]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/super.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84
85 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
86 static struct file_system_type ext2_fs_type = {
87 .owner = THIS_MODULE,
88 .name = "ext2",
89 .mount = ext4_mount,
90 .kill_sb = kill_block_super,
91 .fs_flags = FS_REQUIRES_DEV,
92 };
93 MODULE_ALIAS_FS("ext2");
94 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
95 #else
96 #define IS_EXT2_SB(sb) (0)
97 #endif
98
99
100 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
101 static struct file_system_type ext3_fs_type = {
102 .owner = THIS_MODULE,
103 .name = "ext3",
104 .mount = ext4_mount,
105 .kill_sb = kill_block_super,
106 .fs_flags = FS_REQUIRES_DEV,
107 };
108 MODULE_ALIAS_FS("ext3");
109 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
110 #else
111 #define IS_EXT3_SB(sb) (0)
112 #endif
113
114 static int ext4_verify_csum_type(struct super_block *sb,
115 struct ext4_super_block *es)
116 {
117 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
118 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
119 return 1;
120
121 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
122 }
123
124 static __le32 ext4_superblock_csum(struct super_block *sb,
125 struct ext4_super_block *es)
126 {
127 struct ext4_sb_info *sbi = EXT4_SB(sb);
128 int offset = offsetof(struct ext4_super_block, s_checksum);
129 __u32 csum;
130
131 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
132
133 return cpu_to_le32(csum);
134 }
135
136 int ext4_superblock_csum_verify(struct super_block *sb,
137 struct ext4_super_block *es)
138 {
139 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
140 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
141 return 1;
142
143 return es->s_checksum == ext4_superblock_csum(sb, es);
144 }
145
146 void ext4_superblock_csum_set(struct super_block *sb)
147 {
148 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
149
150 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
151 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
152 return;
153
154 es->s_checksum = ext4_superblock_csum(sb, es);
155 }
156
157 void *ext4_kvmalloc(size_t size, gfp_t flags)
158 {
159 void *ret;
160
161 ret = kmalloc(size, flags);
162 if (!ret)
163 ret = __vmalloc(size, flags, PAGE_KERNEL);
164 return ret;
165 }
166
167 void *ext4_kvzalloc(size_t size, gfp_t flags)
168 {
169 void *ret;
170
171 ret = kzalloc(size, flags);
172 if (!ret)
173 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
174 return ret;
175 }
176
177 void ext4_kvfree(void *ptr)
178 {
179 if (is_vmalloc_addr(ptr))
180 vfree(ptr);
181 else
182 kfree(ptr);
183
184 }
185
186 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
187 struct ext4_group_desc *bg)
188 {
189 return le32_to_cpu(bg->bg_block_bitmap_lo) |
190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
192 }
193
194 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
195 struct ext4_group_desc *bg)
196 {
197 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
200 }
201
202 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
203 struct ext4_group_desc *bg)
204 {
205 return le32_to_cpu(bg->bg_inode_table_lo) |
206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
208 }
209
210 __u32 ext4_free_group_clusters(struct super_block *sb,
211 struct ext4_group_desc *bg)
212 {
213 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
216 }
217
218 __u32 ext4_free_inodes_count(struct super_block *sb,
219 struct ext4_group_desc *bg)
220 {
221 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
224 }
225
226 __u32 ext4_used_dirs_count(struct super_block *sb,
227 struct ext4_group_desc *bg)
228 {
229 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
232 }
233
234 __u32 ext4_itable_unused_count(struct super_block *sb,
235 struct ext4_group_desc *bg)
236 {
237 return le16_to_cpu(bg->bg_itable_unused_lo) |
238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
239 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
240 }
241
242 void ext4_block_bitmap_set(struct super_block *sb,
243 struct ext4_group_desc *bg, ext4_fsblk_t blk)
244 {
245 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
248 }
249
250 void ext4_inode_bitmap_set(struct super_block *sb,
251 struct ext4_group_desc *bg, ext4_fsblk_t blk)
252 {
253 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
256 }
257
258 void ext4_inode_table_set(struct super_block *sb,
259 struct ext4_group_desc *bg, ext4_fsblk_t blk)
260 {
261 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
264 }
265
266 void ext4_free_group_clusters_set(struct super_block *sb,
267 struct ext4_group_desc *bg, __u32 count)
268 {
269 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
272 }
273
274 void ext4_free_inodes_set(struct super_block *sb,
275 struct ext4_group_desc *bg, __u32 count)
276 {
277 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
280 }
281
282 void ext4_used_dirs_set(struct super_block *sb,
283 struct ext4_group_desc *bg, __u32 count)
284 {
285 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
288 }
289
290 void ext4_itable_unused_set(struct super_block *sb,
291 struct ext4_group_desc *bg, __u32 count)
292 {
293 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
295 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
296 }
297
298
299 static void __save_error_info(struct super_block *sb, const char *func,
300 unsigned int line)
301 {
302 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
303
304 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
305 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
306 es->s_last_error_time = cpu_to_le32(get_seconds());
307 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
308 es->s_last_error_line = cpu_to_le32(line);
309 if (!es->s_first_error_time) {
310 es->s_first_error_time = es->s_last_error_time;
311 strncpy(es->s_first_error_func, func,
312 sizeof(es->s_first_error_func));
313 es->s_first_error_line = cpu_to_le32(line);
314 es->s_first_error_ino = es->s_last_error_ino;
315 es->s_first_error_block = es->s_last_error_block;
316 }
317 /*
318 * Start the daily error reporting function if it hasn't been
319 * started already
320 */
321 if (!es->s_error_count)
322 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
323 le32_add_cpu(&es->s_error_count, 1);
324 }
325
326 static void save_error_info(struct super_block *sb, const char *func,
327 unsigned int line)
328 {
329 __save_error_info(sb, func, line);
330 ext4_commit_super(sb, 1);
331 }
332
333 /*
334 * The del_gendisk() function uninitializes the disk-specific data
335 * structures, including the bdi structure, without telling anyone
336 * else. Once this happens, any attempt to call mark_buffer_dirty()
337 * (for example, by ext4_commit_super), will cause a kernel OOPS.
338 * This is a kludge to prevent these oops until we can put in a proper
339 * hook in del_gendisk() to inform the VFS and file system layers.
340 */
341 static int block_device_ejected(struct super_block *sb)
342 {
343 struct inode *bd_inode = sb->s_bdev->bd_inode;
344 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
345
346 return bdi->dev == NULL;
347 }
348
349 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
350 {
351 struct super_block *sb = journal->j_private;
352 struct ext4_sb_info *sbi = EXT4_SB(sb);
353 int error = is_journal_aborted(journal);
354 struct ext4_journal_cb_entry *jce, *tmp;
355
356 spin_lock(&sbi->s_md_lock);
357 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
358 list_del_init(&jce->jce_list);
359 spin_unlock(&sbi->s_md_lock);
360 jce->jce_func(sb, jce, error);
361 spin_lock(&sbi->s_md_lock);
362 }
363 spin_unlock(&sbi->s_md_lock);
364 }
365
366 /* Deal with the reporting of failure conditions on a filesystem such as
367 * inconsistencies detected or read IO failures.
368 *
369 * On ext2, we can store the error state of the filesystem in the
370 * superblock. That is not possible on ext4, because we may have other
371 * write ordering constraints on the superblock which prevent us from
372 * writing it out straight away; and given that the journal is about to
373 * be aborted, we can't rely on the current, or future, transactions to
374 * write out the superblock safely.
375 *
376 * We'll just use the jbd2_journal_abort() error code to record an error in
377 * the journal instead. On recovery, the journal will complain about
378 * that error until we've noted it down and cleared it.
379 */
380
381 static void ext4_handle_error(struct super_block *sb)
382 {
383 if (sb->s_flags & MS_RDONLY)
384 return;
385
386 if (!test_opt(sb, ERRORS_CONT)) {
387 journal_t *journal = EXT4_SB(sb)->s_journal;
388
389 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
390 if (journal)
391 jbd2_journal_abort(journal, -EIO);
392 }
393 if (test_opt(sb, ERRORS_RO)) {
394 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
395 sb->s_flags |= MS_RDONLY;
396 }
397 if (test_opt(sb, ERRORS_PANIC))
398 panic("EXT4-fs (device %s): panic forced after error\n",
399 sb->s_id);
400 }
401
402 void __ext4_error(struct super_block *sb, const char *function,
403 unsigned int line, const char *fmt, ...)
404 {
405 struct va_format vaf;
406 va_list args;
407
408 va_start(args, fmt);
409 vaf.fmt = fmt;
410 vaf.va = &args;
411 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
412 sb->s_id, function, line, current->comm, &vaf);
413 va_end(args);
414 save_error_info(sb, function, line);
415
416 ext4_handle_error(sb);
417 }
418
419 void ext4_error_inode(struct inode *inode, const char *function,
420 unsigned int line, ext4_fsblk_t block,
421 const char *fmt, ...)
422 {
423 va_list args;
424 struct va_format vaf;
425 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
426
427 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
428 es->s_last_error_block = cpu_to_le64(block);
429 save_error_info(inode->i_sb, function, line);
430 va_start(args, fmt);
431 vaf.fmt = fmt;
432 vaf.va = &args;
433 if (block)
434 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
435 "inode #%lu: block %llu: comm %s: %pV\n",
436 inode->i_sb->s_id, function, line, inode->i_ino,
437 block, current->comm, &vaf);
438 else
439 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
440 "inode #%lu: comm %s: %pV\n",
441 inode->i_sb->s_id, function, line, inode->i_ino,
442 current->comm, &vaf);
443 va_end(args);
444
445 ext4_handle_error(inode->i_sb);
446 }
447
448 void ext4_error_file(struct file *file, const char *function,
449 unsigned int line, ext4_fsblk_t block,
450 const char *fmt, ...)
451 {
452 va_list args;
453 struct va_format vaf;
454 struct ext4_super_block *es;
455 struct inode *inode = file_inode(file);
456 char pathname[80], *path;
457
458 es = EXT4_SB(inode->i_sb)->s_es;
459 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
460 save_error_info(inode->i_sb, function, line);
461 path = d_path(&(file->f_path), pathname, sizeof(pathname));
462 if (IS_ERR(path))
463 path = "(unknown)";
464 va_start(args, fmt);
465 vaf.fmt = fmt;
466 vaf.va = &args;
467 if (block)
468 printk(KERN_CRIT
469 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
470 "block %llu: comm %s: path %s: %pV\n",
471 inode->i_sb->s_id, function, line, inode->i_ino,
472 block, current->comm, path, &vaf);
473 else
474 printk(KERN_CRIT
475 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
476 "comm %s: path %s: %pV\n",
477 inode->i_sb->s_id, function, line, inode->i_ino,
478 current->comm, path, &vaf);
479 va_end(args);
480
481 ext4_handle_error(inode->i_sb);
482 }
483
484 const char *ext4_decode_error(struct super_block *sb, int errno,
485 char nbuf[16])
486 {
487 char *errstr = NULL;
488
489 switch (errno) {
490 case -EIO:
491 errstr = "IO failure";
492 break;
493 case -ENOMEM:
494 errstr = "Out of memory";
495 break;
496 case -EROFS:
497 if (!sb || (EXT4_SB(sb)->s_journal &&
498 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
499 errstr = "Journal has aborted";
500 else
501 errstr = "Readonly filesystem";
502 break;
503 default:
504 /* If the caller passed in an extra buffer for unknown
505 * errors, textualise them now. Else we just return
506 * NULL. */
507 if (nbuf) {
508 /* Check for truncated error codes... */
509 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
510 errstr = nbuf;
511 }
512 break;
513 }
514
515 return errstr;
516 }
517
518 /* __ext4_std_error decodes expected errors from journaling functions
519 * automatically and invokes the appropriate error response. */
520
521 void __ext4_std_error(struct super_block *sb, const char *function,
522 unsigned int line, int errno)
523 {
524 char nbuf[16];
525 const char *errstr;
526
527 /* Special case: if the error is EROFS, and we're not already
528 * inside a transaction, then there's really no point in logging
529 * an error. */
530 if (errno == -EROFS && journal_current_handle() == NULL &&
531 (sb->s_flags & MS_RDONLY))
532 return;
533
534 errstr = ext4_decode_error(sb, errno, nbuf);
535 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
536 sb->s_id, function, line, errstr);
537 save_error_info(sb, function, line);
538
539 ext4_handle_error(sb);
540 }
541
542 /*
543 * ext4_abort is a much stronger failure handler than ext4_error. The
544 * abort function may be used to deal with unrecoverable failures such
545 * as journal IO errors or ENOMEM at a critical moment in log management.
546 *
547 * We unconditionally force the filesystem into an ABORT|READONLY state,
548 * unless the error response on the fs has been set to panic in which
549 * case we take the easy way out and panic immediately.
550 */
551
552 void __ext4_abort(struct super_block *sb, const char *function,
553 unsigned int line, const char *fmt, ...)
554 {
555 va_list args;
556
557 save_error_info(sb, function, line);
558 va_start(args, fmt);
559 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
560 function, line);
561 vprintk(fmt, args);
562 printk("\n");
563 va_end(args);
564
565 if ((sb->s_flags & MS_RDONLY) == 0) {
566 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
567 sb->s_flags |= MS_RDONLY;
568 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
569 if (EXT4_SB(sb)->s_journal)
570 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
571 save_error_info(sb, function, line);
572 }
573 if (test_opt(sb, ERRORS_PANIC))
574 panic("EXT4-fs panic from previous error\n");
575 }
576
577 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
578 {
579 struct va_format vaf;
580 va_list args;
581
582 va_start(args, fmt);
583 vaf.fmt = fmt;
584 vaf.va = &args;
585 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
586 va_end(args);
587 }
588
589 void __ext4_warning(struct super_block *sb, const char *function,
590 unsigned int line, const char *fmt, ...)
591 {
592 struct va_format vaf;
593 va_list args;
594
595 va_start(args, fmt);
596 vaf.fmt = fmt;
597 vaf.va = &args;
598 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
599 sb->s_id, function, line, &vaf);
600 va_end(args);
601 }
602
603 void __ext4_grp_locked_error(const char *function, unsigned int line,
604 struct super_block *sb, ext4_group_t grp,
605 unsigned long ino, ext4_fsblk_t block,
606 const char *fmt, ...)
607 __releases(bitlock)
608 __acquires(bitlock)
609 {
610 struct va_format vaf;
611 va_list args;
612 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
613
614 es->s_last_error_ino = cpu_to_le32(ino);
615 es->s_last_error_block = cpu_to_le64(block);
616 __save_error_info(sb, function, line);
617
618 va_start(args, fmt);
619
620 vaf.fmt = fmt;
621 vaf.va = &args;
622 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
623 sb->s_id, function, line, grp);
624 if (ino)
625 printk(KERN_CONT "inode %lu: ", ino);
626 if (block)
627 printk(KERN_CONT "block %llu:", (unsigned long long) block);
628 printk(KERN_CONT "%pV\n", &vaf);
629 va_end(args);
630
631 if (test_opt(sb, ERRORS_CONT)) {
632 ext4_commit_super(sb, 0);
633 return;
634 }
635
636 ext4_unlock_group(sb, grp);
637 ext4_handle_error(sb);
638 /*
639 * We only get here in the ERRORS_RO case; relocking the group
640 * may be dangerous, but nothing bad will happen since the
641 * filesystem will have already been marked read/only and the
642 * journal has been aborted. We return 1 as a hint to callers
643 * who might what to use the return value from
644 * ext4_grp_locked_error() to distinguish between the
645 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
646 * aggressively from the ext4 function in question, with a
647 * more appropriate error code.
648 */
649 ext4_lock_group(sb, grp);
650 return;
651 }
652
653 void ext4_update_dynamic_rev(struct super_block *sb)
654 {
655 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
656
657 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
658 return;
659
660 ext4_warning(sb,
661 "updating to rev %d because of new feature flag, "
662 "running e2fsck is recommended",
663 EXT4_DYNAMIC_REV);
664
665 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
666 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
667 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
668 /* leave es->s_feature_*compat flags alone */
669 /* es->s_uuid will be set by e2fsck if empty */
670
671 /*
672 * The rest of the superblock fields should be zero, and if not it
673 * means they are likely already in use, so leave them alone. We
674 * can leave it up to e2fsck to clean up any inconsistencies there.
