]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/ext4/super.c
Merge branch 'x86-x32-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h"
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static const char *ext4_decode_error(struct super_block *sb, int errno,
73 char nbuf[16]);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static void ext4_write_super(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87
88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
89 static struct file_system_type ext2_fs_type = {
90 .owner = THIS_MODULE,
91 .name = "ext2",
92 .mount = ext4_mount,
93 .kill_sb = kill_block_super,
94 .fs_flags = FS_REQUIRES_DEV,
95 };
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109 };
110 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
111 #else
112 #define IS_EXT3_SB(sb) (0)
113 #endif
114
115 void *ext4_kvmalloc(size_t size, gfp_t flags)
116 {
117 void *ret;
118
119 ret = kmalloc(size, flags);
120 if (!ret)
121 ret = __vmalloc(size, flags, PAGE_KERNEL);
122 return ret;
123 }
124
125 void *ext4_kvzalloc(size_t size, gfp_t flags)
126 {
127 void *ret;
128
129 ret = kzalloc(size, flags);
130 if (!ret)
131 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
132 return ret;
133 }
134
135 void ext4_kvfree(void *ptr)
136 {
137 if (is_vmalloc_addr(ptr))
138 vfree(ptr);
139 else
140 kfree(ptr);
141
142 }
143
144 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
145 struct ext4_group_desc *bg)
146 {
147 return le32_to_cpu(bg->bg_block_bitmap_lo) |
148 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
149 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
150 }
151
152 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
153 struct ext4_group_desc *bg)
154 {
155 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
156 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
157 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
158 }
159
160 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
161 struct ext4_group_desc *bg)
162 {
163 return le32_to_cpu(bg->bg_inode_table_lo) |
164 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
165 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
166 }
167
168 __u32 ext4_free_group_clusters(struct super_block *sb,
169 struct ext4_group_desc *bg)
170 {
171 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
172 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
173 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
174 }
175
176 __u32 ext4_free_inodes_count(struct super_block *sb,
177 struct ext4_group_desc *bg)
178 {
179 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
180 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
181 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
182 }
183
184 __u32 ext4_used_dirs_count(struct super_block *sb,
185 struct ext4_group_desc *bg)
186 {
187 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
188 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
189 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
190 }
191
192 __u32 ext4_itable_unused_count(struct super_block *sb,
193 struct ext4_group_desc *bg)
194 {
195 return le16_to_cpu(bg->bg_itable_unused_lo) |
196 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
197 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
198 }
199
200 void ext4_block_bitmap_set(struct super_block *sb,
201 struct ext4_group_desc *bg, ext4_fsblk_t blk)
202 {
203 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
204 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
205 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
206 }
207
208 void ext4_inode_bitmap_set(struct super_block *sb,
209 struct ext4_group_desc *bg, ext4_fsblk_t blk)
210 {
211 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
212 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
213 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
214 }
215
216 void ext4_inode_table_set(struct super_block *sb,
217 struct ext4_group_desc *bg, ext4_fsblk_t blk)
218 {
219 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
220 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
221 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
222 }
223
224 void ext4_free_group_clusters_set(struct super_block *sb,
225 struct ext4_group_desc *bg, __u32 count)
226 {
227 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
228 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
229 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
230 }
231
232 void ext4_free_inodes_set(struct super_block *sb,
233 struct ext4_group_desc *bg, __u32 count)
234 {
235 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
236 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
237 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
238 }
239
240 void ext4_used_dirs_set(struct super_block *sb,
241 struct ext4_group_desc *bg, __u32 count)
242 {
243 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
244 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
245 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
246 }
247
248 void ext4_itable_unused_set(struct super_block *sb,
249 struct ext4_group_desc *bg, __u32 count)
250 {
251 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
252 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
253 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
254 }
255
256
257 /* Just increment the non-pointer handle value */
258 static handle_t *ext4_get_nojournal(void)
259 {
260 handle_t *handle = current->journal_info;
261 unsigned long ref_cnt = (unsigned long)handle;
262
263 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
264
265 ref_cnt++;
266 handle = (handle_t *)ref_cnt;
267
268 current->journal_info = handle;
269 return handle;
270 }
271
272
273 /* Decrement the non-pointer handle value */
274 static void ext4_put_nojournal(handle_t *handle)
275 {
276 unsigned long ref_cnt = (unsigned long)handle;
277
278 BUG_ON(ref_cnt == 0);
279
280 ref_cnt--;
281 handle = (handle_t *)ref_cnt;
282
283 current->journal_info = handle;
284 }
285
286 /*
287 * Wrappers for jbd2_journal_start/end.
288 *
289 * The only special thing we need to do here is to make sure that all
290 * journal_end calls result in the superblock being marked dirty, so
291 * that sync() will call the filesystem's write_super callback if
292 * appropriate.
293 *
294 * To avoid j_barrier hold in userspace when a user calls freeze(),
295 * ext4 prevents a new handle from being started by s_frozen, which
296 * is in an upper layer.
297 */
298 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
299 {
300 journal_t *journal;
301 handle_t *handle;
302
303 trace_ext4_journal_start(sb, nblocks, _RET_IP_);
304 if (sb->s_flags & MS_RDONLY)
305 return ERR_PTR(-EROFS);
306
307 journal = EXT4_SB(sb)->s_journal;
308 handle = ext4_journal_current_handle();
309
310 /*
311 * If a handle has been started, it should be allowed to
312 * finish, otherwise deadlock could happen between freeze
313 * and others(e.g. truncate) due to the restart of the
314 * journal handle if the filesystem is forzen and active
315 * handles are not stopped.
316 */
317 if (!handle)
318 vfs_check_frozen(sb, SB_FREEZE_TRANS);
319
320 if (!journal)
321 return ext4_get_nojournal();
322 /*
323 * Special case here: if the journal has aborted behind our
324 * backs (eg. EIO in the commit thread), then we still need to
325 * take the FS itself readonly cleanly.
326 */
327 if (is_journal_aborted(journal)) {
328 ext4_abort(sb, "Detected aborted journal");
329 return ERR_PTR(-EROFS);
330 }
331 return jbd2_journal_start(journal, nblocks);
332 }
333
334 /*
335 * The only special thing we need to do here is to make sure that all
336 * jbd2_journal_stop calls result in the superblock being marked dirty, so
337 * that sync() will call the filesystem's write_super callback if
338 * appropriate.
339 */
340 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
341 {
342 struct super_block *sb;
343 int err;
344 int rc;
345
346 if (!ext4_handle_valid(handle)) {
347 ext4_put_nojournal(handle);
348 return 0;
349 }
350 sb = handle->h_transaction->t_journal->j_private;
351 err = handle->h_err;
352 rc = jbd2_journal_stop(handle);
353
354 if (!err)
355 err = rc;
356 if (err)
357 __ext4_std_error(sb, where, line, err);
358 return err;
359 }
360
361 void ext4_journal_abort_handle(const char *caller, unsigned int line,
362 const char *err_fn, struct buffer_head *bh,
363 handle_t *handle, int err)
364 {
365 char nbuf[16];
366 const char *errstr = ext4_decode_error(NULL, err, nbuf);
367
368 BUG_ON(!ext4_handle_valid(handle));
369
370 if (bh)
371 BUFFER_TRACE(bh, "abort");
372
373 if (!handle->h_err)
374 handle->h_err = err;
375
376 if (is_handle_aborted(handle))
377 return;
378
379 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
380 caller, line, errstr, err_fn);
381
382 jbd2_journal_abort_handle(handle);
383 }
384
385 static void __save_error_info(struct super_block *sb, const char *func,
386 unsigned int line)
387 {
388 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
389
390 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
391 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
392 es->s_last_error_time = cpu_to_le32(get_seconds());
393 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
394 es->s_last_error_line = cpu_to_le32(line);
395 if (!es->s_first_error_time) {
396 es->s_first_error_time = es->s_last_error_time;
397 strncpy(es->s_first_error_func, func,
398 sizeof(es->s_first_error_func));
399 es->s_first_error_line = cpu_to_le32(line);
400 es->s_first_error_ino = es->s_last_error_ino;
401 es->s_first_error_block = es->s_last_error_block;
402 }
403 /*
404 * Start the daily error reporting function if it hasn't been
405 * started already
406 */
407 if (!es->s_error_count)
408 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
409 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
410 }
411
412 static void save_error_info(struct super_block *sb, const char *func,
413 unsigned int line)
414 {
415 __save_error_info(sb, func, line);
416 ext4_commit_super(sb, 1);
417 }
418
419 /*
420 * The del_gendisk() function uninitializes the disk-specific data
421 * structures, including the bdi structure, without telling anyone
422 * else. Once this happens, any attempt to call mark_buffer_dirty()
423 * (for example, by ext4_commit_super), will cause a kernel OOPS.
424 * This is a kludge to prevent these oops until we can put in a proper
425 * hook in del_gendisk() to inform the VFS and file system layers.
426 */
427 static int block_device_ejected(struct super_block *sb)
428 {
429 struct inode *bd_inode = sb->s_bdev->bd_inode;
430 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
431
432 return bdi->dev == NULL;
433 }
434
435 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
436 {
437 struct super_block *sb = journal->j_private;
438 struct ext4_sb_info *sbi = EXT4_SB(sb);
439 int error = is_journal_aborted(journal);
440 struct ext4_journal_cb_entry *jce, *tmp;
441
442 spin_lock(&sbi->s_md_lock);
443 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
444 list_del_init(&jce->jce_list);
445 spin_unlock(&sbi->s_md_lock);
446 jce->jce_func(sb, jce, error);
447 spin_lock(&sbi->s_md_lock);
448 }
449 spin_unlock(&sbi->s_md_lock);
450 }
451
452 /* Deal with the reporting of failure conditions on a filesystem such as
453 * inconsistencies detected or read IO failures.
454 *
455 * On ext2, we can store the error state of the filesystem in the
456 * superblock. That is not possible on ext4, because we may have other
457 * write ordering constraints on the superblock which prevent us from
458 * writing it out straight away; and given that the journal is about to
459 * be aborted, we can't rely on the current, or future, transactions to
460 * write out the superblock safely.
461 *
462 * We'll just use the jbd2_journal_abort() error code to record an error in
463 * the journal instead. On recovery, the journal will complain about
464 * that error until we've noted it down and cleared it.
465 */
466
467 static void ext4_handle_error(struct super_block *sb)
468 {
469 if (sb->s_flags & MS_RDONLY)
470 return;
471
472 if (!test_opt(sb, ERRORS_CONT)) {
473 journal_t *journal = EXT4_SB(sb)->s_journal;
474
475 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
476 if (journal)
477 jbd2_journal_abort(journal, -EIO);
478 }
479 if (test_opt(sb, ERRORS_RO)) {
480 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
481 sb->s_flags |= MS_RDONLY;
482 }
483 if (test_opt(sb, ERRORS_PANIC))
484 panic("EXT4-fs (device %s): panic forced after error\n",
485 sb->s_id);
486 }
487
488 void __ext4_error(struct super_block *sb, const char *function,
489 unsigned int line, const char *fmt, ...)
490 {
491 struct va_format vaf;
492 va_list args;
493
494 va_start(args, fmt);
495 vaf.fmt = fmt;
496 vaf.va = &args;
497 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
498 sb->s_id, function, line, current->comm, &vaf);
499 va_end(args);
500
501 ext4_handle_error(sb);
502 }
503
504 void ext4_error_inode(struct inode *inode, const char *function,
505 unsigned int line, ext4_fsblk_t block,
506 const char *fmt, ...)
507 {
508 va_list args;
509 struct va_format vaf;
510 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
511
512 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
513 es->s_last_error_block = cpu_to_le64(block);
514 save_error_info(inode->i_sb, function, line);
515 va_start(args, fmt);
516 vaf.fmt = fmt;
517 vaf.va = &args;
518 if (block)
519 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
520 "inode #%lu: block %llu: comm %s: %pV\n",
521 inode->i_sb->s_id, function, line, inode->i_ino,
522 block, current->comm, &vaf);
523 else
524 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
525 "inode #%lu: comm %s: %pV\n",
526 inode->i_sb->s_id, function, line, inode->i_ino,
527 current->comm, &vaf);
528 va_end(args);
529
530 ext4_handle_error(inode->i_sb);
531 }
532
533 void ext4_error_file(struct file *file, const char *function,
534 unsigned int line, ext4_fsblk_t block,
535 const char *fmt, ...)
536 {
537 va_list args;
538 struct va_format vaf;
539 struct ext4_super_block *es;
540 struct inode *inode = file->f_dentry->d_inode;
541 char pathname[80], *path;
542
543 es = EXT4_SB(inode->i_sb)->s_es;
544 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
545 save_error_info(inode->i_sb, function, line);
546 path = d_path(&(file->f_path), pathname, sizeof(pathname));
547 if (IS_ERR(path))
548 path = "(unknown)";
549 va_start(args, fmt);
550 vaf.fmt = fmt;
551 vaf.va = &args;
552 if (block)
553 printk(KERN_CRIT
554 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
555 "block %llu: comm %s: path %s: %pV\n",
556 inode->i_sb->s_id, function, line, inode->i_ino,
557 block, current->comm, path, &vaf);
558 else
559 printk(KERN_CRIT
560 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
561 "comm %s: path %s: %pV\n",
562 inode->i_sb->s_id, function, line, inode->i_ino,
563 current->comm, path, &vaf);
564 va_end(args);
565
566 ext4_handle_error(inode->i_sb);
567 }
568
569 static const char *ext4_decode_error(struct super_block *sb, int errno,
570 char nbuf[16])
571 {
572 char *errstr = NULL;
573
574 switch (errno) {
575 case -EIO:
576 errstr = "IO failure";
577 break;
578 case -ENOMEM:
579 errstr = "Out of memory";
580 break;
581 case -EROFS:
582 if (!sb || (EXT4_SB(sb)->s_journal &&
583 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
584 errstr = "Journal has aborted";
585 else
586 errstr = "Readonly filesystem";
587 break;
588 default:
589 /* If the caller passed in an extra buffer for unknown
590 * errors, textualise them now. Else we just return
591 * NULL. */
592 if (nbuf) {
593 /* Check for truncated error codes... */
594 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
595 errstr = nbuf;
596 }
597 break;
598 }
599
600 return errstr;
601 }
602
603 /* __ext4_std_error decodes expected errors from journaling functions
604 * automatically and invokes the appropriate error response. */
605
606 void __ext4_std_error(struct super_block *sb, const char *function,
607 unsigned int line, int errno)
608 {
609 char nbuf[16];
610 const char *errstr;
611
612 /* Special case: if the error is EROFS, and we're not already
613 * inside a transaction, then there's really no point in logging
614 * an error. */
615 if (errno == -EROFS && journal_current_handle() == NULL &&
616 (sb->s_flags & MS_RDONLY))
617 return;
618
619 errstr = ext4_decode_error(sb, errno, nbuf);
620 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
621 sb->s_id, function, line, errstr);
622 save_error_info(sb, function, line);
623
624 ext4_handle_error(sb);
625 }
626
627 /*
628 * ext4_abort is a much stronger failure handler than ext4_error. The
629 * abort function may be used to deal with unrecoverable failures such
630 * as journal IO errors or ENOMEM at a critical moment in log management.
631 *
632 * We unconditionally force the filesystem into an ABORT|READONLY state,
633 * unless the error response on the fs has been set to panic in which
634 * case we take the easy way out and panic immediately.
635 */
636
637 void __ext4_abort(struct super_block *sb, const char *function,
638 unsigned int line, const char *fmt, ...)
639 {
640 va_list args;
641
642 save_error_info(sb, function, line);
643 va_start(args, fmt);
644 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
645 function, line);
646 vprintk(fmt, args);
647 printk("\n");
648 va_end(args);
649
650 if ((sb->s_flags & MS_RDONLY) == 0) {
651 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
652 sb->s_flags |= MS_RDONLY;
653 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
654 if (EXT4_SB(sb)->s_journal)
655 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
656 save_error_info(sb, function, line);
657 }
658 if (test_opt(sb, ERRORS_PANIC))
659 panic("EXT4-fs panic from previous error\n");
660 }
661
662 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
663 {
664 struct va_format vaf;
665 va_list args;
666
667 va_start(args, fmt);
668 vaf.fmt = fmt;
669 vaf.va = &args;
670 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
671 va_end(args);
672 }
673
674 void __ext4_warning(struct super_block *sb, const char *function,
675 unsigned int line, const char *fmt, ...)
676 {
677 struct va_format vaf;
678 va_list args;
679
680 va_start(args, fmt);
681 vaf.fmt = fmt;
682 vaf.va = &args;
683 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
684 sb->s_id, function, line, &vaf);
685 va_end(args);
686 }
687
688 void __ext4_grp_locked_error(const char *function, unsigned int line,
689 struct super_block *sb, ext4_group_t grp,
690 unsigned long ino, ext4_fsblk_t block,
691 const char *fmt, ...)
692 __releases(bitlock)
693 __acquires(bitlock)
694 {
695 struct va_format vaf;
696 va_list args;
697 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
698
699 es->s_last_error_ino = cpu_to_le32(ino);
700 es->s_last_error_block = cpu_to_le64(block);
701 __save_error_info(sb, function, line);
702
703 va_start(args, fmt);
704
705 vaf.fmt = fmt;
706 vaf.va = &args;
707 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
708 sb->s_id, function, line, grp);
709 if (ino)
710 printk(KERN_CONT "inode %lu: ", ino);
711 if (block)
712 printk(KERN_CONT "block %llu:", (unsigned long long) block);
713 printk(KERN_CONT "%pV\n", &vaf);
714 va_end(args);
715
716 if (test_opt(sb, ERRORS_CONT)) {
717 ext4_commit_super(sb, 0);
718 return;
719 }
720
721 ext4_unlock_group(sb, grp);
722 ext4_handle_error(sb);
723 /*
724 * We only get here in the ERRORS_RO case; relocking the group
725 * may be dangerous, but nothing bad will happen since the
726 * filesystem will have already been marked read/only and the
727 * journal has been aborted. We return 1 as a hint to callers
728 * who might what to use the return value from
729 * ext4_grp_locked_error() to distinguish between the
730 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
731 * aggressively from the ext4 function in question, with a
732 * more appropriate error code.
733 */
734 ext4_lock_group(sb, grp);
735 return;
736 }
737
738 void ext4_update_dynamic_rev(struct super_block *sb)
739 {
740 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
741
742 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
743 return;
744
745 ext4_warning(sb,
746 "updating to rev %d because of new feature flag, "
747 "running e2fsck is recommended",
748 EXT4_DYNAMIC_REV);
749
750 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
751 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
752 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
753 /* leave es->s_feature_*compat flags alone */
754 /* es->s_uuid will be set by e2fsck if empty */
755
756 /*
757 * The rest of the superblock fields should be zero, and if not it
758 * means they are likely already in use, so leave them alone. We
759 * can leave it up to e2fsck to clean up any inconsistencies there.
