_mount_opt, NOLOAD);
1248 break;
1249 case Opt_commit:
1250 if (match_int(&args[0], &option))
1251 return 0;
1252 if (option < 0)
1253 return 0;
1254 if (option == 0)
1255 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1256 sbi->s_commit_interval = HZ * option;
1257 break;
1258 case Opt_max_batch_time:
1259 if (match_int(&args[0], &option))
1260 return 0;
1261 if (option < 0)
1262 return 0;
1263 if (option == 0)
1264 option = EXT4_DEF_MAX_BATCH_TIME;
1265 sbi->s_max_batch_time = option;
1266 break;
1267 case Opt_min_batch_time:
1268 if (match_int(&args[0], &option))
1269 return 0;
1270 if (option < 0)
1271 return 0;
1272 sbi->s_min_batch_time = option;
1273 break;
1274 case Opt_data_journal:
1275 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1276 goto datacheck;
1277 case Opt_data_ordered:
1278 data_opt = EXT4_MOUNT_ORDERED_DATA;
1279 goto datacheck;
1280 case Opt_data_writeback:
1281 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1282 datacheck:
1283 if (is_remount) {
1284 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS)
1285 != data_opt) {
1286 printk(KERN_ERR
1287 "EXT4-fs: cannot change data "
1288 "mode on remount\n");
1289 return 0;
1290 }
1291 } else {
1292 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS;
1293 sbi->s_mount_opt |= data_opt;
1294 }
1295 break;
1296 case Opt_data_err_abort:
1297 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1298 break;
1299 case Opt_data_err_ignore:
1300 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1301 break;
1302 #ifdef CONFIG_QUOTA
1303 case Opt_usrjquota:
1304 qtype = USRQUOTA;
1305 goto set_qf_name;
1306 case Opt_grpjquota:
1307 qtype = GRPQUOTA;
1308 set_qf_name:
1309 if (sb_any_quota_loaded(sb) &&
1310 !sbi->s_qf_names[qtype]) {
1311 printk(KERN_ERR
1312 "EXT4-fs: Cannot change journaled "
1313 "quota options when quota turned on.\n");
1314 return 0;
1315 }
1316 qname = match_strdup(&args[0]);
1317 if (!qname) {
1318 printk(KERN_ERR
1319 "EXT4-fs: not enough memory for "
1320 "storing quotafile name.\n");
1321 return 0;
1322 }
1323 if (sbi->s_qf_names[qtype] &&
1324 strcmp(sbi->s_qf_names[qtype], qname)) {
1325 printk(KERN_ERR
1326 "EXT4-fs: %s quota file already "
1327 "specified.\n", QTYPE2NAME(qtype));
1328 kfree(qname);
1329 return 0;
1330 }
1331 sbi->s_qf_names[qtype] = qname;
1332 if (strchr(sbi->s_qf_names[qtype], '/')) {
1333 printk(KERN_ERR
1334 "EXT4-fs: quotafile must be on "
1335 "filesystem root.\n");
1336 kfree(sbi->s_qf_names[qtype]);
1337 sbi->s_qf_names[qtype] = NULL;
1338 return 0;
1339 }
1340 set_opt(sbi->s_mount_opt, QUOTA);
1341 break;
1342 case Opt_offusrjquota:
1343 qtype = USRQUOTA;
1344 goto clear_qf_name;
1345 case Opt_offgrpjquota:
1346 qtype = GRPQUOTA;
1347 clear_qf_name:
1348 if (sb_any_quota_loaded(sb) &&
1349 sbi->s_qf_names[qtype]) {
1350 printk(KERN_ERR "EXT4-fs: Cannot change "
1351 "journaled quota options when "
1352 "quota turned on.\n");
1353 return 0;
1354 }
1355 /*
1356 * The space will be released later when all options
1357 * are confirmed to be correct
1358 */
1359 sbi->s_qf_names[qtype] = NULL;
1360 break;
1361 case Opt_jqfmt_vfsold:
1362 qfmt = QFMT_VFS_OLD;
1363 goto set_qf_format;
1364 case Opt_jqfmt_vfsv0:
1365 qfmt = QFMT_VFS_V0;
1366 set_qf_format:
1367 if (sb_any_quota_loaded(sb) &&
1368 sbi->s_jquota_fmt != qfmt) {
1369 printk(KERN_ERR "EXT4-fs: Cannot change "
1370 "journaled quota options when "
1371 "quota turned on.\n");
1372 return 0;
1373 }
1374 sbi->s_jquota_fmt = qfmt;
1375 break;
1376 case Opt_quota:
1377 case Opt_usrquota:
1378 set_opt(sbi->s_mount_opt, QUOTA);
1379 set_opt(sbi->s_mount_opt, USRQUOTA);
1380 break;
1381 case Opt_grpquota:
1382 set_opt(sbi->s_mount_opt, QUOTA);
1383 set_opt(sbi->s_mount_opt, GRPQUOTA);
1384 break;
1385 case Opt_noquota:
1386 if (sb_any_quota_loaded(sb)) {
1387 printk(KERN_ERR "EXT4-fs: Cannot change quota "
1388 "options when quota turned on.\n");
1389 return 0;
1390 }
1391 clear_opt(sbi->s_mount_opt, QUOTA);
1392 clear_opt(sbi->s_mount_opt, USRQUOTA);
1393 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1394 break;
1395 #else
1396 case Opt_quota:
1397 case Opt_usrquota:
1398 case Opt_grpquota:
1399 printk(KERN_ERR
1400 "EXT4-fs: quota options not supported.\n");
1401 break;
1402 case Opt_usrjquota:
1403 case Opt_grpjquota:
1404 case Opt_offusrjquota:
1405 case Opt_offgrpjquota:
1406 case Opt_jqfmt_vfsold:
1407 case Opt_jqfmt_vfsv0:
1408 printk(KERN_ERR
1409 "EXT4-fs: journaled quota options not "
1410 "supported.\n");
1411 break;
1412 case Opt_noquota:
1413 break;
1414 #endif
1415 case Opt_abort:
1416 set_opt(sbi->s_mount_opt, ABORT);
1417 break;
1418 case Opt_barrier:
1419 if (match_int(&args[0], &option))
1420 return 0;
1421 if (option)
1422 set_opt(sbi->s_mount_opt, BARRIER);
1423 else
1424 clear_opt(sbi->s_mount_opt, BARRIER);
1425 break;
1426 case Opt_ignore:
1427 break;
1428 case Opt_resize:
1429 if (!is_remount) {
1430 printk("EXT4-fs: resize option only available "
1431 "for remount\n");
1432 return 0;
1433 }
1434 if (match_int(&args[0], &option) != 0)
1435 return 0;
1436 *n_blocks_count = option;
1437 break;
1438 case Opt_nobh:
1439 set_opt(sbi->s_mount_opt, NOBH);
1440 break;
1441 case Opt_bh:
1442 clear_opt(sbi->s_mount_opt, NOBH);
1443 break;
1444 case Opt_i_version:
1445 set_opt(sbi->s_mount_opt, I_VERSION);
1446 sb->s_flags |= MS_I_VERSION;
1447 break;
1448 case Opt_nodelalloc:
1449 clear_opt(sbi->s_mount_opt, DELALLOC);
1450 break;
1451 case Opt_stripe:
1452 if (match_int(&args[0], &option))
1453 return 0;
1454 if (option < 0)
1455 return 0;
1456 sbi->s_stripe = option;
1457 break;
1458 case Opt_delalloc:
1459 set_opt(sbi->s_mount_opt, DELALLOC);
1460 break;
1461 case Opt_inode_readahead_blks:
1462 if (match_int(&args[0], &option))
1463 return 0;
1464 if (option < 0 || option > (1 << 30))
1465 return 0;
1466 sbi->s_inode_readahead_blks = option;
1467 break;
1468 case Opt_journal_ioprio:
1469 if (match_int(&args[0], &option))
1470 return 0;
1471 if (option < 0 || option > 7)
1472 break;
1473 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1474 option);
1475 break;
1476 default:
1477 printk(KERN_ERR
1478 "EXT4-fs: Unrecognized mount option \"%s\" "
1479 "or missing value\n", p);
1480 return 0;
1481 }
1482 }
1483 #ifdef CONFIG_QUOTA
1484 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1485 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) &&
1486 sbi->s_qf_names[USRQUOTA])
1487 clear_opt(sbi->s_mount_opt, USRQUOTA);
1488
1489 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) &&
1490 sbi->s_qf_names[GRPQUOTA])
1491 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1492
1493 if ((sbi->s_qf_names[USRQUOTA] &&
1494 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) ||
1495 (sbi->s_qf_names[GRPQUOTA] &&
1496 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) {
1497 printk(KERN_ERR "EXT4-fs: old and new quota "
1498 "format mixing.\n");
1499 return 0;
1500 }
1501
1502 if (!sbi->s_jquota_fmt) {
1503 printk(KERN_ERR "EXT4-fs: journaled quota format "
1504 "not specified.\n");
1505 return 0;
1506 }
1507 } else {
1508 if (sbi->s_jquota_fmt) {
1509 printk(KERN_ERR "EXT4-fs: journaled quota format "
1510 "specified with no journaling "
1511 "enabled.\n");
1512 return 0;
1513 }
1514 }
1515 #endif
1516 return 1;
1517 }
1518
1519 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1520 int read_only)
1521 {
1522 struct ext4_sb_info *sbi = EXT4_SB(sb);
1523 int res = 0;
1524
1525 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1526 printk(KERN_ERR "EXT4-fs warning: revision level too high, "
1527 "forcing read-only mode\n");
1528 res = MS_RDONLY;
1529 }
1530 if (read_only)
1531 return res;
1532 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1533 printk(KERN_WARNING "EXT4-fs warning: mounting unchecked fs, "
1534 "running e2fsck is recommended\n");
1535 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1536 printk(KERN_WARNING
1537 "EXT4-fs warning: mounting fs with errors, "
1538 "running e2fsck is recommended\n");
1539 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1540 le16_to_cpu(es->s_mnt_count) >=
1541 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1542 printk(KERN_WARNING
1543 "EXT4-fs warning: maximal mount count reached, "
1544 "running e2fsck is recommended\n");
1545 else if (le32_to_cpu(es->s_checkinterval) &&
1546 (le32_to_cpu(es->s_lastcheck) +
1547 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1548 printk(KERN_WARNING
1549 "EXT4-fs warning: checktime reached, "
1550 "running e2fsck is recommended\n");
1551 if (!sbi->s_journal)
1552 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1553 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1554 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1555 le16_add_cpu(&es->s_mnt_count, 1);
1556 es->s_mtime = cpu_to_le32(get_seconds());
1557 ext4_update_dynamic_rev(sb);
1558 if (sbi->s_journal)
1559 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1560
1561 ext4_commit_super(sb, es, 1);
1562 if (test_opt(sb, DEBUG))
1563 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1564 "bpg=%lu, ipg=%lu, mo=%04lx]\n",
1565 sb->s_blocksize,
1566 sbi->s_groups_count,
1567 EXT4_BLOCKS_PER_GROUP(sb),
1568 EXT4_INODES_PER_GROUP(sb),
1569 sbi->s_mount_opt);
1570
1571 if (EXT4_SB(sb)->s_journal) {
1572 printk(KERN_INFO "EXT4 FS on %s, %s journal on %s\n",
1573 sb->s_id, EXT4_SB(sb)->s_journal->j_inode ? "internal" :