675 */
676 }
677
678 /*
679 * Open the external journal device
680 */
681 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
682 {
683 struct block_device *bdev;
684 char b[BDEVNAME_SIZE];
685
686 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
687 if (IS_ERR(bdev))
688 goto fail;
689 return bdev;
690
691 fail:
692 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
693 __bdevname(dev, b), PTR_ERR(bdev));
694 return NULL;
695 }
696
697 /*
698 * Release the journal device
699 */
700 static int ext4_blkdev_put(struct block_device *bdev)
701 {
702 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
703 }
704
705 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
706 {
707 struct block_device *bdev;
708 int ret = -ENODEV;
709
710 bdev = sbi->journal_bdev;
711 if (bdev) {
712 ret = ext4_blkdev_put(bdev);
713 sbi->journal_bdev = NULL;
714 }
715 return ret;
716 }
717
718 static inline struct inode *orphan_list_entry(struct list_head *l)
719 {
720 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
721 }
722
723 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
724 {
725 struct list_head *l;
726
727 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
728 le32_to_cpu(sbi->s_es->s_last_orphan));
729
730 printk(KERN_ERR "sb_info orphan list:\n");
731 list_for_each(l, &sbi->s_orphan) {
732 struct inode *inode = orphan_list_entry(l);
733 printk(KERN_ERR " "
734 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
735 inode->i_sb->s_id, inode->i_ino, inode,
736 inode->i_mode, inode->i_nlink,
737 NEXT_ORPHAN(inode));
738 }
739 }
740
741 static void ext4_put_super(struct super_block *sb)
742 {
743 struct ext4_sb_info *sbi = EXT4_SB(sb);
744 struct ext4_super_block *es = sbi->s_es;
745 int i, err;
746
747 ext4_unregister_li_request(sb);
748 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
749
750 flush_workqueue(sbi->dio_unwritten_wq);
751 destroy_workqueue(sbi->dio_unwritten_wq);
752
753 if (sbi->s_journal) {
754 err = jbd2_journal_destroy(sbi->s_journal);
755 sbi->s_journal = NULL;
756 if (err < 0)
757 ext4_abort(sb, "Couldn't clean up the journal");
758 }
759
760 ext4_es_unregister_shrinker(sb);
761 del_timer(&sbi->s_err_report);
762 ext4_release_system_zone(sb);
763 ext4_mb_release(sb);
764 ext4_ext_release(sb);
765 ext4_xattr_put_super(sb);
766
767 if (!(sb->s_flags & MS_RDONLY)) {
768 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
769 es->s_state = cpu_to_le16(sbi->s_mount_state);
770 }
771 if (!(sb->s_flags & MS_RDONLY))
772 ext4_commit_super(sb, 1);
773
774 if (sbi->s_proc) {
775 remove_proc_entry("options", sbi->s_proc);
776 remove_proc_entry(sb->s_id, ext4_proc_root);
777 }
778 kobject_del(&sbi->s_kobj);
779
780 for (i = 0; i < sbi->s_gdb_count; i++)
781 brelse(sbi->s_group_desc[i]);
782 ext4_kvfree(sbi->s_group_desc);
783 ext4_kvfree(sbi->s_flex_groups);
784 percpu_counter_destroy(&sbi->s_freeclusters_counter);
785 percpu_counter_destroy(&sbi->s_freeinodes_counter);
786 percpu_counter_destroy(&sbi->s_dirs_counter);
787 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
788 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
789 brelse(sbi->s_sbh);
790 #ifdef CONFIG_QUOTA
791 for (i = 0; i < MAXQUOTAS; i++)
792 kfree(sbi->s_qf_names[i]);
793 #endif
794
795 /* Debugging code just in case the in-memory inode orphan list
796 * isn't empty. The on-disk one can be non-empty if we've
797 * detected an error and taken the fs readonly, but the
798 * in-memory list had better be clean by this point. */
799 if (!list_empty(&sbi->s_orphan))
800 dump_orphan_list(sb, sbi);
801 J_ASSERT(list_empty(&sbi->s_orphan));
802
803 invalidate_bdev(sb->s_bdev);
804 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
805 /*
806 * Invalidate the journal device's buffers. We don't want them
807 * floating about in memory - the physical journal device may
808 * hotswapped, and it breaks the `ro-after' testing code.
809 */
810 sync_blockdev(sbi->journal_bdev);
811 invalidate_bdev(sbi->journal_bdev);
812 ext4_blkdev_remove(sbi);
813 }
814 if (sbi->s_mmp_tsk)
815 kthread_stop(sbi->s_mmp_tsk);
816 sb->s_fs_info = NULL;
817 /*
818 * Now that we are completely done shutting down the
819 * superblock, we need to actually destroy the kobject.
820 */
821 kobject_put(&sbi->s_kobj);
822 wait_for_completion(&sbi->s_kobj_unregister);
823 if (sbi->s_chksum_driver)
824 crypto_free_shash(sbi->s_chksum_driver);
825 kfree(sbi->s_blockgroup_lock);
826 kfree(sbi);
827 }
828
829 static struct kmem_cache *ext4_inode_cachep;
830
831 /*
832 * Called inside transaction, so use GFP_NOFS
833 */
834 static struct inode *ext4_alloc_inode(struct super_block *sb)
835 {
836 struct ext4_inode_info *ei;
837
838 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
839 if (!ei)
840 return NULL;
841
842 ei->vfs_inode.i_version = 1;
843 INIT_LIST_HEAD(&ei->i_prealloc_list);
844 spin_lock_init(&ei->i_prealloc_lock);
845 ext4_es_init_tree(&ei->i_es_tree);
846 rwlock_init(&ei->i_es_lock);
847 INIT_LIST_HEAD(&ei->i_es_lru);
848 ei->i_es_lru_nr = 0;
849 ei->i_reserved_data_blocks = 0;
850 ei->i_reserved_meta_blocks = 0;
851 ei->i_allocated_meta_blocks = 0;
852 ei->i_da_metadata_calc_len = 0;
853 ei->i_da_metadata_calc_last_lblock = 0;
854 spin_lock_init(&(ei->i_block_reservation_lock));
855 #ifdef CONFIG_QUOTA
856 ei->i_reserved_quota = 0;
857 #endif
858 ei->jinode = NULL;
859 INIT_LIST_HEAD(&ei->i_completed_io_list);
860 spin_lock_init(&ei->i_completed_io_lock);
861 ei->i_sync_tid = 0;
862 ei->i_datasync_tid = 0;
863 atomic_set(&ei->i_ioend_count, 0);
864 atomic_set(&ei->i_unwritten, 0);
865 INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work);
866
867 return &ei->vfs_inode;
868 }
869
870 static int ext4_drop_inode(struct inode *inode)
871 {
872 int drop = generic_drop_inode(inode);
873
874 trace_ext4_drop_inode(inode, drop);
875 return drop;
876 }
877
878 static void ext4_i_callback(struct rcu_head *head)
879 {
880 struct inode *inode = container_of(head, struct inode, i_rcu);
881 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
882 }
883
884 static void ext4_destroy_inode(struct inode *inode)
885 {
886 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
887 ext4_msg(inode->i_sb, KERN_ERR,
888 "Inode %lu (%p): orphan list check failed!",
889 inode->i_ino, EXT4_I(inode));
890 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
891 EXT4_I(inode), sizeof(struct ext4_inode_info),
892 true);
893 dump_stack();
894 }
895 call_rcu(&inode->i_rcu, ext4_i_callback);
896 }
897
898 static void init_once(void *foo)
899 {
900 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
901
902 INIT_LIST_HEAD(&ei->i_orphan);
903 init_rwsem(&ei->xattr_sem);
904 init_rwsem(&ei->i_data_sem);
905 inode_init_once(&ei->vfs_inode);
906 }
907
908 static int init_inodecache(void)
909 {
910 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
911 sizeof(struct ext4_inode_info),
912 0, (SLAB_RECLAIM_ACCOUNT|
913 SLAB_MEM_SPREAD),
914 init_once);
915 if (ext4_inode_cachep == NULL)
916 return -ENOMEM;
917 return 0;
918 }
919
920 static void destroy_inodecache(void)
921 {
922 /*
923 * Make sure all delayed rcu free inodes are flushed before we
924 * destroy cache.
925 */
926 rcu_barrier();
927 kmem_cache_destroy(ext4_inode_cachep);
928 }
929
930 void ext4_clear_inode(struct inode *inode)
931 {
932 invalidate_inode_buffers(inode);
933 clear_inode(inode);
934 dquot_drop(inode);
935 ext4_discard_preallocations(inode);
936 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
937 ext4_es_lru_del(inode);
938 if (EXT4_I(inode)->jinode) {
939 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
940 EXT4_I(inode)->jinode);
941 jbd2_free_inode(EXT4_I(inode)->jinode);
942 EXT4_I(inode)->jinode = NULL;
943 }
944 }
945
946 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
947 u64 ino, u32 generation)
948 {
949 struct inode *inode;
950
951 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
952 return ERR_PTR(-ESTALE);
953 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
954 return ERR_PTR(-ESTALE);
955
956 /* iget isn't really right if the inode is currently unallocated!!
957 *
958 * ext4_read_inode will return a bad_inode if the inode had been
959 * deleted, so we should be safe.
960 *
961 * Currently we don't know the generation for parent directory, so
962 * a generation of 0 means "accept any"
963 */
964 inode = ext4_iget(sb, ino);
965 if (IS_ERR(inode))
966 return ERR_CAST(inode);
967 if (generation && inode->i_generation != generation) {
968 iput(inode);
969 return ERR_PTR(-ESTALE);
970 }
971
972 return inode;
973 }
974
975 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
976 int fh_len, int fh_type)
977 {
978 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
979 ext4_nfs_get_inode);
980 }
981
982 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
983 int fh_len, int fh_type)
984 {
985 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
986 ext4_nfs_get_inode);
987 }
988
989 /*
990 * Try to release metadata pages (indirect blocks, directories) which are
991 * mapped via the block device. Since these pages could have journal heads
992 * which would prevent try_to_free_buffers() from freeing them, we must use
993 * jbd2 layer's try_to_free_buffers() function to release them.
994 */
995 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
996 gfp_t wait)
997 {
998 journal_t *journal = EXT4_SB(sb)->s_journal;
999
1000 WARN_ON(PageChecked(page));
1001 if (!page_has_buffers(page))
1002 return 0;
1003 if (journal)
1004 return jbd2_journal_try_to_free_buffers(journal, page,
1005 wait & ~__GFP_WAIT);
1006 return try_to_free_buffers(page);
1007 }
1008
1009 #ifdef CONFIG_QUOTA
1010 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1011 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1012
1013 static int ext4_write_dquot(struct dquot *dquot);
1014 static int ext4_acquire_dquot(struct dquot *dquot);
1015 static int ext4_release_dquot(struct dquot *dquot);
1016 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1017 static int ext4_write_info(struct super_block *sb, int type);
1018 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1019 struct path *path);
1020 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1021 int format_id);
1022 static int ext4_quota_off(struct super_block *sb, int type);
1023 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1024 static int ext4_quota_on_mount(struct super_block *sb, int type);
1025 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1026 size_t len, loff_t off);
1027 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1028 const char *data, size_t len, loff_t off);
1029 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1030 unsigned int flags);
1031 static int ext4_enable_quotas(struct super_block *sb);
1032
1033 static const struct dquot_operations ext4_quota_operations = {
1034 .get_reserved_space = ext4_get_reserved_space,
1035 .write_dquot = ext4_write_dquot,
1036 .acquire_dquot = ext4_acquire_dquot,
1037 .release_dquot = ext4_release_dquot,
1038 .mark_dirty = ext4_mark_dquot_dirty,
1039 .write_info = ext4_write_info,
1040 .alloc_dquot = dquot_alloc,
1041 .destroy_dquot = dquot_destroy,
1042 };
1043
1044 static const struct quotactl_ops ext4_qctl_operations = {
1045 .quota_on = ext4_quota_on,
1046 .quota_off = ext4_quota_off,
1047 .quota_sync = dquot_quota_sync,
1048 .get_info = dquot_get_dqinfo,
1049 .set_info = dquot_set_dqinfo,
1050 .get_dqblk = dquot_get_dqblk,
1051 .set_dqblk = dquot_set_dqblk
1052 };
1053
1054 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1055 .quota_on_meta = ext4_quota_on_sysfile,
1056 .quota_off = ext4_quota_off_sysfile,
1057 .quota_sync = dquot_quota_sync,
1058 .get_info = dquot_get_dqinfo,
1059 .set_info = dquot_set_dqinfo,
1060 .get_dqblk = dquot_get_dqblk,
1061 .set_dqblk = dquot_set_dqblk
1062 };
1063 #endif
1064
1065 static const struct super_operations ext4_sops = {
1066 .alloc_inode = ext4_alloc_inode,
1067 .destroy_inode = ext4_destroy_inode,
1068 .write_inode = ext4_write_inode,
1069 .dirty_inode = ext4_dirty_inode,
1070 .drop_inode = ext4_drop_inode,
1071 .evict_inode = ext4_evict_inode,
1072 .put_super = ext4_put_super,
1073 .sync_fs = ext4_sync_fs,
1074 .freeze_fs = ext4_freeze,
1075 .unfreeze_fs = ext4_unfreeze,
1076 .statfs = ext4_statfs,
1077 .remount_fs = ext4_remount,
1078 .show_options = ext4_show_options,
1079 #ifdef CONFIG_QUOTA
1080 .quota_read = ext4_quota_read,
1081 .quota_write = ext4_quota_write,
1082 #endif
1083 .bdev_try_to_free_page = bdev_try_to_free_page,
1084 };
1085
1086 static const struct super_operations ext4_nojournal_sops = {
1087 .alloc_inode = ext4_alloc_inode,
1088 .destroy_inode = ext4_destroy_inode,
1089 .write_inode = ext4_write_inode,
1090 .dirty_inode = ext4_dirty_inode,
1091 .drop_inode = ext4_drop_inode,
1092 .evict_inode = ext4_evict_inode,
1093 .put_super = ext4_put_super,
1094 .statfs = ext4_statfs,
1095 .remount_fs = ext4_remount,
1096 .show_options = ext4_show_options,
1097 #ifdef CONFIG_QUOTA
1098 .quota_read = ext4_quota_read,
1099 .quota_write = ext4_quota_write,
1100 #endif
1101 .bdev_try_to_free_page = bdev_try_to_free_page,
1102 };
1103
1104 static const struct export_operations ext4_export_ops = {
1105 .fh_to_dentry = ext4_fh_to_dentry,
1106 .fh_to_parent = ext4_fh_to_parent,
1107 .get_parent = ext4_get_parent,
1108 };
1109
1110 enum {
1111 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1112 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1113 Opt_nouid32, Opt_debug, Opt_removed,
1114 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1115 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1116 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1117 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1118 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1119 Opt_data_err_abort, Opt_data_err_ignore,
1120 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1121 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1122 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1123 Opt_usrquota, Opt_grpquota, Opt_i_version,
1124 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1125 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1126 Opt_inode_readahead_blks, Opt_journal_ioprio,
1127 Opt_dioread_nolock, Opt_dioread_lock,
1128 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1129 Opt_max_dir_size_kb,
1130 };
1131
1132 static const match_table_t tokens = {
1133 {Opt_bsd_df, "bsddf"},
1134 {Opt_minix_df, "minixdf"},
1135 {Opt_grpid, "grpid"},
1136 {Opt_grpid, "bsdgroups"},
1137 {Opt_nogrpid, "nogrpid"},
1138 {Opt_nogrpid, "sysvgroups"},
1139 {Opt_resgid, "resgid=%u"},
1140 {Opt_resuid, "resuid=%u"},
1141 {Opt_sb, "sb=%u"},
1142 {Opt_err_cont, "errors=continue"},
1143 {Opt_err_panic, "errors=panic"},
1144 {Opt_err_ro, "errors=remount-ro"},
1145 {Opt_nouid32, "nouid32"},
1146 {Opt_debug, "debug"},
1147 {Opt_removed, "oldalloc"},
1148 {Opt_removed, "orlov"},
1149 {Opt_user_xattr, "user_xattr"},
1150 {Opt_nouser_xattr, "nouser_xattr"},
1151 {Opt_acl, "acl"},
1152 {Opt_noacl, "noacl"},
1153 {Opt_noload, "norecovery"},
1154 {Opt_noload, "noload"},
1155 {Opt_removed, "nobh"},