760 */
761 }
762
763 /*
764 * Open the external journal device
765 */
766 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
767 {
768 struct block_device *bdev;
769 char b[BDEVNAME_SIZE];
770
771 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
772 if (IS_ERR(bdev))
773 goto fail;
774 return bdev;
775
776 fail:
777 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
778 __bdevname(dev, b), PTR_ERR(bdev));
779 return NULL;
780 }
781
782 /*
783 * Release the journal device
784 */
785 static int ext4_blkdev_put(struct block_device *bdev)
786 {
787 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
788 }
789
790 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
791 {
792 struct block_device *bdev;
793 int ret = -ENODEV;
794
795 bdev = sbi->journal_bdev;
796 if (bdev) {
797 ret = ext4_blkdev_put(bdev);
798 sbi->journal_bdev = NULL;
799 }
800 return ret;
801 }
802
803 static inline struct inode *orphan_list_entry(struct list_head *l)
804 {
805 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
806 }
807
808 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
809 {
810 struct list_head *l;
811
812 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
813 le32_to_cpu(sbi->s_es->s_last_orphan));
814
815 printk(KERN_ERR "sb_info orphan list:\n");
816 list_for_each(l, &sbi->s_orphan) {
817 struct inode *inode = orphan_list_entry(l);
818 printk(KERN_ERR " "
819 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
820 inode->i_sb->s_id, inode->i_ino, inode,
821 inode->i_mode, inode->i_nlink,
822 NEXT_ORPHAN(inode));
823 }
824 }
825
826 static void ext4_put_super(struct super_block *sb)
827 {
828 struct ext4_sb_info *sbi = EXT4_SB(sb);
829 struct ext4_super_block *es = sbi->s_es;
830 int i, err;
831
832 ext4_unregister_li_request(sb);
833 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
834
835 flush_workqueue(sbi->dio_unwritten_wq);
836 destroy_workqueue(sbi->dio_unwritten_wq);
837
838 lock_super(sb);
839 if (sbi->s_journal) {
840 err = jbd2_journal_destroy(sbi->s_journal);
841 sbi->s_journal = NULL;
842 if (err < 0)
843 ext4_abort(sb, "Couldn't clean up the journal");
844 }
845
846 del_timer(&sbi->s_err_report);
847 ext4_release_system_zone(sb);
848 ext4_mb_release(sb);
849 ext4_ext_release(sb);
850 ext4_xattr_put_super(sb);
851
852 if (!(sb->s_flags & MS_RDONLY)) {
853 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
854 es->s_state = cpu_to_le16(sbi->s_mount_state);
855 }
856 if (sb->s_dirt || !(sb->s_flags & MS_RDONLY))
857 ext4_commit_super(sb, 1);
858
859 if (sbi->s_proc) {
860 remove_proc_entry("options", sbi->s_proc);
861 remove_proc_entry(sb->s_id, ext4_proc_root);
862 }
863 kobject_del(&sbi->s_kobj);
864
865 for (i = 0; i < sbi->s_gdb_count; i++)
866 brelse(sbi->s_group_desc[i]);
867 ext4_kvfree(sbi->s_group_desc);
868 ext4_kvfree(sbi->s_flex_groups);
869 percpu_counter_destroy(&sbi->s_freeclusters_counter);
870 percpu_counter_destroy(&sbi->s_freeinodes_counter);
871 percpu_counter_destroy(&sbi->s_dirs_counter);
872 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
873 brelse(sbi->s_sbh);
874 #ifdef CONFIG_QUOTA
875 for (i = 0; i < MAXQUOTAS; i++)
876 kfree(sbi->s_qf_names[i]);
877 #endif
878
879 /* Debugging code just in case the in-memory inode orphan list
880 * isn't empty. The on-disk one can be non-empty if we've
881 * detected an error and taken the fs readonly, but the
882 * in-memory list had better be clean by this point. */
883 if (!list_empty(&sbi->s_orphan))
884 dump_orphan_list(sb, sbi);
885 J_ASSERT(list_empty(&sbi->s_orphan));
886
887 invalidate_bdev(sb->s_bdev);
888 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
889 /*
890 * Invalidate the journal device's buffers. We don't want them
891 * floating about in memory - the physical journal device may
892 * hotswapped, and it breaks the `ro-after' testing code.
893 */
894 sync_blockdev(sbi->journal_bdev);
895 invalidate_bdev(sbi->journal_bdev);
896 ext4_blkdev_remove(sbi);
897 }
898 if (sbi->s_mmp_tsk)
899 kthread_stop(sbi->s_mmp_tsk);
900 sb->s_fs_info = NULL;
901 /*
902 * Now that we are completely done shutting down the
903 * superblock, we need to actually destroy the kobject.
904 */
905 unlock_super(sb);
906 kobject_put(&sbi->s_kobj);
907 wait_for_completion(&sbi->s_kobj_unregister);
908 kfree(sbi->s_blockgroup_lock);
909 kfree(sbi);
910 }
911
912 static struct kmem_cache *ext4_inode_cachep;
913
914 /*
915 * Called inside transaction, so use GFP_NOFS
916 */
917 static struct inode *ext4_alloc_inode(struct super_block *sb)
918 {
919 struct ext4_inode_info *ei;
920
921 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
922 if (!ei)
923 return NULL;
924
925 ei->vfs_inode.i_version = 1;
926 ei->vfs_inode.i_data.writeback_index = 0;
927 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
928 INIT_LIST_HEAD(&ei->i_prealloc_list);
929 spin_lock_init(&ei->i_prealloc_lock);
930 ei->i_reserved_data_blocks = 0;
931 ei->i_reserved_meta_blocks = 0;
932 ei->i_allocated_meta_blocks = 0;
933 ei->i_da_metadata_calc_len = 0;
934 spin_lock_init(&(ei->i_block_reservation_lock));
935 #ifdef CONFIG_QUOTA
936 ei->i_reserved_quota = 0;
937 #endif
938 ei->jinode = NULL;
939 INIT_LIST_HEAD(&ei->i_completed_io_list);
940 spin_lock_init(&ei->i_completed_io_lock);
941 ei->cur_aio_dio = NULL;
942 ei->i_sync_tid = 0;
943 ei->i_datasync_tid = 0;
944 atomic_set(&ei->i_ioend_count, 0);
945 atomic_set(&ei->i_aiodio_unwritten, 0);
946
947 return &ei->vfs_inode;
948 }
949
950 static int ext4_drop_inode(struct inode *inode)
951 {
952 int drop = generic_drop_inode(inode);
953
954 trace_ext4_drop_inode(inode, drop);
955 return drop;
956 }
957
958 static void ext4_i_callback(struct rcu_head *head)
959 {
960 struct inode *inode = container_of(head, struct inode, i_rcu);
961 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
962 }
963
964 static void ext4_destroy_inode(struct inode *inode)
965 {
966 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
967 ext4_msg(inode->i_sb, KERN_ERR,
968 "Inode %lu (%p): orphan list check failed!",
969 inode->i_ino, EXT4_I(inode));
970 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
971 EXT4_I(inode), sizeof(struct ext4_inode_info),
972 true);
973 dump_stack();
974 }
975 call_rcu(&inode->i_rcu, ext4_i_callback);
976 }
977
978 static void init_once(void *foo)
979 {
980 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
981
982 INIT_LIST_HEAD(&ei->i_orphan);
983 #ifdef CONFIG_EXT4_FS_XATTR
984 init_rwsem(&ei->xattr_sem);
985 #endif
986 init_rwsem(&ei->i_data_sem);
987 inode_init_once(&ei->vfs_inode);
988 }
989
990 static int init_inodecache(void)
991 {
992 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
993 sizeof(struct ext4_inode_info),
994 0, (SLAB_RECLAIM_ACCOUNT|
995 SLAB_MEM_SPREAD),
996 init_once);
997 if (ext4_inode_cachep == NULL)
998 return -ENOMEM;
999 return 0;
1000 }
1001
1002 static void destroy_inodecache(void)
1003 {
1004 kmem_cache_destroy(ext4_inode_cachep);
1005 }
1006
1007 void ext4_clear_inode(struct inode *inode)
1008 {
1009 invalidate_inode_buffers(inode);
1010 end_writeback(inode);
1011 dquot_drop(inode);
1012 ext4_discard_preallocations(inode);
1013 if (EXT4_I(inode)->jinode) {
1014 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1015 EXT4_I(inode)->jinode);
1016 jbd2_free_inode(EXT4_I(inode)->jinode);
1017 EXT4_I(inode)->jinode = NULL;
1018 }
1019 }
1020
1021 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1022 u64 ino, u32 generation)
1023 {
1024 struct inode *inode;
1025
1026 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1027 return ERR_PTR(-ESTALE);
1028 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1029 return ERR_PTR(-ESTALE);
1030
1031 /* iget isn't really right if the inode is currently unallocated!!
1032 *
1033 * ext4_read_inode will return a bad_inode if the inode had been
1034 * deleted, so we should be safe.
1035 *
1036 * Currently we don't know the generation for parent directory, so
1037 * a generation of 0 means "accept any"
1038 */
1039 inode = ext4_iget(sb, ino);
1040 if (IS_ERR(inode))
1041 return ERR_CAST(inode);
1042 if (generation && inode->i_generation != generation) {
1043 iput(inode);
1044 return ERR_PTR(-ESTALE);
1045 }
1046
1047 return inode;
1048 }
1049
1050 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1051 int fh_len, int fh_type)
1052 {
1053 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1054 ext4_nfs_get_inode);
1055 }
1056
1057 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1058 int fh_len, int fh_type)
1059 {
1060 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1061 ext4_nfs_get_inode);
1062 }
1063
1064 /*
1065 * Try to release metadata pages (indirect blocks, directories) which are
1066 * mapped via the block device. Since these pages could have journal heads
1067 * which would prevent try_to_free_buffers() from freeing them, we must use
1068 * jbd2 layer's try_to_free_buffers() function to release them.
1069 */
1070 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1071 gfp_t wait)
1072 {
1073 journal_t *journal = EXT4_SB(sb)->s_journal;
1074
1075 WARN_ON(PageChecked(page));
1076 if (!page_has_buffers(page))
1077 return 0;
1078 if (journal)
1079 return jbd2_journal_try_to_free_buffers(journal, page,
1080 wait & ~__GFP_WAIT);
1081 return try_to_free_buffers(page);
1082 }
1083
1084 #ifdef CONFIG_QUOTA
1085 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1086 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1087
1088 static int ext4_write_dquot(struct dquot *dquot);
1089 static int ext4_acquire_dquot(struct dquot *dquot);
1090 static int ext4_release_dquot(struct dquot *dquot);
1091 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1092 static int ext4_write_info(struct super_block *sb, int type);
1093 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1094 struct path *path);
1095 static int ext4_quota_off(struct super_block *sb, int type);
1096 static int ext4_quota_on_mount(struct super_block *sb, int type);
1097 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1098 size_t len, loff_t off);
1099 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1100 const char *data, size_t len, loff_t off);
1101
1102 static const struct dquot_operations ext4_quota_operations = {
1103 .get_reserved_space = ext4_get_reserved_space,
1104 .write_dquot = ext4_write_dquot,
1105 .acquire_dquot = ext4_acquire_dquot,
1106 .release_dquot = ext4_release_dquot,
1107 .mark_dirty = ext4_mark_dquot_dirty,
1108 .write_info = ext4_write_info,
1109 .alloc_dquot = dquot_alloc,
1110 .destroy_dquot = dquot_destroy,
1111 };
1112
1113 static const struct quotactl_ops ext4_qctl_operations = {
1114 .quota_on = ext4_quota_on,
1115 .quota_off = ext4_quota_off,
1116 .quota_sync = dquot_quota_sync,
1117 .get_info = dquot_get_dqinfo,
1118 .set_info = dquot_set_dqinfo,
1119 .get_dqblk = dquot_get_dqblk,
1120 .set_dqblk = dquot_set_dqblk
1121 };
1122 #endif
1123
1124 static const struct super_operations ext4_sops = {
1125 .alloc_inode = ext4_alloc_inode,
1126 .destroy_inode = ext4_destroy_inode,
1127 .write_inode = ext4_write_inode,
1128 .dirty_inode = ext4_dirty_inode,
1129 .drop_inode = ext4_drop_inode,
1130 .evict_inode = ext4_evict_inode,
1131 .put_super = ext4_put_super,
1132 .sync_fs = ext4_sync_fs,
1133 .freeze_fs = ext4_freeze,
1134 .unfreeze_fs = ext4_unfreeze,
1135 .statfs = ext4_statfs,
1136 .remount_fs = ext4_remount,
1137 .show_options = ext4_show_options,
1138 #ifdef CONFIG_QUOTA
1139 .quota_read = ext4_quota_read,
1140 .quota_write = ext4_quota_write,
1141 #endif
1142 .bdev_try_to_free_page = bdev_try_to_free_page,
1143 };
1144
1145 static const struct super_operations ext4_nojournal_sops = {
1146 .alloc_inode = ext4_alloc_inode,
1147 .destroy_inode = ext4_destroy_inode,
1148 .write_inode = ext4_write_inode,
1149 .dirty_inode = ext4_dirty_inode,
1150 .drop_inode = ext4_drop_inode,
1151 .evict_inode = ext4_evict_inode,
1152 .write_super = ext4_write_super,
1153 .put_super = ext4_put_super,
1154 .statfs = ext4_statfs,
1155 .remount_fs = ext4_remount,
1156 .show_options = ext4_show_options,
1157 #ifdef CONFIG_QUOTA
1158 .quota_read = ext4_quota_read,
1159 .quota_write = ext4_quota_write,
1160 #endif
1161 .bdev_try_to_free_page = bdev_try_to_free_page,
1162 };
1163
1164 static const struct export_operations ext4_export_ops = {
1165 .fh_to_dentry = ext4_fh_to_dentry,
1166 .fh_to_parent = ext4_fh_to_parent,
1167 .get_parent = ext4_get_parent,
1168 };
1169
1170 enum {
1171 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1172 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1173 Opt_nouid32, Opt_debug, Opt_removed,
1174 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1175 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1176 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1177 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1178 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1179 Opt_data_err_abort, Opt_data_err_ignore,
1180 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1181 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1182 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1183 Opt_usrquota, Opt_grpquota, Opt_i_version,
1184 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1185 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1186 Opt_inode_readahead_blks, Opt_journal_ioprio,
1187 Opt_dioread_nolock, Opt_dioread_lock,
1188 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1189 };
1190
1191 static const match_table_t tokens = {
1192 {Opt_bsd_df, "bsddf"},
1193 {Opt_minix_df, "minixdf"},
1194 {Opt_grpid, "grpid"},
1195 {Opt_grpid, "bsdgroups"},
1196 {Opt_nogrpid, "nogrpid"},
1197 {Opt_nogrpid, "sysvgroups"},
1198 {Opt_resgid, "resgid=%u"},
1199 {Opt_resuid, "resuid=%u"},
1200 {Opt_sb, "sb=%u"},
1201 {Opt_err_cont, "errors=continue"},
1202 {Opt_err_panic, "errors=panic"},
1203 {Opt_err_ro, "errors=remount-ro"},
1204 {Opt_nouid32, "nouid32"},
1205 {Opt_debug, "debug"},
1206 {Opt_removed, "oldalloc"},
1207 {Opt_removed, "orlov"},
1208 {Opt_user_xattr, "user_xattr"},
1209 {Opt_nouser_xattr, "nouser_xattr"},
1210 {Opt_acl, "acl"},
1211 {Opt_noacl, "noacl"},
1212 {Opt_noload, "norecovery"},
1213 {Opt_noload, "noload"},
1214 {Opt_removed, "nobh"},
1215 {Opt_removed, "bh"},
1216 {Opt_commit, "commit=%u"},
1217 {Opt_min_batch_time, "min_batch_time=%u"},
1218 {Opt_max_batch_time, "max_batch_time=%u"},
1219 {Opt_journal_dev, "journal_dev=%u"},
1220 {Opt_journal_checksum, "journal_checksum"},
1221 {Opt_journal_async_commit, "journal_async_commit"},
1222 {Opt_abort, "abort"},
1223 {Opt_data_journal, "data=journal"},
1224 {Opt_data_ordered, "data=ordered"},
1225 {Opt_data_writeback, "data=writeback"},
1226 {Opt_data_err_abort, "data_err=abort"},
1227 {Opt_data_err_ignore, "data_err=ignore"},
1228 {Opt_offusrjquota, "usrjquota="},
1229 {Opt_usrjquota, "usrjquota=%s"},
1230 {Opt_offgrpjquota, "grpjquota="},
1231 {Opt_grpjquota, "grpjquota=%s"},
1232 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1233 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1234 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1235 {Opt_grpquota, "grpquota"},
1236 {Opt_noquota, "noquota"},
1237 {Opt_quota, "quota"},
1238 {Opt_usrquota, "usrquota"},
1239 {Opt_barrier, "barrier=%u"},
1240 {Opt_barrier, "barrier"},
1241 {Opt_nobarrier, "nobarrier"},
1242 {Opt_i_version, "i_version"},
1243 {Opt_stripe, "stripe=%u"},
1244 {Opt_delalloc, "delalloc"},
1245 {Opt_nodelalloc, "nodelalloc"},
1246 {Opt_mblk_io_submit, "mblk_io_submit"},
1247 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1248 {Opt_block_validity, "block_validity"},
1249 {Opt_noblock_validity, "noblock_validity"},
1250 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1251 {Opt_journal_ioprio, "journal_ioprio=%u"},
1252 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1253 {Opt_auto_da_alloc, "auto_da_alloc"},
1254 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1255 {Opt_dioread_nolock, "dioread_nolock"},
1256 {Opt_dioread_lock, "dioread_lock"},
1257 {Opt_discard, "discard"},
1258 {Opt_nodiscard, "nodiscard"},
1259 {Opt_init_itable, "init_itable=%u"},
1260 {Opt_init_itable, "init_itable"},
1261 {Opt_noinit_itable, "noinit_itable"},
1262 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1263 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1264 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1265 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1266 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1267 {Opt_err, NULL},
1268 };
1269
1270 static ext4_fsblk_t get_sb_block(void **data)
1271 {
1272 ext4_fsblk_t sb_block;
1273 char *options = (char *) *data;
1274
1275 if (!options || strncmp(options, "sb=", 3) != 0)
1276 return 1; /* Default location */
1277
1278 options += 3;
1279 /* TODO: use simple_strtoll with >32bit ext4 */
1280 sb_block = simple_strtoul(options, &options, 0);
1281 if (*options && *options != ',') {
1282 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1283 (char *) *data);
1284 return 1;
1285 }
1286 if (*options == ',')
1287 options++;
1288 *data = (void *) options;
1289
1290 return sb_block;
1291 }
1292
1293 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1294 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1295 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1296
1297 #ifdef CONFIG_QUOTA
1298 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1299 {
1300 struct ext4_sb_info *sbi = EXT4_SB(sb);
1301 char *qname;
1302
1303 if (sb_any_quota_loaded(sb) &&
1304 !sbi->s_qf_names[qtype]) {
1305 ext4_msg(sb, KERN_ERR,
1306 "Cannot change journaled "
1307 "quota options when quota turned on");
1308 return 0;
1309 }
1310 qname = match_strdup(args);
1311 if (!qname) {
1312 ext4_msg(sb, KERN_ERR,
1313 "Not enough memory for storing quotafile name");
1314 return 0;
1315 }
1316 if (sbi->s_qf_names[qtype] &&
1317 strcmp(sbi->s_qf_names[qtype], qname)) {
1318 ext4_msg(sb, KERN_ERR,
1319 "%s quota file already specified", QTYPE2NAME(qtype));
1320 kfree(qname);
1321 return 0;
1322 }
1323 sbi->s_qf_names[qtype] = qname;
1324 if (strchr(sbi->s_qf_names[qtype], '/')) {
1325 ext4_msg(sb, KERN_ERR,
1326 "quotafile must be on filesystem root");
1327 kfree(sbi->s_qf_names[qtype]);
1328 sbi->s_qf_names[qtype] = NULL;
1329 return 0;
1330 }
1331 set_opt(sb, QUOTA);
1332 return 1;
1333 }
1334
1335 static int clear_qf_name(struct super_block *sb, int qtype)
1336 {
1337
1338 struct ext4_sb_info *sbi = EXT4_SB(sb);
1339
1340 if (sb_any_quota_loaded(sb) &&
1341 sbi->s_qf_names[qtype]) {
1342 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1343 " when quota turned on");
1344 return 0;
1345 }
1346 /*
1347 * The space will be released later when all options are confirmed
1348 * to be correct
1349 */
1350 sbi->s_qf_names[qtype] = NULL;
1351 return 1;
1352 }
1353 #endif
1354
1355 #define MOPT_SET 0x0001
1356 #define MOPT_CLEAR 0x0002
1357 #define MOPT_NOSUPPORT 0x0004
1358 #define MOPT_EXPLICIT 0x0008
1359 #define MOPT_CLEAR_ERR 0x0010
1360 #define MOPT_GTE0 0x0020
1361 #ifdef CONFIG_QUOTA
1362 #define MOPT_Q 0
1363 #define MOPT_QFMT 0x0040
1364 #else
1365 #define MOPT_Q MOPT_NOSUPPORT
1366 #define MOPT_QFMT MOPT_NOSUPPORT
1367 #endif
1368 #define MOPT_DATAJ 0x0080
1369
1370 static const struct mount_opts {
1371 int token;
1372 int mount_opt;
1373 int flags;
1374 } ext4_mount_opts[] = {
1375 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1376 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1377 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1378 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1379 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET},
1380 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR},
1381 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1382 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1383 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET},
1384 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR},
1385 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1386 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1387 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT},
1388 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT},
1389 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET},
1390 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1391 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET},
1392 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET},
1393 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1394 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1395 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1396 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET},
1397 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR},