1574 "external", EXT4_SB(sb)->s_journal->j_devname);
1575 } else {
1576 printk(KERN_INFO "EXT4 FS on %s, no journal\n", sb->s_id);
1577 }
1578 return res;
1579 }
1580
1581 static int ext4_fill_flex_info(struct super_block *sb)
1582 {
1583 struct ext4_sb_info *sbi = EXT4_SB(sb);
1584 struct ext4_group_desc *gdp = NULL;
1585 struct buffer_head *bh;
1586 ext4_group_t flex_group_count;
1587 ext4_group_t flex_group;
1588 int groups_per_flex = 0;
1589 int i;
1590
1591 if (!sbi->s_es->s_log_groups_per_flex) {
1592 sbi->s_log_groups_per_flex = 0;
1593 return 1;
1594 }
1595
1596 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1597 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1598
1599 /* We allocate both existing and potentially added groups */
1600 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1601 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1602 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1603 sbi->s_flex_groups = kzalloc(flex_group_count *
1604 sizeof(struct flex_groups), GFP_KERNEL);
1605 if (sbi->s_flex_groups == NULL) {
1606 printk(KERN_ERR "EXT4-fs: not enough memory for "
1607 "%u flex groups\n", flex_group_count);
1608 goto failed;
1609 }
1610
1611 for (i = 0; i < sbi->s_groups_count; i++) {
1612 gdp = ext4_get_group_desc(sb, i, &bh);
1613
1614 flex_group = ext4_flex_group(sbi, i);
1615 sbi->s_flex_groups[flex_group].free_inodes +=
1616 ext4_free_inodes_count(sb, gdp);
1617 sbi->s_flex_groups[flex_group].free_blocks +=
1618 ext4_free_blks_count(sb, gdp);
1619 }
1620
1621 return 1;
1622 failed:
1623 return 0;
1624 }
1625
1626 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1627 struct ext4_group_desc *gdp)
1628 {
1629 __u16 crc = 0;
1630
1631 if (sbi->s_es->s_feature_ro_compat &
1632 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1633 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1634 __le32 le_group = cpu_to_le32(block_group);
1635
1636 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1637 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1638 crc = crc16(crc, (__u8 *)gdp, offset);
1639 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1640 /* for checksum of struct ext4_group_desc do the rest...*/
1641 if ((sbi->s_es->s_feature_incompat &
1642 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1643 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1644 crc = crc16(crc, (__u8 *)gdp + offset,
1645 le16_to_cpu(sbi->s_es->s_desc_size) -
1646 offset);
1647 }
1648
1649 return cpu_to_le16(crc);
1650 }
1651
1652 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1653 struct ext4_group_desc *gdp)
1654 {
1655 if ((sbi->s_es->s_feature_ro_compat &
1656 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1657 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1658 return 0;
1659
1660 return 1;
1661 }
1662
1663 /* Called at mount-time, super-block is locked */
1664 static int ext4_check_descriptors(struct super_block *sb)
1665 {
1666 struct ext4_sb_info *sbi = EXT4_SB(sb);
1667 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1668 ext4_fsblk_t last_block;
1669 ext4_fsblk_t block_bitmap;
1670 ext4_fsblk_t inode_bitmap;
1671 ext4_fsblk_t inode_table;
1672 int flexbg_flag = 0;
1673 ext4_group_t i;
1674
1675 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
1676 flexbg_flag = 1;
1677
1678 ext4_debug("Checking group descriptors");
1679
1680 for (i = 0; i < sbi->s_groups_count; i++) {
1681 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1682
1683 if (i == sbi->s_groups_count - 1 || flexbg_flag)
1684 last_block = ext4_blocks_count(sbi->s_es) - 1;
1685 else
1686 last_block = first_block +
1687 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1688
1689 block_bitmap = ext4_block_bitmap(sb, gdp);
1690 if (block_bitmap < first_block || block_bitmap > last_block) {
1691 printk(KERN_ERR "EXT4-fs: ext4_check_descriptors: "
1692 "Block bitmap for group %u not in group "
1693 "(block %llu)!\n", i, block_bitmap);
1694 return 0;
1695 }
1696 inode_bitmap = ext4_inode_bitmap(sb, gdp);
1697 if (inode_bitmap < first_block || inode_bitmap > last_block) {
1698 printk(KERN_ERR "EXT4-fs: ext4_check_descriptors: "
1699 "Inode bitmap for group %u not in group "
1700 "(block %llu)!\n", i, inode_bitmap);
1701 return 0;
1702 }
1703 inode_table = ext4_inode_table(sb, gdp);
1704 if (inode_table < first_block ||
1705 inode_table + sbi->s_itb_per_group - 1 > last_block) {
1706 printk(KERN_ERR "EXT4-fs: ext4_check_descriptors: "
1707 "Inode table for group %u not in group "
1708 "(block %llu)!\n", i, inode_table);
1709 return 0;
1710 }
1711 spin_lock(sb_bgl_lock(sbi, i));
1712 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
1713 printk(KERN_ERR "EXT4-fs: ext4_check_descriptors: "
1714 "Checksum for group %u failed (%u!=%u)\n",
1715 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
1716 gdp)), le16_to_cpu(gdp->bg_checksum));
1717 if (!(sb->s_flags & MS_RDONLY)) {
1718 spin_unlock(sb_bgl_lock(sbi, i));
1719 return 0;
1720 }
1721 }
1722 spin_unlock(sb_bgl_lock(sbi, i));
1723 if (!flexbg_flag)
1724 first_block += EXT4_BLOCKS_PER_GROUP(sb);
1725 }
1726
1727 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
1728 sbi->s_es->s_free_inodes_count = cpu_to_le32(ext4_count_free_inodes(sb));
1729 return 1;
1730 }
1731
1732 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
1733 * the superblock) which were deleted from all directories, but held open by
1734 * a process at the time of a crash. We walk the list and try to delete these
1735 * inodes at recovery time (only with a read-write filesystem).
1736 *
1737 * In order to keep the orphan inode chain consistent during traversal (in
1738 * case of crash during recovery), we link each inode into the superblock
1739 * orphan list_head and handle it the same way as an inode deletion during
1740 * normal operation (which journals the operations for us).
1741 *
1742 * We only do an iget() and an iput() on each inode, which is very safe if we
1743 * accidentally point at an in-use or already deleted inode. The worst that
1744 * can happen in this case is that we get a "bit already cleared" message from
1745 * ext4_free_inode(). The only reason we would point at a wrong inode is if
1746 * e2fsck was run on this filesystem, and it must have already done the orphan
1747 * inode cleanup for us, so we can safely abort without any further action.
1748 */
1749 static void ext4_orphan_cleanup(struct super_block *sb,
1750 struct ext4_super_block *es)
1751 {
1752 unsigned int s_flags = sb->s_flags;
1753 int nr_orphans = 0, nr_truncates = 0;
1754 #ifdef CONFIG_QUOTA
1755 int i;
1756 #endif
1757 if (!es->s_last_orphan) {
1758 jbd_debug(4, "no orphan inodes to clean up\n");
1759 return;
1760 }
1761
1762 if (bdev_read_only(sb->s_bdev)) {
1763 printk(KERN_ERR "EXT4-fs: write access "
1764 "unavailable, skipping orphan cleanup.\n");
1765 return;
1766 }
1767
1768 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
1769 if (es->s_last_orphan)
1770 jbd_debug(1, "Errors on filesystem, "
1771 "clearing orphan list.\n");
1772 es->s_last_orphan = 0;
1773 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
1774 return;
1775 }
1776
1777 if (s_flags & MS_RDONLY) {
1778 printk(KERN_INFO "EXT4-fs: %s: orphan cleanup on readonly fs\n",
1779 sb->s_id);
1780 sb->s_flags &= ~MS_RDONLY;
1781 }
1782 #ifdef CONFIG_QUOTA
1783 /* Needed for iput() to work correctly and not trash data */
1784 sb->s_flags |= MS_ACTIVE;
1785 /* Turn on quotas so that they are updated correctly */
1786 for (i = 0; i < MAXQUOTAS; i++) {
1787 if (EXT4_SB(sb)->s_qf_names[i]) {
1788 int ret = ext4_quota_on_mount(sb, i);
1789 if (ret < 0)
1790 printk(KERN_ERR
1791 "EXT4-fs: Cannot turn on journaled "
1792 "quota: error %d\n", ret);
1793 }
1794 }
1795 #endif
1796
1797 while (es->s_last_orphan) {
1798 struct inode *inode;
1799
1800 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
1801 if (IS_ERR(inode)) {
1802 es->s_last_orphan = 0;
1803 break;
1804 }
1805
1806 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
1807 vfs_dq_init(inode);
1808 if (inode->i_nlink) {
1809 printk(KERN_DEBUG
1810 "%s: truncating inode %lu to %lld bytes\n",
1811 __func__, inode->i_ino, inode->i_size);
1812 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
1813 inode->i_ino, inode->i_size);
1814 ext4_truncate(inode);
1815 nr_truncates++;
1816 } else {
1817 printk(KERN_DEBUG
1818 "%s: deleting unreferenced inode %lu\n",
1819 __func__, inode->i_ino);
1820 jbd_debug(2, "deleting unreferenced inode %lu\n",
1821 inode->i_ino);
1822 nr_orphans++;
1823 }
1824 iput(inode); /* The delete magic happens here! */
1825 }
1826
1827 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
1828
1829 if (nr_orphans)
1830 printk(KERN_INFO "EXT4-fs: %s: %d orphan inode%s deleted\n",
1831 sb->s_id, PLURAL(nr_orphans));
1832 if (nr_truncates)
1833 printk(KERN_INFO "EXT4-fs: %s: %d truncate%s cleaned up\n",
1834 sb->s_id, PLURAL(nr_truncates));
1835 #ifdef CONFIG_QUOTA
1836 /* Turn quotas off */
1837 for (i = 0; i < MAXQUOTAS; i++) {
1838 if (sb_dqopt(sb)->files[i])
1839 vfs_quota_off(sb, i, 0);
1840 }
1841 #endif
1842 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
1843 }
1844 /*
1845 * Maximal extent format file size.
1846 * Resulting logical blkno at s_maxbytes must fit in our on-disk
1847 * extent format containers, within a sector_t, and within i_blocks
1848 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
1849 * so that won't be a limiting factor.