1156 {Opt_removed, "bh"},
1157 {Opt_commit, "commit=%u"},
1158 {Opt_min_batch_time, "min_batch_time=%u"},
1159 {Opt_max_batch_time, "max_batch_time=%u"},
1160 {Opt_journal_dev, "journal_dev=%u"},
1161 {Opt_journal_checksum, "journal_checksum"},
1162 {Opt_journal_async_commit, "journal_async_commit"},
1163 {Opt_abort, "abort"},
1164 {Opt_data_journal, "data=journal"},
1165 {Opt_data_ordered, "data=ordered"},
1166 {Opt_data_writeback, "data=writeback"},
1167 {Opt_data_err_abort, "data_err=abort"},
1168 {Opt_data_err_ignore, "data_err=ignore"},
1169 {Opt_offusrjquota, "usrjquota="},
1170 {Opt_usrjquota, "usrjquota=%s"},
1171 {Opt_offgrpjquota, "grpjquota="},
1172 {Opt_grpjquota, "grpjquota=%s"},
1173 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1174 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1175 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1176 {Opt_grpquota, "grpquota"},
1177 {Opt_noquota, "noquota"},
1178 {Opt_quota, "quota"},
1179 {Opt_usrquota, "usrquota"},
1180 {Opt_barrier, "barrier=%u"},
1181 {Opt_barrier, "barrier"},
1182 {Opt_nobarrier, "nobarrier"},
1183 {Opt_i_version, "i_version"},
1184 {Opt_stripe, "stripe=%u"},
1185 {Opt_delalloc, "delalloc"},
1186 {Opt_nodelalloc, "nodelalloc"},
1187 {Opt_removed, "mblk_io_submit"},
1188 {Opt_removed, "nomblk_io_submit"},
1189 {Opt_block_validity, "block_validity"},
1190 {Opt_noblock_validity, "noblock_validity"},
1191 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1192 {Opt_journal_ioprio, "journal_ioprio=%u"},
1193 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1194 {Opt_auto_da_alloc, "auto_da_alloc"},
1195 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1196 {Opt_dioread_nolock, "dioread_nolock"},
1197 {Opt_dioread_lock, "dioread_lock"},
1198 {Opt_discard, "discard"},
1199 {Opt_nodiscard, "nodiscard"},
1200 {Opt_init_itable, "init_itable=%u"},
1201 {Opt_init_itable, "init_itable"},
1202 {Opt_noinit_itable, "noinit_itable"},
1203 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1204 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1205 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1206 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1207 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1208 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1209 {Opt_err, NULL},
1210 };
1211
1212 static ext4_fsblk_t get_sb_block(void **data)
1213 {
1214 ext4_fsblk_t sb_block;
1215 char *options = (char *) *data;
1216
1217 if (!options || strncmp(options, "sb=", 3) != 0)
1218 return 1; /* Default location */
1219
1220 options += 3;
1221 /* TODO: use simple_strtoll with >32bit ext4 */
1222 sb_block = simple_strtoul(options, &options, 0);
1223 if (*options && *options != ',') {
1224 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1225 (char *) *data);
1226 return 1;
1227 }
1228 if (*options == ',')
1229 options++;
1230 *data = (void *) options;
1231
1232 return sb_block;
1233 }
1234
1235 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1236 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1237 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1238
1239 #ifdef CONFIG_QUOTA
1240 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1241 {
1242 struct ext4_sb_info *sbi = EXT4_SB(sb);
1243 char *qname;
1244 int ret = -1;
1245
1246 if (sb_any_quota_loaded(sb) &&
1247 !sbi->s_qf_names[qtype]) {
1248 ext4_msg(sb, KERN_ERR,
1249 "Cannot change journaled "
1250 "quota options when quota turned on");
1251 return -1;
1252 }
1253 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1254 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1255 "when QUOTA feature is enabled");
1256 return -1;
1257 }
1258 qname = match_strdup(args);
1259 if (!qname) {
1260 ext4_msg(sb, KERN_ERR,
1261 "Not enough memory for storing quotafile name");
1262 return -1;
1263 }
1264 if (sbi->s_qf_names[qtype]) {
1265 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1266 ret = 1;
1267 else
1268 ext4_msg(sb, KERN_ERR,
1269 "%s quota file already specified",
1270 QTYPE2NAME(qtype));
1271 goto errout;
1272 }
1273 if (strchr(qname, '/')) {
1274 ext4_msg(sb, KERN_ERR,
1275 "quotafile must be on filesystem root");
1276 goto errout;
1277 }
1278 sbi->s_qf_names[qtype] = qname;
1279 set_opt(sb, QUOTA);
1280 return 1;
1281 errout:
1282 kfree(qname);
1283 return ret;
1284 }
1285
1286 static int clear_qf_name(struct super_block *sb, int qtype)
1287 {
1288
1289 struct ext4_sb_info *sbi = EXT4_SB(sb);
1290
1291 if (sb_any_quota_loaded(sb) &&
1292 sbi->s_qf_names[qtype]) {
1293 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1294 " when quota turned on");
1295 return -1;
1296 }
1297 kfree(sbi->s_qf_names[qtype]);
1298 sbi->s_qf_names[qtype] = NULL;
1299 return 1;
1300 }
1301 #endif
1302
1303 #define MOPT_SET 0x0001
1304 #define MOPT_CLEAR 0x0002
1305 #define MOPT_NOSUPPORT 0x0004
1306 #define MOPT_EXPLICIT 0x0008
1307 #define MOPT_CLEAR_ERR 0x0010
1308 #define MOPT_GTE0 0x0020
1309 #ifdef CONFIG_QUOTA
1310 #define MOPT_Q 0
1311 #define MOPT_QFMT 0x0040
1312 #else
1313 #define MOPT_Q MOPT_NOSUPPORT
1314 #define MOPT_QFMT MOPT_NOSUPPORT
1315 #endif
1316 #define MOPT_DATAJ 0x0080
1317 #define MOPT_NO_EXT2 0x0100
1318 #define MOPT_NO_EXT3 0x0200
1319 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1320
1321 static const struct mount_opts {
1322 int token;
1323 int mount_opt;
1324 int flags;
1325 } ext4_mount_opts[] = {
1326 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1327 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1328 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1329 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1330 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1331 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1332 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1333 MOPT_EXT4_ONLY | MOPT_SET},
1334 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1335 MOPT_EXT4_ONLY | MOPT_CLEAR},
1336 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1337 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1338 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1339 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1340 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1341 MOPT_EXT4_ONLY | MOPT_CLEAR | MOPT_EXPLICIT},
1342 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1343 MOPT_EXT4_ONLY | MOPT_SET},
1344 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1345 EXT4_MOUNT_JOURNAL_CHECKSUM),
1346 MOPT_EXT4_ONLY | MOPT_SET},
1347 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1348 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1349 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1350 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1351 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1352 MOPT_NO_EXT2 | MOPT_SET},
1353 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1354 MOPT_NO_EXT2 | MOPT_CLEAR},
1355 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1356 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1357 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1358 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1359 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1360 {Opt_commit, 0, MOPT_GTE0},
1361 {Opt_max_batch_time, 0, MOPT_GTE0},
1362 {Opt_min_batch_time, 0, MOPT_GTE0},
1363 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1364 {Opt_init_itable, 0, MOPT_GTE0},
1365 {Opt_stripe, 0, MOPT_GTE0},
1366 {Opt_resuid, 0, MOPT_GTE0},
1367 {Opt_resgid, 0, MOPT_GTE0},
1368 {Opt_journal_dev, 0, MOPT_GTE0},
1369 {Opt_journal_ioprio, 0, MOPT_GTE0},
1370 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1371 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1372 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1373 MOPT_NO_EXT2 | MOPT_DATAJ},
1374 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1375 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1376 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1377 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1378 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1379 #else
1380 {Opt_acl, 0, MOPT_NOSUPPORT},
1381 {Opt_noacl, 0, MOPT_NOSUPPORT},
1382 #endif
1383 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1384 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1385 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1386 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1387 MOPT_SET | MOPT_Q},
1388 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1389 MOPT_SET | MOPT_Q},
1390 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1391 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1392 {Opt_usrjquota, 0, MOPT_Q},
1393 {Opt_grpjquota, 0, MOPT_Q},
1394 {Opt_offusrjquota, 0, MOPT_Q},
1395 {Opt_offgrpjquota, 0, MOPT_Q},
1396 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1397 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1398 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1399 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1400 {Opt_err, 0, 0}
1401 };
1402
1403 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1404 substring_t *args, unsigned long *journal_devnum,
1405 unsigned int *journal_ioprio, int is_remount)
1406 {
1407 struct ext4_sb_info *sbi = EXT4_SB(sb);
1408 const struct mount_opts *m;
1409 kuid_t uid;
1410 kgid_t gid;
1411 int arg = 0;
1412
1413 #ifdef CONFIG_QUOTA
1414 if (token == Opt_usrjquota)
1415 return set_qf_name(sb, USRQUOTA, &args[0]);
1416 else if (token == Opt_grpjquota)
1417 return set_qf_name(sb, GRPQUOTA, &args[0]);
1418 else if (token == Opt_offusrjquota)
1419 return clear_qf_name(sb, USRQUOTA);
1420 else if (token == Opt_offgrpjquota)
1421 return clear_qf_name(sb, GRPQUOTA);
1422 #endif
1423 switch (token) {
1424 case Opt_noacl:
1425 case Opt_nouser_xattr:
1426 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1427 break;
1428 case Opt_sb:
1429 return 1; /* handled by get_sb_block() */
1430 case Opt_removed:
1431 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1432 return 1;
1433 case Opt_abort:
1434 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1435 return 1;
1436 case Opt_i_version:
1437 sb->s_flags |= MS_I_VERSION;
1438 return 1;
1439 }
1440
1441 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1442 if (token == m->token)
1443 break;
1444
1445 if (m->token == Opt_err) {
1446 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1447 "or missing value", opt);
1448 return -1;
1449 }
1450
1451 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1452 ext4_msg(sb, KERN_ERR,
1453 "Mount option \"%s\" incompatible with ext2", opt);
1454 return -1;
1455 }
1456 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1457 ext4_msg(sb, KERN_ERR,
1458 "Mount option \"%s\" incompatible with ext3", opt);
1459 return -1;
1460 }
1461
1462 if (args->from && match_int(args, &arg))
1463 return -1;
1464 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1465 return -1;
1466 if (m->flags & MOPT_EXPLICIT)
1467 set_opt2(sb, EXPLICIT_DELALLOC);
1468 if (m->flags & MOPT_CLEAR_ERR)
1469 clear_opt(sb, ERRORS_MASK);
1470 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1471 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1472 "options when quota turned on");
1473 return -1;
1474 }
1475
1476 if (m->flags & MOPT_NOSUPPORT) {
1477 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1478 } else if (token == Opt_commit) {
1479 if (arg == 0)
1480 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1481 sbi->s_commit_interval = HZ * arg;
1482 } else if (token == Opt_max_batch_time) {
1483 if (arg == 0)
1484 arg = EXT4_DEF_MAX_BATCH_TIME;
1485 sbi->s_max_batch_time = arg;
1486 } else if (token == Opt_min_batch_time) {
1487 sbi->s_min_batch_time = arg;
1488 } else if (token == Opt_inode_readahead_blks) {
1489 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1490 ext4_msg(sb, KERN_ERR,
1491 "EXT4-fs: inode_readahead_blks must be "
1492 "0 or a power of 2 smaller than 2^31");
1493 return -1;
1494 }
1495 sbi->s_inode_readahead_blks = arg;
1496 } else if (token == Opt_init_itable) {
1497 set_opt(sb, INIT_INODE_TABLE);
1498 if (!args->from)
1499 arg = EXT4_DEF_LI_WAIT_MULT;
1500 sbi->s_li_wait_mult = arg;
1501 } else if (token == Opt_max_dir_size_kb) {
1502 sbi->s_max_dir_size_kb = arg;
1503 } else if (token == Opt_stripe) {
1504 sbi->s_stripe = arg;
1505 } else if (token == Opt_resuid) {
1506 uid = make_kuid(current_user_ns(), arg);
1507 if (!uid_valid(uid)) {
1508 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1509 return -1;
1510 }
1511 sbi->s_resuid = uid;
1512 } else if (token == Opt_resgid) {
1513 gid = make_kgid(current_user_ns(), arg);
1514 if (!gid_valid(gid)) {
1515 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1516 return -1;
1517 }
1518 sbi->s_resgid = gid;
1519 } else if (token == Opt_journal_dev) {
1520 if (is_remount) {
1521 ext4_msg(sb, KERN_ERR,
1522 "Cannot specify journal on remount");
1523 return -1;
1524 }
1525 *journal_devnum = arg;
1526 } else if (token == Opt_journal_ioprio) {
1527 if (arg > 7) {
1528 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1529 " (must be 0-7)");
1530 return -1;
1531 }
1532 *journal_ioprio =
1533 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1534 } else if (m->flags & MOPT_DATAJ) {
1535 if (is_remount) {
1536 if (!sbi->s_journal)
1537 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1538 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1539 ext4_msg(sb, KERN_ERR,
1540 "Cannot change data mode on remount");
1541 return -1;
1542 }
1543 } else {
1544 clear_opt(sb, DATA_FLAGS);
1545 sbi->s_mount_opt |= m->mount_opt;
1546 }
1547 #ifdef CONFIG_QUOTA
1548 } else if (m->flags & MOPT_QFMT) {
1549 if (sb_any_quota_loaded(sb) &&
1550 sbi->s_jquota_fmt != m->mount_opt) {
1551 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1552 "quota options when quota turned on");
1553 return -1;
1554 }
1555 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1556 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1557 ext4_msg(sb, KERN_ERR,
1558 "Cannot set journaled quota options "
1559 "when QUOTA feature is enabled");
1560 return -1;
1561 }
1562 sbi->s_jquota_fmt = m->mount_opt;
1563 #endif
1564 } else {
1565 if (!args->from)
1566 arg = 1;
1567 if (m->flags & MOPT_CLEAR)
1568 arg = !arg;
1569 else if (unlikely(!(m->flags & MOPT_SET))) {
1570 ext4_msg(sb, KERN_WARNING,
1571 "buggy handling of option %s", opt);
1572 WARN_ON(1);
1573 return -1;
1574 }
1575 if (arg != 0)
1576 sbi->s_mount_opt |= m->mount_opt;
1577 else
1578 sbi->s_mount_opt &= ~m->mount_opt;
1579 }
1580 return 1;
1581 }
1582
1583 static int parse_options(char *options, struct super_block *sb,
1584 unsigned long *journal_devnum,
1585 unsigned int *journal_ioprio,
1586 int is_remount)
1587 {
1588 struct ext4_sb_info *sbi = EXT4_SB(sb);
1589 char *p;
1590 substring_t args[MAX_OPT_ARGS];
1591 int token;
1592
1593 if (!options)
1594 return 1;
1595
1596 while ((p = strsep(&options, ",")) != NULL) {
1597 if (!*p)
1598 continue;
1599 /*
1600 * Initialize args struct so we know whether arg was
1601 * found; some options take optional arguments.