1398 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1399 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1400 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1401 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1402 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1403 {Opt_commit, 0, MOPT_GTE0},
1404 {Opt_max_batch_time, 0, MOPT_GTE0},
1405 {Opt_min_batch_time, 0, MOPT_GTE0},
1406 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1407 {Opt_init_itable, 0, MOPT_GTE0},
1408 {Opt_stripe, 0, MOPT_GTE0},
1409 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ},
1410 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ},
1411 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ},
1412 #ifdef CONFIG_EXT4_FS_XATTR
1413 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1414 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1415 #else
1416 {Opt_user_xattr, 0, MOPT_NOSUPPORT},
1417 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT},
1418 #endif
1419 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1420 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1421 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1422 #else
1423 {Opt_acl, 0, MOPT_NOSUPPORT},
1424 {Opt_noacl, 0, MOPT_NOSUPPORT},
1425 #endif
1426 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1427 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1428 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1429 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1430 MOPT_SET | MOPT_Q},
1431 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1432 MOPT_SET | MOPT_Q},
1433 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1434 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1435 {Opt_usrjquota, 0, MOPT_Q},
1436 {Opt_grpjquota, 0, MOPT_Q},
1437 {Opt_offusrjquota, 0, MOPT_Q},
1438 {Opt_offgrpjquota, 0, MOPT_Q},
1439 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1440 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1441 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1442 {Opt_err, 0, 0}
1443 };
1444
1445 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1446 substring_t *args, unsigned long *journal_devnum,
1447 unsigned int *journal_ioprio, int is_remount)
1448 {
1449 struct ext4_sb_info *sbi = EXT4_SB(sb);
1450 const struct mount_opts *m;
1451 int arg = 0;
1452
1453 if (args->from && match_int(args, &arg))
1454 return -1;
1455 switch (token) {
1456 case Opt_noacl:
1457 case Opt_nouser_xattr:
1458 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1459 break;
1460 case Opt_sb:
1461 return 1; /* handled by get_sb_block() */
1462 case Opt_removed:
1463 ext4_msg(sb, KERN_WARNING,
1464 "Ignoring removed %s option", opt);
1465 return 1;
1466 case Opt_resuid:
1467 sbi->s_resuid = arg;
1468 return 1;
1469 case Opt_resgid:
1470 sbi->s_resgid = arg;
1471 return 1;
1472 case Opt_abort:
1473 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1474 return 1;
1475 case Opt_i_version:
1476 sb->s_flags |= MS_I_VERSION;
1477 return 1;
1478 case Opt_journal_dev:
1479 if (is_remount) {
1480 ext4_msg(sb, KERN_ERR,
1481 "Cannot specify journal on remount");
1482 return -1;
1483 }
1484 *journal_devnum = arg;
1485 return 1;
1486 case Opt_journal_ioprio:
1487 if (arg < 0 || arg > 7)
1488 return -1;
1489 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1490 return 1;
1491 }
1492
1493 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1494 if (token != m->token)
1495 continue;
1496 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1497 return -1;
1498 if (m->flags & MOPT_EXPLICIT)
1499 set_opt2(sb, EXPLICIT_DELALLOC);
1500 if (m->flags & MOPT_CLEAR_ERR)
1501 clear_opt(sb, ERRORS_MASK);
1502 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1503 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1504 "options when quota turned on");
1505 return -1;
1506 }
1507
1508 if (m->flags & MOPT_NOSUPPORT) {
1509 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1510 } else if (token == Opt_commit) {
1511 if (arg == 0)
1512 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1513 sbi->s_commit_interval = HZ * arg;
1514 } else if (token == Opt_max_batch_time) {
1515 if (arg == 0)
1516 arg = EXT4_DEF_MAX_BATCH_TIME;
1517 sbi->s_max_batch_time = arg;
1518 } else if (token == Opt_min_batch_time) {
1519 sbi->s_min_batch_time = arg;
1520 } else if (token == Opt_inode_readahead_blks) {
1521 if (arg > (1 << 30))
1522 return -1;
1523 if (arg && !is_power_of_2(arg)) {
1524 ext4_msg(sb, KERN_ERR,
1525 "EXT4-fs: inode_readahead_blks"
1526 " must be a power of 2");
1527 return -1;
1528 }
1529 sbi->s_inode_readahead_blks = arg;
1530 } else if (token == Opt_init_itable) {
1531 set_opt(sb, INIT_INODE_TABLE);
1532 if (!args->from)
1533 arg = EXT4_DEF_LI_WAIT_MULT;
1534 sbi->s_li_wait_mult = arg;
1535 } else if (token == Opt_stripe) {
1536 sbi->s_stripe = arg;
1537 } else if (m->flags & MOPT_DATAJ) {
1538 if (is_remount) {
1539 if (!sbi->s_journal)
1540 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1541 else if (test_opt(sb, DATA_FLAGS) !=
1542 m->mount_opt) {
1543 ext4_msg(sb, KERN_ERR,
1544 "Cannot change data mode on remount");
1545 return -1;
1546 }
1547 } else {
1548 clear_opt(sb, DATA_FLAGS);
1549 sbi->s_mount_opt |= m->mount_opt;
1550 }
1551 #ifdef CONFIG_QUOTA
1552 } else if (token == Opt_usrjquota) {
1553 if (!set_qf_name(sb, USRQUOTA, &args[0]))
1554 return -1;
1555 } else if (token == Opt_grpjquota) {
1556 if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1557 return -1;
1558 } else if (token == Opt_offusrjquota) {
1559 if (!clear_qf_name(sb, USRQUOTA))
1560 return -1;
1561 } else if (token == Opt_offgrpjquota) {
1562 if (!clear_qf_name(sb, GRPQUOTA))
1563 return -1;
1564 } else if (m->flags & MOPT_QFMT) {
1565 if (sb_any_quota_loaded(sb) &&
1566 sbi->s_jquota_fmt != m->mount_opt) {
1567 ext4_msg(sb, KERN_ERR, "Cannot "
1568 "change journaled quota options "
1569 "when quota turned on");
1570 return -1;
1571 }
1572 sbi->s_jquota_fmt = m->mount_opt;
1573 #endif
1574 } else {
1575 if (!args->from)
1576 arg = 1;
1577 if (m->flags & MOPT_CLEAR)
1578 arg = !arg;
1579 else if (unlikely(!(m->flags & MOPT_SET))) {
1580 ext4_msg(sb, KERN_WARNING,
1581 "buggy handling of option %s", opt);
1582 WARN_ON(1);
1583 return -1;
1584 }
1585 if (arg != 0)
1586 sbi->s_mount_opt |= m->mount_opt;
1587 else
1588 sbi->s_mount_opt &= ~m->mount_opt;
1589 }
1590 return 1;
1591 }
1592 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1593 "or missing value", opt);
1594 return -1;
1595 }
1596
1597 static int parse_options(char *options, struct super_block *sb,
1598 unsigned long *journal_devnum,
1599 unsigned int *journal_ioprio,
1600 int is_remount)
1601 {
1602 struct ext4_sb_info *sbi = EXT4_SB(sb);
1603 char *p;
1604 substring_t args[MAX_OPT_ARGS];
1605 int token;
1606
1607 if (!options)
1608 return 1;
1609
1610 while ((p = strsep(&options, ",")) != NULL) {
1611 if (!*p)
1612 continue;
1613 /*
1614 * Initialize args struct so we know whether arg was
1615 * found; some options take optional arguments.
1616 */
1617 args[0].to = args[0].from = 0;
1618 token = match_token(p, tokens, args);
1619 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1620 journal_ioprio, is_remount) < 0)
1621 return 0;
1622 }
1623 #ifdef CONFIG_QUOTA
1624 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1625 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1626 clear_opt(sb, USRQUOTA);
1627
1628 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1629 clear_opt(sb, GRPQUOTA);
1630
1631 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1632 ext4_msg(sb, KERN_ERR, "old and new quota "
1633 "format mixing");
1634 return 0;
1635 }
1636
1637 if (!sbi->s_jquota_fmt) {
1638 ext4_msg(sb, KERN_ERR, "journaled quota format "
1639 "not specified");
1640 return 0;
1641 }
1642 } else {
1643 if (sbi->s_jquota_fmt) {
1644 ext4_msg(sb, KERN_ERR, "journaled quota format "
1645 "specified with no journaling "
1646 "enabled");
1647 return 0;
1648 }
1649 }
1650 #endif
1651 return 1;
1652 }
1653
1654 static inline void ext4_show_quota_options(struct seq_file *seq,
1655 struct super_block *sb)
1656 {
1657 #if defined(CONFIG_QUOTA)
1658 struct ext4_sb_info *sbi = EXT4_SB(sb);
1659
1660 if (sbi->s_jquota_fmt) {
1661 char *fmtname = "";
1662
1663 switch (sbi->s_jquota_fmt) {
1664 case QFMT_VFS_OLD:
1665 fmtname = "vfsold";
1666 break;
1667 case QFMT_VFS_V0:
1668 fmtname = "vfsv0";
1669 break;
1670 case QFMT_VFS_V1:
1671 fmtname = "vfsv1";
1672 break;
1673 }
1674 seq_printf(seq, ",jqfmt=%s", fmtname);
1675 }
1676
1677 if (sbi->s_qf_names[USRQUOTA])
1678 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1679
1680 if (sbi->s_qf_names[GRPQUOTA])
1681 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1682
1683 if (test_opt(sb, USRQUOTA))
1684 seq_puts(seq, ",usrquota");
1685
1686 if (test_opt(sb, GRPQUOTA))
1687 seq_puts(seq, ",grpquota");
1688 #endif
1689 }
1690
1691 static const char *token2str(int token)
1692 {
1693 static const struct match_token *t;
1694
1695 for (t = tokens; t->token != Opt_err; t++)
1696 if (t->token == token && !strchr(t->pattern, '='))
1697 break;
1698 return t->pattern;
1699 }
1700
1701 /*
1702 * Show an option if
1703 * - it's set to a non-default value OR
1704 * - if the per-sb default is different from the global default
1705 */
1706 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1707 int nodefs)
1708 {
1709 struct ext4_sb_info *sbi = EXT4_SB(sb);
1710 struct ext4_super_block *es = sbi->s_es;
1711 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1712 const struct mount_opts *m;
1713 char sep = nodefs ? '\n' : ',';
1714
1715 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1716 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1717
1718 if (sbi->s_sb_block != 1)
1719 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1720
1721 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1722 int want_set = m->flags & MOPT_SET;
1723 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1724 (m->flags & MOPT_CLEAR_ERR))
1725 continue;
1726 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1727 continue; /* skip if same as the default */
1728 if ((want_set &&
1729 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1730 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1731 continue; /* select Opt_noFoo vs Opt_Foo */
1732 SEQ_OPTS_PRINT("%s", token2str(m->token));
1733 }
1734
1735 if (nodefs || sbi->s_resuid != EXT4_DEF_RESUID ||
1736 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1737 SEQ_OPTS_PRINT("resuid=%u", sbi->s_resuid);
1738 if (nodefs || sbi->s_resgid != EXT4_DEF_RESGID ||
1739 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1740 SEQ_OPTS_PRINT("resgid=%u", sbi->s_resgid);
1741 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1742 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1743 SEQ_OPTS_PUTS("errors=remount-ro");
1744 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1745 SEQ_OPTS_PUTS("errors=continue");
1746 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1747 SEQ_OPTS_PUTS("errors=panic");
1748 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1749 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1750 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1751 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1752 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1753 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1754 if (sb->s_flags & MS_I_VERSION)
1755 SEQ_OPTS_PUTS("i_version");
1756 if (nodefs || sbi->s_stripe)
1757 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1758 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1759 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1760 SEQ_OPTS_PUTS("data=journal");
1761 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1762 SEQ_OPTS_PUTS("data=ordered");
1763 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1764 SEQ_OPTS_PUTS("data=writeback");
1765 }
1766 if (nodefs ||
1767 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1768 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1769 sbi->s_inode_readahead_blks);
1770
1771 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1772 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1773 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1774
1775 ext4_show_quota_options(seq, sb);
1776 return 0;
1777 }
1778
1779 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1780 {
1781 return _ext4_show_options(seq, root->d_sb, 0);
1782 }
1783
1784 static int options_seq_show(struct seq_file *seq, void *offset)
1785 {
1786 struct super_block *sb = seq->private;
1787 int rc;
1788
1789 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1790 rc = _ext4_show_options(seq, sb, 1);
1791 seq_puts(seq, "\n");
1792 return rc;
1793 }
1794
1795 static int options_open_fs(struct inode *inode, struct file *file)
1796 {
1797 return single_open(file, options_seq_show, PDE(inode)->data);
1798 }
1799
1800 static const struct file_operations ext4_seq_options_fops = {
1801 .owner = THIS_MODULE,
1802 .open = options_open_fs,
1803 .read = seq_read,
1804 .llseek = seq_lseek,
1805 .release = single_release,
1806 };
1807
1808 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1809 int read_only)
1810 {
1811 struct ext4_sb_info *sbi = EXT4_SB(sb);
1812 int res = 0;
1813
1814 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1815 ext4_msg(sb, KERN_ERR, "revision level too high, "
1816 "forcing read-only mode");
1817 res = MS_RDONLY;
1818 }
1819 if (read_only)
1820 goto done;
1821 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1822 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1823 "running e2fsck is recommended");
1824 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1825 ext4_msg(sb, KERN_WARNING,
1826 "warning: mounting fs with errors, "
1827 "running e2fsck is recommended");
1828 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1829 le16_to_cpu(es->s_mnt_count) >=
1830 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1831 ext4_msg(sb, KERN_WARNING,
1832 "warning: maximal mount count reached, "
1833 "running e2fsck is recommended");
1834 else if (le32_to_cpu(es->s_checkinterval) &&
1835 (le32_to_cpu(es->s_lastcheck) +
1836 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1837 ext4_msg(sb, KERN_WARNING,
1838 "warning: checktime reached, "
1839 "running e2fsck is recommended");
1840 if (!sbi->s_journal)
1841 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1842 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1843 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1844 le16_add_cpu(&es->s_mnt_count, 1);
1845 es->s_mtime = cpu_to_le32(get_seconds());
1846 ext4_update_dynamic_rev(sb);
1847 if (sbi->s_journal)
1848 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1849
1850 ext4_commit_super(sb, 1);
1851 done:
1852 if (test_opt(sb, DEBUG))
1853 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1854 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1855 sb->s_blocksize,
1856 sbi->s_groups_count,
1857 EXT4_BLOCKS_PER_GROUP(sb),
1858 EXT4_INODES_PER_GROUP(sb),
1859 sbi->s_mount_opt, sbi->s_mount_opt2);
1860
1861 cleancache_init_fs(sb);
1862 return res;
1863 }
1864
1865 static int ext4_fill_flex_info(struct super_block *sb)
1866 {
1867 struct ext4_sb_info *sbi = EXT4_SB(sb);
1868 struct ext4_group_desc *gdp = NULL;
1869 ext4_group_t flex_group_count;
1870 ext4_group_t flex_group;
1871 unsigned int groups_per_flex = 0;
1872 size_t size;
1873 int i;
1874
1875 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1876 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1877 sbi->s_log_groups_per_flex = 0;
1878 return 1;
1879 }
1880 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1881
1882 /* We allocate both existing and potentially added groups */
1883 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1884 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1885 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1886 size = flex_group_count * sizeof(struct flex_groups);
1887 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
1888 if (sbi->s_flex_groups == NULL) {
1889 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
1890 flex_group_count);
1891 goto failed;
1892 }
1893
1894 for (i = 0; i < sbi->s_groups_count; i++) {
1895 gdp = ext4_get_group_desc(sb, i, NULL);
1896
1897 flex_group = ext4_flex_group(sbi, i);
1898 atomic_add(ext4_free_inodes_count(sb, gdp),
1899 &sbi->s_flex_groups[flex_group].free_inodes);
1900 atomic_add(ext4_free_group_clusters(sb, gdp),
1901 &sbi->s_flex_groups[flex_group].free_clusters);
1902 atomic_add(ext4_used_dirs_count(sb, gdp),
1903 &sbi->s_flex_groups[flex_group].used_dirs);
1904 }
1905
1906 return 1;
1907 failed:
1908 return 0;
1909 }
1910
1911 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1912 struct ext4_group_desc *gdp)
1913 {
1914 __u16 crc = 0;
1915
1916 if (sbi->s_es->s_feature_ro_compat &
1917 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1918 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1919 __le32 le_group = cpu_to_le32(block_group);
1920
1921 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1922 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1923 crc = crc16(crc, (__u8 *)gdp, offset);
1924 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1925 /* for checksum of struct ext4_group_desc do the rest...*/
1926 if ((sbi->s_es->s_feature_incompat &
1927 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1928 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1929 crc = crc16(crc, (__u8 *)gdp + offset,
1930 le16_to_cpu(sbi->s_es->s_desc_size) -
1931 offset);
1932 }
1933
1934 return cpu_to_le16(crc);
1935 }
1936
1937 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1938 struct ext4_group_desc *gdp)
1939 {
1940 if ((sbi->s_es->s_feature_ro_compat &
1941 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1942 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1943 return 0;
1944
1945 return 1;
1946 }
1947
1948 /* Called at mount-time, super-block is locked */
1949 static int ext4_check_descriptors(struct super_block *sb,
1950 ext4_group_t *first_not_zeroed)
1951 {
1952 struct ext4_sb_info *sbi = EXT4_SB(sb);
1953 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1954 ext4_fsblk_t last_block;
1955 ext4_fsblk_t block_bitmap;
1956 ext4_fsblk_t inode_bitmap;
1957 ext4_fsblk_t inode_table;
1958 int flexbg_flag = 0;
1959 ext4_group_t i, grp = sbi->s_groups_count;
1960
1961 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
1962 flexbg_flag = 1;
1963
1964 ext4_debug("Checking group descriptors");
1965
1966 for (i = 0; i < sbi->s_groups_count; i++) {
1967 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1968
1969 if (i == sbi->s_groups_count - 1 || flexbg_flag)
1970 last_block = ext4_blocks_count(sbi->s_es) - 1;
1971 else
1972 last_block = first_block +
1973 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1974
1975 if ((grp == sbi->s_groups_count) &&
1976 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
1977 grp = i;
1978
1979 block_bitmap = ext4_block_bitmap(sb, gdp);
1980 if (block_bitmap < first_block || block_bitmap > last_block) {
1981 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1982 "Block bitmap for group %u not in group "
1983 "(block %llu)!", i, block_bitmap);
1984 return 0;
1985 }
1986 inode_bitmap = ext4_inode_bitmap(sb, gdp);
1987 if (inode_bitmap < first_block || inode_bitmap > last_block) {
1988 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1989 "Inode bitmap for group %u not in group "
1990 "(block %llu)!", i, inode_bitmap);
1991 return 0;
1992 }
1993 inode_table = ext4_inode_table(sb, gdp);
1994 if (inode_table < first_block ||
1995 inode_table + sbi->s_itb_per_group - 1 > last_block) {
1996 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1997 "Inode table for group %u not in group "
1998 "(block %llu)!", i, inode_table);
1999 return 0;
2000 }
2001 ext4_lock_group(sb, i);
2002 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2003 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2004 "Checksum for group %u failed (%u!=%u)",
2005 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2006 gdp)), le16_to_cpu(gdp->bg_checksum));
2007 if (!(sb->s_flags & MS_RDONLY)) {
2008 ext4_unlock_group(sb, i);
2009 return 0;
2010 }
2011 }
2012 ext4_unlock_group(sb, i);
2013 if (!flexbg_flag)
2014 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2015 }
2016 if (NULL != first_not_zeroed)
2017 *first_not_zeroed = grp;
2018
2019 ext4_free_blocks_count_set(sbi->s_es,
2020 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2021 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2022 return 1;
2023 }
2024
2025 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2026 * the superblock) which were deleted from all directories, but held open by
2027 * a process at the time of a crash. We walk the list and try to delete these
2028 * inodes at recovery time (only with a read-write filesystem).