1850 *
1851 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
1852 */
1853 static loff_t ext4_max_size(int blkbits, int has_huge_files)
1854 {
1855 loff_t res;
1856 loff_t upper_limit = MAX_LFS_FILESIZE;
1857
1858 /* small i_blocks in vfs inode? */
1859 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
1860 /*
1861 * CONFIG_LBD is not enabled implies the inode
1862 * i_block represent total blocks in 512 bytes
1863 * 32 == size of vfs inode i_blocks * 8
1864 */
1865 upper_limit = (1LL << 32) - 1;
1866
1867 /* total blocks in file system block size */
1868 upper_limit >>= (blkbits - 9);
1869 upper_limit <<= blkbits;
1870 }
1871
1872 /* 32-bit extent-start container, ee_block */
1873 res = 1LL << 32;
1874 res <<= blkbits;
1875 res -= 1;
1876
1877 /* Sanity check against vm- & vfs- imposed limits */
1878 if (res > upper_limit)
1879 res = upper_limit;
1880
1881 return res;
1882 }
1883
1884 /*
1885 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
1886 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
1887 * We need to be 1 filesystem block less than the 2^48 sector limit.
1888 */
1889 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
1890 {
1891 loff_t res = EXT4_NDIR_BLOCKS;
1892 int meta_blocks;
1893 loff_t upper_limit;
1894 /* This is calculated to be the largest file size for a
1895 * dense, bitmapped file such that the total number of
1896 * sectors in the file, including data and all indirect blocks,
1897 * does not exceed 2^48 -1
1898 * __u32 i_blocks_lo and _u16 i_blocks_high representing the
1899 * total number of 512 bytes blocks of the file
1900 */
1901
1902 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
1903 /*
1904 * !has_huge_files or CONFIG_LBD is not enabled
1905 * implies the inode i_block represent total blocks in
1906 * 512 bytes 32 == size of vfs inode i_blocks * 8
1907 */
1908 upper_limit = (1LL << 32) - 1;
1909
1910 /* total blocks in file system block size */
1911 upper_limit >>= (bits - 9);
1912
1913 } else {
1914 /*
1915 * We use 48 bit ext4_inode i_blocks
1916 * With EXT4_HUGE_FILE_FL set the i_blocks
1917 * represent total number of blocks in
1918 * file system block size
1919 */
1920 upper_limit = (1LL << 48) - 1;
1921
1922 }
1923
1924 /* indirect blocks */
1925 meta_blocks = 1;
1926 /* double indirect blocks */
1927 meta_blocks += 1 + (1LL << (bits-2));
1928 /* tripple indirect blocks */
1929 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
1930
1931 upper_limit -= meta_blocks;
1932 upper_limit <<= bits;
1933
1934 res += 1LL << (bits-2);
1935 res += 1LL << (2*(bits-2));
1936 res += 1LL << (3*(bits-2));
1937 res <<= bits;
1938 if (res > upper_limit)
1939 res = upper_limit;
1940
1941 if (res > MAX_LFS_FILESIZE)
1942 res = MAX_LFS_FILESIZE;
1943
1944 return res;
1945 }
1946
1947 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
1948 ext4_fsblk_t logical_sb_block, int nr)
1949 {
1950 struct ext4_sb_info *sbi = EXT4_SB(sb);
1951 ext4_group_t bg, first_meta_bg;
1952 int has_super = 0;
1953
1954 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
1955
1956 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
1957 nr < first_meta_bg)
1958 return logical_sb_block + nr + 1;
1959 bg = sbi->s_desc_per_block * nr;
1960 if (ext4_bg_has_super(sb, bg))
1961 has_super = 1;
1962 return (has_super + ext4_group_first_block_no(sb, bg));
1963 }
1964
1965 /**
1966 * ext4_get_stripe_size: Get the stripe size.
1967 * @sbi: In memory super block info
1968 *
1969 * If we have specified it via mount option, then
1970 * use the mount option value. If the value specified at mount time is
1971 * greater than the blocks per group use the super block value.
1972 * If the super block value is greater than blocks per group return 0.
1973 * Allocator needs it be less than blocks per group.
1974 *
1975 */
1976 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
1977 {
1978 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
1979 unsigned long stripe_width =
1980 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
1981
1982 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
1983 return sbi->s_stripe;
1984
1985 if (stripe_width <= sbi->s_blocks_per_group)
1986 return stripe_width;
1987
1988 if (stride <= sbi->s_blocks_per_group)
1989 return stride;
1990
1991 return 0;
1992 }
1993
1994 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
1995 __releases(kernel_lock)
1996 __acquires(kernel_lock)
1997
1998 {
1999 struct buffer_head *bh;
2000 struct ext4_super_block *es = NULL;
2001 struct ext4_sb_info *sbi;
2002 ext4_fsblk_t block;
2003 ext4_fsblk_t sb_block = get_sb_block(&data);
2004 ext4_fsblk_t logical_sb_block;
2005 unsigned long offset = 0;
2006 unsigned long journal_devnum = 0;
2007 unsigned long def_mount_opts;
2008 struct inode *root;
2009 char *cp;
2010 const char *descr;
2011 int ret = -EINVAL;
2012 int blocksize;
2013 unsigned int db_count;
2014 unsigned int i;
2015 int needs_recovery, has_huge_files;
2016 int features;
2017 __u64 blocks_count;
2018 int err;
2019 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
2020
2021 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2022 if (!sbi)
2023 return -ENOMEM;
2024 sb->s_fs_info = sbi;
2025 sbi->s_mount_opt = 0;
2026 sbi->s_resuid = EXT4_DEF_RESUID;
2027 sbi->s_resgid = EXT4_DEF_RESGID;
2028 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
2029 sbi->s_sb_block = sb_block;
2030
2031 unlock_kernel();
2032
2033 /* Cleanup superblock name */
2034 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
2035 *cp = '!';
2036
2037 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
2038 if (!blocksize) {
2039 printk(KERN_ERR "EXT4-fs: unable to set blocksize\n");
2040 goto out_fail;
2041 }
2042
2043 /*
2044 * The ext4 superblock will not be buffer aligned for other than 1kB
2045 * block sizes. We need to calculate the offset from buffer start.
2046 */
2047 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
2048 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2049 offset = do_div(logical_sb_block, blocksize);
2050 } else {
2051 logical_sb_block = sb_block;
2052 }
2053
2054 if (!(bh = sb_bread(sb, logical_sb_block))) {
2055 printk(KERN_ERR "EXT4-fs: unable to read superblock\n");
2056 goto out_fail;
2057 }
2058 /*
2059 * Note: s_es must be initialized as soon as possible because
2060 * some ext4 macro-instructions depend on its value
2061 */
2062 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
2063 sbi->s_es = es;
2064 sb->s_magic = le16_to_cpu(es->s_magic);
2065 if (sb->s_magic != EXT4_SUPER_MAGIC)
2066 goto cantfind_ext4;
2067
2068 /* Set defaults before we parse the mount options */
2069 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
2070 if (def_mount_opts & EXT4_DEFM_DEBUG)
2071 set_opt(sbi->s_mount_opt, DEBUG);
2072 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
2073 set_opt(sbi->s_mount_opt, GRPID);
2074 if (def_mount_opts & EXT4_DEFM_UID16)
2075 set_opt(sbi->s_mount_opt, NO_UID32);
2076 #ifdef CONFIG_EXT4_FS_XATTR
2077 if (def_mount_opts & EXT4_DEFM_XATTR_USER)
2078 set_opt(sbi->s_mount_opt, XATTR_USER);
2079 #endif
2080 #ifdef CONFIG_EXT4_FS_POSIX_ACL
2081 if (def_mount_opts & EXT4_DEFM_ACL)
2082 set_opt(sbi->s_mount_opt, POSIX_ACL);
2083 #endif
2084 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
2085 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
2086 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
2087 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
2088 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
2089 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA;
2090
2091 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
2092 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
2093 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
2094 set_opt(sbi->s_mount_opt, ERRORS_CONT);
2095 else
2096 set_opt(sbi->s_mount_opt, ERRORS_RO);
2097
2098 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
2099 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
2100 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
2101 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
2102 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
2103
2104 set_opt(sbi->s_mount_opt, RESERVATION);
2105 set_opt(sbi->s_mount_opt, BARRIER);
2106
2107 /*
2108 * enable delayed allocation by default
2109 * Use -o nodelalloc to turn it off
2110 */
2111 set_opt(sbi->s_mount_opt, DELALLOC);
2112
2113
2114 if (!parse_options((char *) data, sb, &journal_devnum,
2115 &journal_ioprio, NULL, 0))
2116 goto failed_mount;
2117
2118 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2119 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
2120
2121 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
2122 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
2123 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
2124 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
2125 printk(KERN_WARNING
2126 "EXT4-fs warning: feature flags set on rev 0 fs, "
2127 "running e2fsck is recommended\n");
2128
2129 /*
2130 * Check feature flags regardless of the revision level, since we
2131 * previously didn't change the revision level when setting the flags,
2132 * so there is a chance incompat flags are set on a rev 0 filesystem.