1602 */
1603 args[0].to = args[0].from = NULL;
1604 token = match_token(p, tokens, args);
1605 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1606 journal_ioprio, is_remount) < 0)
1607 return 0;
1608 }
1609 #ifdef CONFIG_QUOTA
1610 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1611 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1612 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1613 "feature is enabled");
1614 return 0;
1615 }
1616 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1617 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1618 clear_opt(sb, USRQUOTA);
1619
1620 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1621 clear_opt(sb, GRPQUOTA);
1622
1623 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1624 ext4_msg(sb, KERN_ERR, "old and new quota "
1625 "format mixing");
1626 return 0;
1627 }
1628
1629 if (!sbi->s_jquota_fmt) {
1630 ext4_msg(sb, KERN_ERR, "journaled quota format "
1631 "not specified");
1632 return 0;
1633 }
1634 } else {
1635 if (sbi->s_jquota_fmt) {
1636 ext4_msg(sb, KERN_ERR, "journaled quota format "
1637 "specified with no journaling "
1638 "enabled");
1639 return 0;
1640 }
1641 }
1642 #endif
1643 if (test_opt(sb, DIOREAD_NOLOCK)) {
1644 int blocksize =
1645 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1646
1647 if (blocksize < PAGE_CACHE_SIZE) {
1648 ext4_msg(sb, KERN_ERR, "can't mount with "
1649 "dioread_nolock if block size != PAGE_SIZE");
1650 return 0;
1651 }
1652 }
1653 return 1;
1654 }
1655
1656 static inline void ext4_show_quota_options(struct seq_file *seq,
1657 struct super_block *sb)
1658 {
1659 #if defined(CONFIG_QUOTA)
1660 struct ext4_sb_info *sbi = EXT4_SB(sb);
1661
1662 if (sbi->s_jquota_fmt) {
1663 char *fmtname = "";
1664
1665 switch (sbi->s_jquota_fmt) {
1666 case QFMT_VFS_OLD:
1667 fmtname = "vfsold";
1668 break;
1669 case QFMT_VFS_V0:
1670 fmtname = "vfsv0";
1671 break;
1672 case QFMT_VFS_V1:
1673 fmtname = "vfsv1";
1674 break;
1675 }
1676 seq_printf(seq, ",jqfmt=%s", fmtname);
1677 }
1678
1679 if (sbi->s_qf_names[USRQUOTA])
1680 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1681
1682 if (sbi->s_qf_names[GRPQUOTA])
1683 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1684
1685 if (test_opt(sb, USRQUOTA))
1686 seq_puts(seq, ",usrquota");
1687
1688 if (test_opt(sb, GRPQUOTA))
1689 seq_puts(seq, ",grpquota");
1690 #endif
1691 }
1692
1693 static const char *token2str(int token)
1694 {
1695 const struct match_token *t;
1696
1697 for (t = tokens; t->token != Opt_err; t++)
1698 if (t->token == token && !strchr(t->pattern, '='))
1699 break;
1700 return t->pattern;
1701 }
1702
1703 /*
1704 * Show an option if
1705 * - it's set to a non-default value OR
1706 * - if the per-sb default is different from the global default
1707 */
1708 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1709 int nodefs)
1710 {
1711 struct ext4_sb_info *sbi = EXT4_SB(sb);
1712 struct ext4_super_block *es = sbi->s_es;
1713 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1714 const struct mount_opts *m;
1715 char sep = nodefs ? '\n' : ',';
1716
1717 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1718 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1719
1720 if (sbi->s_sb_block != 1)
1721 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1722
1723 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1724 int want_set = m->flags & MOPT_SET;
1725 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1726 (m->flags & MOPT_CLEAR_ERR))
1727 continue;
1728 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1729 continue; /* skip if same as the default */
1730 if ((want_set &&
1731 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1732 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1733 continue; /* select Opt_noFoo vs Opt_Foo */
1734 SEQ_OPTS_PRINT("%s", token2str(m->token));
1735 }
1736
1737 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1738 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1739 SEQ_OPTS_PRINT("resuid=%u",
1740 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1741 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1742 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1743 SEQ_OPTS_PRINT("resgid=%u",
1744 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1745 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1746 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1747 SEQ_OPTS_PUTS("errors=remount-ro");
1748 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1749 SEQ_OPTS_PUTS("errors=continue");
1750 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1751 SEQ_OPTS_PUTS("errors=panic");
1752 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1753 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1754 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1755 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1756 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1757 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1758 if (sb->s_flags & MS_I_VERSION)
1759 SEQ_OPTS_PUTS("i_version");
1760 if (nodefs || sbi->s_stripe)
1761 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1762 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1763 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1764 SEQ_OPTS_PUTS("data=journal");
1765 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1766 SEQ_OPTS_PUTS("data=ordered");
1767 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1768 SEQ_OPTS_PUTS("data=writeback");
1769 }
1770 if (nodefs ||
1771 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1772 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1773 sbi->s_inode_readahead_blks);
1774
1775 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1776 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1777 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1778 if (nodefs || sbi->s_max_dir_size_kb)
1779 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1780
1781 ext4_show_quota_options(seq, sb);
1782 return 0;
1783 }
1784
1785 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1786 {
1787 return _ext4_show_options(seq, root->d_sb, 0);
1788 }
1789
1790 static int options_seq_show(struct seq_file *seq, void *offset)
1791 {
1792 struct super_block *sb = seq->private;
1793 int rc;
1794
1795 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1796 rc = _ext4_show_options(seq, sb, 1);
1797 seq_puts(seq, "\n");
1798 return rc;
1799 }
1800
1801 static int options_open_fs(struct inode *inode, struct file *file)
1802 {
1803 return single_open(file, options_seq_show, PDE(inode)->data);
1804 }
1805
1806 static const struct file_operations ext4_seq_options_fops = {
1807 .owner = THIS_MODULE,
1808 .open = options_open_fs,
1809 .read = seq_read,
1810 .llseek = seq_lseek,
1811 .release = single_release,
1812 };
1813
1814 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1815 int read_only)
1816 {
1817 struct ext4_sb_info *sbi = EXT4_SB(sb);
1818 int res = 0;
1819
1820 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1821 ext4_msg(sb, KERN_ERR, "revision level too high, "
1822 "forcing read-only mode");
1823 res = MS_RDONLY;
1824 }
1825 if (read_only)
1826 goto done;
1827 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1828 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1829 "running e2fsck is recommended");
1830 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1831 ext4_msg(sb, KERN_WARNING,
1832 "warning: mounting fs with errors, "
1833 "running e2fsck is recommended");
1834 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1835 le16_to_cpu(es->s_mnt_count) >=
1836 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1837 ext4_msg(sb, KERN_WARNING,
1838 "warning: maximal mount count reached, "
1839 "running e2fsck is recommended");
1840 else if (le32_to_cpu(es->s_checkinterval) &&
1841 (le32_to_cpu(es->s_lastcheck) +
1842 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1843 ext4_msg(sb, KERN_WARNING,
1844 "warning: checktime reached, "
1845 "running e2fsck is recommended");
1846 if (!sbi->s_journal)
1847 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1848 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1849 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1850 le16_add_cpu(&es->s_mnt_count, 1);
1851 es->s_mtime = cpu_to_le32(get_seconds());
1852 ext4_update_dynamic_rev(sb);
1853 if (sbi->s_journal)
1854 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1855
1856 ext4_commit_super(sb, 1);
1857 done:
1858 if (test_opt(sb, DEBUG))
1859 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1860 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1861 sb->s_blocksize,
1862 sbi->s_groups_count,
1863 EXT4_BLOCKS_PER_GROUP(sb),
1864 EXT4_INODES_PER_GROUP(sb),
1865 sbi->s_mount_opt, sbi->s_mount_opt2);
1866
1867 cleancache_init_fs(sb);
1868 return res;
1869 }
1870
1871 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1872 {
1873 struct ext4_sb_info *sbi = EXT4_SB(sb);
1874 struct flex_groups *new_groups;
1875 int size;
1876
1877 if (!sbi->s_log_groups_per_flex)
1878 return 0;
1879
1880 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1881 if (size <= sbi->s_flex_groups_allocated)
1882 return 0;
1883
1884 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1885 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1886 if (!new_groups) {
1887 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1888 size / (int) sizeof(struct flex_groups));
1889 return -ENOMEM;
1890 }
1891
1892 if (sbi->s_flex_groups) {
1893 memcpy(new_groups, sbi->s_flex_groups,
1894 (sbi->s_flex_groups_allocated *
1895 sizeof(struct flex_groups)));
1896 ext4_kvfree(sbi->s_flex_groups);
1897 }
1898 sbi->s_flex_groups = new_groups;
1899 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1900 return 0;
1901 }
1902
1903 static int ext4_fill_flex_info(struct super_block *sb)
1904 {
1905 struct ext4_sb_info *sbi = EXT4_SB(sb);
1906 struct ext4_group_desc *gdp = NULL;
1907 ext4_group_t flex_group;
1908 unsigned int groups_per_flex = 0;
1909 int i, err;
1910
1911 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1912 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1913 sbi->s_log_groups_per_flex = 0;
1914 return 1;
1915 }
1916 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1917
1918 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1919 if (err)
1920 goto failed;
1921
1922 for (i = 0; i < sbi->s_groups_count; i++) {
1923 gdp = ext4_get_group_desc(sb, i, NULL);
1924
1925 flex_group = ext4_flex_group(sbi, i);
1926 atomic_add(ext4_free_inodes_count(sb, gdp),
1927 &sbi->s_flex_groups[flex_group].free_inodes);
1928 atomic_add(ext4_free_group_clusters(sb, gdp),
1929 &sbi->s_flex_groups[flex_group].free_clusters);
1930 atomic_add(ext4_used_dirs_count(sb, gdp),
1931 &sbi->s_flex_groups[flex_group].used_dirs);
1932 }
1933
1934 return 1;
1935 failed:
1936 return 0;
1937 }
1938
1939 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1940 struct ext4_group_desc *gdp)
1941 {
1942 int offset;
1943 __u16 crc = 0;
1944 __le32 le_group = cpu_to_le32(block_group);
1945
1946 if ((sbi->s_es->s_feature_ro_compat &
1947 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1948 /* Use new metadata_csum algorithm */
1949 __u16 old_csum;
1950 __u32 csum32;
1951
1952 old_csum = gdp->bg_checksum;
1953 gdp->bg_checksum = 0;
1954 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1955 sizeof(le_group));
1956 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1957 sbi->s_desc_size);
1958 gdp->bg_checksum = old_csum;
1959
1960 crc = csum32 & 0xFFFF;
1961 goto out;
1962 }
1963
1964 /* old crc16 code */
1965 offset = offsetof(struct ext4_group_desc, bg_checksum);
1966
1967 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1968 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1969 crc = crc16(crc, (__u8 *)gdp, offset);
1970 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1971 /* for checksum of struct ext4_group_desc do the rest...*/
1972 if ((sbi->s_es->s_feature_incompat &
1973 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1974 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1975 crc = crc16(crc, (__u8 *)gdp + offset,
1976 le16_to_cpu(sbi->s_es->s_desc_size) -
1977 offset);
1978
1979 out:
1980 return cpu_to_le16(crc);
1981 }
1982
1983 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
1984 struct ext4_group_desc *gdp)
1985 {
1986 if (ext4_has_group_desc_csum(sb) &&
1987 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
1988 block_group, gdp)))
1989 return 0;
1990
1991 return 1;
1992 }
1993
1994 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
1995 struct ext4_group_desc *gdp)
1996 {
1997 if (!ext4_has_group_desc_csum(sb))
1998 return;
1999 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2000 }
2001
2002 /* Called at mount-time, super-block is locked */
2003 static int ext4_check_descriptors(struct super_block *sb,
2004 ext4_group_t *first_not_zeroed)
2005 {
2006 struct ext4_sb_info *sbi = EXT4_SB(sb);
2007 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2008 ext4_fsblk_t last_block;
2009 ext4_fsblk_t block_bitmap;
2010 ext4_fsblk_t inode_bitmap;
2011 ext4_fsblk_t inode_table;
2012 int flexbg_flag = 0;
2013 ext4_group_t i, grp = sbi->s_groups_count;
2014
2015 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2016 flexbg_flag = 1;
2017
2018 ext4_debug("Checking group descriptors");
2019
2020 for (i = 0; i < sbi->s_groups_count; i++) {
2021 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2022
2023 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2024 last_block = ext4_blocks_count(sbi->s_es) - 1;
2025 else
2026 last_block = first_block +
2027 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2028
2029 if ((grp == sbi->s_groups_count) &&
2030 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2031 grp = i;
2032
2033 block_bitmap = ext4_block_bitmap(sb, gdp);
2034 if (block_bitmap < first_block || block_bitmap > last_block) {
2035 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2036 "Block bitmap for group %u not in group "
2037 "(block %llu)!", i, block_bitmap);
2038 return 0;
2039 }
2040 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2041 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2042 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2043 "Inode bitmap for group %u not in group "
2044 "(block %llu)!", i, inode_bitmap);
2045 return 0;
2046 }
2047 inode_table = ext4_inode_table(sb, gdp);
2048 if (inode_table < first_block ||
2049 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2050 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2051 "Inode table for group %u not in group "
2052 "(block %llu)!", i, inode_table);
2053 return 0;
2054 }
2055 ext4_lock_group(sb, i);
2056 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2057 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2058 "Checksum for group %u failed (%u!=%u)",
2059 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2060 gdp)), le16_to_cpu(gdp->bg_checksum));
2061 if (!(sb->s_flags & MS_RDONLY)) {
2062 ext4_unlock_group(sb, i);
2063 return 0;
2064 }
2065 }
2066 ext4_unlock_group(sb, i);
2067 if (!flexbg_flag)
2068 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2069 }
2070 if (NULL != first_not_zeroed)
2071 *first_not_zeroed = grp;
2072
2073 ext4_free_blocks_count_set(sbi->s_es,
2074 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2075 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2076 return 1;
2077 }
2078
2079 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2080 * the superblock) which were deleted from all directories, but held open by
2081 * a process at the time of a crash. We walk the list and try to delete these
2082 * inodes at recovery time (only with a read-write filesystem).
2083 *
2084 * In order to keep the orphan inode chain consistent during traversal (in
2085 * case of crash during recovery), we link each inode into the superblock
2086 * orphan list_head and handle it the same way as an inode deletion during
2087 * normal operation (which journals the operations for us).
2088 *
2089 * We only do an iget() and an iput() on each inode, which is very safe if we
2090 * accidentally point at an in-use or already deleted inode. The worst that
2091 * can happen in this case is that we get a "bit already cleared" message from
2092 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2093 * e2fsck was run on this filesystem, and it must have already done the orphan
2094 * inode cleanup for us, so we can safely abort without any further action.
2095 */
2096 static void ext4_orphan_cleanup(struct super_block *sb,
2097 struct ext4_super_block *es)
2098 {
2099 unsigned int s_flags = sb->s_flags;
2100 int nr_orphans = 0, nr_truncates = 0;
2101 #ifdef CONFIG_QUOTA
2102 int i;
2103 #endif
2104 if (!es->s_last_orphan) {
2105 jbd_debug(4, "no orphan inodes to clean up\n");
2106 return;
2107 }
2108
2109 if (bdev_read_only(sb->s_bdev)) {
2110 ext4_msg(sb, KERN_ERR, "write access "
2111 "unavailable, skipping orphan cleanup");
2112 return;
2113 }
2114
2115 /* Check if feature set would not allow a r/w mount */
2116 if (!ext4_feature_set_ok(sb, 0)) {
2117 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2118 "unknown ROCOMPAT features");
2119 return;
2120 }
2121
2122 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2123 /* don't clear list on RO mount w/ errors */
2124 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2125 jbd_debug(1, "Errors on filesystem, "
2126 "clearing orphan list.\n");
2127 es->s_last_orphan = 0;
2128 }
2129 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2130 return;
2131 }
2132
2133 if (s_flags & MS_RDONLY) {
2134 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2135 sb->s_flags &= ~MS_RDONLY;
2136 }
2137 #ifdef CONFIG_QUOTA
2138 /* Needed for iput() to work correctly and not trash data */
2139 sb->s_flags |= MS_ACTIVE;
2140 /* Turn on quotas so that they are updated correctly */
2141 for (i = 0; i < MAXQUOTAS; i++) {
2142 if (EXT4_SB(sb)->s_qf_names[i]) {
2143 int ret = ext4_quota_on_mount(sb, i);
2144 if (ret < 0)
2145 ext4_msg(sb, KERN_ERR,
2146 "Cannot turn on journaled "
2147 "quota: error %d", ret);
2148 }
2149 }
2150 #endif
2151
2152 while (es->s_last_orphan) {
2153 struct inode *inode;
2154
2155 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2156 if (IS_ERR(inode)) {
2157 es->s_last_orphan = 0;
2158 break;
2159 }
2160
2161 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2162 dquot_initialize(inode);
2163 if (inode->i_nlink) {
2164 ext4_msg(sb, KERN_DEBUG,
2165 "%s: truncating inode %lu to %lld bytes",
2166 __func__, inode->i_ino, inode->i_size);
2167 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2168 inode->i_ino, inode->i_size);
2169 mutex_lock(&inode->i_mutex);
2170 ext4_truncate(inode);
2171 mutex_unlock(&inode->i_mutex);
2172 nr_truncates++;
2173 } else {
2174 ext4_msg(sb, KERN_DEBUG,
2175 "%s: deleting unreferenced inode %lu",
2176 __func__, inode->i_ino);
2177 jbd_debug(2, "deleting unreferenced inode %lu\n",
2178 inode->i_ino);
2179 nr_orphans++;
2180 }
2181 iput(inode); /* The delete magic happens here! */
2182 }
2183
2184 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2185
2186 if (nr_orphans)
2187 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2188 PLURAL(nr_orphans));
2189 if (nr_truncates)
2190 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2191 PLURAL(nr_truncates));
2192 #ifdef CONFIG_QUOTA
2193 /* Turn quotas off */
2194 for (i = 0; i < MAXQUOTAS; i++) {
2195 if (sb_dqopt(sb)->files[i])
2196 dquot_quota_off(sb, i);
2197 }
2198 #endif
2199 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2200 }
2201
2202 /*
2203 * Maximal extent format file size.
2204 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2205 * extent format containers, within a sector_t, and within i_blocks
2206 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2207 * so that won't be a limiting factor.