2029 *
2030 * In order to keep the orphan inode chain consistent during traversal (in
2031 * case of crash during recovery), we link each inode into the superblock
2032 * orphan list_head and handle it the same way as an inode deletion during
2033 * normal operation (which journals the operations for us).
2034 *
2035 * We only do an iget() and an iput() on each inode, which is very safe if we
2036 * accidentally point at an in-use or already deleted inode. The worst that
2037 * can happen in this case is that we get a "bit already cleared" message from
2038 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2039 * e2fsck was run on this filesystem, and it must have already done the orphan
2040 * inode cleanup for us, so we can safely abort without any further action.
2041 */
2042 static void ext4_orphan_cleanup(struct super_block *sb,
2043 struct ext4_super_block *es)
2044 {
2045 unsigned int s_flags = sb->s_flags;
2046 int nr_orphans = 0, nr_truncates = 0;
2047 #ifdef CONFIG_QUOTA
2048 int i;
2049 #endif
2050 if (!es->s_last_orphan) {
2051 jbd_debug(4, "no orphan inodes to clean up\n");
2052 return;
2053 }
2054
2055 if (bdev_read_only(sb->s_bdev)) {
2056 ext4_msg(sb, KERN_ERR, "write access "
2057 "unavailable, skipping orphan cleanup");
2058 return;
2059 }
2060
2061 /* Check if feature set would not allow a r/w mount */
2062 if (!ext4_feature_set_ok(sb, 0)) {
2063 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2064 "unknown ROCOMPAT features");
2065 return;
2066 }
2067
2068 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2069 if (es->s_last_orphan)
2070 jbd_debug(1, "Errors on filesystem, "
2071 "clearing orphan list.\n");
2072 es->s_last_orphan = 0;
2073 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2074 return;
2075 }
2076
2077 if (s_flags & MS_RDONLY) {
2078 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2079 sb->s_flags &= ~MS_RDONLY;
2080 }
2081 #ifdef CONFIG_QUOTA
2082 /* Needed for iput() to work correctly and not trash data */
2083 sb->s_flags |= MS_ACTIVE;
2084 /* Turn on quotas so that they are updated correctly */
2085 for (i = 0; i < MAXQUOTAS; i++) {
2086 if (EXT4_SB(sb)->s_qf_names[i]) {
2087 int ret = ext4_quota_on_mount(sb, i);
2088 if (ret < 0)
2089 ext4_msg(sb, KERN_ERR,
2090 "Cannot turn on journaled "
2091 "quota: error %d", ret);
2092 }
2093 }
2094 #endif
2095
2096 while (es->s_last_orphan) {
2097 struct inode *inode;
2098
2099 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2100 if (IS_ERR(inode)) {
2101 es->s_last_orphan = 0;
2102 break;
2103 }
2104
2105 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2106 dquot_initialize(inode);
2107 if (inode->i_nlink) {
2108 ext4_msg(sb, KERN_DEBUG,
2109 "%s: truncating inode %lu to %lld bytes",
2110 __func__, inode->i_ino, inode->i_size);
2111 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2112 inode->i_ino, inode->i_size);
2113 ext4_truncate(inode);
2114 nr_truncates++;
2115 } else {
2116 ext4_msg(sb, KERN_DEBUG,
2117 "%s: deleting unreferenced inode %lu",
2118 __func__, inode->i_ino);
2119 jbd_debug(2, "deleting unreferenced inode %lu\n",
2120 inode->i_ino);
2121 nr_orphans++;
2122 }
2123 iput(inode); /* The delete magic happens here! */
2124 }
2125
2126 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2127
2128 if (nr_orphans)
2129 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2130 PLURAL(nr_orphans));
2131 if (nr_truncates)
2132 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2133 PLURAL(nr_truncates));
2134 #ifdef CONFIG_QUOTA
2135 /* Turn quotas off */
2136 for (i = 0; i < MAXQUOTAS; i++) {
2137 if (sb_dqopt(sb)->files[i])
2138 dquot_quota_off(sb, i);
2139 }
2140 #endif
2141 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2142 }
2143
2144 /*
2145 * Maximal extent format file size.
2146 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2147 * extent format containers, within a sector_t, and within i_blocks
2148 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2149 * so that won't be a limiting factor.
2150 *
2151 * However there is other limiting factor. We do store extents in the form
2152 * of starting block and length, hence the resulting length of the extent
2153 * covering maximum file size must fit into on-disk format containers as
2154 * well. Given that length is always by 1 unit bigger than max unit (because
2155 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2156 *
2157 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2158 */
2159 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2160 {
2161 loff_t res;
2162 loff_t upper_limit = MAX_LFS_FILESIZE;
2163
2164 /* small i_blocks in vfs inode? */
2165 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2166 /*
2167 * CONFIG_LBDAF is not enabled implies the inode
2168 * i_block represent total blocks in 512 bytes
2169 * 32 == size of vfs inode i_blocks * 8
2170 */
2171 upper_limit = (1LL << 32) - 1;
2172
2173 /* total blocks in file system block size */
2174 upper_limit >>= (blkbits - 9);
2175 upper_limit <<= blkbits;
2176 }
2177
2178 /*
2179 * 32-bit extent-start container, ee_block. We lower the maxbytes
2180 * by one fs block, so ee_len can cover the extent of maximum file
2181 * size
2182 */
2183 res = (1LL << 32) - 1;
2184 res <<= blkbits;
2185
2186 /* Sanity check against vm- & vfs- imposed limits */
2187 if (res > upper_limit)
2188 res = upper_limit;
2189
2190 return res;
2191 }
2192
2193 /*
2194 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2195 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2196 * We need to be 1 filesystem block less than the 2^48 sector limit.
2197 */
2198 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2199 {
2200 loff_t res = EXT4_NDIR_BLOCKS;
2201 int meta_blocks;
2202 loff_t upper_limit;
2203 /* This is calculated to be the largest file size for a dense, block
2204 * mapped file such that the file's total number of 512-byte sectors,
2205 * including data and all indirect blocks, does not exceed (2^48 - 1).
2206 *
2207 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2208 * number of 512-byte sectors of the file.
2209 */
2210
2211 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2212 /*
2213 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2214 * the inode i_block field represents total file blocks in
2215 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2216 */
2217 upper_limit = (1LL << 32) - 1;
2218
2219 /* total blocks in file system block size */
2220 upper_limit >>= (bits - 9);
2221
2222 } else {
2223 /*
2224 * We use 48 bit ext4_inode i_blocks
2225 * With EXT4_HUGE_FILE_FL set the i_blocks
2226 * represent total number of blocks in
2227 * file system block size
2228 */
2229 upper_limit = (1LL << 48) - 1;
2230
2231 }
2232
2233 /* indirect blocks */
2234 meta_blocks = 1;
2235 /* double indirect blocks */
2236 meta_blocks += 1 + (1LL << (bits-2));
2237 /* tripple indirect blocks */
2238 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2239
2240 upper_limit -= meta_blocks;
2241 upper_limit <<= bits;
2242
2243 res += 1LL << (bits-2);
2244 res += 1LL << (2*(bits-2));
2245 res += 1LL << (3*(bits-2));
2246 res <<= bits;
2247 if (res > upper_limit)
2248 res = upper_limit;
2249
2250 if (res > MAX_LFS_FILESIZE)
2251 res = MAX_LFS_FILESIZE;
2252
2253 return res;
2254 }
2255
2256 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2257 ext4_fsblk_t logical_sb_block, int nr)
2258 {
2259 struct ext4_sb_info *sbi = EXT4_SB(sb);
2260 ext4_group_t bg, first_meta_bg;
2261 int has_super = 0;
2262
2263 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2264
2265 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2266 nr < first_meta_bg)
2267 return logical_sb_block + nr + 1;
2268 bg = sbi->s_desc_per_block * nr;
2269 if (ext4_bg_has_super(sb, bg))
2270 has_super = 1;
2271
2272 return (has_super + ext4_group_first_block_no(sb, bg));
2273 }
2274
2275 /**
2276 * ext4_get_stripe_size: Get the stripe size.
2277 * @sbi: In memory super block info
2278 *
2279 * If we have specified it via mount option, then
2280 * use the mount option value. If the value specified at mount time is
2281 * greater than the blocks per group use the super block value.
2282 * If the super block value is greater than blocks per group return 0.
2283 * Allocator needs it be less than blocks per group.
2284 *
2285 */
2286 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2287 {
2288 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2289 unsigned long stripe_width =
2290 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2291 int ret;
2292
2293 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2294 ret = sbi->s_stripe;
2295 else if (stripe_width <= sbi->s_blocks_per_group)
2296 ret = stripe_width;
2297 else if (stride <= sbi->s_blocks_per_group)
2298 ret = stride;
2299 else
2300 ret = 0;
2301
2302 /*
2303 * If the stripe width is 1, this makes no sense and
2304 * we set it to 0 to turn off stripe handling code.
2305 */
2306 if (ret <= 1)
2307 ret = 0;
2308
2309 return ret;
2310 }
2311
2312 /* sysfs supprt */
2313
2314 struct ext4_attr {
2315 struct attribute attr;
2316 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2317 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2318 const char *, size_t);
2319 int offset;
2320 };
2321
2322 static int parse_strtoul(const char *buf,
2323 unsigned long max, unsigned long *value)
2324 {
2325 char *endp;
2326
2327 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2328 endp = skip_spaces(endp);
2329 if (*endp || *value > max)
2330 return -EINVAL;
2331
2332 return 0;
2333 }
2334
2335 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2336 struct ext4_sb_info *sbi,
2337 char *buf)
2338 {
2339 return snprintf(buf, PAGE_SIZE, "%llu\n",
2340 (s64) EXT4_C2B(sbi,
2341 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2342 }
2343
2344 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2345 struct ext4_sb_info *sbi, char *buf)
2346 {
2347 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2348
2349 if (!sb->s_bdev->bd_part)
2350 return snprintf(buf, PAGE_SIZE, "0\n");
2351 return snprintf(buf, PAGE_SIZE, "%lu\n",
2352 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2353 sbi->s_sectors_written_start) >> 1);
2354 }
2355
2356 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2357 struct ext4_sb_info *sbi, char *buf)
2358 {
2359 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2360
2361 if (!sb->s_bdev->bd_part)
2362 return snprintf(buf, PAGE_SIZE, "0\n");
2363 return snprintf(buf, PAGE_SIZE, "%llu\n",
2364 (unsigned long long)(sbi->s_kbytes_written +
2365 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2366 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2367 }
2368
2369 static ssize_t extent_cache_hits_show(struct ext4_attr *a,
2370 struct ext4_sb_info *sbi, char *buf)
2371 {
2372 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_hits);
2373 }
2374
2375 static ssize_t extent_cache_misses_show(struct ext4_attr *a,
2376 struct ext4_sb_info *sbi, char *buf)
2377 {
2378 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_misses);
2379 }
2380
2381 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2382 struct ext4_sb_info *sbi,
2383 const char *buf, size_t count)
2384 {
2385 unsigned long t;
2386
2387 if (parse_strtoul(buf, 0x40000000, &t))
2388 return -EINVAL;
2389
2390 if (t && !is_power_of_2(t))
2391 return -EINVAL;
2392
2393 sbi->s_inode_readahead_blks = t;
2394 return count;
2395 }
2396
2397 static ssize_t sbi_ui_show(struct ext4_attr *a,
2398 struct ext4_sb_info *sbi, char *buf)
2399 {
2400 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2401
2402 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2403 }
2404
2405 static ssize_t sbi_ui_store(struct ext4_attr *a,
2406 struct ext4_sb_info *sbi,
2407 const char *buf, size_t count)
2408 {
2409 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2410 unsigned long t;
2411
2412 if (parse_strtoul(buf, 0xffffffff, &t))
2413 return -EINVAL;
2414 *ui = t;
2415 return count;
2416 }
2417
2418 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2419 static struct ext4_attr ext4_attr_##_name = { \
2420 .attr = {.name = __stringify(_name), .mode = _mode }, \
2421 .show = _show, \
2422 .store = _store, \
2423 .offset = offsetof(struct ext4_sb_info, _elname), \
2424 }
2425 #define EXT4_ATTR(name, mode, show, store) \
2426 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2427
2428 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2429 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2430 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2431 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2432 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2433 #define ATTR_LIST(name) &ext4_attr_##name.attr
2434
2435 EXT4_RO_ATTR(delayed_allocation_blocks);
2436 EXT4_RO_ATTR(session_write_kbytes);
2437 EXT4_RO_ATTR(lifetime_write_kbytes);
2438 EXT4_RO_ATTR(extent_cache_hits);
2439 EXT4_RO_ATTR(extent_cache_misses);
2440 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2441 inode_readahead_blks_store, s_inode_readahead_blks);
2442 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2443 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2444 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2445 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2446 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2447 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2448 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2449 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2450
2451 static struct attribute *ext4_attrs[] = {
2452 ATTR_LIST(delayed_allocation_blocks),
2453 ATTR_LIST(session_write_kbytes),
2454 ATTR_LIST(lifetime_write_kbytes),
2455 ATTR_LIST(extent_cache_hits),
2456 ATTR_LIST(extent_cache_misses),
2457 ATTR_LIST(inode_readahead_blks),
2458 ATTR_LIST(inode_goal),
2459 ATTR_LIST(mb_stats),
2460 ATTR_LIST(mb_max_to_scan),
2461 ATTR_LIST(mb_min_to_scan),
2462 ATTR_LIST(mb_order2_req),
2463 ATTR_LIST(mb_stream_req),
2464 ATTR_LIST(mb_group_prealloc),
2465 ATTR_LIST(max_writeback_mb_bump),
2466 NULL,
2467 };
2468
2469 /* Features this copy of ext4 supports */
2470 EXT4_INFO_ATTR(lazy_itable_init);
2471 EXT4_INFO_ATTR(batched_discard);
2472
2473 static struct attribute *ext4_feat_attrs[] = {
2474 ATTR_LIST(lazy_itable_init),
2475 ATTR_LIST(batched_discard),
2476 NULL,
2477 };
2478
2479 static ssize_t ext4_attr_show(struct kobject *kobj,
2480 struct attribute *attr, char *buf)
2481 {
2482 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2483 s_kobj);
2484 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2485
2486 return a->show ? a->show(a, sbi, buf) : 0;
2487 }
2488
2489 static ssize_t ext4_attr_store(struct kobject *kobj,
2490 struct attribute *attr,
2491 const char *buf, size_t len)
2492 {
2493 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2494 s_kobj);
2495 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2496
2497 return a->store ? a->store(a, sbi, buf, len) : 0;
2498 }
2499
2500 static void ext4_sb_release(struct kobject *kobj)
2501 {
2502 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2503 s_kobj);
2504 complete(&sbi->s_kobj_unregister);
2505 }
2506
2507 static const struct sysfs_ops ext4_attr_ops = {
2508 .show = ext4_attr_show,
2509 .store = ext4_attr_store,
2510 };
2511
2512 static struct kobj_type ext4_ktype = {
2513 .default_attrs = ext4_attrs,
2514 .sysfs_ops = &ext4_attr_ops,
2515 .release = ext4_sb_release,
2516 };
2517
2518 static void ext4_feat_release(struct kobject *kobj)
2519 {
2520 complete(&ext4_feat->f_kobj_unregister);
2521 }
2522
2523 static struct kobj_type ext4_feat_ktype = {
2524 .default_attrs = ext4_feat_attrs,
2525 .sysfs_ops = &ext4_attr_ops,
2526 .release = ext4_feat_release,
2527 };
2528
2529 /*
2530 * Check whether this filesystem can be mounted based on
2531 * the features present and the RDONLY/RDWR mount requested.