2133 */
2134 features = EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP);
2135 if (features) {
2136 printk(KERN_ERR "EXT4-fs: %s: couldn't mount because of "
2137 "unsupported optional features (%x).\n", sb->s_id,
2138 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2139 ~EXT4_FEATURE_INCOMPAT_SUPP));
2140 goto failed_mount;
2141 }
2142 features = EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP);
2143 if (!(sb->s_flags & MS_RDONLY) && features) {
2144 printk(KERN_ERR "EXT4-fs: %s: couldn't mount RDWR because of "
2145 "unsupported optional features (%x).\n", sb->s_id,
2146 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2147 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2148 goto failed_mount;
2149 }
2150 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
2151 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2152 if (has_huge_files) {
2153 /*
2154 * Large file size enabled file system can only be
2155 * mount if kernel is build with CONFIG_LBD
2156 */
2157 if (sizeof(root->i_blocks) < sizeof(u64) &&
2158 !(sb->s_flags & MS_RDONLY)) {
2159 printk(KERN_ERR "EXT4-fs: %s: Filesystem with huge "
2160 "files cannot be mounted read-write "
2161 "without CONFIG_LBD.\n", sb->s_id);
2162 goto failed_mount;
2163 }
2164 }
2165 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
2166
2167 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
2168 blocksize > EXT4_MAX_BLOCK_SIZE) {
2169 printk(KERN_ERR
2170 "EXT4-fs: Unsupported filesystem blocksize %d on %s.\n",
2171 blocksize, sb->s_id);
2172 goto failed_mount;
2173 }
2174
2175 if (sb->s_blocksize != blocksize) {
2176
2177 /* Validate the filesystem blocksize */
2178 if (!sb_set_blocksize(sb, blocksize)) {
2179 printk(KERN_ERR "EXT4-fs: bad block size %d.\n",
2180 blocksize);
2181 goto failed_mount;
2182 }
2183
2184 brelse(bh);
2185 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2186 offset = do_div(logical_sb_block, blocksize);
2187 bh = sb_bread(sb, logical_sb_block);
2188 if (!bh) {
2189 printk(KERN_ERR
2190 "EXT4-fs: Can't read superblock on 2nd try.\n");
2191 goto failed_mount;
2192 }
2193 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
2194 sbi->s_es = es;
2195 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
2196 printk(KERN_ERR
2197 "EXT4-fs: Magic mismatch, very weird !\n");
2198 goto failed_mount;
2199 }
2200 }
2201
2202 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
2203 has_huge_files);
2204 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
2205
2206 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
2207 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
2208 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
2209 } else {
2210 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
2211 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
2212 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
2213 (!is_power_of_2(sbi->s_inode_size)) ||
2214 (sbi->s_inode_size > blocksize)) {
2215 printk(KERN_ERR
2216 "EXT4-fs: unsupported inode size: %d\n",
2217 sbi->s_inode_size);
2218 goto failed_mount;
2219 }
2220 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
2221 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
2222 }
2223 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
2224 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
2225 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
2226 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
2227 !is_power_of_2(sbi->s_desc_size)) {
2228 printk(KERN_ERR
2229 "EXT4-fs: unsupported descriptor size %lu\n",
2230 sbi->s_desc_size);
2231 goto failed_mount;
2232 }
2233 } else
2234 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
2235 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
2236 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
2237 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
2238 goto cantfind_ext4;
2239 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
2240 if (sbi->s_inodes_per_block == 0)
2241 goto cantfind_ext4;
2242 sbi->s_itb_per_group = sbi->s_inodes_per_group /
2243 sbi->s_inodes_per_block;
2244 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
2245 sbi->s_sbh = bh;
2246 sbi->s_mount_state = le16_to_cpu(es->s_state);
2247 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
2248 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
2249 for (i = 0; i < 4; i++)
2250 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
2251 sbi->s_def_hash_version = es->s_def_hash_version;
2252 i = le32_to_cpu(es->s_flags);
2253 if (i & EXT2_FLAGS_UNSIGNED_HASH)
2254 sbi->s_hash_unsigned = 3;
2255 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
2256 #ifdef __CHAR_UNSIGNED__
2257 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
2258 sbi->s_hash_unsigned = 3;
2259 #else
2260 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
2261 #endif
2262 sb->s_dirt = 1;
2263 }
2264
2265 if (sbi->s_blocks_per_group > blocksize * 8) {
2266 printk(KERN_ERR
2267 "EXT4-fs: #blocks per group too big: %lu\n",
2268 sbi->s_blocks_per_group);
2269 goto failed_mount;
2270 }
2271 if (sbi->s_inodes_per_group > blocksize * 8) {
2272 printk(KERN_ERR
2273 "EXT4-fs: #inodes per group too big: %lu\n",
2274 sbi->s_inodes_per_group);
2275 goto failed_mount;
2276 }
2277
2278 if (ext4_blocks_count(es) >
2279 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) {
2280 printk(KERN_ERR "EXT4-fs: filesystem on %s:"
2281 " too large to mount safely\n", sb->s_id);
2282 if (sizeof(sector_t) < 8)
2283 printk(KERN_WARNING "EXT4-fs: CONFIG_LBD not "
2284 "enabled\n");
2285 goto failed_mount;
2286 }
2287
2288 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
2289 goto cantfind_ext4;
2290
2291 /*
2292 * It makes no sense for the first data block to be beyond the end
2293 * of the filesystem.
2294 */
2295 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
2296 printk(KERN_WARNING "EXT4-fs: bad geometry: first data"
2297 "block %u is beyond end of filesystem (%llu)\n",
2298 le32_to_cpu(es->s_first_data_block),
2299 ext4_blocks_count(es));
2300 goto failed_mount;
2301 }
2302 blocks_count = (ext4_blocks_count(es) -
2303 le32_to_cpu(es->s_first_data_block) +
2304 EXT4_BLOCKS_PER_GROUP(sb) - 1);
2305 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
2306 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
2307 printk(KERN_WARNING "EXT4-fs: groups count too large: %u "
2308 "(block count %llu, first data block %u, "
2309 "blocks per group %lu)\n", sbi->s_groups_count,
2310 ext4_blocks_count(es),
2311 le32_to_cpu(es->s_first_data_block),
2312 EXT4_BLOCKS_PER_GROUP(sb));
2313 goto failed_mount;
2314 }
2315 sbi->s_groups_count = blocks_count;
2316 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
2317 EXT4_DESC_PER_BLOCK(sb);
2318 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
2319 GFP_KERNEL);
2320 if (sbi->s_group_desc == NULL) {
2321 printk(KERN_ERR "EXT4-fs: not enough memory\n");
2322 goto failed_mount;
2323 }
2324
2325 #ifdef CONFIG_PROC_FS
2326 if (ext4_proc_root)
2327 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
2328
2329 if (sbi->s_proc)
2330 proc_create_data("inode_readahead_blks", 0644, sbi->s_proc,
2331 &ext4_ui_proc_fops,
2332 &sbi->s_inode_readahead_blks);
2333 #endif
2334
2335 bgl_lock_init(&sbi->s_blockgroup_lock);
2336
2337 for (i = 0; i < db_count; i++) {
2338 block = descriptor_loc(sb, logical_sb_block, i);
2339 sbi->s_group_desc[i] = sb_bread(sb, block);
2340 if (!sbi->s_group_desc[i]) {
2341 printk(KERN_ERR "EXT4-fs: "
2342 "can't read group descriptor %d\n", i);
2343 db_count = i;
2344 goto failed_mount2;
2345 }
2346 }
2347 if (!ext4_check_descriptors(sb)) {
2348 printk(KERN_ERR "EXT4-fs: group descriptors corrupted!\n");
2349 goto failed_mount2;
2350 }
2351 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2352 if (!ext4_fill_flex_info(sb)) {
2353 printk(KERN_ERR
2354 "EXT4-fs: unable to initialize "
2355 "flex_bg meta info!\n");
2356 goto failed_mount2;
2357 }
2358
2359 sbi->s_gdb_count = db_count;
2360 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2361 spin_lock_init(&sbi->s_next_gen_lock);
2362
2363 err = percpu_counter_init(&sbi->s_freeblocks_counter,
2364 ext4_count_free_blocks(sb));
2365 if (!err) {
2366 err = percpu_counter_init(&sbi->s_freeinodes_counter,
2367 ext4_count_free_inodes(sb));
2368 }
2369 if (!err) {
2370 err = percpu_counter_init(&sbi->s_dirs_counter,
2371 ext4_count_dirs(sb));
2372 }
2373 if (!err) {
2374 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
2375 }
2376 if (err) {
2377 printk(KERN_ERR "EXT4-fs: insufficient memory\n");
2378 goto failed_mount3;
2379 }
2380
2381 sbi->s_stripe = ext4_get_stripe_size(sbi);
2382
2383 /*
2384 * set up enough so that it can read an inode
2385 */
2386 sb->s_op = &ext4_sops;
2387 sb->s_export_op = &ext4_export_ops;
2388 sb->s_xattr = ext4_xattr_handlers;
2389 #ifdef CONFIG_QUOTA
2390 sb->s_qcop = &ext4_qctl_operations;
2391 sb->dq_op = &ext4_quota_operations;
2392 #endif
2393 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
2394
2395 sb->s_root = NULL;
2396
2397 needs_recovery = (es->s_last_orphan != 0 ||
2398 EXT4_HAS_INCOMPAT_FEATURE(sb,
2399 EXT4_FEATURE_INCOMPAT_RECOVER));
2400
2401 /*
2402 * The first inode we look at is the journal inode. Don't try
2403 * root first: it may be modified in the journal!
2404 */
2405 if (!test_opt(sb, NOLOAD) &&
2406 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
2407 if (ext4_load_journal(sb, es, journal_devnum))
2408 goto failed_mount3;
2409 if (!(sb->s_flags & MS_RDONLY) &&
2410 EXT4_SB(sb)->s_journal->j_failed_commit) {
2411 printk(KERN_CRIT "EXT4-fs error (device %s): "
2412 "ext4_fill_super: Journal transaction "
2413 "%u is corrupt\n", sb->s_id,
2414 EXT4_SB(sb)->s_journal->j_failed_commit);
2415 if (test_opt(sb, ERRORS_RO)) {
2416 printk(KERN_CRIT
2417 "Mounting filesystem read-only\n");
2418 sb->s_flags |= MS_RDONLY;
2419 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
2420 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
2421 }
2422 if (test_opt(sb, ERRORS_PANIC)) {
2423 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
2424 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
2425 ext4_commit_super(sb, es, 1);
2426 goto failed_mount4;
2427 }
2428 }
2429 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
2430 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
2431 printk(KERN_ERR "EXT4-fs: required journal recovery "
2432 "suppressed and not mounted read-only\n");
2433 goto failed_mount4;
2434 } else {
2435 clear_opt(sbi->s_mount_opt, DATA_FLAGS);
2436 set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
2437 sbi->s_journal = NULL;
2438 needs_recovery = 0;
2439 goto no_journal;
2440 }
2441
2442 if (ext4_blocks_count(es) > 0xffffffffULL &&
2443 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
2444 JBD2_FEATURE_INCOMPAT_64BIT)) {
2445 printk(KERN_ERR "EXT4-fs: Failed to set 64-bit journal feature\n");
2446 goto failed_mount4;
2447 }
2448
2449 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2450 jbd2_journal_set_features(sbi->s_journal,
2451 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2452 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2453 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2454 jbd2_journal_set_features(sbi->s_journal,
2455 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
2456 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2457 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2458 } else {
2459 jbd2_journal_clear_features(sbi->s_journal,
2460 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2461 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2462 }
2463
2464 /* We have now updated the journal if required, so we can
2465 * validate the data journaling mode. */
2466 switch (test_opt(sb, DATA_FLAGS)) {
2467 case 0:
2468 /* No mode set, assume a default based on the journal
2469 * capabilities: ORDERED_DATA if the journal can
2470 * cope, else JOURNAL_DATA
2471 */
2472 if (jbd2_journal_check_available_features
2473 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
2474 set_opt(sbi->s_mount_opt, ORDERED_DATA);
2475 else
2476 set_opt(sbi->s_mount_opt, JOURNAL_DATA);
2477 break;
2478
2479 case EXT4_MOUNT_ORDERED_DATA:
2480 case EXT4_MOUNT_WRITEBACK_DATA:
2481 if (!jbd2_journal_check_available_features
2482 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
2483 printk(KERN_ERR "EXT4-fs: Journal does not support "
2484 "requested data journaling mode\n");
2485 goto failed_mount4;
2486 }
2487 default:
2488 break;
2489 }
2490 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
2491
2492 no_journal:
2493
2494 if (test_opt(sb, NOBH)) {
2495 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) {
2496 printk(KERN_WARNING "EXT4-fs: Ignoring nobh option - "
2497 "its supported only with writeback mode\n");
2498 clear_opt(sbi->s_mount_opt, NOBH);
2499 }
2500 }
2501 /*
2502 * The jbd2_journal_load will have done any necessary log recovery,
2503 * so we can safely mount the rest of the filesystem now.
