]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/super.c
Merge branch 'x86-rwsem-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/smp_lock.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/ctype.h>
40 #include <linux/log2.h>
41 #include <linux/crc16.h>
42 #include <asm/uaccess.h>
43
44 #include "ext4.h"
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "mballoc.h"
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/ext4.h>
52
53 struct proc_dir_entry *ext4_proc_root;
54 static struct kset *ext4_kset;
55
56 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
57 unsigned long journal_devnum);
58 static int ext4_commit_super(struct super_block *sb, int sync);
59 static void ext4_mark_recovery_complete(struct super_block *sb,
60 struct ext4_super_block *es);
61 static void ext4_clear_journal_err(struct super_block *sb,
62 struct ext4_super_block *es);
63 static int ext4_sync_fs(struct super_block *sb, int wait);
64 static const char *ext4_decode_error(struct super_block *sb, int errno,
65 char nbuf[16]);
66 static int ext4_remount(struct super_block *sb, int *flags, char *data);
67 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
68 static int ext4_unfreeze(struct super_block *sb);
69 static void ext4_write_super(struct super_block *sb);
70 static int ext4_freeze(struct super_block *sb);
71
72
73 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
74 struct ext4_group_desc *bg)
75 {
76 return le32_to_cpu(bg->bg_block_bitmap_lo) |
77 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
78 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
79 }
80
81 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
82 struct ext4_group_desc *bg)
83 {
84 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
85 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
86 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
87 }
88
89 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
90 struct ext4_group_desc *bg)
91 {
92 return le32_to_cpu(bg->bg_inode_table_lo) |
93 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
94 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
95 }
96
97 __u32 ext4_free_blks_count(struct super_block *sb,
98 struct ext4_group_desc *bg)
99 {
100 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
101 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
102 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
103 }
104
105 __u32 ext4_free_inodes_count(struct super_block *sb,
106 struct ext4_group_desc *bg)
107 {
108 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
109 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
110 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
111 }
112
113 __u32 ext4_used_dirs_count(struct super_block *sb,
114 struct ext4_group_desc *bg)
115 {
116 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
117 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
118 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
119 }
120
121 __u32 ext4_itable_unused_count(struct super_block *sb,
122 struct ext4_group_desc *bg)
123 {
124 return le16_to_cpu(bg->bg_itable_unused_lo) |
125 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
126 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
127 }
128
129 void ext4_block_bitmap_set(struct super_block *sb,
130 struct ext4_group_desc *bg, ext4_fsblk_t blk)
131 {
132 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
133 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
134 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
135 }
136
137 void ext4_inode_bitmap_set(struct super_block *sb,
138 struct ext4_group_desc *bg, ext4_fsblk_t blk)
139 {
140 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
141 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
142 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
143 }
144
145 void ext4_inode_table_set(struct super_block *sb,
146 struct ext4_group_desc *bg, ext4_fsblk_t blk)
147 {
148 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
149 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
150 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
151 }
152
153 void ext4_free_blks_set(struct super_block *sb,
154 struct ext4_group_desc *bg, __u32 count)
155 {
156 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
157 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
158 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
159 }
160
161 void ext4_free_inodes_set(struct super_block *sb,
162 struct ext4_group_desc *bg, __u32 count)
163 {
164 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
165 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
166 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
167 }
168
169 void ext4_used_dirs_set(struct super_block *sb,
170 struct ext4_group_desc *bg, __u32 count)
171 {
172 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
173 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
174 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
175 }
176
177 void ext4_itable_unused_set(struct super_block *sb,
178 struct ext4_group_desc *bg, __u32 count)
179 {
180 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
181 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
182 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
183 }
184
185
186 /* Just increment the non-pointer handle value */
187 static handle_t *ext4_get_nojournal(void)
188 {
189 handle_t *handle = current->journal_info;
190 unsigned long ref_cnt = (unsigned long)handle;
191
192 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
193
194 ref_cnt++;
195 handle = (handle_t *)ref_cnt;
196
197 current->journal_info = handle;
198 return handle;
199 }
200
201
202 /* Decrement the non-pointer handle value */
203 static void ext4_put_nojournal(handle_t *handle)
204 {
205 unsigned long ref_cnt = (unsigned long)handle;
206
207 BUG_ON(ref_cnt == 0);
208
209 ref_cnt--;
210 handle = (handle_t *)ref_cnt;
211
212 current->journal_info = handle;
213 }
214
215 /*
216 * Wrappers for jbd2_journal_start/end.
217 *
218 * The only special thing we need to do here is to make sure that all
219 * journal_end calls result in the superblock being marked dirty, so
220 * that sync() will call the filesystem's write_super callback if
221 * appropriate.
222 */
223 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
224 {
225 journal_t *journal;
226
227 if (sb->s_flags & MS_RDONLY)
228 return ERR_PTR(-EROFS);
229
230 /* Special case here: if the journal has aborted behind our
231 * backs (eg. EIO in the commit thread), then we still need to
232 * take the FS itself readonly cleanly. */
233 journal = EXT4_SB(sb)->s_journal;
234 if (journal) {
235 if (is_journal_aborted(journal)) {
236 ext4_abort(sb, __func__, "Detected aborted journal");
237 return ERR_PTR(-EROFS);
238 }
239 return jbd2_journal_start(journal, nblocks);
240 }
241 return ext4_get_nojournal();
242 }
243
244 /*
245 * The only special thing we need to do here is to make sure that all
246 * jbd2_journal_stop calls result in the superblock being marked dirty, so
247 * that sync() will call the filesystem's write_super callback if
248 * appropriate.
249 */
250 int __ext4_journal_stop(const char *where, handle_t *handle)
251 {
252 struct super_block *sb;
253 int err;
254 int rc;
255
256 if (!ext4_handle_valid(handle)) {
257 ext4_put_nojournal(handle);
258 return 0;
259 }
260 sb = handle->h_transaction->t_journal->j_private;
261 err = handle->h_err;
262 rc = jbd2_journal_stop(handle);
263
264 if (!err)
265 err = rc;
266 if (err)
267 __ext4_std_error(sb, where, err);
268 return err;
269 }
270
271 void ext4_journal_abort_handle(const char *caller, const char *err_fn,
272 struct buffer_head *bh, handle_t *handle, int err)
273 {
274 char nbuf[16];
275 const char *errstr = ext4_decode_error(NULL, err, nbuf);
276
277 BUG_ON(!ext4_handle_valid(handle));
278
279 if (bh)
280 BUFFER_TRACE(bh, "abort");
281
282 if (!handle->h_err)
283 handle->h_err = err;
284
285 if (is_handle_aborted(handle))
286 return;
287
288 printk(KERN_ERR "%s: aborting transaction: %s in %s\n",
289 caller, errstr, err_fn);
290
291 jbd2_journal_abort_handle(handle);
292 }
293
294 /* Deal with the reporting of failure conditions on a filesystem such as
295 * inconsistencies detected or read IO failures.
296 *
297 * On ext2, we can store the error state of the filesystem in the
298 * superblock. That is not possible on ext4, because we may have other
299 * write ordering constraints on the superblock which prevent us from
300 * writing it out straight away; and given that the journal is about to
301 * be aborted, we can't rely on the current, or future, transactions to
302 * write out the superblock safely.
303 *
304 * We'll just use the jbd2_journal_abort() error code to record an error in
305 * the journal instead. On recovery, the journal will compain about
306 * that error until we've noted it down and cleared it.
307 */
308
309 static void ext4_handle_error(struct super_block *sb)
310 {
311 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
312
313 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
314 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
315
316 if (sb->s_flags & MS_RDONLY)
317 return;
318
319 if (!test_opt(sb, ERRORS_CONT)) {
320 journal_t *journal = EXT4_SB(sb)->s_journal;
321
322 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
323 if (journal)
324 jbd2_journal_abort(journal, -EIO);
325 }
326 if (test_opt(sb, ERRORS_RO)) {
327 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
328 sb->s_flags |= MS_RDONLY;
329 }
330 ext4_commit_super(sb, 1);
331 if (test_opt(sb, ERRORS_PANIC))
332 panic("EXT4-fs (device %s): panic forced after error\n",
333 sb->s_id);
334 }
335
336 void ext4_error(struct super_block *sb, const char *function,
337 const char *fmt, ...)
338 {
339 va_list args;
340
341 va_start(args, fmt);
342 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
343 vprintk(fmt, args);
344 printk("\n");
345 va_end(args);
346
347 ext4_handle_error(sb);
348 }
349
350 static const char *ext4_decode_error(struct super_block *sb, int errno,
351 char nbuf[16])
352 {
353 char *errstr = NULL;
354
355 switch (errno) {
356 case -EIO:
357 errstr = "IO failure";
358 break;
359 case -ENOMEM:
360 errstr = "Out of memory";
361 break;
362 case -EROFS:
363 if (!sb || (EXT4_SB(sb)->s_journal &&
364 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
365 errstr = "Journal has aborted";
366 else
367 errstr = "Readonly filesystem";
368 break;
369 default:
370 /* If the caller passed in an extra buffer for unknown
371 * errors, textualise them now. Else we just return
372 * NULL. */
373 if (nbuf) {
374 /* Check for truncated error codes... */
375 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
376 errstr = nbuf;
377 }
378 break;
379 }
380
381 return errstr;
382 }
383
384 /* __ext4_std_error decodes expected errors from journaling functions
385 * automatically and invokes the appropriate error response. */
386
387 void __ext4_std_error(struct super_block *sb, const char *function, int errno)
388 {
389 char nbuf[16];
390 const char *errstr;
391
392 /* Special case: if the error is EROFS, and we're not already
393 * inside a transaction, then there's really no point in logging
394 * an error. */
395 if (errno == -EROFS && journal_current_handle() == NULL &&
396 (sb->s_flags & MS_RDONLY))
397 return;
398
399 errstr = ext4_decode_error(sb, errno, nbuf);
400 printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n",
401 sb->s_id, function, errstr);
402
403 ext4_handle_error(sb);
404 }
405
406 /*
407 * ext4_abort is a much stronger failure handler than ext4_error. The
408 * abort function may be used to deal with unrecoverable failures such
409 * as journal IO errors or ENOMEM at a critical moment in log management.
410 *
411 * We unconditionally force the filesystem into an ABORT|READONLY state,
412 * unless the error response on the fs has been set to panic in which
413 * case we take the easy way out and panic immediately.
414 */
415
416 void ext4_abort(struct super_block *sb, const char *function,
417 const char *fmt, ...)
418 {
419 va_list args;
420
421 va_start(args, fmt);
422 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
423 vprintk(fmt, args);
424 printk("\n");
425 va_end(args);
426
427 if (test_opt(sb, ERRORS_PANIC))
428 panic("EXT4-fs panic from previous error\n");
429
430 if (sb->s_flags & MS_RDONLY)
431 return;
432
433 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
434 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
435 sb->s_flags |= MS_RDONLY;
436 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
437 if (EXT4_SB(sb)->s_journal)
438 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
439 }
440
441 void ext4_msg (struct super_block * sb, const char *prefix,
442 const char *fmt, ...)
443 {
444 va_list args;
445
446 va_start(args, fmt);
447 printk("%sEXT4-fs (%s): ", prefix, sb->s_id);
448 vprintk(fmt, args);
449 printk("\n");
450 va_end(args);
451 }
452
453 void ext4_warning(struct super_block *sb, const char *function,
454 const char *fmt, ...)
455 {
456 va_list args;
457
458 va_start(args, fmt);
459 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ",
460 sb->s_id, function);
461 vprintk(fmt, args);
462 printk("\n");
463 va_end(args);
464 }
465
466 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp,
467 const char *function, const char *fmt, ...)
468 __releases(bitlock)
469 __acquires(bitlock)
470 {
471 va_list args;
472 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
473
474 va_start(args, fmt);
475 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
476 vprintk(fmt, args);
477 printk("\n");
478 va_end(args);
479
480 if (test_opt(sb, ERRORS_CONT)) {
481 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
482 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
483 ext4_commit_super(sb, 0);
484 return;
485 }
486 ext4_unlock_group(sb, grp);
487 ext4_handle_error(sb);
488 /*
489 * We only get here in the ERRORS_RO case; relocking the group
490 * may be dangerous, but nothing bad will happen since the
491 * filesystem will have already been marked read/only and the
492 * journal has been aborted. We return 1 as a hint to callers
493 * who might what to use the return value from
494 * ext4_grp_locked_error() to distinguish beween the
495 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
496 * aggressively from the ext4 function in question, with a
497 * more appropriate error code.
498 */
499 ext4_lock_group(sb, grp);
500 return;
501 }
502
503 void ext4_update_dynamic_rev(struct super_block *sb)
504 {
505 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
506
507 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
508 return;
509
510 ext4_warning(sb, __func__,
511 "updating to rev %d because of new feature flag, "
512 "running e2fsck is recommended",
513 EXT4_DYNAMIC_REV);
514
515 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
516 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
517 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
518 /* leave es->s_feature_*compat flags alone */
519 /* es->s_uuid will be set by e2fsck if empty */
520
521 /*
522 * The rest of the superblock fields should be zero, and if not it
523 * means they are likely already in use, so leave them alone. We
524 * can leave it up to e2fsck to clean up any inconsistencies there.
525 */
526 }
527
528 /*
529 * Open the external journal device
530 */
531 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
532 {
533 struct block_device *bdev;
534 char b[BDEVNAME_SIZE];
535
536 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
537 if (IS_ERR(bdev))
538 goto fail;
539 return bdev;
540
541 fail:
542 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
543 __bdevname(dev, b), PTR_ERR(bdev));
544 return NULL;
545 }
546
547 /*
548 * Release the journal device
549 */
550 static int ext4_blkdev_put(struct block_device *bdev)
551 {
552 bd_release(bdev);
553 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
554 }
555
556 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
557 {
558 struct block_device *bdev;
559 int ret = -ENODEV;
560
561 bdev = sbi->journal_bdev;
562 if (bdev) {
563 ret = ext4_blkdev_put(bdev);
564 sbi->journal_bdev = NULL;
565 }
566 return ret;
567 }
568
569 static inline struct inode *orphan_list_entry(struct list_head *l)
570 {
571 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
572 }
573
574 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
575 {
576 struct list_head *l;
577
578 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
579 le32_to_cpu(sbi->s_es->s_last_orphan));
580
581 printk(KERN_ERR "sb_info orphan list:\n");
582 list_for_each(l, &sbi->s_orphan) {
583 struct inode *inode = orphan_list_entry(l);
584 printk(KERN_ERR " "
585 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
586 inode->i_sb->s_id, inode->i_ino, inode,
587 inode->i_mode, inode->i_nlink,
588 NEXT_ORPHAN(inode));
589 }
590 }
591
592 static void ext4_put_super(struct super_block *sb)
593 {
594 struct ext4_sb_info *sbi = EXT4_SB(sb);
595 struct ext4_super_block *es = sbi->s_es;
596 int i, err;
597
598 flush_workqueue(sbi->dio_unwritten_wq);
599 destroy_workqueue(sbi->dio_unwritten_wq);
600
601 lock_super(sb);
602 lock_kernel();
603 if (sb->s_dirt)
604 ext4_commit_super(sb, 1);
605
606 if (sbi->s_journal) {
607 err = jbd2_journal_destroy(sbi->s_journal);
608 sbi->s_journal = NULL;
609 if (err < 0)
610 ext4_abort(sb, __func__,
611 "Couldn't clean up the journal");
612 }
613
614 ext4_release_system_zone(sb);
615 ext4_mb_release(sb);
616 ext4_ext_release(sb);
617 ext4_xattr_put_super(sb);
618
619 if (!(sb->s_flags & MS_RDONLY)) {
620 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
621 es->s_state = cpu_to_le16(sbi->s_mount_state);
622 ext4_commit_super(sb, 1);
623 }
624 if (sbi->s_proc) {
625 remove_proc_entry(sb->s_id, ext4_proc_root);
626 }
627 kobject_del(&sbi->s_kobj);
628
629 for (i = 0; i < sbi->s_gdb_count; i++)
630 brelse(sbi->s_group_desc[i]);
631 kfree(sbi->s_group_desc);
632 if (is_vmalloc_addr(sbi->s_flex_groups))
633 vfree(sbi->s_flex_groups);
634 else
635 kfree(sbi->s_flex_groups);
636 percpu_counter_destroy(&sbi->s_freeblocks_counter);
637 percpu_counter_destroy(&sbi->s_freeinodes_counter);
638 percpu_counter_destroy(&sbi->s_dirs_counter);
639 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
640 brelse(sbi->s_sbh);
641 #ifdef CONFIG_QUOTA
642 for (i = 0; i < MAXQUOTAS; i++)
643 kfree(sbi->s_qf_names[i]);
644 #endif
645
646 /* Debugging code just in case the in-memory inode orphan list
647 * isn't empty. The on-disk one can be non-empty if we've
648 * detected an error and taken the fs readonly, but the
649 * in-memory list had better be clean by this point. */
650 if (!list_empty(&sbi->s_orphan))
651 dump_orphan_list(sb, sbi);
652 J_ASSERT(list_empty(&sbi->s_orphan));
653
654 invalidate_bdev(sb->s_bdev);
655 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
656 /*
657 * Invalidate the journal device's buffers. We don't want them
658 * floating about in memory - the physical journal device may
659 * hotswapped, and it breaks the `ro-after' testing code.