2532 * Returns 1 if this filesystem can be mounted as requested,
2533 * 0 if it cannot be.
2534 */
2535 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2536 {
2537 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2538 ext4_msg(sb, KERN_ERR,
2539 "Couldn't mount because of "
2540 "unsupported optional features (%x)",
2541 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2542 ~EXT4_FEATURE_INCOMPAT_SUPP));
2543 return 0;
2544 }
2545
2546 if (readonly)
2547 return 1;
2548
2549 /* Check that feature set is OK for a read-write mount */
2550 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2551 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2552 "unsupported optional features (%x)",
2553 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2554 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2555 return 0;
2556 }
2557 /*
2558 * Large file size enabled file system can only be mounted
2559 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2560 */
2561 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2562 if (sizeof(blkcnt_t) < sizeof(u64)) {
2563 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2564 "cannot be mounted RDWR without "
2565 "CONFIG_LBDAF");
2566 return 0;
2567 }
2568 }
2569 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2570 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2571 ext4_msg(sb, KERN_ERR,
2572 "Can't support bigalloc feature without "
2573 "extents feature\n");
2574 return 0;
2575 }
2576 return 1;
2577 }
2578
2579 /*
2580 * This function is called once a day if we have errors logged
2581 * on the file system
2582 */
2583 static void print_daily_error_info(unsigned long arg)
2584 {
2585 struct super_block *sb = (struct super_block *) arg;
2586 struct ext4_sb_info *sbi;
2587 struct ext4_super_block *es;
2588
2589 sbi = EXT4_SB(sb);
2590 es = sbi->s_es;
2591
2592 if (es->s_error_count)
2593 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2594 le32_to_cpu(es->s_error_count));
2595 if (es->s_first_error_time) {
2596 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2597 sb->s_id, le32_to_cpu(es->s_first_error_time),
2598 (int) sizeof(es->s_first_error_func),
2599 es->s_first_error_func,
2600 le32_to_cpu(es->s_first_error_line));
2601 if (es->s_first_error_ino)
2602 printk(": inode %u",
2603 le32_to_cpu(es->s_first_error_ino));
2604 if (es->s_first_error_block)
2605 printk(": block %llu", (unsigned long long)
2606 le64_to_cpu(es->s_first_error_block));
2607 printk("\n");
2608 }
2609 if (es->s_last_error_time) {
2610 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2611 sb->s_id, le32_to_cpu(es->s_last_error_time),
2612 (int) sizeof(es->s_last_error_func),
2613 es->s_last_error_func,
2614 le32_to_cpu(es->s_last_error_line));
2615 if (es->s_last_error_ino)
2616 printk(": inode %u",
2617 le32_to_cpu(es->s_last_error_ino));
2618 if (es->s_last_error_block)
2619 printk(": block %llu", (unsigned long long)
2620 le64_to_cpu(es->s_last_error_block));
2621 printk("\n");
2622 }
2623 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2624 }
2625
2626 /* Find next suitable group and run ext4_init_inode_table */
2627 static int ext4_run_li_request(struct ext4_li_request *elr)
2628 {
2629 struct ext4_group_desc *gdp = NULL;
2630 ext4_group_t group, ngroups;
2631 struct super_block *sb;
2632 unsigned long timeout = 0;
2633 int ret = 0;
2634
2635 sb = elr->lr_super;
2636 ngroups = EXT4_SB(sb)->s_groups_count;
2637
2638 for (group = elr->lr_next_group; group < ngroups; group++) {
2639 gdp = ext4_get_group_desc(sb, group, NULL);
2640 if (!gdp) {
2641 ret = 1;
2642 break;
2643 }
2644
2645 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2646 break;
2647 }
2648
2649 if (group == ngroups)
2650 ret = 1;
2651
2652 if (!ret) {
2653 timeout = jiffies;
2654 ret = ext4_init_inode_table(sb, group,
2655 elr->lr_timeout ? 0 : 1);
2656 if (elr->lr_timeout == 0) {
2657 timeout = (jiffies - timeout) *
2658 elr->lr_sbi->s_li_wait_mult;
2659 elr->lr_timeout = timeout;
2660 }
2661 elr->lr_next_sched = jiffies + elr->lr_timeout;
2662 elr->lr_next_group = group + 1;
2663 }
2664
2665 return ret;
2666 }
2667
2668 /*
2669 * Remove lr_request from the list_request and free the
2670 * request structure. Should be called with li_list_mtx held
2671 */
2672 static void ext4_remove_li_request(struct ext4_li_request *elr)
2673 {
2674 struct ext4_sb_info *sbi;
2675
2676 if (!elr)
2677 return;
2678
2679 sbi = elr->lr_sbi;
2680
2681 list_del(&elr->lr_request);
2682 sbi->s_li_request = NULL;
2683 kfree(elr);
2684 }
2685
2686 static void ext4_unregister_li_request(struct super_block *sb)
2687 {
2688 mutex_lock(&ext4_li_mtx);
2689 if (!ext4_li_info) {
2690 mutex_unlock(&ext4_li_mtx);
2691 return;
2692 }
2693
2694 mutex_lock(&ext4_li_info->li_list_mtx);
2695 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2696 mutex_unlock(&ext4_li_info->li_list_mtx);
2697 mutex_unlock(&ext4_li_mtx);
2698 }
2699
2700 static struct task_struct *ext4_lazyinit_task;
2701
2702 /*
2703 * This is the function where ext4lazyinit thread lives. It walks
2704 * through the request list searching for next scheduled filesystem.
2705 * When such a fs is found, run the lazy initialization request
2706 * (ext4_rn_li_request) and keep track of the time spend in this
2707 * function. Based on that time we compute next schedule time of
2708 * the request. When walking through the list is complete, compute
2709 * next waking time and put itself into sleep.
2710 */
2711 static int ext4_lazyinit_thread(void *arg)
2712 {
2713 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2714 struct list_head *pos, *n;
2715 struct ext4_li_request *elr;
2716 unsigned long next_wakeup, cur;
2717
2718 BUG_ON(NULL == eli);
2719
2720 cont_thread:
2721 while (true) {
2722 next_wakeup = MAX_JIFFY_OFFSET;
2723
2724 mutex_lock(&eli->li_list_mtx);
2725 if (list_empty(&eli->li_request_list)) {
2726 mutex_unlock(&eli->li_list_mtx);
2727 goto exit_thread;
2728 }
2729
2730 list_for_each_safe(pos, n, &eli->li_request_list) {
2731 elr = list_entry(pos, struct ext4_li_request,
2732 lr_request);
2733
2734 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2735 if (ext4_run_li_request(elr) != 0) {
2736 /* error, remove the lazy_init job */
2737 ext4_remove_li_request(elr);
2738 continue;
2739 }
2740 }
2741
2742 if (time_before(elr->lr_next_sched, next_wakeup))
2743 next_wakeup = elr->lr_next_sched;
2744 }
2745 mutex_unlock(&eli->li_list_mtx);
2746
2747 try_to_freeze();
2748
2749 cur = jiffies;
2750 if ((time_after_eq(cur, next_wakeup)) ||
2751 (MAX_JIFFY_OFFSET == next_wakeup)) {
2752 cond_resched();
2753 continue;
2754 }
2755
2756 schedule_timeout_interruptible(next_wakeup - cur);
2757
2758 if (kthread_should_stop()) {
2759 ext4_clear_request_list();
2760 goto exit_thread;
2761 }
2762 }
2763
2764 exit_thread:
2765 /*
2766 * It looks like the request list is empty, but we need
2767 * to check it under the li_list_mtx lock, to prevent any
2768 * additions into it, and of course we should lock ext4_li_mtx
2769 * to atomically free the list and ext4_li_info, because at
2770 * this point another ext4 filesystem could be registering
2771 * new one.
2772 */
2773 mutex_lock(&ext4_li_mtx);
2774 mutex_lock(&eli->li_list_mtx);
2775 if (!list_empty(&eli->li_request_list)) {
2776 mutex_unlock(&eli->li_list_mtx);
2777 mutex_unlock(&ext4_li_mtx);
2778 goto cont_thread;
2779 }
2780 mutex_unlock(&eli->li_list_mtx);
2781 kfree(ext4_li_info);
2782 ext4_li_info = NULL;
2783 mutex_unlock(&ext4_li_mtx);
2784
2785 return 0;
2786 }
2787
2788 static void ext4_clear_request_list(void)
2789 {
2790 struct list_head *pos, *n;
2791 struct ext4_li_request *elr;
2792
2793 mutex_lock(&ext4_li_info->li_list_mtx);
2794 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2795 elr = list_entry(pos, struct ext4_li_request,
2796 lr_request);
2797 ext4_remove_li_request(elr);
2798 }
2799 mutex_unlock(&ext4_li_info->li_list_mtx);
2800 }
2801
2802 static int ext4_run_lazyinit_thread(void)
2803 {
2804 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2805 ext4_li_info, "ext4lazyinit");
2806 if (IS_ERR(ext4_lazyinit_task)) {
2807 int err = PTR_ERR(ext4_lazyinit_task);
2808 ext4_clear_request_list();
2809 kfree(ext4_li_info);
2810 ext4_li_info = NULL;
2811 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2812 "initialization thread\n",
2813 err);
2814 return err;
2815 }
2816 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2817 return 0;
2818 }
2819
2820 /*
2821 * Check whether it make sense to run itable init. thread or not.
2822 * If there is at least one uninitialized inode table, return
2823 * corresponding group number, else the loop goes through all
2824 * groups and return total number of groups.
2825 */
2826 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2827 {
2828 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2829 struct ext4_group_desc *gdp = NULL;
2830
2831 for (group = 0; group < ngroups; group++) {
2832 gdp = ext4_get_group_desc(sb, group, NULL);
2833 if (!gdp)
2834 continue;
2835
2836 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2837 break;
2838 }
2839
2840 return group;
2841 }
2842
2843 static int ext4_li_info_new(void)
2844 {
2845 struct ext4_lazy_init *eli = NULL;
2846
2847 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2848 if (!eli)
2849 return -ENOMEM;
2850
2851 INIT_LIST_HEAD(&eli->li_request_list);
2852 mutex_init(&eli->li_list_mtx);
2853
2854 eli->li_state |= EXT4_LAZYINIT_QUIT;
2855
2856 ext4_li_info = eli;
2857
2858 return 0;
2859 }
2860
2861 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2862 ext4_group_t start)
2863 {
2864 struct ext4_sb_info *sbi = EXT4_SB(sb);
2865 struct ext4_li_request *elr;
2866 unsigned long rnd;
2867
2868 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2869 if (!elr)
2870 return NULL;
2871
2872 elr->lr_super = sb;
2873 elr->lr_sbi = sbi;
2874 elr->lr_next_group = start;
2875
2876 /*
2877 * Randomize first schedule time of the request to
2878 * spread the inode table initialization requests
2879 * better.
2880 */
2881 get_random_bytes(&rnd, sizeof(rnd));
2882 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2883 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2884
2885 return elr;
2886 }
2887
2888 static int ext4_register_li_request(struct super_block *sb,
2889 ext4_group_t first_not_zeroed)
2890 {
2891 struct ext4_sb_info *sbi = EXT4_SB(sb);
2892 struct ext4_li_request *elr;
2893 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2894 int ret = 0;
2895
2896 if (sbi->s_li_request != NULL) {
2897 /*
2898 * Reset timeout so it can be computed again, because
2899 * s_li_wait_mult might have changed.
2900 */
2901 sbi->s_li_request->lr_timeout = 0;
2902 return 0;
2903 }
2904
2905 if (first_not_zeroed == ngroups ||
2906 (sb->s_flags & MS_RDONLY) ||
2907 !test_opt(sb, INIT_INODE_TABLE))
2908 return 0;
2909
2910 elr = ext4_li_request_new(sb, first_not_zeroed);
2911 if (!elr)
2912 return -ENOMEM;
2913
2914 mutex_lock(&ext4_li_mtx);
2915
2916 if (NULL == ext4_li_info) {
2917 ret = ext4_li_info_new();
2918 if (ret)
2919 goto out;
2920 }
2921
2922 mutex_lock(&ext4_li_info->li_list_mtx);
2923 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2924 mutex_unlock(&ext4_li_info->li_list_mtx);
2925
2926 sbi->s_li_request = elr;
2927 /*
2928 * set elr to NULL here since it has been inserted to
2929 * the request_list and the removal and free of it is
2930 * handled by ext4_clear_request_list from now on.
2931 */
2932 elr = NULL;
2933
2934 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2935 ret = ext4_run_lazyinit_thread();
2936 if (ret)
2937 goto out;
2938 }
2939 out:
2940 mutex_unlock(&ext4_li_mtx);
2941 if (ret)
2942 kfree(elr);
2943 return ret;
2944 }
2945
2946 /*
2947 * We do not need to lock anything since this is called on
2948 * module unload.
2949 */
2950 static void ext4_destroy_lazyinit_thread(void)
2951 {
2952 /*
2953 * If thread exited earlier
2954 * there's nothing to be done.
2955 */
2956 if (!ext4_li_info || !ext4_lazyinit_task)
2957 return;
2958
2959 kthread_stop(ext4_lazyinit_task);
2960 }
2961
2962 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2963 {
2964 char *orig_data = kstrdup(data, GFP_KERNEL);
2965 struct buffer_head *bh;
2966 struct ext4_super_block *es = NULL;
2967 struct ext4_sb_info *sbi;
2968 ext4_fsblk_t block;
2969 ext4_fsblk_t sb_block = get_sb_block(&data);
2970 ext4_fsblk_t logical_sb_block;
2971 unsigned long offset = 0;
2972 unsigned long journal_devnum = 0;
2973 unsigned long def_mount_opts;
2974 struct inode *root;
2975 char *cp;
2976 const char *descr;
2977 int ret = -ENOMEM;
2978 int blocksize, clustersize;
2979 unsigned int db_count;
2980 unsigned int i;
2981 int needs_recovery, has_huge_files, has_bigalloc;
2982 __u64 blocks_count;
2983 int err;
2984 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
2985 ext4_group_t first_not_zeroed;
2986
2987 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2988 if (!sbi)
2989 goto out_free_orig;
2990
2991 sbi->s_blockgroup_lock =
2992 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
2993 if (!sbi->s_blockgroup_lock) {
2994 kfree(sbi);
2995 goto out_free_orig;
2996 }
2997 sb->s_fs_info = sbi;
2998 sbi->s_mount_opt = 0;
2999 sbi->s_resuid = EXT4_DEF_RESUID;
3000 sbi->s_resgid = EXT4_DEF_RESGID;
3001 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3002 sbi->s_sb_block = sb_block;
3003 if (sb->s_bdev->bd_part)
3004 sbi->s_sectors_written_start =
3005 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3006
3007 /* Cleanup superblock name */
3008 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3009 *cp = '!';
3010
3011 ret = -EINVAL;
3012 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3013 if (!blocksize) {
3014 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3015 goto out_fail;
3016 }
3017
3018 /*
3019 * The ext4 superblock will not be buffer aligned for other than 1kB
3020 * block sizes. We need to calculate the offset from buffer start.
3021 */
3022 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3023 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3024 offset = do_div(logical_sb_block, blocksize);
3025 } else {
3026 logical_sb_block = sb_block;
3027 }
3028
3029 if (!(bh = sb_bread(sb, logical_sb_block))) {
3030 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3031 goto out_fail;
3032 }
3033 /*
3034 * Note: s_es must be initialized as soon as possible because
3035 * some ext4 macro-instructions depend on its value
3036 */
3037 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3038 sbi->s_es = es;
3039 sb->s_magic = le16_to_cpu(es->s_magic);
3040 if (sb->s_magic != EXT4_SUPER_MAGIC)
3041 goto cantfind_ext4;
3042 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3043
3044 /* Set defaults before we parse the mount options */
3045 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3046 set_opt(sb, INIT_INODE_TABLE);
3047 if (def_mount_opts & EXT4_DEFM_DEBUG)
3048 set_opt(sb, DEBUG);
3049 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3050 set_opt(sb, GRPID);
3051 if (def_mount_opts & EXT4_DEFM_UID16)
3052 set_opt(sb, NO_UID32);
3053 /* xattr user namespace & acls are now defaulted on */
3054 #ifdef CONFIG_EXT4_FS_XATTR
3055 set_opt(sb, XATTR_USER);
3056 #endif
3057 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3058 set_opt(sb, POSIX_ACL);
3059 #endif
3060 set_opt(sb, MBLK_IO_SUBMIT);
3061 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3062 set_opt(sb, JOURNAL_DATA);
3063 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3064 set_opt(sb, ORDERED_DATA);
3065 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3066 set_opt(sb, WRITEBACK_DATA);
3067
3068 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3069 set_opt(sb, ERRORS_PANIC);
3070 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3071 set_opt(sb, ERRORS_CONT);
3072 else
3073 set_opt(sb, ERRORS_RO);
3074 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3075 set_opt(sb, BLOCK_VALIDITY);
3076 if (def_mount_opts & EXT4_DEFM_DISCARD)
3077 set_opt(sb, DISCARD);
3078
3079 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3080 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3081 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3082 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3083 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3084
3085 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3086 set_opt(sb, BARRIER);
3087
3088 /*
3089 * enable delayed allocation by default
3090 * Use -o nodelalloc to turn it off
3091 */
3092 if (!IS_EXT3_SB(sb) &&
3093 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3094 set_opt(sb, DELALLOC);
3095
3096 /*
3097 * set default s_li_wait_mult for lazyinit, for the case there is
3098 * no mount option specified.