2504 */
2505
2506 root = ext4_iget(sb, EXT4_ROOT_INO);
2507 if (IS_ERR(root)) {
2508 printk(KERN_ERR "EXT4-fs: get root inode failed\n");
2509 ret = PTR_ERR(root);
2510 goto failed_mount4;
2511 }
2512 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2513 iput(root);
2514 printk(KERN_ERR "EXT4-fs: corrupt root inode, run e2fsck\n");
2515 goto failed_mount4;
2516 }
2517 sb->s_root = d_alloc_root(root);
2518 if (!sb->s_root) {
2519 printk(KERN_ERR "EXT4-fs: get root dentry failed\n");
2520 iput(root);
2521 ret = -ENOMEM;
2522 goto failed_mount4;
2523 }
2524
2525 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
2526
2527 /* determine the minimum size of new large inodes, if present */
2528 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
2529 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2530 EXT4_GOOD_OLD_INODE_SIZE;
2531 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2532 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
2533 if (sbi->s_want_extra_isize <
2534 le16_to_cpu(es->s_want_extra_isize))
2535 sbi->s_want_extra_isize =
2536 le16_to_cpu(es->s_want_extra_isize);
2537 if (sbi->s_want_extra_isize <
2538 le16_to_cpu(es->s_min_extra_isize))
2539 sbi->s_want_extra_isize =
2540 le16_to_cpu(es->s_min_extra_isize);
2541 }
2542 }
2543 /* Check if enough inode space is available */
2544 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
2545 sbi->s_inode_size) {
2546 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2547 EXT4_GOOD_OLD_INODE_SIZE;
2548 printk(KERN_INFO "EXT4-fs: required extra inode space not"
2549 "available.\n");
2550 }
2551
2552 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
2553 printk(KERN_WARNING "EXT4-fs: Ignoring delalloc option - "
2554 "requested data journaling mode\n");
2555 clear_opt(sbi->s_mount_opt, DELALLOC);
2556 } else if (test_opt(sb, DELALLOC))
2557 printk(KERN_INFO "EXT4-fs: delayed allocation enabled\n");
2558
2559 ext4_ext_init(sb);
2560 err = ext4_mb_init(sb, needs_recovery);
2561 if (err) {
2562 printk(KERN_ERR "EXT4-fs: failed to initalize mballoc (%d)\n",
2563 err);
2564 goto failed_mount4;
2565 }
2566
2567 /*
2568 * akpm: core read_super() calls in here with the superblock locked.
2569 * That deadlocks, because orphan cleanup needs to lock the superblock
2570 * in numerous places. Here we just pop the lock - it's relatively
2571 * harmless, because we are now ready to accept write_super() requests,
2572 * and aviro says that's the only reason for hanging onto the
2573 * superblock lock.
2574 */
2575 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
2576 ext4_orphan_cleanup(sb, es);
2577 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
2578 if (needs_recovery) {
2579 printk(KERN_INFO "EXT4-fs: recovery complete.\n");
2580 ext4_mark_recovery_complete(sb, es);
2581 }
2582 if (EXT4_SB(sb)->s_journal) {
2583 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2584 descr = " journalled data mode";
2585 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2586 descr = " ordered data mode";
2587 else
2588 descr = " writeback data mode";
2589 } else
2590 descr = "out journal";
2591
2592 printk(KERN_INFO "EXT4-fs: mounted filesystem %s with%s\n",
2593 sb->s_id, descr);
2594
2595 lock_kernel();
2596 return 0;
2597
2598 cantfind_ext4:
2599 if (!silent)
2600 printk(KERN_ERR "VFS: Can't find ext4 filesystem on dev %s.\n",
2601 sb->s_id);
2602 goto failed_mount;
2603
2604 failed_mount4:
2605 printk(KERN_ERR "EXT4-fs (device %s): mount failed\n", sb->s_id);
2606 if (sbi->s_journal) {
2607 jbd2_journal_destroy(sbi->s_journal);
2608 sbi->s_journal = NULL;
2609 }
2610 failed_mount3:
2611 percpu_counter_destroy(&sbi->s_freeblocks_counter);
2612 percpu_counter_destroy(&sbi->s_freeinodes_counter);
2613 percpu_counter_destroy(&sbi->s_dirs_counter);
2614 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
2615 failed_mount2:
2616 for (i = 0; i < db_count; i++)
2617 brelse(sbi->s_group_desc[i]);
2618 kfree(sbi->s_group_desc);
2619 failed_mount:
2620 if (sbi->s_proc) {
2621 remove_proc_entry("inode_readahead_blks", sbi->s_proc);
2622 remove_proc_entry(sb->s_id, ext4_proc_root);
2623 }
2624 #ifdef CONFIG_QUOTA
2625 for (i = 0; i < MAXQUOTAS; i++)
2626 kfree(sbi->s_qf_names[i]);
2627 #endif
2628 ext4_blkdev_remove(sbi);
2629 brelse(bh);
2630 out_fail:
2631 sb->s_fs_info = NULL;
2632 kfree(sbi);
2633 lock_kernel();
2634 return ret;
2635 }
2636
2637 /*
2638 * Setup any per-fs journal parameters now. We'll do this both on
2639 * initial mount, once the journal has been initialised but before we've
2640 * done any recovery; and again on any subsequent remount.
2641 */
2642 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
2643 {
2644 struct ext4_sb_info *sbi = EXT4_SB(sb);
2645
2646 journal->j_commit_interval = sbi->s_commit_interval;
2647 journal->j_min_batch_time = sbi->s_min_batch_time;
2648 journal->j_max_batch_time = sbi->s_max_batch_time;
2649
2650 spin_lock(&journal->j_state_lock);
2651 if (test_opt(sb, BARRIER))
2652 journal->j_flags |= JBD2_BARRIER;
2653 else
2654 journal->j_flags &= ~JBD2_BARRIER;
2655 if (test_opt(sb, DATA_ERR_ABORT))
2656 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
2657 else
2658 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
2659 spin_unlock(&journal->j_state_lock);
2660 }
2661
2662 static journal_t *ext4_get_journal(struct super_block *sb,
2663 unsigned int journal_inum)
2664 {
2665 struct inode *journal_inode;
2666 journal_t *journal;
2667
2668 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
2669
2670 /* First, test for the existence of a valid inode on disk. Bad
2671 * things happen if we iget() an unused inode, as the subsequent
2672 * iput() will try to delete it. */
2673
2674 journal_inode = ext4_iget(sb, journal_inum);
2675 if (IS_ERR(journal_inode)) {
2676 printk(KERN_ERR "EXT4-fs: no journal found.\n");
2677 return NULL;
2678 }
2679 if (!journal_inode->i_nlink) {
2680 make_bad_inode(journal_inode);
2681 iput(journal_inode);
2682 printk(KERN_ERR "EXT4-fs: journal inode is deleted.\n");
2683 return NULL;
2684 }
2685
2686 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
2687 journal_inode, journal_inode->i_size);
2688 if (!S_ISREG(journal_inode->i_mode)) {
2689 printk(KERN_ERR "EXT4-fs: invalid journal inode.\n");
2690 iput(journal_inode);
2691 return NULL;
2692 }
2693
2694 journal = jbd2_journal_init_inode(journal_inode);
2695 if (!journal) {
2696 printk(KERN_ERR "EXT4-fs: Could not load journal inode\n");
2697 iput(journal_inode);
2698 return NULL;
2699 }
2700 journal->j_private = sb;
2701 ext4_init_journal_params(sb, journal);
2702 return journal;
2703 }
2704
2705 static journal_t *ext4_get_dev_journal(struct super_block *sb,
2706 dev_t j_dev)
2707 {
2708 struct buffer_head *bh;
2709 journal_t *journal;
2710 ext4_fsblk_t start;
2711 ext4_fsblk_t len;
2712 int hblock, blocksize;
2713 ext4_fsblk_t sb_block;
2714 unsigned long offset;
2715 struct ext4_super_block *es;
2716 struct block_device *bdev;
2717
2718 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
2719
2720 bdev = ext4_blkdev_get(j_dev);
2721 if (bdev == NULL)
2722 return NULL;
2723
2724 if (bd_claim(bdev, sb)) {
2725 printk(KERN_ERR
2726 "EXT4-fs: failed to claim external journal device.\n");
2727 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
2728 return NULL;
2729 }
2730
2731 blocksize = sb->s_blocksize;
2732 hblock = bdev_hardsect_size(bdev);
2733 if (blocksize < hblock) {
2734 printk(KERN_ERR
2735 "EXT4-fs: blocksize too small for journal device.\n");
2736 goto out_bdev;
2737 }
2738
2739 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
2740 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
2741 set_blocksize(bdev, blocksize);
2742 if (!(bh = __bread(bdev, sb_block, blocksize))) {
2743 printk(KERN_ERR "EXT4-fs: couldn't read superblock of "
2744 "external journal\n");
2745 goto out_bdev;
2746 }
2747
2748 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
2749 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
2750 !(le32_to_cpu(es->s_feature_incompat) &
2751 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
2752 printk(KERN_ERR "EXT4-fs: external journal has "
2753 "bad superblock\n");
2754 brelse(bh);
2755 goto out_bdev;
2756 }
2757
2758 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
2759 printk(KERN_ERR "EXT4-fs: journal UUID does not match\n");
2760 brelse(bh);
2761 goto out_bdev;
2762 }
2763
2764 len = ext4_blocks_count(es);
2765 start = sb_block + 1;
2766 brelse(bh); /* we're done with the superblock */
2767
2768 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
2769 start, len, blocksize);
2770 if (!journal) {
2771 printk(KERN_ERR "EXT4-fs: failed to create device journal\n");
2772 goto out_bdev;
2773 }
2774 journal->j_private = sb;
2775 ll_rw_block(READ, 1, &journal->j_sb_buffer);
2776 wait_on_buffer(journal->j_sb_buffer);
2777 if (!buffer_uptodate(journal->j_sb_buffer)) {
2778 printk(KERN_ERR "EXT4-fs: I/O error on journal device\n");
2779 goto out_journal;
2780 }
2781 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
2782 printk(KERN_ERR "EXT4-fs: External journal has more than one "
2783 "user (unsupported) - %d\n",
2784 be32_to_cpu(journal->j_superblock->s_nr_users));
2785 goto out_journal;
2786 }
2787 EXT4_SB(sb)->journal_bdev = bdev;
2788 ext4_init_journal_params(sb, journal);
2789 return journal;
2790 out_journal:
2791 jbd2_journal_destroy(journal);
2792 out_bdev:
2793 ext4_blkdev_put(bdev);
2794 return NULL;
2795 }
2796
2797 static int ext4_load_journal(struct super_block *sb,
2798 struct ext4_super_block *es,
2799 unsigned long journal_devnum)
2800 {
2801 journal_t *journal;
2802 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
2803 dev_t journal_dev;
2804 int err = 0;
2805 int really_read_only;
2806
2807 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
2808
2809 if (journal_devnum &&
2810 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
2811 printk(KERN_INFO "EXT4-fs: external journal device major/minor "
2812 "numbers have changed\n");
2813 journal_dev = new_decode_dev(journal_devnum);
2814 } else
2815 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
2816
2817 really_read_only = bdev_read_only(sb->s_bdev);
2818
2819 /*
2820 * Are we loading a blank journal or performing recovery after a
2821 * crash? For recovery, we need to check in advance whether we
2822 * can get read-write access to the device.