660 */
661 sync_blockdev(sbi->journal_bdev);
662 invalidate_bdev(sbi->journal_bdev);
663 ext4_blkdev_remove(sbi);
664 }
665 sb->s_fs_info = NULL;
666 /*
667 * Now that we are completely done shutting down the
668 * superblock, we need to actually destroy the kobject.
669 */
670 unlock_kernel();
671 unlock_super(sb);
672 kobject_put(&sbi->s_kobj);
673 wait_for_completion(&sbi->s_kobj_unregister);
674 kfree(sbi->s_blockgroup_lock);
675 kfree(sbi);
676 }
677
678 static struct kmem_cache *ext4_inode_cachep;
679
680 /*
681 * Called inside transaction, so use GFP_NOFS
682 */
683 static struct inode *ext4_alloc_inode(struct super_block *sb)
684 {
685 struct ext4_inode_info *ei;
686
687 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
688 if (!ei)
689 return NULL;
690
691 ei->vfs_inode.i_version = 1;
692 ei->vfs_inode.i_data.writeback_index = 0;
693 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
694 INIT_LIST_HEAD(&ei->i_prealloc_list);
695 spin_lock_init(&ei->i_prealloc_lock);
696 /*
697 * Note: We can be called before EXT4_SB(sb)->s_journal is set,
698 * therefore it can be null here. Don't check it, just initialize
699 * jinode.
700 */
701 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode);
702 ei->i_reserved_data_blocks = 0;
703 ei->i_reserved_meta_blocks = 0;
704 ei->i_allocated_meta_blocks = 0;
705 ei->i_da_metadata_calc_len = 0;
706 ei->i_delalloc_reserved_flag = 0;
707 spin_lock_init(&(ei->i_block_reservation_lock));
708 #ifdef CONFIG_QUOTA
709 ei->i_reserved_quota = 0;
710 #endif
711 INIT_LIST_HEAD(&ei->i_aio_dio_complete_list);
712 ei->cur_aio_dio = NULL;
713 ei->i_sync_tid = 0;
714 ei->i_datasync_tid = 0;
715
716 return &ei->vfs_inode;
717 }
718
719 static void ext4_destroy_inode(struct inode *inode)
720 {
721 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
722 ext4_msg(inode->i_sb, KERN_ERR,
723 "Inode %lu (%p): orphan list check failed!",
724 inode->i_ino, EXT4_I(inode));
725 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
726 EXT4_I(inode), sizeof(struct ext4_inode_info),
727 true);
728 dump_stack();
729 }
730 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
731 }
732
733 static void init_once(void *foo)
734 {
735 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
736
737 INIT_LIST_HEAD(&ei->i_orphan);
738 #ifdef CONFIG_EXT4_FS_XATTR
739 init_rwsem(&ei->xattr_sem);
740 #endif
741 init_rwsem(&ei->i_data_sem);
742 inode_init_once(&ei->vfs_inode);
743 }
744
745 static int init_inodecache(void)
746 {
747 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
748 sizeof(struct ext4_inode_info),
749 0, (SLAB_RECLAIM_ACCOUNT|
750 SLAB_MEM_SPREAD),
751 init_once);
752 if (ext4_inode_cachep == NULL)
753 return -ENOMEM;
754 return 0;
755 }
756
757 static void destroy_inodecache(void)
758 {
759 kmem_cache_destroy(ext4_inode_cachep);
760 }
761
762 static void ext4_clear_inode(struct inode *inode)
763 {
764 ext4_discard_preallocations(inode);
765 if (EXT4_JOURNAL(inode))
766 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal,
767 &EXT4_I(inode)->jinode);
768 }
769
770 static inline void ext4_show_quota_options(struct seq_file *seq,
771 struct super_block *sb)
772 {
773 #if defined(CONFIG_QUOTA)
774 struct ext4_sb_info *sbi = EXT4_SB(sb);
775
776 if (sbi->s_jquota_fmt) {
777 char *fmtname = "";
778
779 switch (sbi->s_jquota_fmt) {
780 case QFMT_VFS_OLD:
781 fmtname = "vfsold";
782 break;
783 case QFMT_VFS_V0:
784 fmtname = "vfsv0";
785 break;
786 case QFMT_VFS_V1:
787 fmtname = "vfsv1";
788 break;
789 }
790 seq_printf(seq, ",jqfmt=%s", fmtname);
791 }
792
793 if (sbi->s_qf_names[USRQUOTA])
794 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
795
796 if (sbi->s_qf_names[GRPQUOTA])
797 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
798
799 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA)
800 seq_puts(seq, ",usrquota");
801
802 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)
803 seq_puts(seq, ",grpquota");
804 #endif
805 }
806
807 /*
808 * Show an option if
809 * - it's set to a non-default value OR
810 * - if the per-sb default is different from the global default
811 */
812 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
813 {
814 int def_errors;
815 unsigned long def_mount_opts;
816 struct super_block *sb = vfs->mnt_sb;
817 struct ext4_sb_info *sbi = EXT4_SB(sb);
818 struct ext4_super_block *es = sbi->s_es;
819
820 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
821 def_errors = le16_to_cpu(es->s_errors);
822
823 if (sbi->s_sb_block != 1)
824 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
825 if (test_opt(sb, MINIX_DF))
826 seq_puts(seq, ",minixdf");
827 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
828 seq_puts(seq, ",grpid");
829 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
830 seq_puts(seq, ",nogrpid");
831 if (sbi->s_resuid != EXT4_DEF_RESUID ||
832 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
833 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
834 }
835 if (sbi->s_resgid != EXT4_DEF_RESGID ||
836 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
837 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
838 }
839 if (test_opt(sb, ERRORS_RO)) {
840 if (def_errors == EXT4_ERRORS_PANIC ||
841 def_errors == EXT4_ERRORS_CONTINUE) {
842 seq_puts(seq, ",errors=remount-ro");
843 }
844 }
845 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
846 seq_puts(seq, ",errors=continue");
847 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
848 seq_puts(seq, ",errors=panic");
849 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
850 seq_puts(seq, ",nouid32");
851 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
852 seq_puts(seq, ",debug");
853 if (test_opt(sb, OLDALLOC))
854 seq_puts(seq, ",oldalloc");
855 #ifdef CONFIG_EXT4_FS_XATTR
856 if (test_opt(sb, XATTR_USER) &&
857 !(def_mount_opts & EXT4_DEFM_XATTR_USER))
858 seq_puts(seq, ",user_xattr");
859 if (!test_opt(sb, XATTR_USER) &&
860 (def_mount_opts & EXT4_DEFM_XATTR_USER)) {
861 seq_puts(seq, ",nouser_xattr");
862 }
863 #endif
864 #ifdef CONFIG_EXT4_FS_POSIX_ACL
865 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
866 seq_puts(seq, ",acl");
867 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
868 seq_puts(seq, ",noacl");
869 #endif
870 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
871 seq_printf(seq, ",commit=%u",
872 (unsigned) (sbi->s_commit_interval / HZ));
873 }
874 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
875 seq_printf(seq, ",min_batch_time=%u",
876 (unsigned) sbi->s_min_batch_time);
877 }
878 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
879 seq_printf(seq, ",max_batch_time=%u",
880 (unsigned) sbi->s_min_batch_time);
881 }
882
883 /*
884 * We're changing the default of barrier mount option, so
885 * let's always display its mount state so it's clear what its
886 * status is.
887 */
888 seq_puts(seq, ",barrier=");
889 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
890 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
891 seq_puts(seq, ",journal_async_commit");
892 if (test_opt(sb, NOBH))
893 seq_puts(seq, ",nobh");
894 if (test_opt(sb, I_VERSION))
895 seq_puts(seq, ",i_version");
896 if (!test_opt(sb, DELALLOC))
897 seq_puts(seq, ",nodelalloc");
898
899
900 if (sbi->s_stripe)
901 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
902 /*
903 * journal mode get enabled in different ways
904 * So just print the value even if we didn't specify it
905 */
906 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
907 seq_puts(seq, ",data=journal");
908 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
909 seq_puts(seq, ",data=ordered");
910 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
911 seq_puts(seq, ",data=writeback");
912
913 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
914 seq_printf(seq, ",inode_readahead_blks=%u",
915 sbi->s_inode_readahead_blks);
916
917 if (test_opt(sb, DATA_ERR_ABORT))
918 seq_puts(seq, ",data_err=abort");
919
920 if (test_opt(sb, NO_AUTO_DA_ALLOC))
921 seq_puts(seq, ",noauto_da_alloc");
922
923 if (test_opt(sb, DISCARD))
924 seq_puts(seq, ",discard");
925
926 if (test_opt(sb, NOLOAD))
927 seq_puts(seq, ",norecovery");
928
929 ext4_show_quota_options(seq, sb);
930
931 return 0;
932 }
933
934 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
935 u64 ino, u32 generation)
936 {
937 struct inode *inode;
938
939 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
940 return ERR_PTR(-ESTALE);
941 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
942 return ERR_PTR(-ESTALE);
943
944 /* iget isn't really right if the inode is currently unallocated!!
945 *
946 * ext4_read_inode will return a bad_inode if the inode had been
947 * deleted, so we should be safe.
948 *
949 * Currently we don't know the generation for parent directory, so
950 * a generation of 0 means "accept any"
951 */
952 inode = ext4_iget(sb, ino);
953 if (IS_ERR(inode))
954 return ERR_CAST(inode);
955 if (generation && inode->i_generation != generation) {
956 iput(inode);
957 return ERR_PTR(-ESTALE);
958 }
959
960 return inode;
961 }
962
963 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
964 int fh_len, int fh_type)
965 {
966 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
967 ext4_nfs_get_inode);
968 }
969
970 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
971 int fh_len, int fh_type)
972 {
973 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
974 ext4_nfs_get_inode);
975 }
976
977 /*
978 * Try to release metadata pages (indirect blocks, directories) which are
979 * mapped via the block device. Since these pages could have journal heads
980 * which would prevent try_to_free_buffers() from freeing them, we must use
981 * jbd2 layer's try_to_free_buffers() function to release them.
982 */
983 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
984 gfp_t wait)
985 {
986 journal_t *journal = EXT4_SB(sb)->s_journal;
987
988 WARN_ON(PageChecked(page));
989 if (!page_has_buffers(page))
990 return 0;
991 if (journal)
992 return jbd2_journal_try_to_free_buffers(journal, page,
993 wait & ~__GFP_WAIT);
994 return try_to_free_buffers(page);
995 }
996
997 #ifdef CONFIG_QUOTA
998 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
999 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1000
1001 static int ext4_write_dquot(struct dquot *dquot);
1002 static int ext4_acquire_dquot(struct dquot *dquot);
1003 static int ext4_release_dquot(struct dquot *dquot);
1004 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1005 static int ext4_write_info(struct super_block *sb, int type);
1006 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1007 char *path, int remount);
1008 static int ext4_quota_on_mount(struct super_block *sb, int type);
1009 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1010 size_t len, loff_t off);
1011 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1012 const char *data, size_t len, loff_t off);
1013
1014 static const struct dquot_operations ext4_quota_operations = {
1015 .initialize = dquot_initialize,
1016 .drop = dquot_drop,
1017 .alloc_space = dquot_alloc_space,
1018 .reserve_space = dquot_reserve_space,
1019 .claim_space = dquot_claim_space,
1020 .release_rsv = dquot_release_reserved_space,
1021 #ifdef CONFIG_QUOTA
1022 .get_reserved_space = ext4_get_reserved_space,
1023 #endif
1024 .alloc_inode = dquot_alloc_inode,
1025 .free_space = dquot_free_space,
1026 .free_inode = dquot_free_inode,
1027 .transfer = dquot_transfer,
1028 .write_dquot = ext4_write_dquot,
1029 .acquire_dquot = ext4_acquire_dquot,
1030 .release_dquot = ext4_release_dquot,
1031 .mark_dirty = ext4_mark_dquot_dirty,
1032 .write_info = ext4_write_info,
1033 .alloc_dquot = dquot_alloc,
1034 .destroy_dquot = dquot_destroy,
1035 };
1036
1037 static const struct quotactl_ops ext4_qctl_operations = {
1038 .quota_on = ext4_quota_on,
1039 .quota_off = vfs_quota_off,
1040 .quota_sync = vfs_quota_sync,
1041 .get_info = vfs_get_dqinfo,
1042 .set_info = vfs_set_dqinfo,
1043 .get_dqblk = vfs_get_dqblk,
1044 .set_dqblk = vfs_set_dqblk
1045 };
1046 #endif
1047
1048 static const struct super_operations ext4_sops = {
1049 .alloc_inode = ext4_alloc_inode,
1050 .destroy_inode = ext4_destroy_inode,
1051 .write_inode = ext4_write_inode,
1052 .dirty_inode = ext4_dirty_inode,
1053 .delete_inode = ext4_delete_inode,
1054 .put_super = ext4_put_super,
1055 .sync_fs = ext4_sync_fs,
1056 .freeze_fs = ext4_freeze,
1057 .unfreeze_fs = ext4_unfreeze,
1058 .statfs = ext4_statfs,
1059 .remount_fs = ext4_remount,
1060 .clear_inode = ext4_clear_inode,
1061 .show_options = ext4_show_options,
1062 #ifdef CONFIG_QUOTA
1063 .quota_read = ext4_quota_read,
1064 .quota_write = ext4_quota_write,
1065 #endif
1066 .bdev_try_to_free_page = bdev_try_to_free_page,
1067 };
1068
1069 static const struct super_operations ext4_nojournal_sops = {
1070 .alloc_inode = ext4_alloc_inode,
1071 .destroy_inode = ext4_destroy_inode,
1072 .write_inode = ext4_write_inode,
1073 .dirty_inode = ext4_dirty_inode,
1074 .delete_inode = ext4_delete_inode,
1075 .write_super = ext4_write_super,
1076 .put_super = ext4_put_super,
1077 .statfs = ext4_statfs,
1078 .remount_fs = ext4_remount,
1079 .clear_inode = ext4_clear_inode,
1080 .show_options = ext4_show_options,
1081 #ifdef CONFIG_QUOTA
1082 .quota_read = ext4_quota_read,
1083 .quota_write = ext4_quota_write,
1084 #endif
1085 .bdev_try_to_free_page = bdev_try_to_free_page,
1086 };
1087
1088 static const struct export_operations ext4_export_ops = {
1089 .fh_to_dentry = ext4_fh_to_dentry,
1090 .fh_to_parent = ext4_fh_to_parent,
1091 .get_parent = ext4_get_parent,
1092 };
1093
1094 enum {
1095 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1096 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1097 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1098 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1099 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1100 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1101 Opt_journal_update, Opt_journal_dev,
1102 Opt_journal_checksum, Opt_journal_async_commit,
1103 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1104 Opt_data_err_abort, Opt_data_err_ignore,
1105 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1106 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1107 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1108 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1109 Opt_stripe, Opt_delalloc, Opt_nodelalloc,