3099 */
3100 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3101
3102 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3103 &journal_devnum, &journal_ioprio, 0)) {
3104 ext4_msg(sb, KERN_WARNING,
3105 "failed to parse options in superblock: %s",
3106 sbi->s_es->s_mount_opts);
3107 }
3108 sbi->s_def_mount_opt = sbi->s_mount_opt;
3109 if (!parse_options((char *) data, sb, &journal_devnum,
3110 &journal_ioprio, 0))
3111 goto failed_mount;
3112
3113 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3114 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3115 "with data=journal disables delayed "
3116 "allocation and O_DIRECT support!\n");
3117 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3118 ext4_msg(sb, KERN_ERR, "can't mount with "
3119 "both data=journal and delalloc");
3120 goto failed_mount;
3121 }
3122 if (test_opt(sb, DIOREAD_NOLOCK)) {
3123 ext4_msg(sb, KERN_ERR, "can't mount with "
3124 "both data=journal and delalloc");
3125 goto failed_mount;
3126 }
3127 if (test_opt(sb, DELALLOC))
3128 clear_opt(sb, DELALLOC);
3129 }
3130
3131 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3132 if (test_opt(sb, DIOREAD_NOLOCK)) {
3133 if (blocksize < PAGE_SIZE) {
3134 ext4_msg(sb, KERN_ERR, "can't mount with "
3135 "dioread_nolock if block size != PAGE_SIZE");
3136 goto failed_mount;
3137 }
3138 }
3139
3140 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3141 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3142
3143 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3144 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3145 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3146 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3147 ext4_msg(sb, KERN_WARNING,
3148 "feature flags set on rev 0 fs, "
3149 "running e2fsck is recommended");
3150
3151 if (IS_EXT2_SB(sb)) {
3152 if (ext2_feature_set_ok(sb))
3153 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3154 "using the ext4 subsystem");
3155 else {
3156 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3157 "to feature incompatibilities");
3158 goto failed_mount;
3159 }
3160 }
3161
3162 if (IS_EXT3_SB(sb)) {
3163 if (ext3_feature_set_ok(sb))
3164 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3165 "using the ext4 subsystem");
3166 else {
3167 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3168 "to feature incompatibilities");
3169 goto failed_mount;
3170 }
3171 }
3172
3173 /*
3174 * Check feature flags regardless of the revision level, since we
3175 * previously didn't change the revision level when setting the flags,
3176 * so there is a chance incompat flags are set on a rev 0 filesystem.
3177 */
3178 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3179 goto failed_mount;
3180
3181 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3182 blocksize > EXT4_MAX_BLOCK_SIZE) {
3183 ext4_msg(sb, KERN_ERR,
3184 "Unsupported filesystem blocksize %d", blocksize);
3185 goto failed_mount;
3186 }
3187
3188 if (sb->s_blocksize != blocksize) {
3189 /* Validate the filesystem blocksize */
3190 if (!sb_set_blocksize(sb, blocksize)) {
3191 ext4_msg(sb, KERN_ERR, "bad block size %d",
3192 blocksize);
3193 goto failed_mount;
3194 }
3195
3196 brelse(bh);
3197 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3198 offset = do_div(logical_sb_block, blocksize);
3199 bh = sb_bread(sb, logical_sb_block);
3200 if (!bh) {
3201 ext4_msg(sb, KERN_ERR,
3202 "Can't read superblock on 2nd try");
3203 goto failed_mount;
3204 }
3205 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3206 sbi->s_es = es;
3207 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3208 ext4_msg(sb, KERN_ERR,
3209 "Magic mismatch, very weird!");
3210 goto failed_mount;
3211 }
3212 }
3213
3214 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3215 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3216 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3217 has_huge_files);
3218 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3219
3220 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3221 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3222 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3223 } else {
3224 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3225 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3226 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3227 (!is_power_of_2(sbi->s_inode_size)) ||
3228 (sbi->s_inode_size > blocksize)) {
3229 ext4_msg(sb, KERN_ERR,
3230 "unsupported inode size: %d",
3231 sbi->s_inode_size);
3232 goto failed_mount;
3233 }
3234 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3235 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3236 }
3237
3238 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3239 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3240 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3241 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3242 !is_power_of_2(sbi->s_desc_size)) {
3243 ext4_msg(sb, KERN_ERR,
3244 "unsupported descriptor size %lu",
3245 sbi->s_desc_size);
3246 goto failed_mount;
3247 }
3248 } else
3249 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3250
3251 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3252 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3253 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3254 goto cantfind_ext4;
3255
3256 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3257 if (sbi->s_inodes_per_block == 0)
3258 goto cantfind_ext4;
3259 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3260 sbi->s_inodes_per_block;
3261 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3262 sbi->s_sbh = bh;
3263 sbi->s_mount_state = le16_to_cpu(es->s_state);
3264 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3265 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3266
3267 for (i = 0; i < 4; i++)
3268 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3269 sbi->s_def_hash_version = es->s_def_hash_version;
3270 i = le32_to_cpu(es->s_flags);
3271 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3272 sbi->s_hash_unsigned = 3;
3273 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3274 #ifdef __CHAR_UNSIGNED__
3275 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3276 sbi->s_hash_unsigned = 3;
3277 #else
3278 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3279 #endif
3280 }
3281
3282 /* Handle clustersize */
3283 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3284 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3285 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3286 if (has_bigalloc) {
3287 if (clustersize < blocksize) {
3288 ext4_msg(sb, KERN_ERR,
3289 "cluster size (%d) smaller than "
3290 "block size (%d)", clustersize, blocksize);
3291 goto failed_mount;
3292 }
3293 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3294 le32_to_cpu(es->s_log_block_size);
3295 sbi->s_clusters_per_group =
3296 le32_to_cpu(es->s_clusters_per_group);
3297 if (sbi->s_clusters_per_group > blocksize * 8) {
3298 ext4_msg(sb, KERN_ERR,
3299 "#clusters per group too big: %lu",
3300 sbi->s_clusters_per_group);
3301 goto failed_mount;
3302 }
3303 if (sbi->s_blocks_per_group !=
3304 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3305 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3306 "clusters per group (%lu) inconsistent",
3307 sbi->s_blocks_per_group,
3308 sbi->s_clusters_per_group);
3309 goto failed_mount;
3310 }
3311 } else {
3312 if (clustersize != blocksize) {
3313 ext4_warning(sb, "fragment/cluster size (%d) != "
3314 "block size (%d)", clustersize,
3315 blocksize);
3316 clustersize = blocksize;
3317 }
3318 if (sbi->s_blocks_per_group > blocksize * 8) {
3319 ext4_msg(sb, KERN_ERR,
3320 "#blocks per group too big: %lu",
3321 sbi->s_blocks_per_group);
3322 goto failed_mount;
3323 }
3324 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3325 sbi->s_cluster_bits = 0;
3326 }
3327 sbi->s_cluster_ratio = clustersize / blocksize;
3328
3329 if (sbi->s_inodes_per_group > blocksize * 8) {
3330 ext4_msg(sb, KERN_ERR,
3331 "#inodes per group too big: %lu",
3332 sbi->s_inodes_per_group);
3333 goto failed_mount;
3334 }
3335
3336 /*
3337 * Test whether we have more sectors than will fit in sector_t,
3338 * and whether the max offset is addressable by the page cache.
3339 */
3340 err = generic_check_addressable(sb->s_blocksize_bits,
3341 ext4_blocks_count(es));
3342 if (err) {
3343 ext4_msg(sb, KERN_ERR, "filesystem"
3344 " too large to mount safely on this system");
3345 if (sizeof(sector_t) < 8)
3346 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3347 ret = err;
3348 goto failed_mount;
3349 }
3350
3351 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3352 goto cantfind_ext4;
3353
3354 /* check blocks count against device size */
3355 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3356 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3357 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3358 "exceeds size of device (%llu blocks)",
3359 ext4_blocks_count(es), blocks_count);
3360 goto failed_mount;
3361 }
3362
3363 /*
3364 * It makes no sense for the first data block to be beyond the end
3365 * of the filesystem.
3366 */
3367 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3368 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3369 "block %u is beyond end of filesystem (%llu)",
3370 le32_to_cpu(es->s_first_data_block),
3371 ext4_blocks_count(es));
3372 goto failed_mount;
3373 }
3374 blocks_count = (ext4_blocks_count(es) -
3375 le32_to_cpu(es->s_first_data_block) +
3376 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3377 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3378 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3379 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3380 "(block count %llu, first data block %u, "
3381 "blocks per group %lu)", sbi->s_groups_count,
3382 ext4_blocks_count(es),
3383 le32_to_cpu(es->s_first_data_block),
3384 EXT4_BLOCKS_PER_GROUP(sb));
3385 goto failed_mount;
3386 }
3387 sbi->s_groups_count = blocks_count;
3388 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3389 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3390 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3391 EXT4_DESC_PER_BLOCK(sb);
3392 sbi->s_group_desc = ext4_kvmalloc(db_count *
3393 sizeof(struct buffer_head *),
3394 GFP_KERNEL);
3395 if (sbi->s_group_desc == NULL) {
3396 ext4_msg(sb, KERN_ERR, "not enough memory");
3397 goto failed_mount;
3398 }
3399
3400 if (ext4_proc_root)
3401 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3402
3403 if (sbi->s_proc)
3404 proc_create_data("options", S_IRUGO, sbi->s_proc,
3405 &ext4_seq_options_fops, sb);
3406
3407 bgl_lock_init(sbi->s_blockgroup_lock);
3408
3409 for (i = 0; i < db_count; i++) {
3410 block = descriptor_loc(sb, logical_sb_block, i);
3411 sbi->s_group_desc[i] = sb_bread(sb, block);
3412 if (!sbi->s_group_desc[i]) {
3413 ext4_msg(sb, KERN_ERR,
3414 "can't read group descriptor %d", i);
3415 db_count = i;
3416 goto failed_mount2;
3417 }
3418 }
3419 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3420 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3421 goto failed_mount2;
3422 }
3423 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3424 if (!ext4_fill_flex_info(sb)) {
3425 ext4_msg(sb, KERN_ERR,
3426 "unable to initialize "
3427 "flex_bg meta info!");
3428 goto failed_mount2;
3429 }
3430
3431 sbi->s_gdb_count = db_count;
3432 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3433 spin_lock_init(&sbi->s_next_gen_lock);
3434
3435 init_timer(&sbi->s_err_report);
3436 sbi->s_err_report.function = print_daily_error_info;
3437 sbi->s_err_report.data = (unsigned long) sb;
3438
3439 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3440 ext4_count_free_clusters(sb));
3441 if (!err) {
3442 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3443 ext4_count_free_inodes(sb));
3444 }
3445 if (!err) {
3446 err = percpu_counter_init(&sbi->s_dirs_counter,
3447 ext4_count_dirs(sb));
3448 }
3449 if (!err) {
3450 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3451 }
3452 if (err) {
3453 ext4_msg(sb, KERN_ERR, "insufficient memory");
3454 goto failed_mount3;
3455 }
3456
3457 sbi->s_stripe = ext4_get_stripe_size(sbi);
3458 sbi->s_max_writeback_mb_bump = 128;
3459
3460 /*
3461 * set up enough so that it can read an inode
3462 */
3463 if (!test_opt(sb, NOLOAD) &&
3464 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3465 sb->s_op = &ext4_sops;
3466 else
3467 sb->s_op = &ext4_nojournal_sops;
3468 sb->s_export_op = &ext4_export_ops;
3469 sb->s_xattr = ext4_xattr_handlers;
3470 #ifdef CONFIG_QUOTA
3471 sb->s_qcop = &ext4_qctl_operations;
3472 sb->dq_op = &ext4_quota_operations;
3473 #endif
3474 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3475
3476 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3477 mutex_init(&sbi->s_orphan_lock);
3478 sbi->s_resize_flags = 0;
3479
3480 sb->s_root = NULL;
3481
3482 needs_recovery = (es->s_last_orphan != 0 ||
3483 EXT4_HAS_INCOMPAT_FEATURE(sb,
3484 EXT4_FEATURE_INCOMPAT_RECOVER));
3485
3486 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3487 !(sb->s_flags & MS_RDONLY))
3488 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3489 goto failed_mount3;
3490
3491 /*
3492 * The first inode we look at is the journal inode. Don't try
3493 * root first: it may be modified in the journal!
3494 */
3495 if (!test_opt(sb, NOLOAD) &&
3496 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3497 if (ext4_load_journal(sb, es, journal_devnum))
3498 goto failed_mount3;
3499 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3500 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3501 ext4_msg(sb, KERN_ERR, "required journal recovery "
3502 "suppressed and not mounted read-only");
3503 goto failed_mount_wq;
3504 } else {
3505 clear_opt(sb, DATA_FLAGS);
3506 sbi->s_journal = NULL;
3507 needs_recovery = 0;
3508 goto no_journal;
3509 }
3510
3511 if (ext4_blocks_count(es) > 0xffffffffULL &&
3512 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3513 JBD2_FEATURE_INCOMPAT_64BIT)) {
3514 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3515 goto failed_mount_wq;
3516 }
3517
3518 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3519 jbd2_journal_set_features(sbi->s_journal,
3520 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3521 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3522 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3523 jbd2_journal_set_features(sbi->s_journal,
3524 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3525 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3526 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3527 } else {
3528 jbd2_journal_clear_features(sbi->s_journal,
3529 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3530 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3531 }
3532
3533 /* We have now updated the journal if required, so we can
3534 * validate the data journaling mode. */
3535 switch (test_opt(sb, DATA_FLAGS)) {
3536 case 0:
3537 /* No mode set, assume a default based on the journal
3538 * capabilities: ORDERED_DATA if the journal can
3539 * cope, else JOURNAL_DATA
3540 */
3541 if (jbd2_journal_check_available_features
3542 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3543 set_opt(sb, ORDERED_DATA);
3544 else
3545 set_opt(sb, JOURNAL_DATA);
3546 break;
3547
3548 case EXT4_MOUNT_ORDERED_DATA:
3549 case EXT4_MOUNT_WRITEBACK_DATA:
3550 if (!jbd2_journal_check_available_features
3551 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3552 ext4_msg(sb, KERN_ERR, "Journal does not support "
3553 "requested data journaling mode");
3554 goto failed_mount_wq;
3555 }
3556 default:
3557 break;
3558 }
3559 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3560
3561 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3562
3563 /*
3564 * The journal may have updated the bg summary counts, so we
3565 * need to update the global counters.
3566 */
3567 percpu_counter_set(&sbi->s_freeclusters_counter,
3568 ext4_count_free_clusters(sb));
3569 percpu_counter_set(&sbi->s_freeinodes_counter,
3570 ext4_count_free_inodes(sb));
3571 percpu_counter_set(&sbi->s_dirs_counter,
3572 ext4_count_dirs(sb));
3573 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3574
3575 no_journal:
3576 /*
3577 * The maximum number of concurrent works can be high and
3578 * concurrency isn't really necessary. Limit it to 1.
3579 */
3580 EXT4_SB(sb)->dio_unwritten_wq =
3581 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3582 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3583 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3584 goto failed_mount_wq;
3585 }
3586
3587 /*
3588 * The jbd2_journal_load will have done any necessary log recovery,
3589 * so we can safely mount the rest of the filesystem now.
3590 */
3591
3592 root = ext4_iget(sb, EXT4_ROOT_INO);
3593 if (IS_ERR(root)) {
3594 ext4_msg(sb, KERN_ERR, "get root inode failed");
3595 ret = PTR_ERR(root);
3596 root = NULL;
3597 goto failed_mount4;
3598 }
3599 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3600 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3601 iput(root);
3602 goto failed_mount4;
3603 }
3604 sb->s_root = d_make_root(root);
3605 if (!sb->s_root) {
3606 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3607 ret = -ENOMEM;
3608 goto failed_mount4;
3609 }
3610
3611 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3612
3613 /* determine the minimum size of new large inodes, if present */
3614 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3615 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3616 EXT4_GOOD_OLD_INODE_SIZE;
3617 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3618 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3619 if (sbi->s_want_extra_isize <
3620 le16_to_cpu(es->s_want_extra_isize))
3621 sbi->s_want_extra_isize =
3622 le16_to_cpu(es->s_want_extra_isize);
3623 if (sbi->s_want_extra_isize <
3624 le16_to_cpu(es->s_min_extra_isize))
3625 sbi->s_want_extra_isize =
3626 le16_to_cpu(es->s_min_extra_isize);
3627 }
3628 }
3629 /* Check if enough inode space is available */
3630 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3631 sbi->s_inode_size) {
3632 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3633 EXT4_GOOD_OLD_INODE_SIZE;
3634 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3635 "available");
3636 }
3637
3638 err = ext4_setup_system_zone(sb);
3639 if (err) {
3640 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3641 "zone (%d)", err);
3642 goto failed_mount4a;
3643 }
3644
3645 ext4_ext_init(sb);
3646 err = ext4_mb_init(sb, needs_recovery);
3647 if (err) {
3648 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3649 err);
3650 goto failed_mount5;
3651 }
3652
3653 err = ext4_register_li_request(sb, first_not_zeroed);
3654 if (err)
3655 goto failed_mount6;
3656
3657 sbi->s_kobj.kset = ext4_kset;
3658 init_completion(&sbi->s_kobj_unregister);
3659 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3660 "%s", sb->s_id);
3661 if (err)
3662 goto failed_mount7;
3663
3664 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3665 ext4_orphan_cleanup(sb, es);
3666 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3667 if (needs_recovery) {
3668 ext4_msg(sb, KERN_INFO, "recovery complete");
3669 ext4_mark_recovery_complete(sb, es);
3670 }
3671 if (EXT4_SB(sb)->s_journal) {
3672 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3673 descr = " journalled data mode";
3674 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3675 descr = " ordered data mode";
3676 else
3677 descr = " writeback data mode";
3678 } else
3679 descr = "out journal";
3680
3681 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3682 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3683 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3684
3685 if (es->s_error_count)
3686 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3687
3688 kfree(orig_data);
3689 return 0;
3690
3691 cantfind_ext4:
3692 if (!silent)
3693 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3694 goto failed_mount;
3695
3696 failed_mount7:
3697 ext4_unregister_li_request(sb);
3698 failed_mount6:
3699 ext4_mb_release(sb);
3700 failed_mount5:
3701 ext4_ext_release(sb);
3702 ext4_release_system_zone(sb);
3703 failed_mount4a:
3704 dput(sb->s_root);
3705 sb->s_root = NULL;
3706 failed_mount4:
3707 ext4_msg(sb, KERN_ERR, "mount failed");
3708 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3709 failed_mount_wq:
3710 if (sbi->s_journal) {
3711 jbd2_journal_destroy(sbi->s_journal);
3712 sbi->s_journal = NULL;
3713 }
3714 failed_mount3:
3715 del_timer(&sbi->s_err_report);
3716 if (sbi->s_flex_groups)
3717 ext4_kvfree(sbi->s_flex_groups);
3718 percpu_counter_destroy(&sbi->s_freeclusters_counter);
3719 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3720 percpu_counter_destroy(&sbi->s_dirs_counter);
3721 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
3722 if (sbi->s_mmp_tsk)
3723 kthread_stop(sbi->s_mmp_tsk);
3724 failed_mount2:
3725 for (i = 0; i < db_count; i++)
3726 brelse(sbi->s_group_desc[i]);
3727 ext4_kvfree(sbi->s_group_desc);
3728 failed_mount:
3729 if (sbi->s_proc) {
3730 remove_proc_entry("options", sbi->s_proc);
3731 remove_proc_entry(sb->s_id, ext4_proc_root);
3732 }
3733 #ifdef CONFIG_QUOTA
3734 for (i = 0; i < MAXQUOTAS; i++)
3735 kfree(sbi->s_qf_names[i]);
3736 #endif
3737 ext4_blkdev_remove(sbi);
3738 brelse(bh);
3739 out_fail:
3740 sb->s_fs_info = NULL;
3741 kfree(sbi->s_blockgroup_lock);
3742 kfree(sbi);
3743 out_free_orig:
3744 kfree(orig_data);
3745 return ret;
3746 }
3747
3748 /*
3749 * Setup any per-fs journal parameters now. We'll do this both on
3750 * initial mount, once the journal has been initialised but before we've
3751 * done any recovery; and again on any subsequent remount.