2208 *
2209 * However there is other limiting factor. We do store extents in the form
2210 * of starting block and length, hence the resulting length of the extent
2211 * covering maximum file size must fit into on-disk format containers as
2212 * well. Given that length is always by 1 unit bigger than max unit (because
2213 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2214 *
2215 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2216 */
2217 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2218 {
2219 loff_t res;
2220 loff_t upper_limit = MAX_LFS_FILESIZE;
2221
2222 /* small i_blocks in vfs inode? */
2223 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2224 /*
2225 * CONFIG_LBDAF is not enabled implies the inode
2226 * i_block represent total blocks in 512 bytes
2227 * 32 == size of vfs inode i_blocks * 8
2228 */
2229 upper_limit = (1LL << 32) - 1;
2230
2231 /* total blocks in file system block size */
2232 upper_limit >>= (blkbits - 9);
2233 upper_limit <<= blkbits;
2234 }
2235
2236 /*
2237 * 32-bit extent-start container, ee_block. We lower the maxbytes
2238 * by one fs block, so ee_len can cover the extent of maximum file
2239 * size
2240 */
2241 res = (1LL << 32) - 1;
2242 res <<= blkbits;
2243
2244 /* Sanity check against vm- & vfs- imposed limits */
2245 if (res > upper_limit)
2246 res = upper_limit;
2247
2248 return res;
2249 }
2250
2251 /*
2252 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2253 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2254 * We need to be 1 filesystem block less than the 2^48 sector limit.
2255 */
2256 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2257 {
2258 loff_t res = EXT4_NDIR_BLOCKS;
2259 int meta_blocks;
2260 loff_t upper_limit;
2261 /* This is calculated to be the largest file size for a dense, block
2262 * mapped file such that the file's total number of 512-byte sectors,
2263 * including data and all indirect blocks, does not exceed (2^48 - 1).
2264 *
2265 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2266 * number of 512-byte sectors of the file.
2267 */
2268
2269 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2270 /*
2271 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2272 * the inode i_block field represents total file blocks in
2273 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2274 */
2275 upper_limit = (1LL << 32) - 1;
2276
2277 /* total blocks in file system block size */
2278 upper_limit >>= (bits - 9);
2279
2280 } else {
2281 /*
2282 * We use 48 bit ext4_inode i_blocks
2283 * With EXT4_HUGE_FILE_FL set the i_blocks
2284 * represent total number of blocks in
2285 * file system block size
2286 */
2287 upper_limit = (1LL << 48) - 1;
2288
2289 }
2290
2291 /* indirect blocks */
2292 meta_blocks = 1;
2293 /* double indirect blocks */
2294 meta_blocks += 1 + (1LL << (bits-2));
2295 /* tripple indirect blocks */
2296 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2297
2298 upper_limit -= meta_blocks;
2299 upper_limit <<= bits;
2300
2301 res += 1LL << (bits-2);
2302 res += 1LL << (2*(bits-2));
2303 res += 1LL << (3*(bits-2));
2304 res <<= bits;
2305 if (res > upper_limit)
2306 res = upper_limit;
2307
2308 if (res > MAX_LFS_FILESIZE)
2309 res = MAX_LFS_FILESIZE;
2310
2311 return res;
2312 }
2313
2314 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2315 ext4_fsblk_t logical_sb_block, int nr)
2316 {
2317 struct ext4_sb_info *sbi = EXT4_SB(sb);
2318 ext4_group_t bg, first_meta_bg;
2319 int has_super = 0;
2320
2321 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2322
2323 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2324 nr < first_meta_bg)
2325 return logical_sb_block + nr + 1;
2326 bg = sbi->s_desc_per_block * nr;
2327 if (ext4_bg_has_super(sb, bg))
2328 has_super = 1;
2329
2330 return (has_super + ext4_group_first_block_no(sb, bg));
2331 }
2332
2333 /**
2334 * ext4_get_stripe_size: Get the stripe size.
2335 * @sbi: In memory super block info
2336 *
2337 * If we have specified it via mount option, then
2338 * use the mount option value. If the value specified at mount time is
2339 * greater than the blocks per group use the super block value.
2340 * If the super block value is greater than blocks per group return 0.
2341 * Allocator needs it be less than blocks per group.
2342 *
2343 */
2344 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2345 {
2346 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2347 unsigned long stripe_width =
2348 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2349 int ret;
2350
2351 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2352 ret = sbi->s_stripe;
2353 else if (stripe_width <= sbi->s_blocks_per_group)
2354 ret = stripe_width;
2355 else if (stride <= sbi->s_blocks_per_group)
2356 ret = stride;
2357 else
2358 ret = 0;
2359
2360 /*
2361 * If the stripe width is 1, this makes no sense and
2362 * we set it to 0 to turn off stripe handling code.
2363 */
2364 if (ret <= 1)
2365 ret = 0;
2366
2367 return ret;
2368 }
2369
2370 /* sysfs supprt */
2371
2372 struct ext4_attr {
2373 struct attribute attr;
2374 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2375 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2376 const char *, size_t);
2377 int offset;
2378 };
2379
2380 static int parse_strtoul(const char *buf,
2381 unsigned long max, unsigned long *value)
2382 {
2383 char *endp;
2384
2385 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2386 endp = skip_spaces(endp);
2387 if (*endp || *value > max)
2388 return -EINVAL;
2389
2390 return 0;
2391 }
2392
2393 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2394 struct ext4_sb_info *sbi,
2395 char *buf)
2396 {
2397 return snprintf(buf, PAGE_SIZE, "%llu\n",
2398 (s64) EXT4_C2B(sbi,
2399 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2400 }
2401
2402 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2403 struct ext4_sb_info *sbi, char *buf)
2404 {
2405 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2406
2407 if (!sb->s_bdev->bd_part)
2408 return snprintf(buf, PAGE_SIZE, "0\n");
2409 return snprintf(buf, PAGE_SIZE, "%lu\n",
2410 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2411 sbi->s_sectors_written_start) >> 1);
2412 }
2413
2414 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2415 struct ext4_sb_info *sbi, char *buf)
2416 {
2417 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2418
2419 if (!sb->s_bdev->bd_part)
2420 return snprintf(buf, PAGE_SIZE, "0\n");
2421 return snprintf(buf, PAGE_SIZE, "%llu\n",
2422 (unsigned long long)(sbi->s_kbytes_written +
2423 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2424 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2425 }
2426
2427 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2428 struct ext4_sb_info *sbi,
2429 const char *buf, size_t count)
2430 {
2431 unsigned long t;
2432
2433 if (parse_strtoul(buf, 0x40000000, &t))
2434 return -EINVAL;
2435
2436 if (t && !is_power_of_2(t))
2437 return -EINVAL;
2438
2439 sbi->s_inode_readahead_blks = t;
2440 return count;
2441 }
2442
2443 static ssize_t sbi_ui_show(struct ext4_attr *a,
2444 struct ext4_sb_info *sbi, char *buf)
2445 {
2446 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2447
2448 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2449 }
2450
2451 static ssize_t sbi_ui_store(struct ext4_attr *a,
2452 struct ext4_sb_info *sbi,
2453 const char *buf, size_t count)
2454 {
2455 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2456 unsigned long t;
2457
2458 if (parse_strtoul(buf, 0xffffffff, &t))
2459 return -EINVAL;
2460 *ui = t;
2461 return count;
2462 }
2463
2464 static ssize_t trigger_test_error(struct ext4_attr *a,
2465 struct ext4_sb_info *sbi,
2466 const char *buf, size_t count)
2467 {
2468 int len = count;
2469
2470 if (!capable(CAP_SYS_ADMIN))
2471 return -EPERM;
2472
2473 if (len && buf[len-1] == '\n')
2474 len--;
2475
2476 if (len)
2477 ext4_error(sbi->s_sb, "%.*s", len, buf);
2478 return count;
2479 }
2480
2481 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2482 static struct ext4_attr ext4_attr_##_name = { \
2483 .attr = {.name = __stringify(_name), .mode = _mode }, \
2484 .show = _show, \
2485 .store = _store, \
2486 .offset = offsetof(struct ext4_sb_info, _elname), \
2487 }
2488 #define EXT4_ATTR(name, mode, show, store) \
2489 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2490
2491 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2492 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2493 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2494 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2495 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2496 #define ATTR_LIST(name) &ext4_attr_##name.attr
2497
2498 EXT4_RO_ATTR(delayed_allocation_blocks);
2499 EXT4_RO_ATTR(session_write_kbytes);
2500 EXT4_RO_ATTR(lifetime_write_kbytes);
2501 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2502 inode_readahead_blks_store, s_inode_readahead_blks);
2503 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2504 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2505 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2506 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2507 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2508 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2509 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2510 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2511 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2512 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2513
2514 static struct attribute *ext4_attrs[] = {
2515 ATTR_LIST(delayed_allocation_blocks),
2516 ATTR_LIST(session_write_kbytes),
2517 ATTR_LIST(lifetime_write_kbytes),
2518 ATTR_LIST(inode_readahead_blks),
2519 ATTR_LIST(inode_goal),
2520 ATTR_LIST(mb_stats),
2521 ATTR_LIST(mb_max_to_scan),
2522 ATTR_LIST(mb_min_to_scan),
2523 ATTR_LIST(mb_order2_req),
2524 ATTR_LIST(mb_stream_req),
2525 ATTR_LIST(mb_group_prealloc),
2526 ATTR_LIST(max_writeback_mb_bump),
2527 ATTR_LIST(extent_max_zeroout_kb),
2528 ATTR_LIST(trigger_fs_error),
2529 NULL,
2530 };
2531
2532 /* Features this copy of ext4 supports */
2533 EXT4_INFO_ATTR(lazy_itable_init);
2534 EXT4_INFO_ATTR(batched_discard);
2535 EXT4_INFO_ATTR(meta_bg_resize);
2536
2537 static struct attribute *ext4_feat_attrs[] = {
2538 ATTR_LIST(lazy_itable_init),
2539 ATTR_LIST(batched_discard),
2540 ATTR_LIST(meta_bg_resize),
2541 NULL,
2542 };
2543
2544 static ssize_t ext4_attr_show(struct kobject *kobj,
2545 struct attribute *attr, char *buf)
2546 {
2547 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2548 s_kobj);
2549 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2550
2551 return a->show ? a->show(a, sbi, buf) : 0;
2552 }
2553
2554 static ssize_t ext4_attr_store(struct kobject *kobj,
2555 struct attribute *attr,
2556 const char *buf, size_t len)
2557 {
2558 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2559 s_kobj);
2560 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2561
2562 return a->store ? a->store(a, sbi, buf, len) : 0;
2563 }
2564
2565 static void ext4_sb_release(struct kobject *kobj)
2566 {
2567 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2568 s_kobj);
2569 complete(&sbi->s_kobj_unregister);
2570 }
2571
2572 static const struct sysfs_ops ext4_attr_ops = {
2573 .show = ext4_attr_show,
2574 .store = ext4_attr_store,
2575 };
2576
2577 static struct kobj_type ext4_ktype = {
2578 .default_attrs = ext4_attrs,
2579 .sysfs_ops = &ext4_attr_ops,
2580 .release = ext4_sb_release,
2581 };
2582
2583 static void ext4_feat_release(struct kobject *kobj)
2584 {
2585 complete(&ext4_feat->f_kobj_unregister);
2586 }
2587
2588 static struct kobj_type ext4_feat_ktype = {
2589 .default_attrs = ext4_feat_attrs,
2590 .sysfs_ops = &ext4_attr_ops,
2591 .release = ext4_feat_release,
2592 };
2593
2594 /*
2595 * Check whether this filesystem can be mounted based on
2596 * the features present and the RDONLY/RDWR mount requested.
2597 * Returns 1 if this filesystem can be mounted as requested,
2598 * 0 if it cannot be.
2599 */
2600 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2601 {
2602 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2603 ext4_msg(sb, KERN_ERR,
2604 "Couldn't mount because of "
2605 "unsupported optional features (%x)",
2606 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2607 ~EXT4_FEATURE_INCOMPAT_SUPP));
2608 return 0;
2609 }
2610
2611 if (readonly)
2612 return 1;
2613
2614 /* Check that feature set is OK for a read-write mount */
2615 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2616 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2617 "unsupported optional features (%x)",
2618 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2619 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2620 return 0;
2621 }
2622 /*
2623 * Large file size enabled file system can only be mounted
2624 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2625 */
2626 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2627 if (sizeof(blkcnt_t) < sizeof(u64)) {
2628 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2629 "cannot be mounted RDWR without "
2630 "CONFIG_LBDAF");
2631 return 0;
2632 }
2633 }
2634 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2635 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2636 ext4_msg(sb, KERN_ERR,
2637 "Can't support bigalloc feature without "
2638 "extents feature\n");
2639 return 0;
2640 }
2641
2642 #ifndef CONFIG_QUOTA
2643 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2644 !readonly) {
2645 ext4_msg(sb, KERN_ERR,
2646 "Filesystem with quota feature cannot be mounted RDWR "
2647 "without CONFIG_QUOTA");
2648 return 0;
2649 }
2650 #endif /* CONFIG_QUOTA */
2651 return 1;
2652 }
2653
2654 /*
2655 * This function is called once a day if we have errors logged
2656 * on the file system
2657 */
2658 static void print_daily_error_info(unsigned long arg)
2659 {
2660 struct super_block *sb = (struct super_block *) arg;
2661 struct ext4_sb_info *sbi;
2662 struct ext4_super_block *es;
2663
2664 sbi = EXT4_SB(sb);
2665 es = sbi->s_es;
2666
2667 if (es->s_error_count)
2668 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2669 le32_to_cpu(es->s_error_count));
2670 if (es->s_first_error_time) {
2671 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2672 sb->s_id, le32_to_cpu(es->s_first_error_time),
2673 (int) sizeof(es->s_first_error_func),
2674 es->s_first_error_func,
2675 le32_to_cpu(es->s_first_error_line));
2676 if (es->s_first_error_ino)
2677 printk(": inode %u",
2678 le32_to_cpu(es->s_first_error_ino));
2679 if (es->s_first_error_block)
2680 printk(": block %llu", (unsigned long long)
2681 le64_to_cpu(es->s_first_error_block));
2682 printk("\n");
2683 }
2684 if (es->s_last_error_time) {
2685 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2686 sb->s_id, le32_to_cpu(es->s_last_error_time),
2687 (int) sizeof(es->s_last_error_func),
2688 es->s_last_error_func,
2689 le32_to_cpu(es->s_last_error_line));
2690 if (es->s_last_error_ino)
2691 printk(": inode %u",
2692 le32_to_cpu(es->s_last_error_ino));
2693 if (es->s_last_error_block)
2694 printk(": block %llu", (unsigned long long)
2695 le64_to_cpu(es->s_last_error_block));
2696 printk("\n");
2697 }
2698 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2699 }
2700
2701 /* Find next suitable group and run ext4_init_inode_table */
2702 static int ext4_run_li_request(struct ext4_li_request *elr)
2703 {
2704 struct ext4_group_desc *gdp = NULL;
2705 ext4_group_t group, ngroups;
2706 struct super_block *sb;
2707 unsigned long timeout = 0;
2708 int ret = 0;
2709
2710 sb = elr->lr_super;
2711 ngroups = EXT4_SB(sb)->s_groups_count;
2712
2713 sb_start_write(sb);
2714 for (group = elr->lr_next_group; group < ngroups; group++) {
2715 gdp = ext4_get_group_desc(sb, group, NULL);
2716 if (!gdp) {
2717 ret = 1;
2718 break;
2719 }
2720
2721 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2722 break;
2723 }
2724
2725 if (group >= ngroups)
2726 ret = 1;
2727
2728 if (!ret) {
2729 timeout = jiffies;
2730 ret = ext4_init_inode_table(sb, group,
2731 elr->lr_timeout ? 0 : 1);
2732 if (elr->lr_timeout == 0) {
2733 timeout = (jiffies - timeout) *
2734 elr->lr_sbi->s_li_wait_mult;
2735 elr->lr_timeout = timeout;
2736 }
2737 elr->lr_next_sched = jiffies + elr->lr_timeout;
2738 elr->lr_next_group = group + 1;
2739 }
2740 sb_end_write(sb);
2741
2742 return ret;
2743 }
2744
2745 /*
2746 * Remove lr_request from the list_request and free the
2747 * request structure. Should be called with li_list_mtx held
2748 */
2749 static void ext4_remove_li_request(struct ext4_li_request *elr)
2750 {
2751 struct ext4_sb_info *sbi;
2752
2753 if (!elr)
2754 return;
2755
2756 sbi = elr->lr_sbi;
2757
2758 list_del(&elr->lr_request);
2759 sbi->s_li_request = NULL;
2760 kfree(elr);
2761 }
2762
2763 static void ext4_unregister_li_request(struct super_block *sb)
2764 {
2765 mutex_lock(&ext4_li_mtx);
2766 if (!ext4_li_info) {
2767 mutex_unlock(&ext4_li_mtx);
2768 return;
2769 }
2770
2771 mutex_lock(&ext4_li_info->li_list_mtx);
2772 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2773 mutex_unlock(&ext4_li_info->li_list_mtx);
2774 mutex_unlock(&ext4_li_mtx);
2775 }
2776
2777 static struct task_struct *ext4_lazyinit_task;
2778
2779 /*
2780 * This is the function where ext4lazyinit thread lives. It walks
2781 * through the request list searching for next scheduled filesystem.