1110 Opt_block_validity, Opt_noblock_validity,
1111 Opt_inode_readahead_blks, Opt_journal_ioprio,
1112 Opt_discard, Opt_nodiscard,
1113 };
1114
1115 static const match_table_t tokens = {
1116 {Opt_bsd_df, "bsddf"},
1117 {Opt_minix_df, "minixdf"},
1118 {Opt_grpid, "grpid"},
1119 {Opt_grpid, "bsdgroups"},
1120 {Opt_nogrpid, "nogrpid"},
1121 {Opt_nogrpid, "sysvgroups"},
1122 {Opt_resgid, "resgid=%u"},
1123 {Opt_resuid, "resuid=%u"},
1124 {Opt_sb, "sb=%u"},
1125 {Opt_err_cont, "errors=continue"},
1126 {Opt_err_panic, "errors=panic"},
1127 {Opt_err_ro, "errors=remount-ro"},
1128 {Opt_nouid32, "nouid32"},
1129 {Opt_debug, "debug"},
1130 {Opt_oldalloc, "oldalloc"},
1131 {Opt_orlov, "orlov"},
1132 {Opt_user_xattr, "user_xattr"},
1133 {Opt_nouser_xattr, "nouser_xattr"},
1134 {Opt_acl, "acl"},
1135 {Opt_noacl, "noacl"},
1136 {Opt_noload, "noload"},
1137 {Opt_noload, "norecovery"},
1138 {Opt_nobh, "nobh"},
1139 {Opt_bh, "bh"},
1140 {Opt_commit, "commit=%u"},
1141 {Opt_min_batch_time, "min_batch_time=%u"},
1142 {Opt_max_batch_time, "max_batch_time=%u"},
1143 {Opt_journal_update, "journal=update"},
1144 {Opt_journal_dev, "journal_dev=%u"},
1145 {Opt_journal_checksum, "journal_checksum"},
1146 {Opt_journal_async_commit, "journal_async_commit"},
1147 {Opt_abort, "abort"},
1148 {Opt_data_journal, "data=journal"},
1149 {Opt_data_ordered, "data=ordered"},
1150 {Opt_data_writeback, "data=writeback"},
1151 {Opt_data_err_abort, "data_err=abort"},
1152 {Opt_data_err_ignore, "data_err=ignore"},
1153 {Opt_offusrjquota, "usrjquota="},
1154 {Opt_usrjquota, "usrjquota=%s"},
1155 {Opt_offgrpjquota, "grpjquota="},
1156 {Opt_grpjquota, "grpjquota=%s"},
1157 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1158 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1159 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1160 {Opt_grpquota, "grpquota"},
1161 {Opt_noquota, "noquota"},
1162 {Opt_quota, "quota"},
1163 {Opt_usrquota, "usrquota"},
1164 {Opt_barrier, "barrier=%u"},
1165 {Opt_barrier, "barrier"},
1166 {Opt_nobarrier, "nobarrier"},
1167 {Opt_i_version, "i_version"},
1168 {Opt_stripe, "stripe=%u"},
1169 {Opt_resize, "resize"},
1170 {Opt_delalloc, "delalloc"},
1171 {Opt_nodelalloc, "nodelalloc"},
1172 {Opt_block_validity, "block_validity"},
1173 {Opt_noblock_validity, "noblock_validity"},
1174 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1175 {Opt_journal_ioprio, "journal_ioprio=%u"},
1176 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1177 {Opt_auto_da_alloc, "auto_da_alloc"},
1178 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1179 {Opt_discard, "discard"},
1180 {Opt_nodiscard, "nodiscard"},
1181 {Opt_err, NULL},
1182 };
1183
1184 static ext4_fsblk_t get_sb_block(void **data)
1185 {
1186 ext4_fsblk_t sb_block;
1187 char *options = (char *) *data;
1188
1189 if (!options || strncmp(options, "sb=", 3) != 0)
1190 return 1; /* Default location */
1191
1192 options += 3;
1193 /* TODO: use simple_strtoll with >32bit ext4 */
1194 sb_block = simple_strtoul(options, &options, 0);
1195 if (*options && *options != ',') {
1196 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1197 (char *) *data);
1198 return 1;
1199 }
1200 if (*options == ',')
1201 options++;
1202 *data = (void *) options;
1203
1204 return sb_block;
1205 }
1206
1207 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1208
1209 static int parse_options(char *options, struct super_block *sb,
1210 unsigned long *journal_devnum,
1211 unsigned int *journal_ioprio,
1212 ext4_fsblk_t *n_blocks_count, int is_remount)
1213 {
1214 struct ext4_sb_info *sbi = EXT4_SB(sb);
1215 char *p;
1216 substring_t args[MAX_OPT_ARGS];
1217 int data_opt = 0;
1218 int option;
1219 #ifdef CONFIG_QUOTA
1220 int qtype, qfmt;
1221 char *qname;
1222 #endif
1223
1224 if (!options)
1225 return 1;
1226
1227 while ((p = strsep(&options, ",")) != NULL) {
1228 int token;
1229 if (!*p)
1230 continue;
1231
1232 token = match_token(p, tokens, args);
1233 switch (token) {
1234 case Opt_bsd_df:
1235 clear_opt(sbi->s_mount_opt, MINIX_DF);
1236 break;
1237 case Opt_minix_df:
1238 set_opt(sbi->s_mount_opt, MINIX_DF);
1239 break;
1240 case Opt_grpid:
1241 set_opt(sbi->s_mount_opt, GRPID);
1242 break;
1243 case Opt_nogrpid:
1244 clear_opt(sbi->s_mount_opt, GRPID);
1245 break;
1246 case Opt_resuid:
1247 if (match_int(&args[0], &option))
1248 return 0;
1249 sbi->s_resuid = option;
1250 break;
1251 case Opt_resgid:
1252 if (match_int(&args[0], &option))
1253 return 0;
1254 sbi->s_resgid = option;
1255 break;
1256 case Opt_sb:
1257 /* handled by get_sb_block() instead of here */
1258 /* *sb_block = match_int(&args[0]); */
1259 break;
1260 case Opt_err_panic:
1261 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1262 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1263 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
1264 break;
1265 case Opt_err_ro:
1266 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1267 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1268 set_opt(sbi->s_mount_opt, ERRORS_RO);
1269 break;
1270 case Opt_err_cont:
1271 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1272 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1273 set_opt(sbi->s_mount_opt, ERRORS_CONT);
1274 break;
1275 case Opt_nouid32:
1276 set_opt(sbi->s_mount_opt, NO_UID32);
1277 break;
1278 case Opt_debug:
1279 set_opt(sbi->s_mount_opt, DEBUG);
1280 break;
1281 case Opt_oldalloc:
1282 set_opt(sbi->s_mount_opt, OLDALLOC);
1283 break;
1284 case Opt_orlov:
1285 clear_opt(sbi->s_mount_opt, OLDALLOC);
1286 break;
1287 #ifdef CONFIG_EXT4_FS_XATTR
1288 case Opt_user_xattr:
1289 set_opt(sbi->s_mount_opt, XATTR_USER);
1290 break;
1291 case Opt_nouser_xattr:
1292 clear_opt(sbi->s_mount_opt, XATTR_USER);
1293 break;
1294 #else
1295 case Opt_user_xattr:
1296 case Opt_nouser_xattr:
1297 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1298 break;
1299 #endif
1300 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1301 case Opt_acl:
1302 set_opt(sbi->s_mount_opt, POSIX_ACL);
1303 break;
1304 case Opt_noacl:
1305 clear_opt(sbi->s_mount_opt, POSIX_ACL);
1306 break;
1307 #else
1308 case Opt_acl:
1309 case Opt_noacl:
1310 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1311 break;
1312 #endif
1313 case Opt_journal_update:
1314 /* @@@ FIXME */
1315 /* Eventually we will want to be able to create
1316 a journal file here. For now, only allow the
1317 user to specify an existing inode to be the
1318 journal file. */
1319 if (is_remount) {
1320 ext4_msg(sb, KERN_ERR,
1321 "Cannot specify journal on remount");
1322 return 0;
1323 }
1324 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL);
1325 break;
1326 case Opt_journal_dev:
1327 if (is_remount) {
1328 ext4_msg(sb, KERN_ERR,
1329 "Cannot specify journal on remount");
1330 return 0;
1331 }
1332 if (match_int(&args[0], &option))
1333 return 0;
1334 *journal_devnum = option;
1335 break;
1336 case Opt_journal_checksum:
1337 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1338 break;
1339 case Opt_journal_async_commit:
1340 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT);
1341 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1342 break;
1343 case Opt_noload:
1344 set_opt(sbi->s_mount_opt, NOLOAD);
1345 break;
1346 case Opt_commit:
1347 if (match_int(&args[0], &option))
1348 return 0;
1349 if (option < 0)
1350 return 0;
1351 if (option == 0)
1352 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1353 sbi->s_commit_interval = HZ * option;
1354 break;
1355 case Opt_max_batch_time:
1356 if (match_int(&args[0], &option))
1357 return 0;
1358 if (option < 0)
1359 return 0;
1360 if (option == 0)
1361 option = EXT4_DEF_MAX_BATCH_TIME;
1362 sbi->s_max_batch_time = option;
1363 break;
1364 case Opt_min_batch_time:
1365 if (match_int(&args[0], &option))
1366 return 0;
1367 if (option < 0)
1368 return 0;
1369 sbi->s_min_batch_time = option;
1370 break;
1371 case Opt_data_journal:
1372 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1373 goto datacheck;
1374 case Opt_data_ordered:
1375 data_opt = EXT4_MOUNT_ORDERED_DATA;
1376 goto datacheck;
1377 case Opt_data_writeback:
1378 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1379 datacheck:
1380 if (is_remount) {
1381 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS)
1382 != data_opt) {
1383 ext4_msg(sb, KERN_ERR,
1384 "Cannot change data mode on remount");
1385 return 0;
1386 }
1387 } else {
1388 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS;
1389 sbi->s_mount_opt |= data_opt;
1390 }
1391 break;
1392 case Opt_data_err_abort:
1393 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1394 break;
1395 case Opt_data_err_ignore:
1396 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1397 break;
1398 #ifdef CONFIG_QUOTA
1399 case Opt_usrjquota:
1400 qtype = USRQUOTA;
1401 goto set_qf_name;
1402 case Opt_grpjquota:
1403 qtype = GRPQUOTA;
1404 set_qf_name:
1405 if (sb_any_quota_loaded(sb) &&
1406 !sbi->s_qf_names[qtype]) {
1407 ext4_msg(sb, KERN_ERR,
1408 "Cannot change journaled "
1409 "quota options when quota turned on");
1410 return 0;
1411 }
1412 qname = match_strdup(&args[0]);
1413 if (!qname) {
1414 ext4_msg(sb, KERN_ERR,
1415 "Not enough memory for "
1416 "storing quotafile name");
1417 return 0;
1418 }
1419 if (sbi->s_qf_names[qtype] &&
1420 strcmp(sbi->s_qf_names[qtype], qname)) {
1421 ext4_msg(sb, KERN_ERR,
1422 "%s quota file already "
1423 "specified", QTYPE2NAME(qtype));
1424 kfree(qname);
1425 return 0;
1426 }
1427 sbi->s_qf_names[qtype] = qname;
1428 if (strchr(sbi->s_qf_names[qtype], '/')) {
1429 ext4_msg(sb, KERN_ERR,
1430 "quotafile must be on "
1431 "filesystem root");
1432 kfree(sbi->s_qf_names[qtype]);
1433 sbi->s_qf_names[qtype] = NULL;
1434 return 0;
1435 }
1436 set_opt(sbi->s_mount_opt, QUOTA);
1437 break;
1438 case Opt_offusrjquota:
1439 qtype = USRQUOTA;
1440 goto clear_qf_name;
1441 case Opt_offgrpjquota:
1442 qtype = GRPQUOTA;
1443 clear_qf_name:
1444 if (sb_any_quota_loaded(sb) &&
1445 sbi->s_qf_names[qtype]) {
1446 ext4_msg(sb, KERN_ERR, "Cannot change "
1447 "journaled quota options when "
1448 "quota turned on");
1449 return 0;
1450 }
1451 /*
1452 * The space will be released later when all options
1453 * are confirmed to be correct
1454 */
1455 sbi->s_qf_names[qtype] = NULL;
1456 break;
1457 case Opt_jqfmt_vfsold:
1458 qfmt = QFMT_VFS_OLD;
1459 goto set_qf_format;
1460 case Opt_jqfmt_vfsv0:
1461 qfmt = QFMT_VFS_V0;
1462 goto set_qf_format;
1463 case Opt_jqfmt_vfsv1:
1464 qfmt = QFMT_VFS_V1;
1465 set_qf_format:
1466 if (sb_any_quota_loaded(sb) &&
1467 sbi->s_jquota_fmt != qfmt) {
1468 ext4_msg(sb, KERN_ERR, "Cannot change "
1469 "journaled quota options when "
1470 "quota turned on");
1471 return 0;
1472 }
1473 sbi->s_jquota_fmt = qfmt;
1474 break;
1475 case Opt_quota:
1476 case Opt_usrquota:
1477 set_opt(sbi->s_mount_opt, QUOTA);
1478 set_opt(sbi->s_mount_opt, USRQUOTA);
1479 break;
1480 case Opt_grpquota:
1481 set_opt(sbi->s_mount_opt, QUOTA);
1482 set_opt(sbi->s_mount_opt, GRPQUOTA);
1483 break;
1484 case Opt_noquota:
1485 if (sb_any_quota_loaded(sb)) {
1486 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1487 "options when quota turned on");
1488 return 0;
1489 }
1490 clear_opt(sbi->s_mount_opt, QUOTA);
1491 clear_opt(sbi->s_mount_opt, USRQUOTA);
1492 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1493 break;
1494 #else
1495 case Opt_quota:
1496 case Opt_usrquota:
1497 case Opt_grpquota:
1498 ext4_msg(sb, KERN_ERR,
1499 "quota options not supported");
1500 break;
1501 case Opt_usrjquota:
1502 case Opt_grpjquota:
1503 case Opt_offusrjquota:
1504 case Opt_offgrpjquota:
1505 case Opt_jqfmt_vfsold:
1506 case Opt_jqfmt_vfsv0:
1507 case Opt_jqfmt_vfsv1:
1508 ext4_msg(sb, KERN_ERR,
1509 "journaled quota options not supported");
1510 break;
1511 case Opt_noquota:
1512 break;
1513 #endif
1514 case Opt_abort:
1515 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1516 break;
1517 case Opt_nobarrier:
1518 clear_opt(sbi->s_mount_opt, BARRIER);
1519 break;
1520 case Opt_barrier:
1521 if (match_int(&args[0], &option)) {
1522 set_opt(sbi->s_mount_opt, BARRIER);
1523 break;
1524 }
1525 if (option)
1526 set_opt(sbi->s_mount_opt, BARRIER);
1527 else
1528 clear_opt(sbi->s_mount_opt, BARRIER);
1529 break;
1530 case Opt_ignore:
1531 break;
1532 case Opt_resize:
1533 if (!is_remount) {
1534 ext4_msg(sb, KERN_ERR,
1535 "resize option only available "
1536 "for remount");
1537 return 0;
1538 }
1539 if (match_int(&args[0], &option) != 0)
1540 return 0;
1541 *n_blocks_count = option;
1542 break;
1543 case Opt_nobh:
1544 set_opt(sbi->s_mount_opt, NOBH);
1545 break;
1546 case Opt_bh:
1547 clear_opt(sbi->s_mount_opt, NOBH);
1548 break;
1549 case Opt_i_version:
1550 set_opt(sbi->s_mount_opt, I_VERSION);
1551 sb->s_flags |= MS_I_VERSION;
1552 break;
1553 case Opt_nodelalloc:
1554 clear_opt(sbi->s_mount_opt, DELALLOC);
1555 break;
1556 case Opt_stripe:
1557 if (match_int(&args[0], &option))
1558 return 0;
1559 if (option < 0)
1560 return 0;
1561 sbi->s_stripe = option;
1562 break;
1563 case Opt_delalloc:
1564 set_opt(sbi->s_mount_opt, DELALLOC);
1565 break;
1566 case Opt_block_validity:
1567 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1568 break;
1569 case Opt_noblock_validity:
1570 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1571 break;
1572 case Opt_inode_readahead_blks:
1573 if (match_int(&args[0], &option))
1574 return 0;
1575 if (option < 0 || option > (1 << 30))
1576 return 0;
1577 if (!is_power_of_2(option)) {
1578 ext4_msg(sb, KERN_ERR,
1579 "EXT4-fs: inode_readahead_blks"
1580 " must be a power of 2");
1581 return 0;
1582 }
1583 sbi->s_inode_readahead_blks = option;
1584 break;
1585 case Opt_journal_ioprio:
1586 if (match_int(&args[0], &option))
1587 return 0;
1588 if (option < 0 || option > 7)
1589 break;
1590 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1591 option);
1592 break;
1593 case Opt_noauto_da_alloc:
1594 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1595 break;
1596 case Opt_auto_da_alloc:
1597 if (match_int(&args[0], &option)) {
1598 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1599 break;
1600 }
1601 if (option)
1602 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1603 else
1604 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1605 break;