3752 */
3753 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3754 {
3755 struct ext4_sb_info *sbi = EXT4_SB(sb);
3756
3757 journal->j_commit_interval = sbi->s_commit_interval;
3758 journal->j_min_batch_time = sbi->s_min_batch_time;
3759 journal->j_max_batch_time = sbi->s_max_batch_time;
3760
3761 write_lock(&journal->j_state_lock);
3762 if (test_opt(sb, BARRIER))
3763 journal->j_flags |= JBD2_BARRIER;
3764 else
3765 journal->j_flags &= ~JBD2_BARRIER;
3766 if (test_opt(sb, DATA_ERR_ABORT))
3767 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3768 else
3769 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3770 write_unlock(&journal->j_state_lock);
3771 }
3772
3773 static journal_t *ext4_get_journal(struct super_block *sb,
3774 unsigned int journal_inum)
3775 {
3776 struct inode *journal_inode;
3777 journal_t *journal;
3778
3779 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3780
3781 /* First, test for the existence of a valid inode on disk. Bad
3782 * things happen if we iget() an unused inode, as the subsequent
3783 * iput() will try to delete it. */
3784
3785 journal_inode = ext4_iget(sb, journal_inum);
3786 if (IS_ERR(journal_inode)) {
3787 ext4_msg(sb, KERN_ERR, "no journal found");
3788 return NULL;
3789 }
3790 if (!journal_inode->i_nlink) {
3791 make_bad_inode(journal_inode);
3792 iput(journal_inode);
3793 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3794 return NULL;
3795 }
3796
3797 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3798 journal_inode, journal_inode->i_size);
3799 if (!S_ISREG(journal_inode->i_mode)) {
3800 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3801 iput(journal_inode);
3802 return NULL;
3803 }
3804
3805 journal = jbd2_journal_init_inode(journal_inode);
3806 if (!journal) {
3807 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3808 iput(journal_inode);
3809 return NULL;
3810 }
3811 journal->j_private = sb;
3812 ext4_init_journal_params(sb, journal);
3813 return journal;
3814 }
3815
3816 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3817 dev_t j_dev)
3818 {
3819 struct buffer_head *bh;
3820 journal_t *journal;
3821 ext4_fsblk_t start;
3822 ext4_fsblk_t len;
3823 int hblock, blocksize;
3824 ext4_fsblk_t sb_block;
3825 unsigned long offset;
3826 struct ext4_super_block *es;
3827 struct block_device *bdev;
3828
3829 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3830
3831 bdev = ext4_blkdev_get(j_dev, sb);
3832 if (bdev == NULL)
3833 return NULL;
3834
3835 blocksize = sb->s_blocksize;
3836 hblock = bdev_logical_block_size(bdev);
3837 if (blocksize < hblock) {
3838 ext4_msg(sb, KERN_ERR,
3839 "blocksize too small for journal device");
3840 goto out_bdev;
3841 }
3842
3843 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3844 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3845 set_blocksize(bdev, blocksize);
3846 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3847 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3848 "external journal");
3849 goto out_bdev;
3850 }
3851
3852 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3853 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3854 !(le32_to_cpu(es->s_feature_incompat) &
3855 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3856 ext4_msg(sb, KERN_ERR, "external journal has "
3857 "bad superblock");
3858 brelse(bh);
3859 goto out_bdev;
3860 }
3861
3862 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3863 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3864 brelse(bh);
3865 goto out_bdev;
3866 }
3867
3868 len = ext4_blocks_count(es);
3869 start = sb_block + 1;
3870 brelse(bh); /* we're done with the superblock */
3871
3872 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3873 start, len, blocksize);
3874 if (!journal) {
3875 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3876 goto out_bdev;
3877 }
3878 journal->j_private = sb;
3879 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3880 wait_on_buffer(journal->j_sb_buffer);
3881 if (!buffer_uptodate(journal->j_sb_buffer)) {
3882 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3883 goto out_journal;
3884 }
3885 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3886 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3887 "user (unsupported) - %d",
3888 be32_to_cpu(journal->j_superblock->s_nr_users));
3889 goto out_journal;
3890 }
3891 EXT4_SB(sb)->journal_bdev = bdev;
3892 ext4_init_journal_params(sb, journal);
3893 return journal;
3894
3895 out_journal:
3896 jbd2_journal_destroy(journal);
3897 out_bdev:
3898 ext4_blkdev_put(bdev);
3899 return NULL;
3900 }
3901
3902 static int ext4_load_journal(struct super_block *sb,
3903 struct ext4_super_block *es,
3904 unsigned long journal_devnum)
3905 {
3906 journal_t *journal;
3907 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3908 dev_t journal_dev;
3909 int err = 0;
3910 int really_read_only;
3911
3912 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3913
3914 if (journal_devnum &&
3915 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3916 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3917 "numbers have changed");
3918 journal_dev = new_decode_dev(journal_devnum);
3919 } else
3920 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3921
3922 really_read_only = bdev_read_only(sb->s_bdev);
3923
3924 /*
3925 * Are we loading a blank journal or performing recovery after a
3926 * crash? For recovery, we need to check in advance whether we
3927 * can get read-write access to the device.
3928 */
3929 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3930 if (sb->s_flags & MS_RDONLY) {
3931 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3932 "required on readonly filesystem");
3933 if (really_read_only) {
3934 ext4_msg(sb, KERN_ERR, "write access "
3935 "unavailable, cannot proceed");
3936 return -EROFS;
3937 }
3938 ext4_msg(sb, KERN_INFO, "write access will "
3939 "be enabled during recovery");
3940 }
3941 }
3942
3943 if (journal_inum && journal_dev) {
3944 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3945 "and inode journals!");
3946 return -EINVAL;
3947 }
3948
3949 if (journal_inum) {
3950 if (!(journal = ext4_get_journal(sb, journal_inum)))
3951 return -EINVAL;
3952 } else {
3953 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3954 return -EINVAL;
3955 }
3956
3957 if (!(journal->j_flags & JBD2_BARRIER))
3958 ext4_msg(sb, KERN_INFO, "barriers disabled");
3959
3960 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3961 err = jbd2_journal_wipe(journal, !really_read_only);
3962 if (!err) {
3963 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
3964 if (save)
3965 memcpy(save, ((char *) es) +
3966 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
3967 err = jbd2_journal_load(journal);
3968 if (save)
3969 memcpy(((char *) es) + EXT4_S_ERR_START,
3970 save, EXT4_S_ERR_LEN);
3971 kfree(save);
3972 }
3973
3974 if (err) {
3975 ext4_msg(sb, KERN_ERR, "error loading journal");
3976 jbd2_journal_destroy(journal);
3977 return err;
3978 }
3979
3980 EXT4_SB(sb)->s_journal = journal;
3981 ext4_clear_journal_err(sb, es);
3982
3983 if (!really_read_only && journal_devnum &&
3984 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3985 es->s_journal_dev = cpu_to_le32(journal_devnum);
3986
3987 /* Make sure we flush the recovery flag to disk. */
3988 ext4_commit_super(sb, 1);
3989 }
3990
3991 return 0;
3992 }
3993
3994 static int ext4_commit_super(struct super_block *sb, int sync)
3995 {
3996 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3997 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3998 int error = 0;
3999
4000 if (!sbh || block_device_ejected(sb))
4001 return error;
4002 if (buffer_write_io_error(sbh)) {
4003 /*
4004 * Oh, dear. A previous attempt to write the
4005 * superblock failed. This could happen because the
4006 * USB device was yanked out. Or it could happen to
4007 * be a transient write error and maybe the block will
4008 * be remapped. Nothing we can do but to retry the
4009 * write and hope for the best.
4010 */
4011 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4012 "superblock detected");
4013 clear_buffer_write_io_error(sbh);
4014 set_buffer_uptodate(sbh);
4015 }
4016 /*
4017 * If the file system is mounted read-only, don't update the
4018 * superblock write time. This avoids updating the superblock
4019 * write time when we are mounting the root file system
4020 * read/only but we need to replay the journal; at that point,
4021 * for people who are east of GMT and who make their clock
4022 * tick in localtime for Windows bug-for-bug compatibility,
4023 * the clock is set in the future, and this will cause e2fsck
4024 * to complain and force a full file system check.
4025 */
4026 if (!(sb->s_flags & MS_RDONLY))
4027 es->s_wtime = cpu_to_le32(get_seconds());
4028 if (sb->s_bdev->bd_part)
4029 es->s_kbytes_written =
4030 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4031 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4032 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4033 else
4034 es->s_kbytes_written =
4035 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4036 ext4_free_blocks_count_set(es,
4037 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4038 &EXT4_SB(sb)->s_freeclusters_counter)));
4039 es->s_free_inodes_count =
4040 cpu_to_le32(percpu_counter_sum_positive(
4041 &EXT4_SB(sb)->s_freeinodes_counter));
4042 sb->s_dirt = 0;
4043 BUFFER_TRACE(sbh, "marking dirty");
4044 mark_buffer_dirty(sbh);
4045 if (sync) {
4046 error = sync_dirty_buffer(sbh);
4047 if (error)
4048 return error;
4049
4050 error = buffer_write_io_error(sbh);
4051 if (error) {
4052 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4053 "superblock");
4054 clear_buffer_write_io_error(sbh);
4055 set_buffer_uptodate(sbh);
4056 }
4057 }
4058 return error;
4059 }
4060
4061 /*
4062 * Have we just finished recovery? If so, and if we are mounting (or
4063 * remounting) the filesystem readonly, then we will end up with a
4064 * consistent fs on disk. Record that fact.
4065 */
4066 static void ext4_mark_recovery_complete(struct super_block *sb,
4067 struct ext4_super_block *es)
4068 {
4069 journal_t *journal = EXT4_SB(sb)->s_journal;
4070
4071 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4072 BUG_ON(journal != NULL);
4073 return;
4074 }
4075 jbd2_journal_lock_updates(journal);
4076 if (jbd2_journal_flush(journal) < 0)
4077 goto out;
4078
4079 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4080 sb->s_flags & MS_RDONLY) {
4081 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4082 ext4_commit_super(sb, 1);
4083 }
4084
4085 out:
4086 jbd2_journal_unlock_updates(journal);
4087 }
4088
4089 /*
4090 * If we are mounting (or read-write remounting) a filesystem whose journal
4091 * has recorded an error from a previous lifetime, move that error to the
4092 * main filesystem now.
4093 */
4094 static void ext4_clear_journal_err(struct super_block *sb,
4095 struct ext4_super_block *es)
4096 {
4097 journal_t *journal;
4098 int j_errno;
4099 const char *errstr;
4100
4101 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4102
4103 journal = EXT4_SB(sb)->s_journal;
4104
4105 /*
4106 * Now check for any error status which may have been recorded in the
4107 * journal by a prior ext4_error() or ext4_abort()
4108 */
4109
4110 j_errno = jbd2_journal_errno(journal);
4111 if (j_errno) {
4112 char nbuf[16];
4113
4114 errstr = ext4_decode_error(sb, j_errno, nbuf);
4115 ext4_warning(sb, "Filesystem error recorded "
4116 "from previous mount: %s", errstr);
4117 ext4_warning(sb, "Marking fs in need of filesystem check.");
4118
4119 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4120 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4121 ext4_commit_super(sb, 1);
4122
4123 jbd2_journal_clear_err(journal);
4124 }
4125 }
4126
4127 /*
4128 * Force the running and committing transactions to commit,
4129 * and wait on the commit.
4130 */
4131 int ext4_force_commit(struct super_block *sb)
4132 {
4133 journal_t *journal;
4134 int ret = 0;
4135
4136 if (sb->s_flags & MS_RDONLY)
4137 return 0;
4138
4139 journal = EXT4_SB(sb)->s_journal;
4140 if (journal) {
4141 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4142 ret = ext4_journal_force_commit(journal);
4143 }
4144
4145 return ret;
4146 }
4147
4148 static void ext4_write_super(struct super_block *sb)
4149 {
4150 lock_super(sb);
4151 ext4_commit_super(sb, 1);
4152 unlock_super(sb);
4153 }
4154
4155 static int ext4_sync_fs(struct super_block *sb, int wait)
4156 {
4157 int ret = 0;
4158 tid_t target;
4159 struct ext4_sb_info *sbi = EXT4_SB(sb);
4160
4161 trace_ext4_sync_fs(sb, wait);
4162 flush_workqueue(sbi->dio_unwritten_wq);
4163 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4164 if (wait)
4165 jbd2_log_wait_commit(sbi->s_journal, target);
4166 }
4167 return ret;
4168 }
4169
4170 /*
4171 * LVM calls this function before a (read-only) snapshot is created. This
4172 * gives us a chance to flush the journal completely and mark the fs clean.
4173 *
4174 * Note that only this function cannot bring a filesystem to be in a clean
4175 * state independently, because ext4 prevents a new handle from being started
4176 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4177 * the upper layer.
4178 */
4179 static int ext4_freeze(struct super_block *sb)
4180 {
4181 int error = 0;
4182 journal_t *journal;
4183
4184 if (sb->s_flags & MS_RDONLY)
4185 return 0;
4186
4187 journal = EXT4_SB(sb)->s_journal;
4188
4189 /* Now we set up the journal barrier. */
4190 jbd2_journal_lock_updates(journal);
4191
4192 /*
4193 * Don't clear the needs_recovery flag if we failed to flush
4194 * the journal.
4195 */
4196 error = jbd2_journal_flush(journal);
4197 if (error < 0)
4198 goto out;
4199
4200 /* Journal blocked and flushed, clear needs_recovery flag. */
4201 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4202 error = ext4_commit_super(sb, 1);
4203 out:
4204 /* we rely on s_frozen to stop further updates */
4205 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4206 return error;
4207 }
4208
4209 /*
4210 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4211 * flag here, even though the filesystem is not technically dirty yet.
4212 */
4213 static int ext4_unfreeze(struct super_block *sb)
4214 {
4215 if (sb->s_flags & MS_RDONLY)
4216 return 0;
4217
4218 lock_super(sb);
4219 /* Reset the needs_recovery flag before the fs is unlocked. */
4220 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4221 ext4_commit_super(sb, 1);
4222 unlock_super(sb);
4223 return 0;
4224 }
4225
4226 /*
4227 * Structure to save mount options for ext4_remount's benefit
4228 */
4229 struct ext4_mount_options {
4230 unsigned long s_mount_opt;
4231 unsigned long s_mount_opt2;
4232 uid_t s_resuid;
4233 gid_t s_resgid;
4234 unsigned long s_commit_interval;
4235 u32 s_min_batch_time, s_max_batch_time;
4236 #ifdef CONFIG_QUOTA
4237 int s_jquota_fmt;
4238 char *s_qf_names[MAXQUOTAS];
4239 #endif
4240 };
4241
4242 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4243 {
4244 struct ext4_super_block *es;
4245 struct ext4_sb_info *sbi = EXT4_SB(sb);
4246 unsigned long old_sb_flags;
4247 struct ext4_mount_options old_opts;
4248 int enable_quota = 0;
4249 ext4_group_t g;
4250 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4251 int err = 0;
4252 #ifdef CONFIG_QUOTA
4253 int i;
4254 #endif
4255 char *orig_data = kstrdup(data, GFP_KERNEL);
4256
4257 /* Store the original options */
4258 lock_super(sb);
4259 old_sb_flags = sb->s_flags;
4260 old_opts.s_mount_opt = sbi->s_mount_opt;
4261 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4262 old_opts.s_resuid = sbi->s_resuid;
4263 old_opts.s_resgid = sbi->s_resgid;
4264 old_opts.s_commit_interval = sbi->s_commit_interval;
4265 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4266 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4267 #ifdef CONFIG_QUOTA
4268 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4269 for (i = 0; i < MAXQUOTAS; i++)
4270 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4271 #endif
4272 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4273 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4274
4275 /*
4276 * Allow the "check" option to be passed as a remount option.
4277 */
4278 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4279 err = -EINVAL;
4280 goto restore_opts;
4281 }
4282
4283 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4284 ext4_abort(sb, "Abort forced by user");
4285
4286 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4287 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4288
4289 es = sbi->s_es;
4290
4291 if (sbi->s_journal) {
4292 ext4_init_journal_params(sb, sbi->s_journal);
4293 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4294 }
4295
4296 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4297 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4298 err = -EROFS;
4299 goto restore_opts;
4300 }
4301
4302 if (*flags & MS_RDONLY) {
4303 err = dquot_suspend(sb, -1);
4304 if (err < 0)
4305 goto restore_opts;
4306
4307 /*
4308 * First of all, the unconditional stuff we have to do
4309 * to disable replay of the journal when we next remount
4310 */
4311 sb->s_flags |= MS_RDONLY;
4312
4313 /*
4314 * OK, test if we are remounting a valid rw partition
4315 * readonly, and if so set the rdonly flag and then
4316 * mark the partition as valid again.
4317 */
4318 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4319 (sbi->s_mount_state & EXT4_VALID_FS))
4320 es->s_state = cpu_to_le16(sbi->s_mount_state);
4321
4322 if (sbi->s_journal)
4323 ext4_mark_recovery_complete(sb, es);
4324 } else {
4325 /* Make sure we can mount this feature set readwrite */
4326 if (!ext4_feature_set_ok(sb, 0)) {
4327 err = -EROFS;
4328 goto restore_opts;
4329 }
4330 /*
4331 * Make sure the group descriptor checksums
4332 * are sane. If they aren't, refuse to remount r/w.
4333 */
4334 for (g = 0; g < sbi->s_groups_count; g++) {
4335 struct ext4_group_desc *gdp =
4336 ext4_get_group_desc(sb, g, NULL);
4337
4338 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4339 ext4_msg(sb, KERN_ERR,
4340 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4341 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4342 le16_to_cpu(gdp->bg_checksum));
4343 err = -EINVAL;
4344 goto restore_opts;
4345 }
4346 }
4347
4348 /*
4349 * If we have an unprocessed orphan list hanging
4350 * around from a previously readonly bdev mount,
4351 * require a full umount/remount for now.
4352 */
4353 if (es->s_last_orphan) {
4354 ext4_msg(sb, KERN_WARNING, "Couldn't "
4355 "remount RDWR because of unprocessed "
4356 "orphan inode list. Please "
4357 "umount/remount instead");
4358 err = -EINVAL;
4359 goto restore_opts;
4360 }
4361
4362 /*
4363 * Mounting a RDONLY partition read-write, so reread
4364 * and store the current valid flag. (It may have
4365 * been changed by e2fsck since we originally mounted
4366 * the partition.)