2823 */
2824
2825 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
2826 if (sb->s_flags & MS_RDONLY) {
2827 printk(KERN_INFO "EXT4-fs: INFO: recovery "
2828 "required on readonly filesystem.\n");
2829 if (really_read_only) {
2830 printk(KERN_ERR "EXT4-fs: write access "
2831 "unavailable, cannot proceed.\n");
2832 return -EROFS;
2833 }
2834 printk(KERN_INFO "EXT4-fs: write access will "
2835 "be enabled during recovery.\n");
2836 }
2837 }
2838
2839 if (journal_inum && journal_dev) {
2840 printk(KERN_ERR "EXT4-fs: filesystem has both journal "
2841 "and inode journals!\n");
2842 return -EINVAL;
2843 }
2844
2845 if (journal_inum) {
2846 if (!(journal = ext4_get_journal(sb, journal_inum)))
2847 return -EINVAL;
2848 } else {
2849 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
2850 return -EINVAL;
2851 }
2852
2853 if (journal->j_flags & JBD2_BARRIER)
2854 printk(KERN_INFO "EXT4-fs: barriers enabled\n");
2855 else
2856 printk(KERN_INFO "EXT4-fs: barriers disabled\n");
2857
2858 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
2859 err = jbd2_journal_update_format(journal);
2860 if (err) {
2861 printk(KERN_ERR "EXT4-fs: error updating journal.\n");
2862 jbd2_journal_destroy(journal);
2863 return err;
2864 }
2865 }
2866
2867 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
2868 err = jbd2_journal_wipe(journal, !really_read_only);
2869 if (!err)
2870 err = jbd2_journal_load(journal);
2871
2872 if (err) {
2873 printk(KERN_ERR "EXT4-fs: error loading journal.\n");
2874 jbd2_journal_destroy(journal);
2875 return err;
2876 }
2877
2878 EXT4_SB(sb)->s_journal = journal;
2879 ext4_clear_journal_err(sb, es);
2880
2881 if (journal_devnum &&
2882 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
2883 es->s_journal_dev = cpu_to_le32(journal_devnum);
2884 sb->s_dirt = 1;
2885
2886 /* Make sure we flush the recovery flag to disk. */
2887 ext4_commit_super(sb, es, 1);
2888 }
2889
2890 return 0;
2891 }
2892
2893 static int ext4_commit_super(struct super_block *sb,
2894 struct ext4_super_block *es, int sync)
2895 {
2896 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
2897 int error = 0;
2898
2899 if (!sbh)
2900 return error;
2901 if (buffer_write_io_error(sbh)) {
2902 /*
2903 * Oh, dear. A previous attempt to write the
2904 * superblock failed. This could happen because the
2905 * USB device was yanked out. Or it could happen to
2906 * be a transient write error and maybe the block will
2907 * be remapped. Nothing we can do but to retry the
2908 * write and hope for the best.
2909 */
2910 printk(KERN_ERR "EXT4-fs: previous I/O error to "
2911 "superblock detected for %s.\n", sb->s_id);
2912 clear_buffer_write_io_error(sbh);
2913 set_buffer_uptodate(sbh);
2914 }
2915 es->s_wtime = cpu_to_le32(get_seconds());
2916 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
2917 &EXT4_SB(sb)->s_freeblocks_counter));
2918 es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive(
2919 &EXT4_SB(sb)->s_freeinodes_counter));
2920
2921 BUFFER_TRACE(sbh, "marking dirty");
2922 mark_buffer_dirty(sbh);
2923 if (sync) {
2924 error = sync_dirty_buffer(sbh);
2925 if (error)
2926 return error;
2927
2928 error = buffer_write_io_error(sbh);
2929 if (error) {
2930 printk(KERN_ERR "EXT4-fs: I/O error while writing "
2931 "superblock for %s.\n", sb->s_id);
2932 clear_buffer_write_io_error(sbh);
2933 set_buffer_uptodate(sbh);
2934 }
2935 }
2936 return error;
2937 }
2938
2939
2940 /*
2941 * Have we just finished recovery? If so, and if we are mounting (or
2942 * remounting) the filesystem readonly, then we will end up with a
2943 * consistent fs on disk. Record that fact.
2944 */
2945 static void ext4_mark_recovery_complete(struct super_block *sb,
2946 struct ext4_super_block *es)
2947 {
2948 journal_t *journal = EXT4_SB(sb)->s_journal;
2949
2950 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
2951 BUG_ON(journal != NULL);
2952 return;
2953 }
2954 jbd2_journal_lock_updates(journal);
2955 if (jbd2_journal_flush(journal) < 0)
2956 goto out;
2957
2958 lock_super(sb);
2959 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
2960 sb->s_flags & MS_RDONLY) {
2961 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
2962 sb->s_dirt = 0;
2963 ext4_commit_super(sb, es, 1);
2964 }
2965 unlock_super(sb);
2966
2967 out:
2968 jbd2_journal_unlock_updates(journal);
2969 }
2970
2971 /*
2972 * If we are mounting (or read-write remounting) a filesystem whose journal
2973 * has recorded an error from a previous lifetime, move that error to the
2974 * main filesystem now.
2975 */
2976 static void ext4_clear_journal_err(struct super_block *sb,
2977 struct ext4_super_block *es)
2978 {
2979 journal_t *journal;
2980 int j_errno;
2981 const char *errstr;
2982
2983 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
2984
2985 journal = EXT4_SB(sb)->s_journal;
2986
2987 /*
2988 * Now check for any error status which may have been recorded in the
2989 * journal by a prior ext4_error() or ext4_abort()
2990 */
2991
2992 j_errno = jbd2_journal_errno(journal);
2993 if (j_errno) {
2994 char nbuf[16];
2995
2996 errstr = ext4_decode_error(sb, j_errno, nbuf);
2997 ext4_warning(sb, __func__, "Filesystem error recorded "
2998 "from previous mount: %s", errstr);
2999 ext4_warning(sb, __func__, "Marking fs in need of "
3000 "filesystem check.");
3001
3002 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
3003 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
3004 ext4_commit_super(sb, es, 1);
3005
3006 jbd2_journal_clear_err(journal);
3007 }
3008 }
3009
3010 /*
3011 * Force the running and committing transactions to commit,
3012 * and wait on the commit.
3013 */
3014 int ext4_force_commit(struct super_block *sb)
3015 {
3016 journal_t *journal;
3017 int ret = 0;
3018
3019 if (sb->s_flags & MS_RDONLY)
3020 return 0;
3021
3022 journal = EXT4_SB(sb)->s_journal;
3023 if (journal) {
3024 sb->s_dirt = 0;
3025 ret = ext4_journal_force_commit(journal);
3026 }
3027
3028 return ret;
3029 }
3030
3031 /*
3032 * Ext4 always journals updates to the superblock itself, so we don't
3033 * have to propagate any other updates to the superblock on disk at this
3034 * point. (We can probably nuke this function altogether, and remove
3035 * any mention to sb->s_dirt in all of fs/ext4; eventual cleanup...)
3036 */
3037 static void ext4_write_super(struct super_block *sb)
3038 {
3039 if (EXT4_SB(sb)->s_journal) {
3040 if (mutex_trylock(&sb->s_lock) != 0)
3041 BUG();
3042 sb->s_dirt = 0;
3043 } else {
3044 ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1);
3045 }
3046 }
3047
3048 static int ext4_sync_fs(struct super_block *sb, int wait)
3049 {
3050 int ret = 0;
3051 tid_t target;
3052
3053 trace_mark(ext4_sync_fs, "dev %s wait %d", sb->s_id, wait);
3054 sb->s_dirt = 0;
3055 if (EXT4_SB(sb)->s_journal) {
3056 if (jbd2_journal_start_commit(EXT4_SB(sb)->s_journal,
3057 &target)) {
3058 if (wait)
3059 jbd2_log_wait_commit(EXT4_SB(sb)->s_journal,
3060 target);
3061 }
3062 } else {
3063 ext4_commit_super(sb, EXT4_SB(sb)->s_es, wait);
3064 }
3065 return ret;
3066 }
3067
3068 /*
3069 * LVM calls this function before a (read-only) snapshot is created. This
3070 * gives us a chance to flush the journal completely and mark the fs clean.
3071 */
3072 static int ext4_freeze(struct super_block *sb)
3073 {
3074 int error = 0;
3075 journal_t *journal;
3076 sb->s_dirt = 0;
3077
3078 if (!(sb->s_flags & MS_RDONLY)) {
3079 journal = EXT4_SB(sb)->s_journal;
3080
3081 if (journal) {
3082 /* Now we set up the journal barrier. */
3083 jbd2_journal_lock_updates(journal);
3084
3085 /*
3086 * We don't want to clear needs_recovery flag when we
3087 * failed to flush the journal.
3088 */
3089 error = jbd2_journal_flush(journal);
3090 if (error < 0)
3091 goto out;
3092 }
3093
3094 /* Journal blocked and flushed, clear needs_recovery flag. */
3095 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3096 error = ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1);
3097 if (error)
3098 goto out;
3099 }
3100 return 0;
3101 out:
3102 jbd2_journal_unlock_updates(journal);
3103 return error;
3104 }
3105
3106 /*
3107 * Called by LVM after the snapshot is done. We need to reset the RECOVER
3108 * flag here, even though the filesystem is not technically dirty yet.