1606 case Opt_discard:
1607 set_opt(sbi->s_mount_opt, DISCARD);
1608 break;
1609 case Opt_nodiscard:
1610 clear_opt(sbi->s_mount_opt, DISCARD);
1611 break;
1612 default:
1613 ext4_msg(sb, KERN_ERR,
1614 "Unrecognized mount option \"%s\" "
1615 "or missing value", p);
1616 return 0;
1617 }
1618 }
1619 #ifdef CONFIG_QUOTA
1620 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1621 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) &&
1622 sbi->s_qf_names[USRQUOTA])
1623 clear_opt(sbi->s_mount_opt, USRQUOTA);
1624
1625 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) &&
1626 sbi->s_qf_names[GRPQUOTA])
1627 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1628
1629 if ((sbi->s_qf_names[USRQUOTA] &&
1630 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) ||
1631 (sbi->s_qf_names[GRPQUOTA] &&
1632 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) {
1633 ext4_msg(sb, KERN_ERR, "old and new quota "
1634 "format mixing");
1635 return 0;
1636 }
1637
1638 if (!sbi->s_jquota_fmt) {
1639 ext4_msg(sb, KERN_ERR, "journaled quota format "
1640 "not specified");
1641 return 0;
1642 }
1643 } else {
1644 if (sbi->s_jquota_fmt) {
1645 ext4_msg(sb, KERN_ERR, "journaled quota format "
1646 "specified with no journaling "
1647 "enabled");
1648 return 0;
1649 }
1650 }
1651 #endif
1652 return 1;
1653 }
1654
1655 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1656 int read_only)
1657 {
1658 struct ext4_sb_info *sbi = EXT4_SB(sb);
1659 int res = 0;
1660
1661 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1662 ext4_msg(sb, KERN_ERR, "revision level too high, "
1663 "forcing read-only mode");
1664 res = MS_RDONLY;
1665 }
1666 if (read_only)
1667 return res;
1668 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1669 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1670 "running e2fsck is recommended");
1671 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1672 ext4_msg(sb, KERN_WARNING,
1673 "warning: mounting fs with errors, "
1674 "running e2fsck is recommended");
1675 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1676 le16_to_cpu(es->s_mnt_count) >=
1677 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1678 ext4_msg(sb, KERN_WARNING,
1679 "warning: maximal mount count reached, "
1680 "running e2fsck is recommended");
1681 else if (le32_to_cpu(es->s_checkinterval) &&
1682 (le32_to_cpu(es->s_lastcheck) +
1683 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1684 ext4_msg(sb, KERN_WARNING,
1685 "warning: checktime reached, "
1686 "running e2fsck is recommended");
1687 if (!sbi->s_journal)
1688 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1689 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1690 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1691 le16_add_cpu(&es->s_mnt_count, 1);
1692 es->s_mtime = cpu_to_le32(get_seconds());
1693 ext4_update_dynamic_rev(sb);
1694 if (sbi->s_journal)
1695 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1696
1697 ext4_commit_super(sb, 1);
1698 if (test_opt(sb, DEBUG))
1699 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1700 "bpg=%lu, ipg=%lu, mo=%04x]\n",
1701 sb->s_blocksize,
1702 sbi->s_groups_count,
1703 EXT4_BLOCKS_PER_GROUP(sb),
1704 EXT4_INODES_PER_GROUP(sb),
1705 sbi->s_mount_opt);
1706
1707 return res;
1708 }
1709
1710 static int ext4_fill_flex_info(struct super_block *sb)
1711 {
1712 struct ext4_sb_info *sbi = EXT4_SB(sb);
1713 struct ext4_group_desc *gdp = NULL;
1714 ext4_group_t flex_group_count;
1715 ext4_group_t flex_group;
1716 int groups_per_flex = 0;
1717 size_t size;
1718 int i;
1719
1720 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1721 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1722
1723 if (groups_per_flex < 2) {
1724 sbi->s_log_groups_per_flex = 0;
1725 return 1;
1726 }
1727
1728 /* We allocate both existing and potentially added groups */
1729 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1730 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1731 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1732 size = flex_group_count * sizeof(struct flex_groups);
1733 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1734 if (sbi->s_flex_groups == NULL) {
1735 sbi->s_flex_groups = vmalloc(size);
1736 if (sbi->s_flex_groups)
1737 memset(sbi->s_flex_groups, 0, size);
1738 }
1739 if (sbi->s_flex_groups == NULL) {
1740 ext4_msg(sb, KERN_ERR, "not enough memory for "
1741 "%u flex groups", flex_group_count);
1742 goto failed;
1743 }
1744
1745 for (i = 0; i < sbi->s_groups_count; i++) {
1746 gdp = ext4_get_group_desc(sb, i, NULL);
1747
1748 flex_group = ext4_flex_group(sbi, i);
1749 atomic_add(ext4_free_inodes_count(sb, gdp),
1750 &sbi->s_flex_groups[flex_group].free_inodes);
1751 atomic_add(ext4_free_blks_count(sb, gdp),
1752 &sbi->s_flex_groups[flex_group].free_blocks);
1753 atomic_add(ext4_used_dirs_count(sb, gdp),
1754 &sbi->s_flex_groups[flex_group].used_dirs);
1755 }
1756
1757 return 1;
1758 failed:
1759 return 0;
1760 }
1761
1762 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1763 struct ext4_group_desc *gdp)
1764 {
1765 __u16 crc = 0;
1766
1767 if (sbi->s_es->s_feature_ro_compat &
1768 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1769 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1770 __le32 le_group = cpu_to_le32(block_group);
1771
1772 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1773 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1774 crc = crc16(crc, (__u8 *)gdp, offset);
1775 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1776 /* for checksum of struct ext4_group_desc do the rest...*/
1777 if ((sbi->s_es->s_feature_incompat &
1778 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1779 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1780 crc = crc16(crc, (__u8 *)gdp + offset,
1781 le16_to_cpu(sbi->s_es->s_desc_size) -
1782 offset);
1783 }
1784
1785 return cpu_to_le16(crc);
1786 }
1787
1788 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1789 struct ext4_group_desc *gdp)
1790 {
1791 if ((sbi->s_es->s_feature_ro_compat &
1792 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1793 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1794 return 0;
1795
1796 return 1;
1797 }
1798
1799 /* Called at mount-time, super-block is locked */
1800 static int ext4_check_descriptors(struct super_block *sb)
1801 {
1802 struct ext4_sb_info *sbi = EXT4_SB(sb);
1803 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1804 ext4_fsblk_t last_block;
1805 ext4_fsblk_t block_bitmap;
1806 ext4_fsblk_t inode_bitmap;
1807 ext4_fsblk_t inode_table;
1808 int flexbg_flag = 0;
1809 ext4_group_t i;
1810
1811 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
1812 flexbg_flag = 1;
1813
1814 ext4_debug("Checking group descriptors");
1815
1816 for (i = 0; i < sbi->s_groups_count; i++) {
1817 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1818
1819 if (i == sbi->s_groups_count - 1 || flexbg_flag)
1820 last_block = ext4_blocks_count(sbi->s_es) - 1;
1821 else
1822 last_block = first_block +
1823 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1824
1825 block_bitmap = ext4_block_bitmap(sb, gdp);
1826 if (block_bitmap < first_block || block_bitmap > last_block) {
1827 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1828 "Block bitmap for group %u not in group "
1829 "(block %llu)!", i, block_bitmap);
1830 return 0;
1831 }
1832 inode_bitmap = ext4_inode_bitmap(sb, gdp);
1833 if (inode_bitmap < first_block || inode_bitmap > last_block) {
1834 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1835 "Inode bitmap for group %u not in group "
1836 "(block %llu)!", i, inode_bitmap);
1837 return 0;
1838 }
1839 inode_table = ext4_inode_table(sb, gdp);
1840 if (inode_table < first_block ||
1841 inode_table + sbi->s_itb_per_group - 1 > last_block) {
1842 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1843 "Inode table for group %u not in group "
1844 "(block %llu)!", i, inode_table);
1845 return 0;
1846 }
1847 ext4_lock_group(sb, i);
1848 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
1849 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1850 "Checksum for group %u failed (%u!=%u)",
1851 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
1852 gdp)), le16_to_cpu(gdp->bg_checksum));
1853 if (!(sb->s_flags & MS_RDONLY)) {
1854 ext4_unlock_group(sb, i);
1855 return 0;
1856 }
1857 }
1858 ext4_unlock_group(sb, i);
1859 if (!flexbg_flag)
1860 first_block += EXT4_BLOCKS_PER_GROUP(sb);
1861 }
1862
1863 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
1864 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
1865 return 1;
1866 }
1867
1868 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
1869 * the superblock) which were deleted from all directories, but held open by
1870 * a process at the time of a crash. We walk the list and try to delete these
1871 * inodes at recovery time (only with a read-write filesystem).
1872 *
1873 * In order to keep the orphan inode chain consistent during traversal (in
1874 * case of crash during recovery), we link each inode into the superblock
1875 * orphan list_head and handle it the same way as an inode deletion during
1876 * normal operation (which journals the operations for us).
1877 *
1878 * We only do an iget() and an iput() on each inode, which is very safe if we
1879 * accidentally point at an in-use or already deleted inode. The worst that
1880 * can happen in this case is that we get a "bit already cleared" message from
1881 * ext4_free_inode(). The only reason we would point at a wrong inode is if
1882 * e2fsck was run on this filesystem, and it must have already done the orphan
1883 * inode cleanup for us, so we can safely abort without any further action.
1884 */
1885 static void ext4_orphan_cleanup(struct super_block *sb,
1886 struct ext4_super_block *es)
1887 {
1888 unsigned int s_flags = sb->s_flags;
1889 int nr_orphans = 0, nr_truncates = 0;
1890 #ifdef CONFIG_QUOTA
1891 int i;
1892 #endif
1893 if (!es->s_last_orphan) {
1894 jbd_debug(4, "no orphan inodes to clean up\n");
1895 return;
1896 }
1897
1898 if (bdev_read_only(sb->s_bdev)) {
1899 ext4_msg(sb, KERN_ERR, "write access "
1900 "unavailable, skipping orphan cleanup");
1901 return;
1902 }
1903
1904 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
1905 if (es->s_last_orphan)
1906 jbd_debug(1, "Errors on filesystem, "
1907 "clearing orphan list.\n");
1908 es->s_last_orphan = 0;
1909 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
1910 return;
1911 }
1912
1913 if (s_flags & MS_RDONLY) {
1914 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
1915 sb->s_flags &= ~MS_RDONLY;
1916 }
1917 #ifdef CONFIG_QUOTA
1918 /* Needed for iput() to work correctly and not trash data */
1919 sb->s_flags |= MS_ACTIVE;
1920 /* Turn on quotas so that they are updated correctly */
1921 for (i = 0; i < MAXQUOTAS; i++) {
1922 if (EXT4_SB(sb)->s_qf_names[i]) {
1923 int ret = ext4_quota_on_mount(sb, i);
1924 if (ret < 0)
1925 ext4_msg(sb, KERN_ERR,
1926 "Cannot turn on journaled "
1927 "quota: error %d", ret);
1928 }
1929 }
1930 #endif
1931
1932 while (es->s_last_orphan) {
1933 struct inode *inode;
1934
1935 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
1936 if (IS_ERR(inode)) {
1937 es->s_last_orphan = 0;
1938 break;
1939 }
1940
1941 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
1942 vfs_dq_init(inode);
1943 if (inode->i_nlink) {
1944 ext4_msg(sb, KERN_DEBUG,
1945 "%s: truncating inode %lu to %lld bytes",
1946 __func__, inode->i_ino, inode->i_size);
1947 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
1948 inode->i_ino, inode->i_size);
1949 ext4_truncate(inode);
1950 nr_truncates++;
1951 } else {
1952 ext4_msg(sb, KERN_DEBUG,
1953 "%s: deleting unreferenced inode %lu",
1954 __func__, inode->i_ino);
1955 jbd_debug(2, "deleting unreferenced inode %lu\n",
1956 inode->i_ino);
1957 nr_orphans++;
1958 }
1959 iput(inode); /* The delete magic happens here! */
1960 }
1961
1962 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
1963
1964 if (nr_orphans)
1965 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
1966 PLURAL(nr_orphans));
1967 if (nr_truncates)
1968 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
1969 PLURAL(nr_truncates));
1970 #ifdef CONFIG_QUOTA
1971 /* Turn quotas off */
1972 for (i = 0; i < MAXQUOTAS; i++) {
1973 if (sb_dqopt(sb)->files[i])
1974 vfs_quota_off(sb, i, 0);
1975 }
1976 #endif
1977 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
1978 }
1979
1980 /*
1981 * Maximal extent format file size.
1982 * Resulting logical blkno at s_maxbytes must fit in our on-disk
1983 * extent format containers, within a sector_t, and within i_blocks
1984 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
1985 * so that won't be a limiting factor.
1986 *
1987 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
1988 */
1989 static loff_t ext4_max_size(int blkbits, int has_huge_files)
1990 {
1991 loff_t res;
1992 loff_t upper_limit = MAX_LFS_FILESIZE;
1993
1994 /* small i_blocks in vfs inode? */
1995 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
1996 /*
1997 * CONFIG_LBDAF is not enabled implies the inode
1998 * i_block represent total blocks in 512 bytes
1999 * 32 == size of vfs inode i_blocks * 8
2000 */
2001 upper_limit = (1LL << 32) - 1;
2002
2003 /* total blocks in file system block size */
2004 upper_limit >>= (blkbits - 9);
2005 upper_limit <<= blkbits;
2006 }
2007
2008 /* 32-bit extent-start container, ee_block */
2009 res = 1LL << 32;
2010 res <<= blkbits;
2011 res -= 1;
2012
2013 /* Sanity check against vm- & vfs- imposed limits */
2014 if (res > upper_limit)
2015 res = upper_limit;
2016
2017 return res;
2018 }
2019
2020 /*
2021 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2022 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2023 * We need to be 1 filesystem block less than the 2^48 sector limit.
2024 */
2025 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2026 {
2027 loff_t res = EXT4_NDIR_BLOCKS;
2028 int meta_blocks;
2029 loff_t upper_limit;
2030 /* This is calculated to be the largest file size for a dense, block
2031 * mapped file such that the file's total number of 512-byte sectors,
2032 * including data and all indirect blocks, does not exceed (2^48 - 1).
2033 *
2034 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2035 * number of 512-byte sectors of the file.