2782 * When such a fs is found, run the lazy initialization request
2783 * (ext4_rn_li_request) and keep track of the time spend in this
2784 * function. Based on that time we compute next schedule time of
2785 * the request. When walking through the list is complete, compute
2786 * next waking time and put itself into sleep.
2787 */
2788 static int ext4_lazyinit_thread(void *arg)
2789 {
2790 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2791 struct list_head *pos, *n;
2792 struct ext4_li_request *elr;
2793 unsigned long next_wakeup, cur;
2794
2795 BUG_ON(NULL == eli);
2796
2797 cont_thread:
2798 while (true) {
2799 next_wakeup = MAX_JIFFY_OFFSET;
2800
2801 mutex_lock(&eli->li_list_mtx);
2802 if (list_empty(&eli->li_request_list)) {
2803 mutex_unlock(&eli->li_list_mtx);
2804 goto exit_thread;
2805 }
2806
2807 list_for_each_safe(pos, n, &eli->li_request_list) {
2808 elr = list_entry(pos, struct ext4_li_request,
2809 lr_request);
2810
2811 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2812 if (ext4_run_li_request(elr) != 0) {
2813 /* error, remove the lazy_init job */
2814 ext4_remove_li_request(elr);
2815 continue;
2816 }
2817 }
2818
2819 if (time_before(elr->lr_next_sched, next_wakeup))
2820 next_wakeup = elr->lr_next_sched;
2821 }
2822 mutex_unlock(&eli->li_list_mtx);
2823
2824 try_to_freeze();
2825
2826 cur = jiffies;
2827 if ((time_after_eq(cur, next_wakeup)) ||
2828 (MAX_JIFFY_OFFSET == next_wakeup)) {
2829 cond_resched();
2830 continue;
2831 }
2832
2833 schedule_timeout_interruptible(next_wakeup - cur);
2834
2835 if (kthread_should_stop()) {
2836 ext4_clear_request_list();
2837 goto exit_thread;
2838 }
2839 }
2840
2841 exit_thread:
2842 /*
2843 * It looks like the request list is empty, but we need
2844 * to check it under the li_list_mtx lock, to prevent any
2845 * additions into it, and of course we should lock ext4_li_mtx
2846 * to atomically free the list and ext4_li_info, because at
2847 * this point another ext4 filesystem could be registering
2848 * new one.
2849 */
2850 mutex_lock(&ext4_li_mtx);
2851 mutex_lock(&eli->li_list_mtx);
2852 if (!list_empty(&eli->li_request_list)) {
2853 mutex_unlock(&eli->li_list_mtx);
2854 mutex_unlock(&ext4_li_mtx);
2855 goto cont_thread;
2856 }
2857 mutex_unlock(&eli->li_list_mtx);
2858 kfree(ext4_li_info);
2859 ext4_li_info = NULL;
2860 mutex_unlock(&ext4_li_mtx);
2861
2862 return 0;
2863 }
2864
2865 static void ext4_clear_request_list(void)
2866 {
2867 struct list_head *pos, *n;
2868 struct ext4_li_request *elr;
2869
2870 mutex_lock(&ext4_li_info->li_list_mtx);
2871 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2872 elr = list_entry(pos, struct ext4_li_request,
2873 lr_request);
2874 ext4_remove_li_request(elr);
2875 }
2876 mutex_unlock(&ext4_li_info->li_list_mtx);
2877 }
2878
2879 static int ext4_run_lazyinit_thread(void)
2880 {
2881 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2882 ext4_li_info, "ext4lazyinit");
2883 if (IS_ERR(ext4_lazyinit_task)) {
2884 int err = PTR_ERR(ext4_lazyinit_task);
2885 ext4_clear_request_list();
2886 kfree(ext4_li_info);
2887 ext4_li_info = NULL;
2888 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2889 "initialization thread\n",
2890 err);
2891 return err;
2892 }
2893 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2894 return 0;
2895 }
2896
2897 /*
2898 * Check whether it make sense to run itable init. thread or not.
2899 * If there is at least one uninitialized inode table, return
2900 * corresponding group number, else the loop goes through all
2901 * groups and return total number of groups.
2902 */
2903 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2904 {
2905 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2906 struct ext4_group_desc *gdp = NULL;
2907
2908 for (group = 0; group < ngroups; group++) {
2909 gdp = ext4_get_group_desc(sb, group, NULL);
2910 if (!gdp)
2911 continue;
2912
2913 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2914 break;
2915 }
2916
2917 return group;
2918 }
2919
2920 static int ext4_li_info_new(void)
2921 {
2922 struct ext4_lazy_init *eli = NULL;
2923
2924 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2925 if (!eli)
2926 return -ENOMEM;
2927
2928 INIT_LIST_HEAD(&eli->li_request_list);
2929 mutex_init(&eli->li_list_mtx);
2930
2931 eli->li_state |= EXT4_LAZYINIT_QUIT;
2932
2933 ext4_li_info = eli;
2934
2935 return 0;
2936 }
2937
2938 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2939 ext4_group_t start)
2940 {
2941 struct ext4_sb_info *sbi = EXT4_SB(sb);
2942 struct ext4_li_request *elr;
2943 unsigned long rnd;
2944
2945 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2946 if (!elr)
2947 return NULL;
2948
2949 elr->lr_super = sb;
2950 elr->lr_sbi = sbi;
2951 elr->lr_next_group = start;
2952
2953 /*
2954 * Randomize first schedule time of the request to
2955 * spread the inode table initialization requests
2956 * better.
2957 */
2958 get_random_bytes(&rnd, sizeof(rnd));
2959 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2960 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2961
2962 return elr;
2963 }
2964
2965 int ext4_register_li_request(struct super_block *sb,
2966 ext4_group_t first_not_zeroed)
2967 {
2968 struct ext4_sb_info *sbi = EXT4_SB(sb);
2969 struct ext4_li_request *elr = NULL;
2970 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2971 int ret = 0;
2972
2973 mutex_lock(&ext4_li_mtx);
2974 if (sbi->s_li_request != NULL) {
2975 /*
2976 * Reset timeout so it can be computed again, because
2977 * s_li_wait_mult might have changed.
2978 */
2979 sbi->s_li_request->lr_timeout = 0;
2980 goto out;
2981 }
2982
2983 if (first_not_zeroed == ngroups ||
2984 (sb->s_flags & MS_RDONLY) ||
2985 !test_opt(sb, INIT_INODE_TABLE))
2986 goto out;
2987
2988 elr = ext4_li_request_new(sb, first_not_zeroed);
2989 if (!elr) {
2990 ret = -ENOMEM;
2991 goto out;
2992 }
2993
2994 if (NULL == ext4_li_info) {
2995 ret = ext4_li_info_new();
2996 if (ret)
2997 goto out;
2998 }
2999
3000 mutex_lock(&ext4_li_info->li_list_mtx);
3001 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3002 mutex_unlock(&ext4_li_info->li_list_mtx);
3003
3004 sbi->s_li_request = elr;
3005 /*
3006 * set elr to NULL here since it has been inserted to
3007 * the request_list and the removal and free of it is
3008 * handled by ext4_clear_request_list from now on.
3009 */
3010 elr = NULL;
3011
3012 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3013 ret = ext4_run_lazyinit_thread();
3014 if (ret)
3015 goto out;
3016 }
3017 out:
3018 mutex_unlock(&ext4_li_mtx);
3019 if (ret)
3020 kfree(elr);
3021 return ret;
3022 }
3023
3024 /*
3025 * We do not need to lock anything since this is called on
3026 * module unload.
3027 */
3028 static void ext4_destroy_lazyinit_thread(void)
3029 {
3030 /*
3031 * If thread exited earlier
3032 * there's nothing to be done.
3033 */
3034 if (!ext4_li_info || !ext4_lazyinit_task)
3035 return;
3036
3037 kthread_stop(ext4_lazyinit_task);
3038 }
3039
3040 static int set_journal_csum_feature_set(struct super_block *sb)
3041 {
3042 int ret = 1;
3043 int compat, incompat;
3044 struct ext4_sb_info *sbi = EXT4_SB(sb);
3045
3046 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3047 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3048 /* journal checksum v2 */
3049 compat = 0;
3050 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3051 } else {
3052 /* journal checksum v1 */
3053 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3054 incompat = 0;
3055 }
3056
3057 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3058 ret = jbd2_journal_set_features(sbi->s_journal,
3059 compat, 0,
3060 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3061 incompat);
3062 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3063 ret = jbd2_journal_set_features(sbi->s_journal,
3064 compat, 0,
3065 incompat);
3066 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3067 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3068 } else {
3069 jbd2_journal_clear_features(sbi->s_journal,
3070 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3071 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3072 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3073 }
3074
3075 return ret;
3076 }
3077
3078 /*
3079 * Note: calculating the overhead so we can be compatible with
3080 * historical BSD practice is quite difficult in the face of
3081 * clusters/bigalloc. This is because multiple metadata blocks from
3082 * different block group can end up in the same allocation cluster.
3083 * Calculating the exact overhead in the face of clustered allocation
3084 * requires either O(all block bitmaps) in memory or O(number of block
3085 * groups**2) in time. We will still calculate the superblock for
3086 * older file systems --- and if we come across with a bigalloc file
3087 * system with zero in s_overhead_clusters the estimate will be close to
3088 * correct especially for very large cluster sizes --- but for newer
3089 * file systems, it's better to calculate this figure once at mkfs
3090 * time, and store it in the superblock. If the superblock value is
3091 * present (even for non-bigalloc file systems), we will use it.
3092 */
3093 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3094 char *buf)
3095 {
3096 struct ext4_sb_info *sbi = EXT4_SB(sb);
3097 struct ext4_group_desc *gdp;
3098 ext4_fsblk_t first_block, last_block, b;
3099 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3100 int s, j, count = 0;
3101
3102 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3103 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3104 sbi->s_itb_per_group + 2);
3105
3106 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3107 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3108 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3109 for (i = 0; i < ngroups; i++) {
3110 gdp = ext4_get_group_desc(sb, i, NULL);
3111 b = ext4_block_bitmap(sb, gdp);
3112 if (b >= first_block && b <= last_block) {
3113 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3114 count++;
3115 }
3116 b = ext4_inode_bitmap(sb, gdp);
3117 if (b >= first_block && b <= last_block) {
3118 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3119 count++;
3120 }
3121 b = ext4_inode_table(sb, gdp);
3122 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3123 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3124 int c = EXT4_B2C(sbi, b - first_block);
3125 ext4_set_bit(c, buf);
3126 count++;
3127 }
3128 if (i != grp)
3129 continue;
3130 s = 0;
3131 if (ext4_bg_has_super(sb, grp)) {
3132 ext4_set_bit(s++, buf);
3133 count++;
3134 }
3135 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3136 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3137 count++;
3138 }
3139 }
3140 if (!count)
3141 return 0;
3142 return EXT4_CLUSTERS_PER_GROUP(sb) -
3143 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3144 }
3145
3146 /*
3147 * Compute the overhead and stash it in sbi->s_overhead
3148 */
3149 int ext4_calculate_overhead(struct super_block *sb)
3150 {
3151 struct ext4_sb_info *sbi = EXT4_SB(sb);
3152 struct ext4_super_block *es = sbi->s_es;
3153 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3154 ext4_fsblk_t overhead = 0;
3155 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3156
3157 if (!buf)
3158 return -ENOMEM;
3159
3160 /*
3161 * Compute the overhead (FS structures). This is constant
3162 * for a given filesystem unless the number of block groups
3163 * changes so we cache the previous value until it does.
3164 */
3165
3166 /*
3167 * All of the blocks before first_data_block are overhead
3168 */
3169 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3170
3171 /*
3172 * Add the overhead found in each block group
3173 */
3174 for (i = 0; i < ngroups; i++) {
3175 int blks;
3176
3177 blks = count_overhead(sb, i, buf);
3178 overhead += blks;
3179 if (blks)
3180 memset(buf, 0, PAGE_SIZE);
3181 cond_resched();
3182 }
3183 /* Add the journal blocks as well */
3184 if (sbi->s_journal)
3185 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3186
3187 sbi->s_overhead = overhead;
3188 smp_wmb();
3189 free_page((unsigned long) buf);
3190 return 0;
3191 }
3192
3193 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3194 {
3195 char *orig_data = kstrdup(data, GFP_KERNEL);
3196 struct buffer_head *bh;
3197 struct ext4_super_block *es = NULL;
3198 struct ext4_sb_info *sbi;
3199 ext4_fsblk_t block;
3200 ext4_fsblk_t sb_block = get_sb_block(&data);
3201 ext4_fsblk_t logical_sb_block;
3202 unsigned long offset = 0;
3203 unsigned long journal_devnum = 0;
3204 unsigned long def_mount_opts;
3205 struct inode *root;
3206 char *cp;
3207 const char *descr;
3208 int ret = -ENOMEM;
3209 int blocksize, clustersize;
3210 unsigned int db_count;
3211 unsigned int i;
3212 int needs_recovery, has_huge_files, has_bigalloc;
3213 __u64 blocks_count;
3214 int err = 0;
3215 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3216 ext4_group_t first_not_zeroed;
3217
3218 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3219 if (!sbi)
3220 goto out_free_orig;
3221
3222 sbi->s_blockgroup_lock =
3223 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3224 if (!sbi->s_blockgroup_lock) {
3225 kfree(sbi);
3226 goto out_free_orig;
3227 }
3228 sb->s_fs_info = sbi;
3229 sbi->s_sb = sb;
3230 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3231 sbi->s_sb_block = sb_block;
3232 if (sb->s_bdev->bd_part)
3233 sbi->s_sectors_written_start =
3234 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3235
3236 /* Cleanup superblock name */
3237 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3238 *cp = '!';
3239
3240 /* -EINVAL is default */
3241 ret = -EINVAL;
3242 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3243 if (!blocksize) {
3244 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3245 goto out_fail;
3246 }
3247
3248 /*
3249 * The ext4 superblock will not be buffer aligned for other than 1kB
3250 * block sizes. We need to calculate the offset from buffer start.
3251 */
3252 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3253 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3254 offset = do_div(logical_sb_block, blocksize);
3255 } else {
3256 logical_sb_block = sb_block;
3257 }
3258
3259 if (!(bh = sb_bread(sb, logical_sb_block))) {
3260 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3261 goto out_fail;
3262 }
3263 /*
3264 * Note: s_es must be initialized as soon as possible because
3265 * some ext4 macro-instructions depend on its value
3266 */
3267 es = (struct ext4_super_block *) (bh->b_data + offset);
3268 sbi->s_es = es;
3269 sb->s_magic = le16_to_cpu(es->s_magic);
3270 if (sb->s_magic != EXT4_SUPER_MAGIC)
3271 goto cantfind_ext4;
3272 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3273
3274 /* Warn if metadata_csum and gdt_csum are both set. */
3275 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3276 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3277 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3278 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3279 "redundant flags; please run fsck.");
3280
3281 /* Check for a known checksum algorithm */
3282 if (!ext4_verify_csum_type(sb, es)) {
3283 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3284 "unknown checksum algorithm.");
3285 silent = 1;
3286 goto cantfind_ext4;
3287 }
3288
3289 /* Load the checksum driver */
3290 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3291 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3292 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3293 if (IS_ERR(sbi->s_chksum_driver)) {
3294 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3295 ret = PTR_ERR(sbi->s_chksum_driver);
3296 sbi->s_chksum_driver = NULL;
3297 goto failed_mount;
3298 }
3299 }
3300
3301 /* Check superblock checksum */
3302 if (!ext4_superblock_csum_verify(sb, es)) {
3303 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3304 "invalid superblock checksum. Run e2fsck?");
3305 silent = 1;
3306 goto cantfind_ext4;
3307 }
3308
3309 /* Precompute checksum seed for all metadata */
3310 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3311 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3312 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3313 sizeof(es->s_uuid));
3314
3315 /* Set defaults before we parse the mount options */
3316 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3317 set_opt(sb, INIT_INODE_TABLE);
3318 if (def_mount_opts & EXT4_DEFM_DEBUG)
3319 set_opt(sb, DEBUG);
3320 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3321 set_opt(sb, GRPID);
3322 if (def_mount_opts & EXT4_DEFM_UID16)
3323 set_opt(sb, NO_UID32);
3324 /* xattr user namespace & acls are now defaulted on */
3325 set_opt(sb, XATTR_USER);
3326 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3327 set_opt(sb, POSIX_ACL);
3328 #endif
3329 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3330 set_opt(sb, JOURNAL_DATA);
3331 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3332 set_opt(sb, ORDERED_DATA);
3333 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3334 set_opt(sb, WRITEBACK_DATA);
3335
3336 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3337 set_opt(sb, ERRORS_PANIC);
3338 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3339 set_opt(sb, ERRORS_CONT);
3340 else
3341 set_opt(sb, ERRORS_RO);
3342 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3343 set_opt(sb, BLOCK_VALIDITY);
3344 if (def_mount_opts & EXT4_DEFM_DISCARD)
3345 set_opt(sb, DISCARD);
3346
3347 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3348 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3349 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3350 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3351 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3352
3353 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3354 set_opt(sb, BARRIER);
3355
3356 /*
3357 * enable delayed allocation by default
3358 * Use -o nodelalloc to turn it off
3359 */
3360 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3361 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3362 set_opt(sb, DELALLOC);
3363
3364 /*
3365 * set default s_li_wait_mult for lazyinit, for the case there is
3366 * no mount option specified.