3109 */
3110 static int ext4_unfreeze(struct super_block *sb)
3111 {
3112 if (EXT4_SB(sb)->s_journal && !(sb->s_flags & MS_RDONLY)) {
3113 lock_super(sb);
3114 /* Reser the needs_recovery flag before the fs is unlocked. */
3115 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3116 ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1);
3117 unlock_super(sb);
3118 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3119 }
3120 return 0;
3121 }
3122
3123 static int ext4_remount(struct super_block *sb, int *flags, char *data)
3124 {
3125 struct ext4_super_block *es;
3126 struct ext4_sb_info *sbi = EXT4_SB(sb);
3127 ext4_fsblk_t n_blocks_count = 0;
3128 unsigned long old_sb_flags;
3129 struct ext4_mount_options old_opts;
3130 ext4_group_t g;
3131 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3132 int err;
3133 #ifdef CONFIG_QUOTA
3134 int i;
3135 #endif
3136
3137 /* Store the original options */
3138 old_sb_flags = sb->s_flags;
3139 old_opts.s_mount_opt = sbi->s_mount_opt;
3140 old_opts.s_resuid = sbi->s_resuid;
3141 old_opts.s_resgid = sbi->s_resgid;
3142 old_opts.s_commit_interval = sbi->s_commit_interval;
3143 old_opts.s_min_batch_time = sbi->s_min_batch_time;
3144 old_opts.s_max_batch_time = sbi->s_max_batch_time;
3145 #ifdef CONFIG_QUOTA
3146 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
3147 for (i = 0; i < MAXQUOTAS; i++)
3148 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
3149 #endif
3150 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
3151 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
3152
3153 /*
3154 * Allow the "check" option to be passed as a remount option.
3155 */
3156 if (!parse_options(data, sb, NULL, &journal_ioprio,
3157 &n_blocks_count, 1)) {
3158 err = -EINVAL;
3159 goto restore_opts;
3160 }
3161
3162 if (sbi->s_mount_opt & EXT4_MOUNT_ABORT)
3163 ext4_abort(sb, __func__, "Abort forced by user");
3164
3165 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3166 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
3167
3168 es = sbi->s_es;
3169
3170 if (sbi->s_journal) {
3171 ext4_init_journal_params(sb, sbi->s_journal);
3172 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3173 }
3174
3175 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
3176 n_blocks_count > ext4_blocks_count(es)) {
3177 if (sbi->s_mount_opt & EXT4_MOUNT_ABORT) {
3178 err = -EROFS;
3179 goto restore_opts;
3180 }
3181
3182 if (*flags & MS_RDONLY) {
3183 /*
3184 * First of all, the unconditional stuff we have to do
3185 * to disable replay of the journal when we next remount
3186 */
3187 sb->s_flags |= MS_RDONLY;
3188
3189 /*
3190 * OK, test if we are remounting a valid rw partition
3191 * readonly, and if so set the rdonly flag and then
3192 * mark the partition as valid again.
3193 */
3194 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
3195 (sbi->s_mount_state & EXT4_VALID_FS))
3196 es->s_state = cpu_to_le16(sbi->s_mount_state);
3197
3198 /*
3199 * We have to unlock super so that we can wait for
3200 * transactions.
3201 */
3202 if (sbi->s_journal) {
3203 unlock_super(sb);
3204 ext4_mark_recovery_complete(sb, es);
3205 lock_super(sb);
3206 }
3207 } else {
3208 int ret;
3209 if ((ret = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3210 ~EXT4_FEATURE_RO_COMPAT_SUPP))) {
3211 printk(KERN_WARNING "EXT4-fs: %s: couldn't "
3212 "remount RDWR because of unsupported "
3213 "optional features (%x).\n", sb->s_id,
3214 (le32_to_cpu(sbi->s_es->s_feature_ro_compat) &
3215 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3216 err = -EROFS;
3217 goto restore_opts;
3218 }
3219
3220 /*
3221 * Make sure the group descriptor checksums
3222 * are sane. If they aren't, refuse to
3223 * remount r/w.
3224 */
3225 for (g = 0; g < sbi->s_groups_count; g++) {
3226 struct ext4_group_desc *gdp =
3227 ext4_get_group_desc(sb, g, NULL);
3228
3229 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
3230 printk(KERN_ERR
3231 "EXT4-fs: ext4_remount: "
3232 "Checksum for group %u failed (%u!=%u)\n",
3233 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
3234 le16_to_cpu(gdp->bg_checksum));
3235 err = -EINVAL;
3236 goto restore_opts;
3237 }
3238 }
3239
3240 /*
3241 * If we have an unprocessed orphan list hanging
3242 * around from a previously readonly bdev mount,
3243 * require a full umount/remount for now.
3244 */
3245 if (es->s_last_orphan) {
3246 printk(KERN_WARNING "EXT4-fs: %s: couldn't "
3247 "remount RDWR because of unprocessed "
3248 "orphan inode list. Please "
3249 "umount/remount instead.\n",
3250 sb->s_id);
3251 err = -EINVAL;
3252 goto restore_opts;
3253 }
3254
3255 /*
3256 * Mounting a RDONLY partition read-write, so reread
3257 * and store the current valid flag. (It may have
3258 * been changed by e2fsck since we originally mounted
3259 * the partition.)
3260 */
3261 if (sbi->s_journal)
3262 ext4_clear_journal_err(sb, es);
3263 sbi->s_mount_state = le16_to_cpu(es->s_state);
3264 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
3265 goto restore_opts;
3266 if (!ext4_setup_super(sb, es, 0))
3267 sb->s_flags &= ~MS_RDONLY;
3268 }
3269 }
3270 if (sbi->s_journal == NULL)
3271 ext4_commit_super(sb, es, 1);
3272
3273 #ifdef CONFIG_QUOTA
3274 /* Release old quota file names */
3275 for (i = 0; i < MAXQUOTAS; i++)
3276 if (old_opts.s_qf_names[i] &&
3277 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3278 kfree(old_opts.s_qf_names[i]);
3279 #endif
3280 return 0;
3281 restore_opts:
3282 sb->s_flags = old_sb_flags;
3283 sbi->s_mount_opt = old_opts.s_mount_opt;
3284 sbi->s_resuid = old_opts.s_resuid;
3285 sbi->s_resgid = old_opts.s_resgid;
3286 sbi->s_commit_interval = old_opts.s_commit_interval;
3287 sbi->s_min_batch_time = old_opts.s_min_batch_time;
3288 sbi->s_max_batch_time = old_opts.s_max_batch_time;
3289 #ifdef CONFIG_QUOTA
3290 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
3291 for (i = 0; i < MAXQUOTAS; i++) {
3292 if (sbi->s_qf_names[i] &&
3293 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3294 kfree(sbi->s_qf_names[i]);
3295 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
3296 }
3297 #endif
3298 return err;
3299 }
3300
3301 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
3302 {
3303 struct super_block *sb = dentry->d_sb;
3304 struct ext4_sb_info *sbi = EXT4_SB(sb);
3305 struct ext4_super_block *es = sbi->s_es;
3306 u64 fsid;
3307
3308 if (test_opt(sb, MINIX_DF)) {
3309 sbi->s_overhead_last = 0;
3310 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
3311 ext4_group_t ngroups = sbi->s_groups_count, i;
3312 ext4_fsblk_t overhead = 0;
3313 smp_rmb();
3314
3315 /*
3316 * Compute the overhead (FS structures). This is constant
3317 * for a given filesystem unless the number of block groups
3318 * changes so we cache the previous value until it does.
3319 */
3320
3321 /*
3322 * All of the blocks before first_data_block are
3323 * overhead
3324 */
3325 overhead = le32_to_cpu(es->s_first_data_block);
3326
3327 /*
3328 * Add the overhead attributed to the superblock and
3329 * block group descriptors. If the sparse superblocks
3330 * feature is turned on, then not all groups have this.
3331 */
3332 for (i = 0; i < ngroups; i++) {
3333 overhead += ext4_bg_has_super(sb, i) +
3334 ext4_bg_num_gdb(sb, i);
3335 cond_resched();
3336 }
3337
3338 /*
3339 * Every block group has an inode bitmap, a block
3340 * bitmap, and an inode table.
3341 */
3342 overhead += ngroups * (2 + sbi->s_itb_per_group);
3343 sbi->s_overhead_last = overhead;
3344 smp_wmb();
3345 sbi->s_blocks_last = ext4_blocks_count(es);
3346 }
3347
3348 buf->f_type = EXT4_SUPER_MAGIC;
3349 buf->f_bsize = sb->s_blocksize;
3350 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
3351 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
3352 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
3353 ext4_free_blocks_count_set(es, buf->f_bfree);
3354 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
3355 if (buf->f_bfree < ext4_r_blocks_count(es))
3356 buf->f_bavail = 0;
3357 buf->f_files = le32_to_cpu(es->s_inodes_count);
3358 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
3359 es->s_free_inodes_count = cpu_to_le32(buf->f_ffree);
3360 buf->f_namelen = EXT4_NAME_LEN;
3361 fsid = le64_to_cpup((void *)es->s_uuid) ^
3362 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
3363 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
3364 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
3365 return 0;
3366 }
3367
3368 /* Helper function for writing quotas on sync - we need to start transaction before quota file
3369 * is locked for write. Otherwise the are possible deadlocks:
3370 * Process 1 Process 2
3371 * ext4_create() quota_sync()
3372 * jbd2_journal_start() write_dquot()
3373 * vfs_dq_init() down(dqio_mutex)
3374 * down(dqio_mutex) jbd2_journal_start()
3375 *
3376 */
3377
3378 #ifdef CONFIG_QUOTA
3379
3380 static inline struct inode *dquot_to_inode(struct dquot *dquot)
3381 {
3382 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
3383 }
3384
3385 static int ext4_write_dquot(struct dquot *dquot)
3386 {
3387 int ret, err;
3388 handle_t *handle;
3389 struct inode *inode;
3390
3391 inode = dquot_to_inode(dquot);
3392 handle = ext4_journal_start(inode,
3393 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
3394 if (IS_ERR(handle))
3395 return PTR_ERR(handle);
3396 ret = dquot_commit(dquot);
3397 err = ext4_journal_stop(handle);
3398 if (!ret)
3399 ret = err;
3400 return ret;
3401 }
3402
3403 static int ext4_acquire_dquot(struct dquot *dquot)
3404 {
3405 int ret, err;
3406 handle_t *handle;
3407
3408 handle = ext4_journal_start(dquot_to_inode(dquot),
3409 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
3410 if (IS_ERR(handle))
3411 return PTR_ERR(handle);
3412 ret = dquot_acquire(dquot);
3413 err = ext4_journal_stop(handle);
3414 if (!ret)
3415 ret = err;
3416 return ret;
3417 }
3418
3419 static int ext4_release_dquot(struct dquot *dquot)
3420 {
3421 int ret, err;
3422 handle_t *handle;
3423
3424 handle = ext4_journal_start(dquot_to_inode(dquot),
3425 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
3426 if (IS_ERR(handle)) {
3427 /* Release dquot anyway to avoid endless cycle in dqput() */
3428 dquot_release(dquot);
3429 return PTR_ERR(handle);
3430 }
3431 ret = dquot_release(dquot);
3432 err = ext4_journal_stop(handle);
3433 if (!ret)
3434 ret = err;
3435 return ret;
3436 }
3437
3438 static int ext4_mark_dquot_dirty(struct dquot *dquot)
3439 {
3440 /* Are we journaling quotas? */
3441 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
3442 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
3443 dquot_mark_dquot_dirty(dquot);
3444 return ext4_write_dquot(dquot);
3445 } else {
3446 return dquot_mark_dquot_dirty(dquot);
3447 }
3448 }
3449
3450 static int ext4_write_info(struct super_block *sb, int type)
3451 {
3452 int ret, err;
3453 handle_t *handle;
3454
3455 /* Data block + inode block */
3456 handle = ext4_journal_start(sb->s_root->d_inode, 2);
3457 if (IS_ERR(handle))
3458 return PTR_ERR(handle);
3459 ret = dquot_commit_info(sb, type);
3460 err = ext4_journal_stop(handle);
3461 if (!ret)
3462 ret = err;
3463 return ret;
3464 }
3465
3466 /*
3467 * Turn on quotas during mount time - we need to find
3468 * the quota file and such...