2036 */
2037
2038 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2039 /*
2040 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2041 * the inode i_block field represents total file blocks in
2042 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2043 */
2044 upper_limit = (1LL << 32) - 1;
2045
2046 /* total blocks in file system block size */
2047 upper_limit >>= (bits - 9);
2048
2049 } else {
2050 /*
2051 * We use 48 bit ext4_inode i_blocks
2052 * With EXT4_HUGE_FILE_FL set the i_blocks
2053 * represent total number of blocks in
2054 * file system block size
2055 */
2056 upper_limit = (1LL << 48) - 1;
2057
2058 }
2059
2060 /* indirect blocks */
2061 meta_blocks = 1;
2062 /* double indirect blocks */
2063 meta_blocks += 1 + (1LL << (bits-2));
2064 /* tripple indirect blocks */
2065 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2066
2067 upper_limit -= meta_blocks;
2068 upper_limit <<= bits;
2069
2070 res += 1LL << (bits-2);
2071 res += 1LL << (2*(bits-2));
2072 res += 1LL << (3*(bits-2));
2073 res <<= bits;
2074 if (res > upper_limit)
2075 res = upper_limit;
2076
2077 if (res > MAX_LFS_FILESIZE)
2078 res = MAX_LFS_FILESIZE;
2079
2080 return res;
2081 }
2082
2083 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2084 ext4_fsblk_t logical_sb_block, int nr)
2085 {
2086 struct ext4_sb_info *sbi = EXT4_SB(sb);
2087 ext4_group_t bg, first_meta_bg;
2088 int has_super = 0;
2089
2090 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2091
2092 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2093 nr < first_meta_bg)
2094 return logical_sb_block + nr + 1;
2095 bg = sbi->s_desc_per_block * nr;
2096 if (ext4_bg_has_super(sb, bg))
2097 has_super = 1;
2098
2099 return (has_super + ext4_group_first_block_no(sb, bg));
2100 }
2101
2102 /**
2103 * ext4_get_stripe_size: Get the stripe size.
2104 * @sbi: In memory super block info
2105 *
2106 * If we have specified it via mount option, then
2107 * use the mount option value. If the value specified at mount time is
2108 * greater than the blocks per group use the super block value.
2109 * If the super block value is greater than blocks per group return 0.
2110 * Allocator needs it be less than blocks per group.
2111 *
2112 */
2113 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2114 {
2115 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2116 unsigned long stripe_width =
2117 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2118
2119 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2120 return sbi->s_stripe;
2121
2122 if (stripe_width <= sbi->s_blocks_per_group)
2123 return stripe_width;
2124
2125 if (stride <= sbi->s_blocks_per_group)
2126 return stride;
2127
2128 return 0;
2129 }
2130
2131 /* sysfs supprt */
2132
2133 struct ext4_attr {
2134 struct attribute attr;
2135 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2136 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2137 const char *, size_t);
2138 int offset;
2139 };
2140
2141 static int parse_strtoul(const char *buf,
2142 unsigned long max, unsigned long *value)
2143 {
2144 char *endp;
2145
2146 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2147 endp = skip_spaces(endp);
2148 if (*endp || *value > max)
2149 return -EINVAL;
2150
2151 return 0;
2152 }
2153
2154 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2155 struct ext4_sb_info *sbi,
2156 char *buf)
2157 {
2158 return snprintf(buf, PAGE_SIZE, "%llu\n",
2159 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2160 }
2161
2162 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2163 struct ext4_sb_info *sbi, char *buf)
2164 {
2165 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2166
2167 return snprintf(buf, PAGE_SIZE, "%lu\n",
2168 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2169 sbi->s_sectors_written_start) >> 1);
2170 }
2171
2172 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2173 struct ext4_sb_info *sbi, char *buf)
2174 {
2175 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2176
2177 return snprintf(buf, PAGE_SIZE, "%llu\n",
2178 (unsigned long long)(sbi->s_kbytes_written +
2179 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2180 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2181 }
2182
2183 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2184 struct ext4_sb_info *sbi,
2185 const char *buf, size_t count)
2186 {
2187 unsigned long t;
2188
2189 if (parse_strtoul(buf, 0x40000000, &t))
2190 return -EINVAL;
2191
2192 if (!is_power_of_2(t))
2193 return -EINVAL;
2194
2195 sbi->s_inode_readahead_blks = t;
2196 return count;
2197 }
2198
2199 static ssize_t sbi_ui_show(struct ext4_attr *a,
2200 struct ext4_sb_info *sbi, char *buf)
2201 {
2202 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2203
2204 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2205 }
2206
2207 static ssize_t sbi_ui_store(struct ext4_attr *a,
2208 struct ext4_sb_info *sbi,
2209 const char *buf, size_t count)
2210 {
2211 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2212 unsigned long t;
2213
2214 if (parse_strtoul(buf, 0xffffffff, &t))
2215 return -EINVAL;
2216 *ui = t;
2217 return count;
2218 }
2219
2220 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2221 static struct ext4_attr ext4_attr_##_name = { \
2222 .attr = {.name = __stringify(_name), .mode = _mode }, \
2223 .show = _show, \
2224 .store = _store, \
2225 .offset = offsetof(struct ext4_sb_info, _elname), \
2226 }
2227 #define EXT4_ATTR(name, mode, show, store) \
2228 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2229
2230 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2231 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2232 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2233 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2234 #define ATTR_LIST(name) &ext4_attr_##name.attr
2235
2236 EXT4_RO_ATTR(delayed_allocation_blocks);
2237 EXT4_RO_ATTR(session_write_kbytes);
2238 EXT4_RO_ATTR(lifetime_write_kbytes);
2239 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2240 inode_readahead_blks_store, s_inode_readahead_blks);
2241 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2242 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2243 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2244 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2245 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2246 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2247 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2248 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2249
2250 static struct attribute *ext4_attrs[] = {
2251 ATTR_LIST(delayed_allocation_blocks),
2252 ATTR_LIST(session_write_kbytes),
2253 ATTR_LIST(lifetime_write_kbytes),
2254 ATTR_LIST(inode_readahead_blks),
2255 ATTR_LIST(inode_goal),
2256 ATTR_LIST(mb_stats),
2257 ATTR_LIST(mb_max_to_scan),
2258 ATTR_LIST(mb_min_to_scan),
2259 ATTR_LIST(mb_order2_req),
2260 ATTR_LIST(mb_stream_req),
2261 ATTR_LIST(mb_group_prealloc),
2262 ATTR_LIST(max_writeback_mb_bump),
2263 NULL,
2264 };
2265
2266 static ssize_t ext4_attr_show(struct kobject *kobj,
2267 struct attribute *attr, char *buf)
2268 {
2269 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2270 s_kobj);
2271 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2272
2273 return a->show ? a->show(a, sbi, buf) : 0;
2274 }
2275
2276 static ssize_t ext4_attr_store(struct kobject *kobj,
2277 struct attribute *attr,
2278 const char *buf, size_t len)
2279 {
2280 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2281 s_kobj);
2282 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2283
2284 return a->store ? a->store(a, sbi, buf, len) : 0;
2285 }
2286
2287 static void ext4_sb_release(struct kobject *kobj)
2288 {
2289 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2290 s_kobj);
2291 complete(&sbi->s_kobj_unregister);
2292 }
2293
2294
2295 static struct sysfs_ops ext4_attr_ops = {
2296 .show = ext4_attr_show,
2297 .store = ext4_attr_store,
2298 };
2299
2300 static struct kobj_type ext4_ktype = {
2301 .default_attrs = ext4_attrs,
2302 .sysfs_ops = &ext4_attr_ops,
2303 .release = ext4_sb_release,
2304 };
2305
2306 /*
2307 * Check whether this filesystem can be mounted based on
2308 * the features present and the RDONLY/RDWR mount requested.
2309 * Returns 1 if this filesystem can be mounted as requested,
2310 * 0 if it cannot be.
2311 */
2312 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2313 {
2314 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2315 ext4_msg(sb, KERN_ERR,
2316 "Couldn't mount because of "
2317 "unsupported optional features (%x)",
2318 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2319 ~EXT4_FEATURE_INCOMPAT_SUPP));
2320 return 0;
2321 }
2322
2323 if (readonly)
2324 return 1;
2325
2326 /* Check that feature set is OK for a read-write mount */
2327 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2328 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2329 "unsupported optional features (%x)",
2330 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2331 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2332 return 0;
2333 }
2334 /*
2335 * Large file size enabled file system can only be mounted
2336 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2337 */
2338 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2339 if (sizeof(blkcnt_t) < sizeof(u64)) {
2340 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2341 "cannot be mounted RDWR without "
2342 "CONFIG_LBDAF");
2343 return 0;
2344 }
2345 }
2346 return 1;
2347 }
2348
2349 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2350 __releases(kernel_lock)
2351 __acquires(kernel_lock)
2352 {
2353 struct buffer_head *bh;
2354 struct ext4_super_block *es = NULL;
2355 struct ext4_sb_info *sbi;
2356 ext4_fsblk_t block;
2357 ext4_fsblk_t sb_block = get_sb_block(&data);
2358 ext4_fsblk_t logical_sb_block;
2359 unsigned long offset = 0;
2360 unsigned long journal_devnum = 0;
2361 unsigned long def_mount_opts;
2362 struct inode *root;
2363 char *cp;
2364 const char *descr;
2365 int ret = -EINVAL;
2366 int blocksize;
2367 unsigned int db_count;
2368 unsigned int i;
2369 int needs_recovery, has_huge_files;
2370 __u64 blocks_count;
2371 int err;
2372 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
2373
2374 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2375 if (!sbi)
2376 return -ENOMEM;
2377
2378 sbi->s_blockgroup_lock =
2379 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
2380 if (!sbi->s_blockgroup_lock) {
2381 kfree(sbi);
2382 return -ENOMEM;
2383 }
2384 sb->s_fs_info = sbi;
2385 sbi->s_mount_opt = 0;
2386 sbi->s_resuid = EXT4_DEF_RESUID;
2387 sbi->s_resgid = EXT4_DEF_RESGID;
2388 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
2389 sbi->s_sb_block = sb_block;
2390 sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part,
2391 sectors[1]);
2392
2393 unlock_kernel();
2394
2395 /* Cleanup superblock name */
2396 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
2397 *cp = '!';
2398
2399 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
2400 if (!blocksize) {
2401 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
2402 goto out_fail;
2403 }
2404
2405 /*
2406 * The ext4 superblock will not be buffer aligned for other than 1kB
2407 * block sizes. We need to calculate the offset from buffer start.
2408 */
2409 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
2410 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2411 offset = do_div(logical_sb_block, blocksize);
2412 } else {
2413 logical_sb_block = sb_block;
2414 }
2415
2416 if (!(bh = sb_bread(sb, logical_sb_block))) {
2417 ext4_msg(sb, KERN_ERR, "unable to read superblock");
2418 goto out_fail;
2419 }
2420 /*
2421 * Note: s_es must be initialized as soon as possible because
2422 * some ext4 macro-instructions depend on its value
2423 */
2424 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
2425 sbi->s_es = es;
2426 sb->s_magic = le16_to_cpu(es->s_magic);
2427 if (sb->s_magic != EXT4_SUPER_MAGIC)
2428 goto cantfind_ext4;
2429 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
2430
2431 /* Set defaults before we parse the mount options */
2432 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
2433 if (def_mount_opts & EXT4_DEFM_DEBUG)
2434 set_opt(sbi->s_mount_opt, DEBUG);
2435 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
2436 set_opt(sbi->s_mount_opt, GRPID);
2437 if (def_mount_opts & EXT4_DEFM_UID16)
2438 set_opt(sbi->s_mount_opt, NO_UID32);
2439 #ifdef CONFIG_EXT4_FS_XATTR
2440 if (def_mount_opts & EXT4_DEFM_XATTR_USER)
2441 set_opt(sbi->s_mount_opt, XATTR_USER);
2442 #endif
2443 #ifdef CONFIG_EXT4_FS_POSIX_ACL
2444 if (def_mount_opts & EXT4_DEFM_ACL)
2445 set_opt(sbi->s_mount_opt, POSIX_ACL);
2446 #endif
2447 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
2448 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
2449 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
2450 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
2451 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
2452 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA;
2453
2454 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
2455 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
2456 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
2457 set_opt(sbi->s_mount_opt, ERRORS_CONT);
2458 else
2459 set_opt(sbi->s_mount_opt, ERRORS_RO);
2460
2461 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
2462 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
2463 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
2464 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
2465 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
2466
2467 set_opt(sbi->s_mount_opt, BARRIER);
2468
2469 /*
2470 * enable delayed allocation by default
2471 * Use -o nodelalloc to turn it off
2472 */
2473 set_opt(sbi->s_mount_opt, DELALLOC);
2474
2475 if (!parse_options((char *) data, sb, &journal_devnum,
2476 &journal_ioprio, NULL, 0))
2477 goto failed_mount;
2478
2479 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2480 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
2481
2482 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
2483 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
2484 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
2485 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
2486 ext4_msg(sb, KERN_WARNING,
2487 "feature flags set on rev 0 fs, "
2488 "running e2fsck is recommended");
2489
2490 /*
2491 * Check feature flags regardless of the revision level, since we
2492 * previously didn't change the revision level when setting the flags,
2493 * so there is a chance incompat flags are set on a rev 0 filesystem.
2494 */
2495 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
2496 goto failed_mount;
2497
2498 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
2499
2500 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
2501 blocksize > EXT4_MAX_BLOCK_SIZE) {
2502 ext4_msg(sb, KERN_ERR,
2503 "Unsupported filesystem blocksize %d", blocksize);
2504 goto failed_mount;
2505 }
2506
2507 if (sb->s_blocksize != blocksize) {
2508 /* Validate the filesystem blocksize */
2509 if (!sb_set_blocksize(sb, blocksize)) {
2510 ext4_msg(sb, KERN_ERR, "bad block size %d",
2511 blocksize);
2512 goto failed_mount;
2513 }
2514
2515 brelse(bh);
2516 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2517 offset = do_div(logical_sb_block, blocksize);
2518 bh = sb_bread(sb, logical_sb_block);
2519 if (!bh) {
2520 ext4_msg(sb, KERN_ERR,
2521 "Can't read superblock on 2nd try");
2522 goto failed_mount;
2523 }
2524 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
2525 sbi->s_es = es;
2526 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
2527 ext4_msg(sb, KERN_ERR,
2528 "Magic mismatch, very weird!");
2529 goto failed_mount;
2530 }
2531 }
2532
2533 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
2534 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2535 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
2536 has_huge_files);
2537 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
2538
2539 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
2540 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
2541 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
2542 } else {
2543 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
2544 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
2545 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
2546 (!is_power_of_2(sbi->s_inode_size)) ||
2547 (sbi->s_inode_size > blocksize)) {
2548 ext4_msg(sb, KERN_ERR,
2549 "unsupported inode size: %d",
2550 sbi->s_inode_size);
2551 goto failed_mount;
2552 }
2553 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
2554 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
2555 }
2556
2557 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
2558 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
2559 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
2560 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
2561 !is_power_of_2(sbi->s_desc_size)) {
2562 ext4_msg(sb, KERN_ERR,
2563 "unsupported descriptor size %lu",
2564 sbi->s_desc_size);
2565 goto failed_mount;
2566 }
2567 } else
2568 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
2569
2570 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
2571 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
2572 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
2573 goto cantfind_ext4;
2574
2575 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
2576 if (sbi->s_inodes_per_block == 0)
2577 goto cantfind_ext4;
2578 sbi->s_itb_per_group = sbi->s_inodes_per_group /
2579 sbi->s_inodes_per_block;
2580 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
2581 sbi->s_sbh = bh;
2582 sbi->s_mount_state = le16_to_cpu(es->s_state);
2583 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
2584 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
2585
2586 for (i = 0; i < 4; i++)
2587 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
2588 sbi->s_def_hash_version = es->s_def_hash_version;
2589 i = le32_to_cpu(es->s_flags);
2590 if (i & EXT2_FLAGS_UNSIGNED_HASH)
2591 sbi->s_hash_unsigned = 3;
2592 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
2593 #ifdef __CHAR_UNSIGNED__
2594 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
2595 sbi->s_hash_unsigned = 3;
2596 #else
2597 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
2598 #endif
2599 sb->s_dirt = 1;
2600 }
2601
2602 if (sbi->s_blocks_per_group > blocksize * 8) {
2603 ext4_msg(sb, KERN_ERR,
2604 "#blocks per group too big: %lu",
2605 sbi->s_blocks_per_group);
2606 goto failed_mount;
2607 }
2608 if (sbi->s_inodes_per_group > blocksize * 8) {
2609 ext4_msg(sb, KERN_ERR,
2610 "#inodes per group too big: %lu",
2611 sbi->s_inodes_per_group);
2612 goto failed_mount;
2613 }
2614
2615 /*
2616 * Test whether we have more sectors than will fit in sector_t,
2617 * and whether the max offset is addressable by the page cache.