3367 */
3368 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3369
3370 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3371 &journal_devnum, &journal_ioprio, 0)) {
3372 ext4_msg(sb, KERN_WARNING,
3373 "failed to parse options in superblock: %s",
3374 sbi->s_es->s_mount_opts);
3375 }
3376 sbi->s_def_mount_opt = sbi->s_mount_opt;
3377 if (!parse_options((char *) data, sb, &journal_devnum,
3378 &journal_ioprio, 0))
3379 goto failed_mount;
3380
3381 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3382 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3383 "with data=journal disables delayed "
3384 "allocation and O_DIRECT support!\n");
3385 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3386 ext4_msg(sb, KERN_ERR, "can't mount with "
3387 "both data=journal and delalloc");
3388 goto failed_mount;
3389 }
3390 if (test_opt(sb, DIOREAD_NOLOCK)) {
3391 ext4_msg(sb, KERN_ERR, "can't mount with "
3392 "both data=journal and delalloc");
3393 goto failed_mount;
3394 }
3395 if (test_opt(sb, DELALLOC))
3396 clear_opt(sb, DELALLOC);
3397 }
3398
3399 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3400 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3401
3402 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3403 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3404 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3405 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3406 ext4_msg(sb, KERN_WARNING,
3407 "feature flags set on rev 0 fs, "
3408 "running e2fsck is recommended");
3409
3410 if (IS_EXT2_SB(sb)) {
3411 if (ext2_feature_set_ok(sb))
3412 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3413 "using the ext4 subsystem");
3414 else {
3415 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3416 "to feature incompatibilities");
3417 goto failed_mount;
3418 }
3419 }
3420
3421 if (IS_EXT3_SB(sb)) {
3422 if (ext3_feature_set_ok(sb))
3423 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3424 "using the ext4 subsystem");
3425 else {
3426 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3427 "to feature incompatibilities");
3428 goto failed_mount;
3429 }
3430 }
3431
3432 /*
3433 * Check feature flags regardless of the revision level, since we
3434 * previously didn't change the revision level when setting the flags,
3435 * so there is a chance incompat flags are set on a rev 0 filesystem.
3436 */
3437 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3438 goto failed_mount;
3439
3440 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3441 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3442 blocksize > EXT4_MAX_BLOCK_SIZE) {
3443 ext4_msg(sb, KERN_ERR,
3444 "Unsupported filesystem blocksize %d", blocksize);
3445 goto failed_mount;
3446 }
3447
3448 if (sb->s_blocksize != blocksize) {
3449 /* Validate the filesystem blocksize */
3450 if (!sb_set_blocksize(sb, blocksize)) {
3451 ext4_msg(sb, KERN_ERR, "bad block size %d",
3452 blocksize);
3453 goto failed_mount;
3454 }
3455
3456 brelse(bh);
3457 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3458 offset = do_div(logical_sb_block, blocksize);
3459 bh = sb_bread(sb, logical_sb_block);
3460 if (!bh) {
3461 ext4_msg(sb, KERN_ERR,
3462 "Can't read superblock on 2nd try");
3463 goto failed_mount;
3464 }
3465 es = (struct ext4_super_block *)(bh->b_data + offset);
3466 sbi->s_es = es;
3467 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3468 ext4_msg(sb, KERN_ERR,
3469 "Magic mismatch, very weird!");
3470 goto failed_mount;
3471 }
3472 }
3473
3474 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3475 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3476 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3477 has_huge_files);
3478 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3479
3480 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3481 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3482 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3483 } else {
3484 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3485 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3486 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3487 (!is_power_of_2(sbi->s_inode_size)) ||
3488 (sbi->s_inode_size > blocksize)) {
3489 ext4_msg(sb, KERN_ERR,
3490 "unsupported inode size: %d",
3491 sbi->s_inode_size);
3492 goto failed_mount;
3493 }
3494 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3495 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3496 }
3497
3498 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3499 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3500 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3501 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3502 !is_power_of_2(sbi->s_desc_size)) {
3503 ext4_msg(sb, KERN_ERR,
3504 "unsupported descriptor size %lu",
3505 sbi->s_desc_size);
3506 goto failed_mount;
3507 }
3508 } else
3509 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3510
3511 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3512 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3513 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3514 goto cantfind_ext4;
3515
3516 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3517 if (sbi->s_inodes_per_block == 0)
3518 goto cantfind_ext4;
3519 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3520 sbi->s_inodes_per_block;
3521 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3522 sbi->s_sbh = bh;
3523 sbi->s_mount_state = le16_to_cpu(es->s_state);
3524 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3525 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3526
3527 for (i = 0; i < 4; i++)
3528 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3529 sbi->s_def_hash_version = es->s_def_hash_version;
3530 i = le32_to_cpu(es->s_flags);
3531 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3532 sbi->s_hash_unsigned = 3;
3533 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3534 #ifdef __CHAR_UNSIGNED__
3535 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3536 sbi->s_hash_unsigned = 3;
3537 #else
3538 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3539 #endif
3540 }
3541
3542 /* Handle clustersize */
3543 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3544 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3545 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3546 if (has_bigalloc) {
3547 if (clustersize < blocksize) {
3548 ext4_msg(sb, KERN_ERR,
3549 "cluster size (%d) smaller than "
3550 "block size (%d)", clustersize, blocksize);
3551 goto failed_mount;
3552 }
3553 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3554 le32_to_cpu(es->s_log_block_size);
3555 sbi->s_clusters_per_group =
3556 le32_to_cpu(es->s_clusters_per_group);
3557 if (sbi->s_clusters_per_group > blocksize * 8) {
3558 ext4_msg(sb, KERN_ERR,
3559 "#clusters per group too big: %lu",
3560 sbi->s_clusters_per_group);
3561 goto failed_mount;
3562 }
3563 if (sbi->s_blocks_per_group !=
3564 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3565 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3566 "clusters per group (%lu) inconsistent",
3567 sbi->s_blocks_per_group,
3568 sbi->s_clusters_per_group);
3569 goto failed_mount;
3570 }
3571 } else {
3572 if (clustersize != blocksize) {
3573 ext4_warning(sb, "fragment/cluster size (%d) != "
3574 "block size (%d)", clustersize,
3575 blocksize);
3576 clustersize = blocksize;
3577 }
3578 if (sbi->s_blocks_per_group > blocksize * 8) {
3579 ext4_msg(sb, KERN_ERR,
3580 "#blocks per group too big: %lu",
3581 sbi->s_blocks_per_group);
3582 goto failed_mount;
3583 }
3584 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3585 sbi->s_cluster_bits = 0;
3586 }
3587 sbi->s_cluster_ratio = clustersize / blocksize;
3588
3589 if (sbi->s_inodes_per_group > blocksize * 8) {
3590 ext4_msg(sb, KERN_ERR,
3591 "#inodes per group too big: %lu",
3592 sbi->s_inodes_per_group);
3593 goto failed_mount;
3594 }
3595
3596 /*
3597 * Test whether we have more sectors than will fit in sector_t,
3598 * and whether the max offset is addressable by the page cache.
3599 */
3600 err = generic_check_addressable(sb->s_blocksize_bits,
3601 ext4_blocks_count(es));
3602 if (err) {
3603 ext4_msg(sb, KERN_ERR, "filesystem"
3604 " too large to mount safely on this system");
3605 if (sizeof(sector_t) < 8)
3606 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3607 goto failed_mount;
3608 }
3609
3610 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3611 goto cantfind_ext4;
3612
3613 /* check blocks count against device size */
3614 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3615 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3616 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3617 "exceeds size of device (%llu blocks)",
3618 ext4_blocks_count(es), blocks_count);
3619 goto failed_mount;
3620 }
3621
3622 /*
3623 * It makes no sense for the first data block to be beyond the end
3624 * of the filesystem.
3625 */
3626 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3627 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3628 "block %u is beyond end of filesystem (%llu)",
3629 le32_to_cpu(es->s_first_data_block),
3630 ext4_blocks_count(es));
3631 goto failed_mount;
3632 }
3633 blocks_count = (ext4_blocks_count(es) -
3634 le32_to_cpu(es->s_first_data_block) +
3635 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3636 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3637 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3638 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3639 "(block count %llu, first data block %u, "
3640 "blocks per group %lu)", sbi->s_groups_count,
3641 ext4_blocks_count(es),
3642 le32_to_cpu(es->s_first_data_block),
3643 EXT4_BLOCKS_PER_GROUP(sb));
3644 goto failed_mount;
3645 }
3646 sbi->s_groups_count = blocks_count;
3647 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3648 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3649 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3650 EXT4_DESC_PER_BLOCK(sb);
3651 sbi->s_group_desc = ext4_kvmalloc(db_count *
3652 sizeof(struct buffer_head *),
3653 GFP_KERNEL);
3654 if (sbi->s_group_desc == NULL) {
3655 ext4_msg(sb, KERN_ERR, "not enough memory");
3656 ret = -ENOMEM;
3657 goto failed_mount;
3658 }
3659
3660 if (ext4_proc_root)
3661 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3662
3663 if (sbi->s_proc)
3664 proc_create_data("options", S_IRUGO, sbi->s_proc,
3665 &ext4_seq_options_fops, sb);
3666
3667 bgl_lock_init(sbi->s_blockgroup_lock);
3668
3669 for (i = 0; i < db_count; i++) {
3670 block = descriptor_loc(sb, logical_sb_block, i);
3671 sbi->s_group_desc[i] = sb_bread(sb, block);
3672 if (!sbi->s_group_desc[i]) {
3673 ext4_msg(sb, KERN_ERR,
3674 "can't read group descriptor %d", i);
3675 db_count = i;
3676 goto failed_mount2;
3677 }
3678 }
3679 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3680 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3681 goto failed_mount2;
3682 }
3683 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3684 if (!ext4_fill_flex_info(sb)) {
3685 ext4_msg(sb, KERN_ERR,
3686 "unable to initialize "
3687 "flex_bg meta info!");
3688 goto failed_mount2;
3689 }
3690
3691 sbi->s_gdb_count = db_count;
3692 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3693 spin_lock_init(&sbi->s_next_gen_lock);
3694
3695 init_timer(&sbi->s_err_report);
3696 sbi->s_err_report.function = print_daily_error_info;
3697 sbi->s_err_report.data = (unsigned long) sb;
3698
3699 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3700 ext4_count_free_clusters(sb));
3701 if (!err) {
3702 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3703 ext4_count_free_inodes(sb));
3704 }
3705 if (!err) {
3706 err = percpu_counter_init(&sbi->s_dirs_counter,
3707 ext4_count_dirs(sb));
3708 }
3709 if (!err) {
3710 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3711 }
3712 if (!err) {
3713 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3714 }
3715 if (err) {
3716 ext4_msg(sb, KERN_ERR, "insufficient memory");
3717 goto failed_mount3;
3718 }
3719
3720 sbi->s_stripe = ext4_get_stripe_size(sbi);
3721 sbi->s_max_writeback_mb_bump = 128;
3722 sbi->s_extent_max_zeroout_kb = 32;
3723
3724 /* Register extent status tree shrinker */
3725 ext4_es_register_shrinker(sb);
3726
3727 /*
3728 * set up enough so that it can read an inode
3729 */
3730 if (!test_opt(sb, NOLOAD) &&
3731 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3732 sb->s_op = &ext4_sops;
3733 else
3734 sb->s_op = &ext4_nojournal_sops;
3735 sb->s_export_op = &ext4_export_ops;
3736 sb->s_xattr = ext4_xattr_handlers;
3737 #ifdef CONFIG_QUOTA
3738 sb->dq_op = &ext4_quota_operations;
3739 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3740 sb->s_qcop = &ext4_qctl_sysfile_operations;
3741 else
3742 sb->s_qcop = &ext4_qctl_operations;
3743 #endif
3744 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3745
3746 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3747 mutex_init(&sbi->s_orphan_lock);
3748
3749 sb->s_root = NULL;
3750
3751 needs_recovery = (es->s_last_orphan != 0 ||
3752 EXT4_HAS_INCOMPAT_FEATURE(sb,
3753 EXT4_FEATURE_INCOMPAT_RECOVER));
3754
3755 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3756 !(sb->s_flags & MS_RDONLY))
3757 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3758 goto failed_mount3;
3759
3760 /*
3761 * The first inode we look at is the journal inode. Don't try
3762 * root first: it may be modified in the journal!
3763 */
3764 if (!test_opt(sb, NOLOAD) &&
3765 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3766 if (ext4_load_journal(sb, es, journal_devnum))
3767 goto failed_mount3;
3768 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3769 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3770 ext4_msg(sb, KERN_ERR, "required journal recovery "
3771 "suppressed and not mounted read-only");
3772 goto failed_mount_wq;
3773 } else {
3774 clear_opt(sb, DATA_FLAGS);
3775 sbi->s_journal = NULL;
3776 needs_recovery = 0;
3777 goto no_journal;
3778 }
3779
3780 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3781 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3782 JBD2_FEATURE_INCOMPAT_64BIT)) {
3783 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3784 goto failed_mount_wq;
3785 }
3786
3787 if (!set_journal_csum_feature_set(sb)) {
3788 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3789 "feature set");
3790 goto failed_mount_wq;
3791 }
3792
3793 /* We have now updated the journal if required, so we can
3794 * validate the data journaling mode. */
3795 switch (test_opt(sb, DATA_FLAGS)) {
3796 case 0:
3797 /* No mode set, assume a default based on the journal
3798 * capabilities: ORDERED_DATA if the journal can
3799 * cope, else JOURNAL_DATA
3800 */
3801 if (jbd2_journal_check_available_features
3802 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3803 set_opt(sb, ORDERED_DATA);
3804 else
3805 set_opt(sb, JOURNAL_DATA);
3806 break;
3807
3808 case EXT4_MOUNT_ORDERED_DATA:
3809 case EXT4_MOUNT_WRITEBACK_DATA:
3810 if (!jbd2_journal_check_available_features
3811 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3812 ext4_msg(sb, KERN_ERR, "Journal does not support "
3813 "requested data journaling mode");
3814 goto failed_mount_wq;
3815 }
3816 default:
3817 break;
3818 }
3819 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3820
3821 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3822
3823 /*
3824 * The journal may have updated the bg summary counts, so we
3825 * need to update the global counters.
3826 */
3827 percpu_counter_set(&sbi->s_freeclusters_counter,
3828 ext4_count_free_clusters(sb));
3829 percpu_counter_set(&sbi->s_freeinodes_counter,
3830 ext4_count_free_inodes(sb));
3831 percpu_counter_set(&sbi->s_dirs_counter,
3832 ext4_count_dirs(sb));
3833 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3834
3835 no_journal:
3836 /*
3837 * Get the # of file system overhead blocks from the
3838 * superblock if present.
3839 */
3840 if (es->s_overhead_clusters)
3841 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3842 else {
3843 err = ext4_calculate_overhead(sb);
3844 if (err)
3845 goto failed_mount_wq;
3846 }
3847
3848 /*
3849 * The maximum number of concurrent works can be high and
3850 * concurrency isn't really necessary. Limit it to 1.
3851 */
3852 EXT4_SB(sb)->dio_unwritten_wq =
3853 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3854 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3855 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3856 ret = -ENOMEM;
3857 goto failed_mount_wq;
3858 }
3859
3860 /*
3861 * The jbd2_journal_load will have done any necessary log recovery,
3862 * so we can safely mount the rest of the filesystem now.