4367 */
4368 if (sbi->s_journal)
4369 ext4_clear_journal_err(sb, es);
4370 sbi->s_mount_state = le16_to_cpu(es->s_state);
4371 if (!ext4_setup_super(sb, es, 0))
4372 sb->s_flags &= ~MS_RDONLY;
4373 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4374 EXT4_FEATURE_INCOMPAT_MMP))
4375 if (ext4_multi_mount_protect(sb,
4376 le64_to_cpu(es->s_mmp_block))) {
4377 err = -EROFS;
4378 goto restore_opts;
4379 }
4380 enable_quota = 1;
4381 }
4382 }
4383
4384 /*
4385 * Reinitialize lazy itable initialization thread based on
4386 * current settings
4387 */
4388 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4389 ext4_unregister_li_request(sb);
4390 else {
4391 ext4_group_t first_not_zeroed;
4392 first_not_zeroed = ext4_has_uninit_itable(sb);
4393 ext4_register_li_request(sb, first_not_zeroed);
4394 }
4395
4396 ext4_setup_system_zone(sb);
4397 if (sbi->s_journal == NULL)
4398 ext4_commit_super(sb, 1);
4399
4400 #ifdef CONFIG_QUOTA
4401 /* Release old quota file names */
4402 for (i = 0; i < MAXQUOTAS; i++)
4403 if (old_opts.s_qf_names[i] &&
4404 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4405 kfree(old_opts.s_qf_names[i]);
4406 #endif
4407 unlock_super(sb);
4408 if (enable_quota)
4409 dquot_resume(sb, -1);
4410
4411 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4412 kfree(orig_data);
4413 return 0;
4414
4415 restore_opts:
4416 sb->s_flags = old_sb_flags;
4417 sbi->s_mount_opt = old_opts.s_mount_opt;
4418 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4419 sbi->s_resuid = old_opts.s_resuid;
4420 sbi->s_resgid = old_opts.s_resgid;
4421 sbi->s_commit_interval = old_opts.s_commit_interval;
4422 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4423 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4424 #ifdef CONFIG_QUOTA
4425 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4426 for (i = 0; i < MAXQUOTAS; i++) {
4427 if (sbi->s_qf_names[i] &&
4428 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4429 kfree(sbi->s_qf_names[i]);
4430 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4431 }
4432 #endif
4433 unlock_super(sb);
4434 kfree(orig_data);
4435 return err;
4436 }
4437
4438 /*
4439 * Note: calculating the overhead so we can be compatible with
4440 * historical BSD practice is quite difficult in the face of
4441 * clusters/bigalloc. This is because multiple metadata blocks from
4442 * different block group can end up in the same allocation cluster.
4443 * Calculating the exact overhead in the face of clustered allocation
4444 * requires either O(all block bitmaps) in memory or O(number of block
4445 * groups**2) in time. We will still calculate the superblock for
4446 * older file systems --- and if we come across with a bigalloc file
4447 * system with zero in s_overhead_clusters the estimate will be close to
4448 * correct especially for very large cluster sizes --- but for newer
4449 * file systems, it's better to calculate this figure once at mkfs
4450 * time, and store it in the superblock. If the superblock value is
4451 * present (even for non-bigalloc file systems), we will use it.
4452 */
4453 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4454 {
4455 struct super_block *sb = dentry->d_sb;
4456 struct ext4_sb_info *sbi = EXT4_SB(sb);
4457 struct ext4_super_block *es = sbi->s_es;
4458 struct ext4_group_desc *gdp;
4459 u64 fsid;
4460 s64 bfree;
4461
4462 if (test_opt(sb, MINIX_DF)) {
4463 sbi->s_overhead_last = 0;
4464 } else if (es->s_overhead_clusters) {
4465 sbi->s_overhead_last = le32_to_cpu(es->s_overhead_clusters);
4466 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4467 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4468 ext4_fsblk_t overhead = 0;
4469
4470 /*
4471 * Compute the overhead (FS structures). This is constant
4472 * for a given filesystem unless the number of block groups
4473 * changes so we cache the previous value until it does.
4474 */
4475
4476 /*
4477 * All of the blocks before first_data_block are
4478 * overhead
4479 */
4480 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4481
4482 /*
4483 * Add the overhead found in each block group
4484 */
4485 for (i = 0; i < ngroups; i++) {
4486 gdp = ext4_get_group_desc(sb, i, NULL);
4487 overhead += ext4_num_overhead_clusters(sb, i, gdp);
4488 cond_resched();
4489 }
4490 sbi->s_overhead_last = overhead;
4491 smp_wmb();
4492 sbi->s_blocks_last = ext4_blocks_count(es);
4493 }
4494
4495 buf->f_type = EXT4_SUPER_MAGIC;
4496 buf->f_bsize = sb->s_blocksize;
4497 buf->f_blocks = (ext4_blocks_count(es) -
4498 EXT4_C2B(sbi, sbi->s_overhead_last));
4499 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4500 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4501 /* prevent underflow in case that few free space is available */
4502 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4503 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4504 if (buf->f_bfree < ext4_r_blocks_count(es))
4505 buf->f_bavail = 0;
4506 buf->f_files = le32_to_cpu(es->s_inodes_count);
4507 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4508 buf->f_namelen = EXT4_NAME_LEN;
4509 fsid = le64_to_cpup((void *)es->s_uuid) ^
4510 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4511 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4512 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4513
4514 return 0;
4515 }
4516
4517 /* Helper function for writing quotas on sync - we need to start transaction
4518 * before quota file is locked for write. Otherwise the are possible deadlocks:
4519 * Process 1 Process 2
4520 * ext4_create() quota_sync()
4521 * jbd2_journal_start() write_dquot()
4522 * dquot_initialize() down(dqio_mutex)
4523 * down(dqio_mutex) jbd2_journal_start()
4524 *
4525 */
4526
4527 #ifdef CONFIG_QUOTA
4528
4529 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4530 {
4531 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4532 }
4533
4534 static int ext4_write_dquot(struct dquot *dquot)
4535 {
4536 int ret, err;
4537 handle_t *handle;
4538 struct inode *inode;
4539
4540 inode = dquot_to_inode(dquot);
4541 handle = ext4_journal_start(inode,
4542 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4543 if (IS_ERR(handle))
4544 return PTR_ERR(handle);
4545 ret = dquot_commit(dquot);
4546 err = ext4_journal_stop(handle);
4547 if (!ret)
4548 ret = err;
4549 return ret;
4550 }
4551
4552 static int ext4_acquire_dquot(struct dquot *dquot)
4553 {
4554 int ret, err;
4555 handle_t *handle;
4556
4557 handle = ext4_journal_start(dquot_to_inode(dquot),
4558 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4559 if (IS_ERR(handle))
4560 return PTR_ERR(handle);
4561 ret = dquot_acquire(dquot);
4562 err = ext4_journal_stop(handle);
4563 if (!ret)
4564 ret = err;
4565 return ret;
4566 }
4567
4568 static int ext4_release_dquot(struct dquot *dquot)
4569 {
4570 int ret, err;
4571 handle_t *handle;
4572
4573 handle = ext4_journal_start(dquot_to_inode(dquot),
4574 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4575 if (IS_ERR(handle)) {
4576 /* Release dquot anyway to avoid endless cycle in dqput() */
4577 dquot_release(dquot);
4578 return PTR_ERR(handle);
4579 }
4580 ret = dquot_release(dquot);
4581 err = ext4_journal_stop(handle);
4582 if (!ret)
4583 ret = err;
4584 return ret;
4585 }
4586
4587 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4588 {
4589 /* Are we journaling quotas? */
4590 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4591 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4592 dquot_mark_dquot_dirty(dquot);
4593 return ext4_write_dquot(dquot);
4594 } else {
4595 return dquot_mark_dquot_dirty(dquot);
4596 }
4597 }
4598
4599 static int ext4_write_info(struct super_block *sb, int type)
4600 {
4601 int ret, err;
4602 handle_t *handle;
4603
4604 /* Data block + inode block */
4605 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4606 if (IS_ERR(handle))
4607 return PTR_ERR(handle);
4608 ret = dquot_commit_info(sb, type);
4609 err = ext4_journal_stop(handle);
4610 if (!ret)
4611 ret = err;
4612 return ret;
4613 }
4614
4615 /*
4616 * Turn on quotas during mount time - we need to find
4617 * the quota file and such...
4618 */
4619 static int ext4_quota_on_mount(struct super_block *sb, int type)
4620 {
4621 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4622 EXT4_SB(sb)->s_jquota_fmt, type);
4623 }
4624
4625 /*
4626 * Standard function to be called on quota_on
4627 */
4628 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4629 struct path *path)
4630 {
4631 int err;
4632
4633 if (!test_opt(sb, QUOTA))
4634 return -EINVAL;
4635
4636 /* Quotafile not on the same filesystem? */
4637 if (path->dentry->d_sb != sb)
4638 return -EXDEV;
4639 /* Journaling quota? */
4640 if (EXT4_SB(sb)->s_qf_names[type]) {
4641 /* Quotafile not in fs root? */
4642 if (path->dentry->d_parent != sb->s_root)
4643 ext4_msg(sb, KERN_WARNING,
4644 "Quota file not on filesystem root. "
4645 "Journaled quota will not work");
4646 }
4647
4648 /*
4649 * When we journal data on quota file, we have to flush journal to see
4650 * all updates to the file when we bypass pagecache...
4651 */
4652 if (EXT4_SB(sb)->s_journal &&
4653 ext4_should_journal_data(path->dentry->d_inode)) {
4654 /*
4655 * We don't need to lock updates but journal_flush() could
4656 * otherwise be livelocked...
4657 */
4658 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4659 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4660 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4661 if (err)
4662 return err;
4663 }
4664
4665 return dquot_quota_on(sb, type, format_id, path);
4666 }
4667
4668 static int ext4_quota_off(struct super_block *sb, int type)
4669 {
4670 struct inode *inode = sb_dqopt(sb)->files[type];
4671 handle_t *handle;
4672
4673 /* Force all delayed allocation blocks to be allocated.
4674 * Caller already holds s_umount sem */
4675 if (test_opt(sb, DELALLOC))
4676 sync_filesystem(sb);
4677
4678 if (!inode)
4679 goto out;
4680
4681 /* Update modification times of quota files when userspace can
4682 * start looking at them */
4683 handle = ext4_journal_start(inode, 1);
4684 if (IS_ERR(handle))
4685 goto out;
4686 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4687 ext4_mark_inode_dirty(handle, inode);
4688 ext4_journal_stop(handle);
4689
4690 out:
4691 return dquot_quota_off(sb, type);
4692 }
4693
4694 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4695 * acquiring the locks... As quota files are never truncated and quota code
4696 * itself serializes the operations (and no one else should touch the files)
4697 * we don't have to be afraid of races */
4698 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4699 size_t len, loff_t off)
4700 {
4701 struct inode *inode = sb_dqopt(sb)->files[type];
4702 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4703 int err = 0;
4704 int offset = off & (sb->s_blocksize - 1);
4705 int tocopy;
4706 size_t toread;
4707 struct buffer_head *bh;
4708 loff_t i_size = i_size_read(inode);
4709
4710 if (off > i_size)
4711 return 0;
4712 if (off+len > i_size)
4713 len = i_size-off;
4714 toread = len;
4715 while (toread > 0) {
4716 tocopy = sb->s_blocksize - offset < toread ?
4717 sb->s_blocksize - offset : toread;
4718 bh = ext4_bread(NULL, inode, blk, 0, &err);
4719 if (err)
4720 return err;
4721 if (!bh) /* A hole? */
4722 memset(data, 0, tocopy);
4723 else
4724 memcpy(data, bh->b_data+offset, tocopy);
4725 brelse(bh);
4726 offset = 0;
4727 toread -= tocopy;
4728 data += tocopy;
4729 blk++;
4730 }
4731 return len;
4732 }
4733
4734 /* Write to quotafile (we know the transaction is already started and has
4735 * enough credits) */
4736 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4737 const char *data, size_t len, loff_t off)
4738 {
4739 struct inode *inode = sb_dqopt(sb)->files[type];
4740 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4741 int err = 0;
4742 int offset = off & (sb->s_blocksize - 1);
4743 struct buffer_head *bh;
4744 handle_t *handle = journal_current_handle();
4745
4746 if (EXT4_SB(sb)->s_journal && !handle) {
4747 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4748 " cancelled because transaction is not started",
4749 (unsigned long long)off, (unsigned long long)len);
4750 return -EIO;
4751 }
4752 /*
4753 * Since we account only one data block in transaction credits,
4754 * then it is impossible to cross a block boundary.
4755 */
4756 if (sb->s_blocksize - offset < len) {
4757 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4758 " cancelled because not block aligned",
4759 (unsigned long long)off, (unsigned long long)len);
4760 return -EIO;
4761 }
4762
4763 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4764 bh = ext4_bread(handle, inode, blk, 1, &err);
4765 if (!bh)
4766 goto out;
4767 err = ext4_journal_get_write_access(handle, bh);
4768 if (err) {
4769 brelse(bh);
4770 goto out;
4771 }
4772 lock_buffer(bh);
4773 memcpy(bh->b_data+offset, data, len);
4774 flush_dcache_page(bh->b_page);
4775 unlock_buffer(bh);
4776 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4777 brelse(bh);
4778 out:
4779 if (err) {
4780 mutex_unlock(&inode->i_mutex);
4781 return err;
4782 }
4783 if (inode->i_size < off + len) {
4784 i_size_write(inode, off + len);
4785 EXT4_I(inode)->i_disksize = inode->i_size;
4786 ext4_mark_inode_dirty(handle, inode);
4787 }
4788 mutex_unlock(&inode->i_mutex);
4789 return len;
4790 }
4791
4792 #endif
4793
4794 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4795 const char *dev_name, void *data)
4796 {
4797 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4798 }
4799
4800 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4801 static inline void register_as_ext2(void)
4802 {
4803 int err = register_filesystem(&ext2_fs_type);
4804 if (err)
4805 printk(KERN_WARNING
4806 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4807 }
4808
4809 static inline void unregister_as_ext2(void)
4810 {
4811 unregister_filesystem(&ext2_fs_type);
4812 }
4813
4814 static inline int ext2_feature_set_ok(struct super_block *sb)
4815 {
4816 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4817 return 0;
4818 if (sb->s_flags & MS_RDONLY)
4819 return 1;
4820 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4821 return 0;
4822 return 1;
4823 }
4824 MODULE_ALIAS("ext2");
4825 #else
4826 static inline void register_as_ext2(void) { }
4827 static inline void unregister_as_ext2(void) { }
4828 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4829 #endif
4830
4831 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4832 static inline void register_as_ext3(void)
4833 {
4834 int err = register_filesystem(&ext3_fs_type);
4835 if (err)
4836 printk(KERN_WARNING
4837 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4838 }
4839
4840 static inline void unregister_as_ext3(void)
4841 {
4842 unregister_filesystem(&ext3_fs_type);
4843 }
4844
4845 static inline int ext3_feature_set_ok(struct super_block *sb)
4846 {
4847 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
4848 return 0;
4849 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
4850 return 0;
4851 if (sb->s_flags & MS_RDONLY)
4852 return 1;
4853 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
4854 return 0;
4855 return 1;
4856 }
4857 MODULE_ALIAS("ext3");
4858 #else
4859 static inline void register_as_ext3(void) { }
4860 static inline void unregister_as_ext3(void) { }
4861 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
4862 #endif
4863
4864 static struct file_system_type ext4_fs_type = {
4865 .owner = THIS_MODULE,
4866 .name = "ext4",
4867 .mount = ext4_mount,
4868 .kill_sb = kill_block_super,
4869 .fs_flags = FS_REQUIRES_DEV,
4870 };
4871
4872 static int __init ext4_init_feat_adverts(void)
4873 {
4874 struct ext4_features *ef;
4875 int ret = -ENOMEM;
4876
4877 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4878 if (!ef)
4879 goto out;
4880
4881 ef->f_kobj.kset = ext4_kset;
4882 init_completion(&ef->f_kobj_unregister);
4883 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4884 "features");
4885 if (ret) {
4886 kfree(ef);
4887 goto out;
4888 }
4889
4890 ext4_feat = ef;
4891 ret = 0;
4892 out:
4893 return ret;
4894 }
4895
4896 static void ext4_exit_feat_adverts(void)
4897 {
4898 kobject_put(&ext4_feat->f_kobj);
4899 wait_for_completion(&ext4_feat->f_kobj_unregister);
4900 kfree(ext4_feat);
4901 }
4902
4903 /* Shared across all ext4 file systems */
4904 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
4905 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
4906
4907 static int __init ext4_init_fs(void)
4908 {
4909 int i, err;
4910
4911 ext4_li_info = NULL;
4912 mutex_init(&ext4_li_mtx);
4913
4914 ext4_check_flag_values();
4915
4916 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
4917 mutex_init(&ext4__aio_mutex[i]);
4918 init_waitqueue_head(&ext4__ioend_wq[i]);
4919 }
4920
4921 err = ext4_init_pageio();
4922 if (err)
4923 return err;
4924 err = ext4_init_system_zone();
4925 if (err)
4926 goto out6;
4927 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4928 if (!ext4_kset)
4929 goto out5;
4930 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4931
4932 err = ext4_init_feat_adverts();
4933 if (err)
4934 goto out4;
4935
4936 err = ext4_init_mballoc();
4937 if (err)
4938 goto out3;
4939
4940 err = ext4_init_xattr();
4941 if (err)
4942 goto out2;
4943 err = init_inodecache();
4944 if (err)
4945 goto out1;
4946 register_as_ext3();
4947 register_as_ext2();
4948 err = register_filesystem(&ext4_fs_type);
4949 if (err)
4950 goto out;
4951
4952 return 0;
4953 out:
4954 unregister_as_ext2();
4955 unregister_as_ext3();
4956 destroy_inodecache();
4957 out1:
4958 ext4_exit_xattr();
4959 out2:
4960 ext4_exit_mballoc();
4961 out3:
4962 ext4_exit_feat_adverts();
4963 out4:
4964 if (ext4_proc_root)
4965 remove_proc_entry("fs/ext4", NULL);
4966 kset_unregister(ext4_kset);
4967 out5:
4968 ext4_exit_system_zone();
4969 out6:
4970 ext4_exit_pageio();
4971 return err;
4972 }
4973
4974 static void __exit ext4_exit_fs(void)
4975 {
4976 ext4_destroy_lazyinit_thread();
4977 unregister_as_ext2();
4978 unregister_as_ext3();
4979 unregister_filesystem(&ext4_fs_type);
4980 destroy_inodecache();
4981 ext4_exit_xattr();
4982 ext4_exit_mballoc();
4983 ext4_exit_feat_adverts();
4984 remove_proc_entry("fs/ext4", NULL);
4985 kset_unregister(ext4_kset);
4986 ext4_exit_system_zone();
4987 ext4_exit_pageio();
4988 }
4989
4990 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4991 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4992 MODULE_LICENSE("GPL");
4993 module_init(ext4_init_fs)
4994 module_exit(ext4_exit_fs)