2618 */
2619 if ((ext4_blocks_count(es) >
2620 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) ||
2621 (ext4_blocks_count(es) >
2622 (pgoff_t)(~0ULL) >> (PAGE_CACHE_SHIFT - sb->s_blocksize_bits))) {
2623 ext4_msg(sb, KERN_ERR, "filesystem"
2624 " too large to mount safely on this system");
2625 if (sizeof(sector_t) < 8)
2626 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
2627 ret = -EFBIG;
2628 goto failed_mount;
2629 }
2630
2631 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
2632 goto cantfind_ext4;
2633
2634 /* check blocks count against device size */
2635 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
2636 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
2637 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
2638 "exceeds size of device (%llu blocks)",
2639 ext4_blocks_count(es), blocks_count);
2640 goto failed_mount;
2641 }
2642
2643 /*
2644 * It makes no sense for the first data block to be beyond the end
2645 * of the filesystem.
2646 */
2647 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
2648 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
2649 "block %u is beyond end of filesystem (%llu)",
2650 le32_to_cpu(es->s_first_data_block),
2651 ext4_blocks_count(es));
2652 goto failed_mount;
2653 }
2654 blocks_count = (ext4_blocks_count(es) -
2655 le32_to_cpu(es->s_first_data_block) +
2656 EXT4_BLOCKS_PER_GROUP(sb) - 1);
2657 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
2658 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
2659 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
2660 "(block count %llu, first data block %u, "
2661 "blocks per group %lu)", sbi->s_groups_count,
2662 ext4_blocks_count(es),
2663 le32_to_cpu(es->s_first_data_block),
2664 EXT4_BLOCKS_PER_GROUP(sb));
2665 goto failed_mount;
2666 }
2667 sbi->s_groups_count = blocks_count;
2668 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
2669 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
2670 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
2671 EXT4_DESC_PER_BLOCK(sb);
2672 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
2673 GFP_KERNEL);
2674 if (sbi->s_group_desc == NULL) {
2675 ext4_msg(sb, KERN_ERR, "not enough memory");
2676 goto failed_mount;
2677 }
2678
2679 #ifdef CONFIG_PROC_FS
2680 if (ext4_proc_root)
2681 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
2682 #endif
2683
2684 bgl_lock_init(sbi->s_blockgroup_lock);
2685
2686 for (i = 0; i < db_count; i++) {
2687 block = descriptor_loc(sb, logical_sb_block, i);
2688 sbi->s_group_desc[i] = sb_bread(sb, block);
2689 if (!sbi->s_group_desc[i]) {
2690 ext4_msg(sb, KERN_ERR,
2691 "can't read group descriptor %d", i);
2692 db_count = i;
2693 goto failed_mount2;
2694 }
2695 }
2696 if (!ext4_check_descriptors(sb)) {
2697 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
2698 goto failed_mount2;
2699 }
2700 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2701 if (!ext4_fill_flex_info(sb)) {
2702 ext4_msg(sb, KERN_ERR,
2703 "unable to initialize "
2704 "flex_bg meta info!");
2705 goto failed_mount2;
2706 }
2707
2708 sbi->s_gdb_count = db_count;
2709 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2710 spin_lock_init(&sbi->s_next_gen_lock);
2711
2712 err = percpu_counter_init(&sbi->s_freeblocks_counter,
2713 ext4_count_free_blocks(sb));
2714 if (!err) {
2715 err = percpu_counter_init(&sbi->s_freeinodes_counter,
2716 ext4_count_free_inodes(sb));
2717 }
2718 if (!err) {
2719 err = percpu_counter_init(&sbi->s_dirs_counter,
2720 ext4_count_dirs(sb));
2721 }
2722 if (!err) {
2723 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
2724 }
2725 if (err) {
2726 ext4_msg(sb, KERN_ERR, "insufficient memory");
2727 goto failed_mount3;
2728 }
2729
2730 sbi->s_stripe = ext4_get_stripe_size(sbi);
2731 sbi->s_max_writeback_mb_bump = 128;
2732
2733 /*
2734 * set up enough so that it can read an inode
2735 */
2736 if (!test_opt(sb, NOLOAD) &&
2737 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
2738 sb->s_op = &ext4_sops;
2739 else
2740 sb->s_op = &ext4_nojournal_sops;
2741 sb->s_export_op = &ext4_export_ops;
2742 sb->s_xattr = ext4_xattr_handlers;
2743 #ifdef CONFIG_QUOTA
2744 sb->s_qcop = &ext4_qctl_operations;
2745 sb->dq_op = &ext4_quota_operations;
2746 #endif
2747 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
2748 mutex_init(&sbi->s_orphan_lock);
2749 mutex_init(&sbi->s_resize_lock);
2750
2751 sb->s_root = NULL;
2752
2753 needs_recovery = (es->s_last_orphan != 0 ||
2754 EXT4_HAS_INCOMPAT_FEATURE(sb,
2755 EXT4_FEATURE_INCOMPAT_RECOVER));
2756
2757 /*
2758 * The first inode we look at is the journal inode. Don't try
2759 * root first: it may be modified in the journal!
2760 */
2761 if (!test_opt(sb, NOLOAD) &&
2762 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
2763 if (ext4_load_journal(sb, es, journal_devnum))
2764 goto failed_mount3;
2765 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
2766 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
2767 ext4_msg(sb, KERN_ERR, "required journal recovery "
2768 "suppressed and not mounted read-only");
2769 goto failed_mount4;
2770 } else {
2771 clear_opt(sbi->s_mount_opt, DATA_FLAGS);
2772 set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
2773 sbi->s_journal = NULL;
2774 needs_recovery = 0;
2775 goto no_journal;
2776 }
2777
2778 if (ext4_blocks_count(es) > 0xffffffffULL &&
2779 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
2780 JBD2_FEATURE_INCOMPAT_64BIT)) {
2781 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
2782 goto failed_mount4;
2783 }
2784
2785 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2786 jbd2_journal_set_features(sbi->s_journal,
2787 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2788 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2789 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2790 jbd2_journal_set_features(sbi->s_journal,
2791 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
2792 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2793 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2794 } else {
2795 jbd2_journal_clear_features(sbi->s_journal,
2796 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2797 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2798 }
2799
2800 /* We have now updated the journal if required, so we can
2801 * validate the data journaling mode. */
2802 switch (test_opt(sb, DATA_FLAGS)) {
2803 case 0:
2804 /* No mode set, assume a default based on the journal
2805 * capabilities: ORDERED_DATA if the journal can
2806 * cope, else JOURNAL_DATA
2807 */
2808 if (jbd2_journal_check_available_features
2809 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
2810 set_opt(sbi->s_mount_opt, ORDERED_DATA);
2811 else
2812 set_opt(sbi->s_mount_opt, JOURNAL_DATA);
2813 break;
2814
2815 case EXT4_MOUNT_ORDERED_DATA:
2816 case EXT4_MOUNT_WRITEBACK_DATA:
2817 if (!jbd2_journal_check_available_features
2818 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
2819 ext4_msg(sb, KERN_ERR, "Journal does not support "
2820 "requested data journaling mode");
2821 goto failed_mount4;
2822 }
2823 default:
2824 break;
2825 }
2826 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
2827
2828 no_journal:
2829
2830 if (test_opt(sb, NOBH)) {
2831 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) {
2832 ext4_msg(sb, KERN_WARNING, "Ignoring nobh option - "
2833 "its supported only with writeback mode");
2834 clear_opt(sbi->s_mount_opt, NOBH);
2835 }
2836 }
2837 EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten");
2838 if (!EXT4_SB(sb)->dio_unwritten_wq) {
2839 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
2840 goto failed_mount_wq;
2841 }
2842
2843 /*
2844 * The jbd2_journal_load will have done any necessary log recovery,
2845 * so we can safely mount the rest of the filesystem now.
2846 */
2847
2848 root = ext4_iget(sb, EXT4_ROOT_INO);
2849 if (IS_ERR(root)) {
2850 ext4_msg(sb, KERN_ERR, "get root inode failed");
2851 ret = PTR_ERR(root);
2852 goto failed_mount4;
2853 }
2854 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2855 iput(root);
2856 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
2857 goto failed_mount4;
2858 }
2859 sb->s_root = d_alloc_root(root);
2860 if (!sb->s_root) {
2861 ext4_msg(sb, KERN_ERR, "get root dentry failed");
2862 iput(root);
2863 ret = -ENOMEM;
2864 goto failed_mount4;
2865 }
2866
2867 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
2868
2869 /* determine the minimum size of new large inodes, if present */
2870 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
2871 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2872 EXT4_GOOD_OLD_INODE_SIZE;
2873 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2874 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
2875 if (sbi->s_want_extra_isize <
2876 le16_to_cpu(es->s_want_extra_isize))
2877 sbi->s_want_extra_isize =
2878 le16_to_cpu(es->s_want_extra_isize);
2879 if (sbi->s_want_extra_isize <
2880 le16_to_cpu(es->s_min_extra_isize))
2881 sbi->s_want_extra_isize =
2882 le16_to_cpu(es->s_min_extra_isize);
2883 }
2884 }
2885 /* Check if enough inode space is available */
2886 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
2887 sbi->s_inode_size) {
2888 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2889 EXT4_GOOD_OLD_INODE_SIZE;
2890 ext4_msg(sb, KERN_INFO, "required extra inode space not"
2891 "available");
2892 }
2893
2894 if (test_opt(sb, DELALLOC) &&
2895 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2896 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
2897 "requested data journaling mode");
2898 clear_opt(sbi->s_mount_opt, DELALLOC);
2899 }
2900
2901 err = ext4_setup_system_zone(sb);
2902 if (err) {
2903 ext4_msg(sb, KERN_ERR, "failed to initialize system "
2904 "zone (%d)\n", err);
2905 goto failed_mount4;
2906 }
2907
2908 ext4_ext_init(sb);
2909 err = ext4_mb_init(sb, needs_recovery);
2910 if (err) {
2911 ext4_msg(sb, KERN_ERR, "failed to initalize mballoc (%d)",
2912 err);
2913 goto failed_mount4;
2914 }
2915
2916 sbi->s_kobj.kset = ext4_kset;
2917 init_completion(&sbi->s_kobj_unregister);
2918 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
2919 "%s", sb->s_id);
2920 if (err) {
2921 ext4_mb_release(sb);
2922 ext4_ext_release(sb);
2923 goto failed_mount4;
2924 };
2925
2926 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
2927 ext4_orphan_cleanup(sb, es);
2928 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
2929 if (needs_recovery) {
2930 ext4_msg(sb, KERN_INFO, "recovery complete");
2931 ext4_mark_recovery_complete(sb, es);
2932 }
2933 if (EXT4_SB(sb)->s_journal) {
2934 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2935 descr = " journalled data mode";
2936 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2937 descr = " ordered data mode";
2938 else
2939 descr = " writeback data mode";
2940 } else
2941 descr = "out journal";
2942
2943 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s", descr);
2944
2945 lock_kernel();
2946 return 0;
2947
2948 cantfind_ext4:
2949 if (!silent)
2950 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
2951 goto failed_mount;
2952
2953 failed_mount4:
2954 ext4_msg(sb, KERN_ERR, "mount failed");
2955 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
2956 failed_mount_wq:
2957 ext4_release_system_zone(sb);
2958 if (sbi->s_journal) {
2959 jbd2_journal_destroy(sbi->s_journal);
2960 sbi->s_journal = NULL;
2961 }
2962 failed_mount3:
2963 if (sbi->s_flex_groups) {
2964 if (is_vmalloc_addr(sbi->s_flex_groups))
2965 vfree(sbi->s_flex_groups);
2966 else
2967 kfree(sbi->s_flex_groups);
2968 }
2969 percpu_counter_destroy(&sbi->s_freeblocks_counter);
2970 percpu_counter_destroy(&sbi->s_freeinodes_counter);
2971 percpu_counter_destroy(&sbi->s_dirs_counter);
2972 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
2973 failed_mount2:
2974 for (i = 0; i < db_count; i++)
2975 brelse(sbi->s_group_desc[i]);
2976 kfree(sbi->s_group_desc);
2977 failed_mount:
2978 if (sbi->s_proc) {
2979 remove_proc_entry(sb->s_id, ext4_proc_root);
2980 }
2981 #ifdef CONFIG_QUOTA
2982 for (i = 0; i < MAXQUOTAS; i++)
2983 kfree(sbi->s_qf_names[i]);
2984 #endif
2985 ext4_blkdev_remove(sbi);
2986 brelse(bh);
2987 out_fail:
2988 sb->s_fs_info = NULL;
2989 kfree(sbi->s_blockgroup_lock);
2990 kfree(sbi);
2991 lock_kernel();
2992 return ret;
2993 }
2994
2995 /*
2996 * Setup any per-fs journal parameters now. We'll do this both on
2997 * initial mount, once the journal has been initialised but before we've
2998 * done any recovery; and again on any subsequent remount.
2999 */
3000 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3001 {
3002 struct ext4_sb_info *sbi = EXT4_SB(sb);
3003
3004 journal->j_commit_interval = sbi->s_commit_interval;
3005 journal->j_min_batch_time = sbi->s_min_batch_time;
3006 journal->j_max_batch_time = sbi->s_max_batch_time;
3007
3008 spin_lock(&journal->j_state_lock);
3009 if (test_opt(sb, BARRIER))
3010 journal->j_flags |= JBD2_BARRIER;
3011 else
3012 journal->j_flags &= ~JBD2_BARRIER;
3013 if (test_opt(sb, DATA_ERR_ABORT))
3014 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3015 else
3016 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3017 spin_unlock(&journal->j_state_lock);
3018 }
3019
3020 static journal_t *ext4_get_journal(struct super_block *sb,
3021 unsigned int journal_inum)
3022 {
3023 struct inode *journal_inode;
3024 journal_t *journal;
3025
3026 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3027
3028 /* First, test for the existence of a valid inode on disk. Bad
3029 * things happen if we iget() an unused inode, as the subsequent
3030 * iput() will try to delete it. */
3031
3032 journal_inode = ext4_iget(sb, journal_inum);
3033 if (IS_ERR(journal_inode)) {
3034 ext4_msg(sb, KERN_ERR, "no journal found");
3035 return NULL;
3036 }
3037 if (!journal_inode->i_nlink) {
3038 make_bad_inode(journal_inode);
3039 iput(journal_inode);
3040 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3041 return NULL;
3042 }
3043
3044 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3045 journal_inode, journal_inode->i_size);
3046 if (!S_ISREG(journal_inode->i_mode)) {
3047 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3048 iput(journal_inode);
3049 return NULL;
3050 }
3051
3052 journal = jbd2_journal_init_inode(journal_inode);
3053 if (!journal) {
3054 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3055 iput(journal_inode);
3056 return NULL;
3057 }
3058 journal->j_private = sb;
3059 ext4_init_journal_params(sb, journal);
3060 return journal;
3061 }
3062
3063 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3064 dev_t j_dev)
3065 {
3066 struct buffer_head *bh;
3067 journal_t *journal;
3068 ext4_fsblk_t start;
3069 ext4_fsblk_t len;
3070 int hblock, blocksize;
3071 ext4_fsblk_t sb_block;
3072 unsigned long offset;
3073 struct ext4_super_block *es;
3074 struct block_device *bdev;
3075
3076 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3077
3078 bdev = ext4_blkdev_get(j_dev, sb);
3079 if (bdev == NULL)
3080 return NULL;
3081
3082 if (bd_claim(bdev, sb)) {
3083 ext4_msg(sb, KERN_ERR,
3084 "failed to claim external journal device");
3085 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
3086 return NULL;
3087 }
3088
3089 blocksize = sb->s_blocksize;
3090 hblock = bdev_logical_block_size(bdev);
3091 if (blocksize < hblock) {
3092 ext4_msg(sb, KERN_ERR,
3093 "blocksize too small for journal device");
3094 goto out_bdev;
3095 }
3096
3097 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3098 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3099 set_blocksize(bdev, blocksize);
3100 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3101 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3102 "external journal");
3103 goto out_bdev;
3104 }
3105
3106 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3107 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3108 !(le32_to_cpu(es->s_feature_incompat) &
3109 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3110 ext4_msg(sb, KERN_ERR, "external journal has "
3111 "bad superblock");
3112 brelse(bh);
3113 goto out_bdev;
3114 }
3115
3116 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3117 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3118 brelse(bh);
3119 goto out_bdev;
3120 }
3121
3122 len = ext4_blocks_count(es);
3123 start = sb_block + 1;
3124 brelse(bh); /* we're done with the superblock */
3125
3126 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3127 start, len, blocksize);
3128 if (!journal) {
3129 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3130 goto out_bdev;
3131 }
3132 journal->j_private = sb;
3133 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3134 wait_on_buffer(journal->j_sb_buffer);
3135 if (!buffer_uptodate(journal->j_sb_buffer)) {
3136 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3137 goto out_journal;
3138 }
3139 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3140 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3141 "user (unsupported) - %d",
3142 be32_to_cpu(journal->j_superblock->s_nr_users));
3143 goto out_journal;
3144 }
3145 EXT4_SB(sb)->journal_bdev = bdev;
3146 ext4_init_journal_params(sb, journal);
3147 return journal;
3148
3149 out_journal:
3150 jbd2_journal_destroy(journal);
3151 out_bdev:
3152 ext4_blkdev_put(bdev);
3153 return NULL;
3154 }
3155
3156 static int ext4_load_journal(struct super_block *sb,
3157 struct ext4_super_block *es,
3158 unsigned long journal_devnum)
3159 {
3160 journal_t *journal;
3161 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3162 dev_t journal_dev;
3163 int err = 0;
3164 int really_read_only;
3165
3166 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3167
3168 if (journal_devnum &&
3169 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3170 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3171 "numbers have changed");
3172 journal_dev = new_decode_dev(journal_devnum);
3173 } else
3174 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3175
3176 really_read_only = bdev_read_only(sb->s_bdev);
3177
3178 /*
3179 * Are we loading a blank journal or performing recovery after a
3180 * crash? For recovery, we need to check in advance whether we
3181 * can get read-write access to the device.