3469 */
3470 static int ext4_quota_on_mount(struct super_block *sb, int type)
3471 {
3472 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
3473 EXT4_SB(sb)->s_jquota_fmt, type);
3474 }
3475
3476 /*
3477 * Standard function to be called on quota_on
3478 */
3479 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
3480 char *name, int remount)
3481 {
3482 int err;
3483 struct path path;
3484
3485 if (!test_opt(sb, QUOTA))
3486 return -EINVAL;
3487 /* When remounting, no checks are needed and in fact, name is NULL */
3488 if (remount)
3489 return vfs_quota_on(sb, type, format_id, name, remount);
3490
3491 err = kern_path(name, LOOKUP_FOLLOW, &path);
3492 if (err)
3493 return err;
3494
3495 /* Quotafile not on the same filesystem? */
3496 if (path.mnt->mnt_sb != sb) {
3497 path_put(&path);
3498 return -EXDEV;
3499 }
3500 /* Journaling quota? */
3501 if (EXT4_SB(sb)->s_qf_names[type]) {
3502 /* Quotafile not in fs root? */
3503 if (path.dentry->d_parent != sb->s_root)
3504 printk(KERN_WARNING
3505 "EXT4-fs: Quota file not on filesystem root. "
3506 "Journaled quota will not work.\n");
3507 }
3508
3509 /*
3510 * When we journal data on quota file, we have to flush journal to see
3511 * all updates to the file when we bypass pagecache...
3512 */
3513 if (EXT4_SB(sb)->s_journal &&
3514 ext4_should_journal_data(path.dentry->d_inode)) {
3515 /*
3516 * We don't need to lock updates but journal_flush() could
3517 * otherwise be livelocked...
3518 */
3519 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
3520 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
3521 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3522 if (err) {
3523 path_put(&path);
3524 return err;
3525 }
3526 }
3527
3528 err = vfs_quota_on_path(sb, type, format_id, &path);
3529 path_put(&path);
3530 return err;
3531 }
3532
3533 /* Read data from quotafile - avoid pagecache and such because we cannot afford
3534 * acquiring the locks... As quota files are never truncated and quota code
3535 * itself serializes the operations (and noone else should touch the files)
3536 * we don't have to be afraid of races */
3537 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
3538 size_t len, loff_t off)
3539 {
3540 struct inode *inode = sb_dqopt(sb)->files[type];
3541 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3542 int err = 0;
3543 int offset = off & (sb->s_blocksize - 1);
3544 int tocopy;
3545 size_t toread;
3546 struct buffer_head *bh;
3547 loff_t i_size = i_size_read(inode);
3548
3549 if (off > i_size)
3550 return 0;
3551 if (off+len > i_size)
3552 len = i_size-off;
3553 toread = len;
3554 while (toread > 0) {
3555 tocopy = sb->s_blocksize - offset < toread ?
3556 sb->s_blocksize - offset : toread;
3557 bh = ext4_bread(NULL, inode, blk, 0, &err);
3558 if (err)
3559 return err;
3560 if (!bh) /* A hole? */
3561 memset(data, 0, tocopy);
3562 else
3563 memcpy(data, bh->b_data+offset, tocopy);
3564 brelse(bh);
3565 offset = 0;
3566 toread -= tocopy;
3567 data += tocopy;
3568 blk++;
3569 }
3570 return len;
3571 }
3572
3573 /* Write to quotafile (we know the transaction is already started and has
3574 * enough credits) */
3575 static ssize_t ext4_quota_write(struct super_block *sb, int type,
3576 const char *data, size_t len, loff_t off)
3577 {
3578 struct inode *inode = sb_dqopt(sb)->files[type];
3579 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3580 int err = 0;
3581 int offset = off & (sb->s_blocksize - 1);
3582 int tocopy;
3583 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL;
3584 size_t towrite = len;
3585 struct buffer_head *bh;
3586 handle_t *handle = journal_current_handle();
3587
3588 if (EXT4_SB(sb)->s_journal && !handle) {
3589 printk(KERN_WARNING "EXT4-fs: Quota write (off=%llu, len=%llu)"
3590 " cancelled because transaction is not started.\n",
3591 (unsigned long long)off, (unsigned long long)len);
3592 return -EIO;
3593 }
3594 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
3595 while (towrite > 0) {
3596 tocopy = sb->s_blocksize - offset < towrite ?
3597 sb->s_blocksize - offset : towrite;
3598 bh = ext4_bread(handle, inode, blk, 1, &err);
3599 if (!bh)
3600 goto out;
3601 if (journal_quota) {
3602 err = ext4_journal_get_write_access(handle, bh);
3603 if (err) {
3604 brelse(bh);
3605 goto out;
3606 }
3607 }
3608 lock_buffer(bh);
3609 memcpy(bh->b_data+offset, data, tocopy);
3610 flush_dcache_page(bh->b_page);
3611 unlock_buffer(bh);
3612 if (journal_quota)
3613 err = ext4_handle_dirty_metadata(handle, NULL, bh);
3614 else {
3615 /* Always do at least ordered writes for quotas */
3616 err = ext4_jbd2_file_inode(handle, inode);
3617 mark_buffer_dirty(bh);
3618 }
3619 brelse(bh);
3620 if (err)
3621 goto out;
3622 offset = 0;
3623 towrite -= tocopy;
3624 data += tocopy;
3625 blk++;
3626 }
3627 out:
3628 if (len == towrite) {
3629 mutex_unlock(&inode->i_mutex);
3630 return err;
3631 }
3632 if (inode->i_size < off+len-towrite) {
3633 i_size_write(inode, off+len-towrite);
3634 EXT4_I(inode)->i_disksize = inode->i_size;
3635 }
3636 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3637 ext4_mark_inode_dirty(handle, inode);
3638 mutex_unlock(&inode->i_mutex);
3639 return len - towrite;
3640 }
3641
3642 #endif
3643
3644 static int ext4_get_sb(struct file_system_type *fs_type,
3645 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
3646 {
3647 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super, mnt);
3648 }
3649
3650 #ifdef CONFIG_PROC_FS
3651 static int ext4_ui_proc_show(struct seq_file *m, void *v)
3652 {
3653 unsigned int *p = m->private;
3654
3655 seq_printf(m, "%u\n", *p);
3656 return 0;
3657 }
3658
3659 static int ext4_ui_proc_open(struct inode *inode, struct file *file)
3660 {
3661 return single_open(file, ext4_ui_proc_show, PDE(inode)->data);
3662 }
3663
3664 static ssize_t ext4_ui_proc_write(struct file *file, const char __user *buf,
3665 size_t cnt, loff_t *ppos)
3666 {
3667 unsigned long *p = PDE(file->f_path.dentry->d_inode)->data;
3668 char str[32];
3669
3670 if (cnt >= sizeof(str))
3671 return -EINVAL;
3672 if (copy_from_user(str, buf, cnt))
3673 return -EFAULT;
3674
3675 *p = simple_strtoul(str, NULL, 0);
3676 return cnt;
3677 }
3678
3679 const struct file_operations ext4_ui_proc_fops = {
3680 .owner = THIS_MODULE,
3681 .open = ext4_ui_proc_open,
3682 .read = seq_read,
3683 .llseek = seq_lseek,
3684 .release = single_release,
3685 .write = ext4_ui_proc_write,
3686 };
3687 #endif
3688
3689 static struct file_system_type ext4_fs_type = {
3690 .owner = THIS_MODULE,
3691 .name = "ext4",
3692 .get_sb = ext4_get_sb,
3693 .kill_sb = kill_block_super,
3694 .fs_flags = FS_REQUIRES_DEV,
3695 };
3696
3697 #ifdef CONFIG_EXT4DEV_COMPAT
3698 static int ext4dev_get_sb(struct file_system_type *fs_type,
3699 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
3700 {
3701 printk(KERN_WARNING "EXT4-fs: Update your userspace programs "
3702 "to mount using ext4\n");
3703 printk(KERN_WARNING "EXT4-fs: ext4dev backwards compatibility "
3704 "will go away by 2.6.31\n");
3705 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super, mnt);
3706 }
3707
3708 static struct file_system_type ext4dev_fs_type = {
3709 .owner = THIS_MODULE,
3710 .name = "ext4dev",
3711 .get_sb = ext4dev_get_sb,
3712 .kill_sb = kill_block_super,
3713 .fs_flags = FS_REQUIRES_DEV,
3714 };
3715 MODULE_ALIAS("ext4dev");
3716 #endif
3717
3718 static int __init init_ext4_fs(void)
3719 {
3720 int err;
3721
3722 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
3723 err = init_ext4_mballoc();
3724 if (err)
3725 return err;
3726
3727 err = init_ext4_xattr();
3728 if (err)
3729 goto out2;
3730 err = init_inodecache();
3731 if (err)
3732 goto out1;
3733 err = register_filesystem(&ext4_fs_type);
3734 if (err)
3735 goto out;
3736 #ifdef CONFIG_EXT4DEV_COMPAT
3737 err = register_filesystem(&ext4dev_fs_type);
3738 if (err) {
3739 unregister_filesystem(&ext4_fs_type);
3740 goto out;
3741 }
3742 #endif
3743 return 0;
3744 out:
3745 destroy_inodecache();
3746 out1:
3747 exit_ext4_xattr();
3748 out2:
3749 exit_ext4_mballoc();
3750 return err;
3751 }
3752
3753 static void __exit exit_ext4_fs(void)
3754 {
3755 unregister_filesystem(&ext4_fs_type);
3756 #ifdef CONFIG_EXT4DEV_COMPAT
3757 unregister_filesystem(&ext4dev_fs_type);
3758 #endif
3759 destroy_inodecache();
3760 exit_ext4_xattr();
3761 exit_ext4_mballoc();
3762 remove_proc_entry("fs/ext4", NULL);
3763 }
3764
3765 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
3766 MODULE_DESCRIPTION("Fourth Extended Filesystem");
3767 MODULE_LICENSE("GPL");
3768 module_init(init_ext4_fs)
3769 module_exit(exit_ext4_fs)