3182 */
3183 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3184 if (sb->s_flags & MS_RDONLY) {
3185 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3186 "required on readonly filesystem");
3187 if (really_read_only) {
3188 ext4_msg(sb, KERN_ERR, "write access "
3189 "unavailable, cannot proceed");
3190 return -EROFS;
3191 }
3192 ext4_msg(sb, KERN_INFO, "write access will "
3193 "be enabled during recovery");
3194 }
3195 }
3196
3197 if (journal_inum && journal_dev) {
3198 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3199 "and inode journals!");
3200 return -EINVAL;
3201 }
3202
3203 if (journal_inum) {
3204 if (!(journal = ext4_get_journal(sb, journal_inum)))
3205 return -EINVAL;
3206 } else {
3207 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3208 return -EINVAL;
3209 }
3210
3211 if (!(journal->j_flags & JBD2_BARRIER))
3212 ext4_msg(sb, KERN_INFO, "barriers disabled");
3213
3214 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3215 err = jbd2_journal_update_format(journal);
3216 if (err) {
3217 ext4_msg(sb, KERN_ERR, "error updating journal");
3218 jbd2_journal_destroy(journal);
3219 return err;
3220 }
3221 }
3222
3223 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3224 err = jbd2_journal_wipe(journal, !really_read_only);
3225 if (!err)
3226 err = jbd2_journal_load(journal);
3227
3228 if (err) {
3229 ext4_msg(sb, KERN_ERR, "error loading journal");
3230 jbd2_journal_destroy(journal);
3231 return err;
3232 }
3233
3234 EXT4_SB(sb)->s_journal = journal;
3235 ext4_clear_journal_err(sb, es);
3236
3237 if (journal_devnum &&
3238 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3239 es->s_journal_dev = cpu_to_le32(journal_devnum);
3240
3241 /* Make sure we flush the recovery flag to disk. */
3242 ext4_commit_super(sb, 1);
3243 }
3244
3245 return 0;
3246 }
3247
3248 static int ext4_commit_super(struct super_block *sb, int sync)
3249 {
3250 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3251 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3252 int error = 0;
3253
3254 if (!sbh)
3255 return error;
3256 if (buffer_write_io_error(sbh)) {
3257 /*
3258 * Oh, dear. A previous attempt to write the
3259 * superblock failed. This could happen because the
3260 * USB device was yanked out. Or it could happen to
3261 * be a transient write error and maybe the block will
3262 * be remapped. Nothing we can do but to retry the
3263 * write and hope for the best.
3264 */
3265 ext4_msg(sb, KERN_ERR, "previous I/O error to "
3266 "superblock detected");
3267 clear_buffer_write_io_error(sbh);
3268 set_buffer_uptodate(sbh);
3269 }
3270 /*
3271 * If the file system is mounted read-only, don't update the
3272 * superblock write time. This avoids updating the superblock
3273 * write time when we are mounting the root file system
3274 * read/only but we need to replay the journal; at that point,
3275 * for people who are east of GMT and who make their clock
3276 * tick in localtime for Windows bug-for-bug compatibility,
3277 * the clock is set in the future, and this will cause e2fsck
3278 * to complain and force a full file system check.
3279 */
3280 if (!(sb->s_flags & MS_RDONLY))
3281 es->s_wtime = cpu_to_le32(get_seconds());
3282 es->s_kbytes_written =
3283 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
3284 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
3285 EXT4_SB(sb)->s_sectors_written_start) >> 1));
3286 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
3287 &EXT4_SB(sb)->s_freeblocks_counter));
3288 es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive(
3289 &EXT4_SB(sb)->s_freeinodes_counter));
3290 sb->s_dirt = 0;
3291 BUFFER_TRACE(sbh, "marking dirty");
3292 mark_buffer_dirty(sbh);
3293 if (sync) {
3294 error = sync_dirty_buffer(sbh);
3295 if (error)
3296 return error;
3297
3298 error = buffer_write_io_error(sbh);
3299 if (error) {
3300 ext4_msg(sb, KERN_ERR, "I/O error while writing "
3301 "superblock");
3302 clear_buffer_write_io_error(sbh);
3303 set_buffer_uptodate(sbh);
3304 }
3305 }
3306 return error;
3307 }
3308
3309 /*
3310 * Have we just finished recovery? If so, and if we are mounting (or
3311 * remounting) the filesystem readonly, then we will end up with a
3312 * consistent fs on disk. Record that fact.
3313 */
3314 static void ext4_mark_recovery_complete(struct super_block *sb,
3315 struct ext4_super_block *es)
3316 {
3317 journal_t *journal = EXT4_SB(sb)->s_journal;
3318
3319 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3320 BUG_ON(journal != NULL);
3321 return;
3322 }
3323 jbd2_journal_lock_updates(journal);
3324 if (jbd2_journal_flush(journal) < 0)
3325 goto out;
3326
3327 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
3328 sb->s_flags & MS_RDONLY) {
3329 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3330 ext4_commit_super(sb, 1);
3331 }
3332
3333 out:
3334 jbd2_journal_unlock_updates(journal);
3335 }
3336
3337 /*
3338 * If we are mounting (or read-write remounting) a filesystem whose journal
3339 * has recorded an error from a previous lifetime, move that error to the
3340 * main filesystem now.
3341 */
3342 static void ext4_clear_journal_err(struct super_block *sb,
3343 struct ext4_super_block *es)
3344 {
3345 journal_t *journal;
3346 int j_errno;
3347 const char *errstr;
3348
3349 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3350
3351 journal = EXT4_SB(sb)->s_journal;
3352
3353 /*
3354 * Now check for any error status which may have been recorded in the
3355 * journal by a prior ext4_error() or ext4_abort()
3356 */
3357
3358 j_errno = jbd2_journal_errno(journal);
3359 if (j_errno) {
3360 char nbuf[16];
3361
3362 errstr = ext4_decode_error(sb, j_errno, nbuf);
3363 ext4_warning(sb, __func__, "Filesystem error recorded "
3364 "from previous mount: %s", errstr);
3365 ext4_warning(sb, __func__, "Marking fs in need of "
3366 "filesystem check.");
3367
3368 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
3369 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
3370 ext4_commit_super(sb, 1);
3371
3372 jbd2_journal_clear_err(journal);
3373 }
3374 }
3375
3376 /*
3377 * Force the running and committing transactions to commit,
3378 * and wait on the commit.
3379 */
3380 int ext4_force_commit(struct super_block *sb)
3381 {
3382 journal_t *journal;
3383 int ret = 0;
3384
3385 if (sb->s_flags & MS_RDONLY)
3386 return 0;
3387
3388 journal = EXT4_SB(sb)->s_journal;
3389 if (journal)
3390 ret = ext4_journal_force_commit(journal);
3391
3392 return ret;
3393 }
3394
3395 static void ext4_write_super(struct super_block *sb)
3396 {
3397 lock_super(sb);
3398 ext4_commit_super(sb, 1);
3399 unlock_super(sb);
3400 }
3401
3402 static int ext4_sync_fs(struct super_block *sb, int wait)
3403 {
3404 int ret = 0;
3405 tid_t target;
3406 struct ext4_sb_info *sbi = EXT4_SB(sb);
3407
3408 trace_ext4_sync_fs(sb, wait);
3409 flush_workqueue(sbi->dio_unwritten_wq);
3410 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
3411 if (wait)
3412 jbd2_log_wait_commit(sbi->s_journal, target);
3413 }
3414 return ret;
3415 }
3416
3417 /*
3418 * LVM calls this function before a (read-only) snapshot is created. This
3419 * gives us a chance to flush the journal completely and mark the fs clean.
3420 */
3421 static int ext4_freeze(struct super_block *sb)
3422 {
3423 int error = 0;
3424 journal_t *journal;
3425
3426 if (sb->s_flags & MS_RDONLY)
3427 return 0;
3428
3429 journal = EXT4_SB(sb)->s_journal;
3430
3431 /* Now we set up the journal barrier. */
3432 jbd2_journal_lock_updates(journal);
3433
3434 /*
3435 * Don't clear the needs_recovery flag if we failed to flush
3436 * the journal.
3437 */
3438 error = jbd2_journal_flush(journal);
3439 if (error < 0) {
3440 out:
3441 jbd2_journal_unlock_updates(journal);
3442 return error;
3443 }
3444
3445 /* Journal blocked and flushed, clear needs_recovery flag. */
3446 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3447 error = ext4_commit_super(sb, 1);
3448 if (error)
3449 goto out;
3450 return 0;
3451 }
3452
3453 /*
3454 * Called by LVM after the snapshot is done. We need to reset the RECOVER
3455 * flag here, even though the filesystem is not technically dirty yet.
3456 */
3457 static int ext4_unfreeze(struct super_block *sb)
3458 {
3459 if (sb->s_flags & MS_RDONLY)
3460 return 0;
3461
3462 lock_super(sb);
3463 /* Reset the needs_recovery flag before the fs is unlocked. */
3464 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3465 ext4_commit_super(sb, 1);
3466 unlock_super(sb);
3467 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3468 return 0;
3469 }
3470
3471 static int ext4_remount(struct super_block *sb, int *flags, char *data)
3472 {
3473 struct ext4_super_block *es;
3474 struct ext4_sb_info *sbi = EXT4_SB(sb);
3475 ext4_fsblk_t n_blocks_count = 0;
3476 unsigned long old_sb_flags;
3477 struct ext4_mount_options old_opts;
3478 ext4_group_t g;
3479 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3480 int err;
3481 #ifdef CONFIG_QUOTA
3482 int i;
3483 #endif
3484
3485 lock_kernel();
3486
3487 /* Store the original options */
3488 lock_super(sb);
3489 old_sb_flags = sb->s_flags;
3490 old_opts.s_mount_opt = sbi->s_mount_opt;
3491 old_opts.s_resuid = sbi->s_resuid;
3492 old_opts.s_resgid = sbi->s_resgid;
3493 old_opts.s_commit_interval = sbi->s_commit_interval;
3494 old_opts.s_min_batch_time = sbi->s_min_batch_time;
3495 old_opts.s_max_batch_time = sbi->s_max_batch_time;
3496 #ifdef CONFIG_QUOTA
3497 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
3498 for (i = 0; i < MAXQUOTAS; i++)
3499 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
3500 #endif
3501 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
3502 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
3503
3504 /*
3505 * Allow the "check" option to be passed as a remount option.
3506 */
3507 if (!parse_options(data, sb, NULL, &journal_ioprio,
3508 &n_blocks_count, 1)) {
3509 err = -EINVAL;
3510 goto restore_opts;
3511 }
3512
3513 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
3514 ext4_abort(sb, __func__, "Abort forced by user");
3515
3516 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3517 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
3518
3519 es = sbi->s_es;
3520
3521 if (sbi->s_journal) {
3522 ext4_init_journal_params(sb, sbi->s_journal);
3523 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3524 }
3525
3526 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
3527 n_blocks_count > ext4_blocks_count(es)) {
3528 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
3529 err = -EROFS;
3530 goto restore_opts;
3531 }
3532
3533 if (*flags & MS_RDONLY) {
3534 /*
3535 * First of all, the unconditional stuff we have to do
3536 * to disable replay of the journal when we next remount
3537 */
3538 sb->s_flags |= MS_RDONLY;
3539
3540 /*
3541 * OK, test if we are remounting a valid rw partition
3542 * readonly, and if so set the rdonly flag and then
3543 * mark the partition as valid again.
3544 */
3545 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
3546 (sbi->s_mount_state & EXT4_VALID_FS))
3547 es->s_state = cpu_to_le16(sbi->s_mount_state);
3548
3549 if (sbi->s_journal)
3550 ext4_mark_recovery_complete(sb, es);
3551 } else {
3552 /* Make sure we can mount this feature set readwrite */
3553 if (!ext4_feature_set_ok(sb, 0)) {
3554 err = -EROFS;
3555 goto restore_opts;
3556 }
3557 /*
3558 * Make sure the group descriptor checksums
3559 * are sane. If they aren't, refuse to remount r/w.
3560 */
3561 for (g = 0; g < sbi->s_groups_count; g++) {
3562 struct ext4_group_desc *gdp =
3563 ext4_get_group_desc(sb, g, NULL);
3564
3565 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
3566 ext4_msg(sb, KERN_ERR,
3567 "ext4_remount: Checksum for group %u failed (%u!=%u)",
3568 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
3569 le16_to_cpu(gdp->bg_checksum));
3570 err = -EINVAL;
3571 goto restore_opts;
3572 }
3573 }
3574
3575 /*
3576 * If we have an unprocessed orphan list hanging
3577 * around from a previously readonly bdev mount,
3578 * require a full umount/remount for now.
3579 */
3580 if (es->s_last_orphan) {
3581 ext4_msg(sb, KERN_WARNING, "Couldn't "
3582 "remount RDWR because of unprocessed "
3583 "orphan inode list. Please "
3584 "umount/remount instead");
3585 err = -EINVAL;
3586 goto restore_opts;
3587 }
3588
3589 /*
3590 * Mounting a RDONLY partition read-write, so reread
3591 * and store the current valid flag. (It may have
3592 * been changed by e2fsck since we originally mounted
3593 * the partition.)
3594 */
3595 if (sbi->s_journal)
3596 ext4_clear_journal_err(sb, es);
3597 sbi->s_mount_state = le16_to_cpu(es->s_state);
3598 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
3599 goto restore_opts;
3600 if (!ext4_setup_super(sb, es, 0))
3601 sb->s_flags &= ~MS_RDONLY;
3602 }
3603 }
3604 ext4_setup_system_zone(sb);
3605 if (sbi->s_journal == NULL)
3606 ext4_commit_super(sb, 1);
3607
3608 #ifdef CONFIG_QUOTA
3609 /* Release old quota file names */
3610 for (i = 0; i < MAXQUOTAS; i++)
3611 if (old_opts.s_qf_names[i] &&
3612 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3613 kfree(old_opts.s_qf_names[i]);
3614 #endif
3615 unlock_super(sb);
3616 unlock_kernel();
3617 return 0;
3618
3619 restore_opts:
3620 sb->s_flags = old_sb_flags;
3621 sbi->s_mount_opt = old_opts.s_mount_opt;
3622 sbi->s_resuid = old_opts.s_resuid;
3623 sbi->s_resgid = old_opts.s_resgid;
3624 sbi->s_commit_interval = old_opts.s_commit_interval;
3625 sbi->s_min_batch_time = old_opts.s_min_batch_time;
3626 sbi->s_max_batch_time = old_opts.s_max_batch_time;
3627 #ifdef CONFIG_QUOTA
3628 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
3629 for (i = 0; i < MAXQUOTAS; i++) {
3630 if (sbi->s_qf_names[i] &&
3631 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3632 kfree(sbi->s_qf_names[i]);
3633 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
3634 }
3635 #endif
3636 unlock_super(sb);
3637 unlock_kernel();
3638 return err;
3639 }
3640
3641 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
3642 {
3643 struct super_block *sb = dentry->d_sb;
3644 struct ext4_sb_info *sbi = EXT4_SB(sb);
3645 struct ext4_super_block *es = sbi->s_es;
3646 u64 fsid;
3647
3648 if (test_opt(sb, MINIX_DF)) {
3649 sbi->s_overhead_last = 0;
3650 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
3651 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3652 ext4_fsblk_t overhead = 0;
3653
3654 /*
3655 * Compute the overhead (FS structures). This is constant
3656 * for a given filesystem unless the number of block groups
3657 * changes so we cache the previous value until it does.
3658 */
3659
3660 /*
3661 * All of the blocks before first_data_block are
3662 * overhead
3663 */
3664 overhead = le32_to_cpu(es->s_first_data_block);
3665
3666 /*
3667 * Add the overhead attributed to the superblock and
3668 * block group descriptors. If the sparse superblocks
3669 * feature is turned on, then not all groups have this.
3670 */
3671 for (i = 0; i < ngroups; i++) {
3672 overhead += ext4_bg_has_super(sb, i) +
3673 ext4_bg_num_gdb(sb, i);
3674 cond_resched();
3675 }
3676
3677 /*
3678 * Every block group has an inode bitmap, a block
3679 * bitmap, and an inode table.
3680 */
3681 overhead += ngroups * (2 + sbi->s_itb_per_group);
3682 sbi->s_overhead_last = overhead;
3683 smp_wmb();
3684 sbi->s_blocks_last = ext4_blocks_count(es);
3685 }
3686
3687 buf->f_type = EXT4_SUPER_MAGIC;
3688 buf->f_bsize = sb->s_blocksize;
3689 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
3690 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
3691 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
3692 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
3693 if (buf->f_bfree < ext4_r_blocks_count(es))
3694 buf->f_bavail = 0;
3695 buf->f_files = le32_to_cpu(es->s_inodes_count);
3696 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
3697 buf->f_namelen = EXT4_NAME_LEN;
3698 fsid = le64_to_cpup((void *)es->s_uuid) ^
3699 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
3700 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
3701 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
3702
3703 return 0;
3704 }
3705
3706 /* Helper function for writing quotas on sync - we need to start transaction
3707 * before quota file is locked for write. Otherwise the are possible deadlocks:
3708 * Process 1 Process 2
3709 * ext4_create() quota_sync()
3710 * jbd2_journal_start() write_dquot()
3711 * vfs_dq_init() down(dqio_mutex)
3712 * down(dqio_mutex) jbd2_journal_start()
3713 *
3714 */
3715
3716 #ifdef CONFIG_QUOTA
3717
3718 static inline struct inode *dquot_to_inode(struct dquot *dquot)
3719 {
3720 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
3721 }
3722
3723 static int ext4_write_dquot(struct dquot *dquot)
3724 {
3725 int ret, err;
3726 handle_t *handle;
3727 struct inode *inode;
3728
3729 inode = dquot_to_inode(dquot);
3730 handle = ext4_journal_start(inode,
3731 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
3732 if (IS_ERR(handle))
3733 return PTR_ERR(handle);
3734 ret = dquot_commit(dquot);
3735 err = ext4_journal_stop(handle);
3736 if (!ret)
3737 ret = err;
3738 return ret;
3739 }
3740
3741 static int ext4_acquire_dquot(struct dquot *dquot)
3742 {
3743 int ret, err;
3744 handle_t *handle;
3745
3746 handle = ext4_journal_start(dquot_to_inode(dquot),
3747 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
3748 if (IS_ERR(handle))
3749 return PTR_ERR(handle);
3750 ret = dquot_acquire(dquot);
3751 err = ext4_journal_stop(handle);
3752 if (!ret)
3753 ret = err;
3754 return ret;
3755 }
3756
3757 static int ext4_release_dquot(struct dquot *dquot)
3758 {
3759 int ret, err;
3760 handle_t *handle;
3761
3762 handle = ext4_journal_start(dquot_to_inode(dquot),
3763 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
3764 if (IS_ERR(handle)) {
3765 /* Release dquot anyway to avoid endless cycle in dqput() */
3766 dquot_release(dquot);
3767 return PTR_ERR(handle);
3768 }
3769 ret = dquot_release(dquot);
3770 err = ext4_journal_stop(handle);
3771 if (!ret)
3772 ret = err;
3773 return ret;
3774 }
3775
3776 static int ext4_mark_dquot_dirty(struct dquot *dquot)
3777 {
3778 /* Are we journaling quotas? */
3779 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
3780 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
3781 dquot_mark_dquot_dirty(dquot);
3782 return ext4_write_dquot(dquot);
3783 } else {
3784 return dquot_mark_dquot_dirty(dquot);
3785 }
3786 }
3787
3788 static int ext4_write_info(struct super_block *sb, int type)
3789 {
3790 int ret, err;
3791 handle_t *handle;
3792
3793 /* Data block + inode block */
3794 handle = ext4_journal_start(sb->s_root->d_inode, 2);
3795 if (IS_ERR(handle))
3796 return PTR_ERR(handle);
3797 ret = dquot_commit_info(sb, type);
3798 err = ext4_journal_stop(handle);
3799 if (!ret)
3800 ret = err;
3801 return ret;
3802 }
3803
3804 /*
3805 * Turn on quotas during mount time - we need to find
3806 * the quota file and such...
3807 */
3808 static int ext4_quota_on_mount(struct super_block *sb, int type)
3809 {
3810 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
3811 EXT4_SB(sb)->s_jquota_fmt, type);
3812 }
3813
3814 /*
3815 * Standard function to be called on quota_on
3816 */
3817 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
3818 char *name, int remount)
3819 {
3820 int err;
3821 struct path path;
3822
3823 if (!test_opt(sb, QUOTA))
3824 return -EINVAL;
3825 /* When remounting, no checks are needed and in fact, name is NULL */
3826 if (remount)
3827 return vfs_quota_on(sb, type, format_id, name, remount);
3828
3829 err = kern_path(name, LOOKUP_FOLLOW, &path);
3830 if (err)
3831 return err;
3832
3833 /* Quotafile not on the same filesystem? */
3834 if (path.mnt->mnt_sb != sb) {
3835 path_put(&path);
3836 return -EXDEV;
3837 }
3838 /* Journaling quota? */
3839 if (EXT4_SB(sb)->s_qf_names[type]) {
3840 /* Quotafile not in fs root? */
3841 if (path.dentry->d_parent != sb->s_root)
3842 ext4_msg(sb, KERN_WARNING,
3843 "Quota file not on filesystem root. "
3844 "Journaled quota will not work");
3845 }
3846
3847 /*
3848 * When we journal data on quota file, we have to flush journal to see
3849 * all updates to the file when we bypass pagecache...
3850 */
3851 if (EXT4_SB(sb)->s_journal &&
3852 ext4_should_journal_data(path.dentry->d_inode)) {
3853 /*
3854 * We don't need to lock updates but journal_flush() could
3855 * otherwise be livelocked...
3856 */
3857 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
3858 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
3859 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3860 if (err) {
3861 path_put(&path);
3862 return err;
3863 }
3864 }
3865
3866 err = vfs_quota_on_path(sb, type, format_id, &path);
3867 path_put(&path);
3868 return err;
3869 }
3870
3871 /* Read data from quotafile - avoid pagecache and such because we cannot afford
3872 * acquiring the locks... As quota files are never truncated and quota code
3873 * itself serializes the operations (and noone else should touch the files)
3874 * we don't have to be afraid of races */
3875 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
3876 size_t len, loff_t off)
3877 {
3878 struct inode *inode = sb_dqopt(sb)->files[type];
3879 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3880 int err = 0;
3881 int offset = off & (sb->s_blocksize - 1);
3882 int tocopy;
3883 size_t toread;
3884 struct buffer_head *bh;
3885 loff_t i_size = i_size_read(inode);
3886
3887 if (off > i_size)
3888 return 0;
3889 if (off+len > i_size)
3890 len = i_size-off;
3891 toread = len;
3892 while (toread > 0) {
3893 tocopy = sb->s_blocksize - offset < toread ?
3894 sb->s_blocksize - offset : toread;
3895 bh = ext4_bread(NULL, inode, blk, 0, &err);
3896 if (err)
3897 return err;
3898 if (!bh) /* A hole? */
3899 memset(data, 0, tocopy);
3900 else
3901 memcpy(data, bh->b_data+offset, tocopy);
3902 brelse(bh);
3903 offset = 0;
3904 toread -= tocopy;
3905 data += tocopy;
3906 blk++;
3907 }
3908 return len;
3909 }
3910
3911 /* Write to quotafile (we know the transaction is already started and has
3912 * enough credits) */
3913 static ssize_t ext4_quota_write(struct super_block *sb, int type,
3914 const char *data, size_t len, loff_t off)
3915 {
3916 struct inode *inode = sb_dqopt(sb)->files[type];
3917 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3918 int err = 0;
3919 int offset = off & (sb->s_blocksize - 1);
3920 int tocopy;
3921 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL;
3922 size_t towrite = len;
3923 struct buffer_head *bh;
3924 handle_t *handle = journal_current_handle();
3925
3926 if (EXT4_SB(sb)->s_journal && !handle) {
3927 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
3928 " cancelled because transaction is not started",
3929 (unsigned long long)off, (unsigned long long)len);
3930 return -EIO;
3931 }
3932 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
3933 while (towrite > 0) {
3934 tocopy = sb->s_blocksize - offset < towrite ?
3935 sb->s_blocksize - offset : towrite;
3936 bh = ext4_bread(handle, inode, blk, 1, &err);
3937 if (!bh)
3938 goto out;
3939 if (journal_quota) {
3940 err = ext4_journal_get_write_access(handle, bh);
3941 if (err) {
3942 brelse(bh);
3943 goto out;
3944 }
3945 }
3946 lock_buffer(bh);
3947 memcpy(bh->b_data+offset, data, tocopy);
3948 flush_dcache_page(bh->b_page);
3949 unlock_buffer(bh);
3950 if (journal_quota)
3951 err = ext4_handle_dirty_metadata(handle, NULL, bh);
3952 else {
3953 /* Always do at least ordered writes for quotas */
3954 err = ext4_jbd2_file_inode(handle, inode);
3955 mark_buffer_dirty(bh);
3956 }
3957 brelse(bh);
3958 if (err)
3959 goto out;
3960 offset = 0;
3961 towrite -= tocopy;
3962 data += tocopy;
3963 blk++;
3964 }
3965 out:
3966 if (len == towrite) {
3967 mutex_unlock(&inode->i_mutex);
3968 return err;
3969 }
3970 if (inode->i_size < off+len-towrite) {
3971 i_size_write(inode, off+len-towrite);
3972 EXT4_I(inode)->i_disksize = inode->i_size;
3973 }
3974 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3975 ext4_mark_inode_dirty(handle, inode);
3976 mutex_unlock(&inode->i_mutex);
3977 return len - towrite;
3978 }
3979
3980 #endif
3981
3982 static int ext4_get_sb(struct file_system_type *fs_type, int flags,
3983 const char *dev_name, void *data, struct vfsmount *mnt)
3984 {
3985 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt);
3986 }
3987
3988 #if !defined(CONTIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
3989 static struct file_system_type ext2_fs_type = {
3990 .owner = THIS_MODULE,
3991 .name = "ext2",
3992 .get_sb = ext4_get_sb,
3993 .kill_sb = kill_block_super,
3994 .fs_flags = FS_REQUIRES_DEV,
3995 };
3996
3997 static inline void register_as_ext2(void)
3998 {
3999 int err = register_filesystem(&ext2_fs_type);
4000 if (err)
4001 printk(KERN_WARNING
4002 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4003 }
4004
4005 static inline void unregister_as_ext2(void)
4006 {
4007 unregister_filesystem(&ext2_fs_type);
4008 }
4009 MODULE_ALIAS("ext2");
4010 #else
4011 static inline void register_as_ext2(void) { }
4012 static inline void unregister_as_ext2(void) { }
4013 #endif
4014
4015 #if !defined(CONTIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4016 static struct file_system_type ext3_fs_type = {
4017 .owner = THIS_MODULE,
4018 .name = "ext3",
4019 .get_sb = ext4_get_sb,
4020 .kill_sb = kill_block_super,
4021 .fs_flags = FS_REQUIRES_DEV,
4022 };
4023
4024 static inline void register_as_ext3(void)
4025 {
4026 int err = register_filesystem(&ext3_fs_type);
4027 if (err)
4028 printk(KERN_WARNING
4029 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4030 }
4031
4032 static inline void unregister_as_ext3(void)
4033 {
4034 unregister_filesystem(&ext3_fs_type);
4035 }
4036 MODULE_ALIAS("ext3");
4037 #else
4038 static inline void register_as_ext3(void) { }
4039 static inline void unregister_as_ext3(void) { }
4040 #endif
4041
4042 static struct file_system_type ext4_fs_type = {
4043 .owner = THIS_MODULE,
4044 .name = "ext4",
4045 .get_sb = ext4_get_sb,
4046 .kill_sb = kill_block_super,
4047 .fs_flags = FS_REQUIRES_DEV,
4048 };
4049
4050 static int __init init_ext4_fs(void)
4051 {
4052 int err;
4053
4054 err = init_ext4_system_zone();
4055 if (err)
4056 return err;
4057 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4058 if (!ext4_kset)
4059 goto out4;
4060 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4061 err = init_ext4_mballoc();
4062 if (err)
4063 goto out3;
4064
4065 err = init_ext4_xattr();
4066 if (err)
4067 goto out2;
4068 err = init_inodecache();
4069 if (err)
4070 goto out1;
4071 register_as_ext2();
4072 register_as_ext3();
4073 err = register_filesystem(&ext4_fs_type);
4074 if (err)
4075 goto out;
4076 return 0;
4077 out:
4078 unregister_as_ext2();
4079 unregister_as_ext3();
4080 destroy_inodecache();
4081 out1:
4082 exit_ext4_xattr();
4083 out2:
4084 exit_ext4_mballoc();
4085 out3:
4086 remove_proc_entry("fs/ext4", NULL);
4087 kset_unregister(ext4_kset);
4088 out4:
4089 exit_ext4_system_zone();
4090 return err;
4091 }
4092
4093 static void __exit exit_ext4_fs(void)
4094 {
4095 unregister_as_ext2();
4096 unregister_as_ext3();
4097 unregister_filesystem(&ext4_fs_type);
4098 destroy_inodecache();
4099 exit_ext4_xattr();
4100 exit_ext4_mballoc();
4101 remove_proc_entry("fs/ext4", NULL);
4102 kset_unregister(ext4_kset);
4103 exit_ext4_system_zone();
4104 }
4105
4106 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4107 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4108 MODULE_LICENSE("GPL");
4109 module_init(init_ext4_fs)
4110 module_exit(exit_ext4_fs)