3863 */
3864
3865 root = ext4_iget(sb, EXT4_ROOT_INO);
3866 if (IS_ERR(root)) {
3867 ext4_msg(sb, KERN_ERR, "get root inode failed");
3868 ret = PTR_ERR(root);
3869 root = NULL;
3870 goto failed_mount4;
3871 }
3872 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3873 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3874 iput(root);
3875 goto failed_mount4;
3876 }
3877 sb->s_root = d_make_root(root);
3878 if (!sb->s_root) {
3879 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3880 ret = -ENOMEM;
3881 goto failed_mount4;
3882 }
3883
3884 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3885 sb->s_flags |= MS_RDONLY;
3886
3887 /* determine the minimum size of new large inodes, if present */
3888 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3889 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3890 EXT4_GOOD_OLD_INODE_SIZE;
3891 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3892 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3893 if (sbi->s_want_extra_isize <
3894 le16_to_cpu(es->s_want_extra_isize))
3895 sbi->s_want_extra_isize =
3896 le16_to_cpu(es->s_want_extra_isize);
3897 if (sbi->s_want_extra_isize <
3898 le16_to_cpu(es->s_min_extra_isize))
3899 sbi->s_want_extra_isize =
3900 le16_to_cpu(es->s_min_extra_isize);
3901 }
3902 }
3903 /* Check if enough inode space is available */
3904 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3905 sbi->s_inode_size) {
3906 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3907 EXT4_GOOD_OLD_INODE_SIZE;
3908 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3909 "available");
3910 }
3911
3912 err = ext4_setup_system_zone(sb);
3913 if (err) {
3914 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3915 "zone (%d)", err);
3916 goto failed_mount4a;
3917 }
3918
3919 ext4_ext_init(sb);
3920 err = ext4_mb_init(sb);
3921 if (err) {
3922 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3923 err);
3924 goto failed_mount5;
3925 }
3926
3927 err = ext4_register_li_request(sb, first_not_zeroed);
3928 if (err)
3929 goto failed_mount6;
3930
3931 sbi->s_kobj.kset = ext4_kset;
3932 init_completion(&sbi->s_kobj_unregister);
3933 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3934 "%s", sb->s_id);
3935 if (err)
3936 goto failed_mount7;
3937
3938 #ifdef CONFIG_QUOTA
3939 /* Enable quota usage during mount. */
3940 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
3941 !(sb->s_flags & MS_RDONLY)) {
3942 err = ext4_enable_quotas(sb);
3943 if (err)
3944 goto failed_mount8;
3945 }
3946 #endif /* CONFIG_QUOTA */
3947
3948 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3949 ext4_orphan_cleanup(sb, es);
3950 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3951 if (needs_recovery) {
3952 ext4_msg(sb, KERN_INFO, "recovery complete");
3953 ext4_mark_recovery_complete(sb, es);
3954 }
3955 if (EXT4_SB(sb)->s_journal) {
3956 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3957 descr = " journalled data mode";
3958 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3959 descr = " ordered data mode";
3960 else
3961 descr = " writeback data mode";
3962 } else
3963 descr = "out journal";
3964
3965 if (test_opt(sb, DISCARD)) {
3966 struct request_queue *q = bdev_get_queue(sb->s_bdev);
3967 if (!blk_queue_discard(q))
3968 ext4_msg(sb, KERN_WARNING,
3969 "mounting with \"discard\" option, but "
3970 "the device does not support discard");
3971 }
3972
3973 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3974 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3975 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3976
3977 if (es->s_error_count)
3978 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3979
3980 kfree(orig_data);
3981 return 0;
3982
3983 cantfind_ext4:
3984 if (!silent)
3985 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3986 goto failed_mount;
3987
3988 #ifdef CONFIG_QUOTA
3989 failed_mount8:
3990 kobject_del(&sbi->s_kobj);
3991 #endif
3992 failed_mount7:
3993 ext4_unregister_li_request(sb);
3994 failed_mount6:
3995 ext4_mb_release(sb);
3996 failed_mount5:
3997 ext4_ext_release(sb);
3998 ext4_release_system_zone(sb);
3999 failed_mount4a:
4000 dput(sb->s_root);
4001 sb->s_root = NULL;
4002 failed_mount4:
4003 ext4_msg(sb, KERN_ERR, "mount failed");
4004 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4005 failed_mount_wq:
4006 if (sbi->s_journal) {
4007 jbd2_journal_destroy(sbi->s_journal);
4008 sbi->s_journal = NULL;
4009 }
4010 failed_mount3:
4011 del_timer(&sbi->s_err_report);
4012 if (sbi->s_flex_groups)
4013 ext4_kvfree(sbi->s_flex_groups);
4014 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4015 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4016 percpu_counter_destroy(&sbi->s_dirs_counter);
4017 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4018 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4019 if (sbi->s_mmp_tsk)
4020 kthread_stop(sbi->s_mmp_tsk);
4021 failed_mount2:
4022 for (i = 0; i < db_count; i++)
4023 brelse(sbi->s_group_desc[i]);
4024 ext4_kvfree(sbi->s_group_desc);
4025 failed_mount:
4026 if (sbi->s_chksum_driver)
4027 crypto_free_shash(sbi->s_chksum_driver);
4028 if (sbi->s_proc) {
4029 remove_proc_entry("options", sbi->s_proc);
4030 remove_proc_entry(sb->s_id, ext4_proc_root);
4031 }
4032 #ifdef CONFIG_QUOTA
4033 for (i = 0; i < MAXQUOTAS; i++)
4034 kfree(sbi->s_qf_names[i]);
4035 #endif
4036 ext4_blkdev_remove(sbi);
4037 brelse(bh);
4038 out_fail:
4039 sb->s_fs_info = NULL;
4040 kfree(sbi->s_blockgroup_lock);
4041 kfree(sbi);
4042 out_free_orig:
4043 kfree(orig_data);
4044 return err ? err : ret;
4045 }
4046
4047 /*
4048 * Setup any per-fs journal parameters now. We'll do this both on
4049 * initial mount, once the journal has been initialised but before we've
4050 * done any recovery; and again on any subsequent remount.
4051 */
4052 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4053 {
4054 struct ext4_sb_info *sbi = EXT4_SB(sb);
4055
4056 journal->j_commit_interval = sbi->s_commit_interval;
4057 journal->j_min_batch_time = sbi->s_min_batch_time;
4058 journal->j_max_batch_time = sbi->s_max_batch_time;
4059
4060 write_lock(&journal->j_state_lock);
4061 if (test_opt(sb, BARRIER))
4062 journal->j_flags |= JBD2_BARRIER;
4063 else
4064 journal->j_flags &= ~JBD2_BARRIER;
4065 if (test_opt(sb, DATA_ERR_ABORT))
4066 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4067 else
4068 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4069 write_unlock(&journal->j_state_lock);
4070 }
4071
4072 static journal_t *ext4_get_journal(struct super_block *sb,
4073 unsigned int journal_inum)
4074 {
4075 struct inode *journal_inode;
4076 journal_t *journal;
4077
4078 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4079
4080 /* First, test for the existence of a valid inode on disk. Bad
4081 * things happen if we iget() an unused inode, as the subsequent
4082 * iput() will try to delete it. */
4083
4084 journal_inode = ext4_iget(sb, journal_inum);
4085 if (IS_ERR(journal_inode)) {
4086 ext4_msg(sb, KERN_ERR, "no journal found");
4087 return NULL;
4088 }
4089 if (!journal_inode->i_nlink) {
4090 make_bad_inode(journal_inode);
4091 iput(journal_inode);
4092 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4093 return NULL;
4094 }
4095
4096 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4097 journal_inode, journal_inode->i_size);
4098 if (!S_ISREG(journal_inode->i_mode)) {
4099 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4100 iput(journal_inode);
4101 return NULL;
4102 }
4103
4104 journal = jbd2_journal_init_inode(journal_inode);
4105 if (!journal) {
4106 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4107 iput(journal_inode);
4108 return NULL;
4109 }
4110 journal->j_private = sb;
4111 ext4_init_journal_params(sb, journal);
4112 return journal;
4113 }
4114
4115 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4116 dev_t j_dev)
4117 {
4118 struct buffer_head *bh;
4119 journal_t *journal;
4120 ext4_fsblk_t start;
4121 ext4_fsblk_t len;
4122 int hblock, blocksize;
4123 ext4_fsblk_t sb_block;
4124 unsigned long offset;
4125 struct ext4_super_block *es;
4126 struct block_device *bdev;
4127
4128 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4129
4130 bdev = ext4_blkdev_get(j_dev, sb);
4131 if (bdev == NULL)
4132 return NULL;
4133
4134 blocksize = sb->s_blocksize;
4135 hblock = bdev_logical_block_size(bdev);
4136 if (blocksize < hblock) {
4137 ext4_msg(sb, KERN_ERR,
4138 "blocksize too small for journal device");
4139 goto out_bdev;
4140 }
4141
4142 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4143 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4144 set_blocksize(bdev, blocksize);
4145 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4146 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4147 "external journal");
4148 goto out_bdev;
4149 }
4150
4151 es = (struct ext4_super_block *) (bh->b_data + offset);
4152 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4153 !(le32_to_cpu(es->s_feature_incompat) &
4154 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4155 ext4_msg(sb, KERN_ERR, "external journal has "
4156 "bad superblock");
4157 brelse(bh);
4158 goto out_bdev;
4159 }
4160
4161 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4162 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4163 brelse(bh);
4164 goto out_bdev;
4165 }
4166
4167 len = ext4_blocks_count(es);
4168 start = sb_block + 1;
4169 brelse(bh); /* we're done with the superblock */
4170
4171 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4172 start, len, blocksize);
4173 if (!journal) {
4174 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4175 goto out_bdev;
4176 }
4177 journal->j_private = sb;
4178 ll_rw_block(READ, 1, &journal->j_sb_buffer);
4179 wait_on_buffer(journal->j_sb_buffer);
4180 if (!buffer_uptodate(journal->j_sb_buffer)) {
4181 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4182 goto out_journal;
4183 }
4184 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4185 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4186 "user (unsupported) - %d",
4187 be32_to_cpu(journal->j_superblock->s_nr_users));
4188 goto out_journal;
4189 }
4190 EXT4_SB(sb)->journal_bdev = bdev;
4191 ext4_init_journal_params(sb, journal);
4192 return journal;
4193
4194 out_journal:
4195 jbd2_journal_destroy(journal);
4196 out_bdev:
4197 ext4_blkdev_put(bdev);
4198 return NULL;
4199 }
4200
4201 static int ext4_load_journal(struct super_block *sb,
4202 struct ext4_super_block *es,
4203 unsigned long journal_devnum)
4204 {
4205 journal_t *journal;
4206 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4207 dev_t journal_dev;
4208 int err = 0;
4209 int really_read_only;
4210
4211 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4212
4213 if (journal_devnum &&
4214 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4215 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4216 "numbers have changed");
4217 journal_dev = new_decode_dev(journal_devnum);
4218 } else
4219 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4220
4221 really_read_only = bdev_read_only(sb->s_bdev);
4222
4223 /*
4224 * Are we loading a blank journal or performing recovery after a
4225 * crash? For recovery, we need to check in advance whether we
4226 * can get read-write access to the device.
4227 */
4228 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4229 if (sb->s_flags & MS_RDONLY) {
4230 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4231 "required on readonly filesystem");
4232 if (really_read_only) {
4233 ext4_msg(sb, KERN_ERR, "write access "
4234 "unavailable, cannot proceed");
4235 return -EROFS;
4236 }
4237 ext4_msg(sb, KERN_INFO, "write access will "
4238 "be enabled during recovery");
4239 }
4240 }
4241
4242 if (journal_inum && journal_dev) {
4243 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4244 "and inode journals!");
4245 return -EINVAL;
4246 }
4247
4248 if (journal_inum) {
4249 if (!(journal = ext4_get_journal(sb, journal_inum)))
4250 return -EINVAL;
4251 } else {
4252 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4253 return -EINVAL;
4254 }
4255
4256 if (!(journal->j_flags & JBD2_BARRIER))
4257 ext4_msg(sb, KERN_INFO, "barriers disabled");
4258
4259 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4260 err = jbd2_journal_wipe(journal, !really_read_only);
4261 if (!err) {
4262 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4263 if (save)
4264 memcpy(save, ((char *) es) +
4265 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4266 err = jbd2_journal_load(journal);
4267 if (save)
4268 memcpy(((char *) es) + EXT4_S_ERR_START,
4269 save, EXT4_S_ERR_LEN);
4270 kfree(save);
4271 }
4272
4273 if (err) {
4274 ext4_msg(sb, KERN_ERR, "error loading journal");
4275 jbd2_journal_destroy(journal);
4276 return err;
4277 }
4278
4279 EXT4_SB(sb)->s_journal = journal;
4280 ext4_clear_journal_err(sb, es);
4281
4282 if (!really_read_only && journal_devnum &&
4283 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4284 es->s_journal_dev = cpu_to_le32(journal_devnum);
4285
4286 /* Make sure we flush the recovery flag to disk. */
4287 ext4_commit_super(sb, 1);
4288 }
4289
4290 return 0;
4291 }
4292
4293 static int ext4_commit_super(struct super_block *sb, int sync)
4294 {
4295 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4296 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4297 int error = 0;
4298
4299 if (!sbh || block_device_ejected(sb))
4300 return error;
4301 if (buffer_write_io_error(sbh)) {
4302 /*
4303 * Oh, dear. A previous attempt to write the
4304 * superblock failed. This could happen because the
4305 * USB device was yanked out. Or it could happen to
4306 * be a transient write error and maybe the block will
4307 * be remapped. Nothing we can do but to retry the
4308 * write and hope for the best.
4309 */
4310 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4311 "superblock detected");
4312 clear_buffer_write_io_error(sbh);
4313 set_buffer_uptodate(sbh);
4314 }
4315 /*
4316 * If the file system is mounted read-only, don't update the
4317 * superblock write time. This avoids updating the superblock
4318 * write time when we are mounting the root file system
4319 * read/only but we need to replay the journal; at that point,
4320 * for people who are east of GMT and who make their clock
4321 * tick in localtime for Windows bug-for-bug compatibility,
4322 * the clock is set in the future, and this will cause e2fsck
4323 * to complain and force a full file system check.
4324 */
4325 if (!(sb->s_flags & MS_RDONLY))
4326 es->s_wtime = cpu_to_le32(get_seconds());
4327 if (sb->s_bdev->bd_part)
4328 es->s_kbytes_written =
4329 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4330 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4331 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4332 else
4333 es->s_kbytes_written =
4334 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4335 ext4_free_blocks_count_set(es,
4336 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4337 &EXT4_SB(sb)->s_freeclusters_counter)));
4338 es->s_free_inodes_count =
4339 cpu_to_le32(percpu_counter_sum_positive(
4340 &EXT4_SB(sb)->s_freeinodes_counter));
4341 BUFFER_TRACE(sbh, "marking dirty");
4342 ext4_superblock_csum_set(sb);
4343 mark_buffer_dirty(sbh);
4344 if (sync) {
4345 error = sync_dirty_buffer(sbh);
4346 if (error)
4347 return error;
4348
4349 error = buffer_write_io_error(sbh);
4350 if (error) {
4351 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4352 "superblock");
4353 clear_buffer_write_io_error(sbh);
4354 set_buffer_uptodate(sbh);
4355 }
4356 }
4357 return error;
4358 }
4359
4360 /*
4361 * Have we just finished recovery? If so, and if we are mounting (or
4362 * remounting) the filesystem readonly, then we will end up with a
4363 * consistent fs on disk. Record that fact.
4364 */
4365 static void ext4_mark_recovery_complete(struct super_block *sb,
4366 struct ext4_super_block *es)
4367 {
4368 journal_t *journal = EXT4_SB(sb)->s_journal;
4369
4370 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4371 BUG_ON(journal != NULL);
4372 return;
4373 }
4374 jbd2_journal_lock_updates(journal);
4375 if (jbd2_journal_flush(journal) < 0)
4376 goto out;
4377
4378 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4379 sb->s_flags & MS_RDONLY) {
4380 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4381 ext4_commit_super(sb, 1);
4382 }
4383
4384 out:
4385 jbd2_journal_unlock_updates(journal);
4386 }
4387
4388 /*
4389 * If we are mounting (or read-write remounting) a filesystem whose journal
4390 * has recorded an error from a previous lifetime, move that error to the
4391 * main filesystem now.
4392 */
4393 static void ext4_clear_journal_err(struct super_block *sb,
4394 struct ext4_super_block *es)
4395 {
4396 journal_t *journal;
4397 int j_errno;
4398 const char *errstr;
4399
4400 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4401
4402 journal = EXT4_SB(sb)->s_journal;
4403
4404 /*
4405 * Now check for any error status which may have been recorded in the
4406 * journal by a prior ext4_error() or ext4_abort()
4407 */
4408
4409 j_errno = jbd2_journal_errno(journal);
4410 if (j_errno) {
4411 char nbuf[16];
4412
4413 errstr = ext4_decode_error(sb, j_errno, nbuf);
4414 ext4_warning(sb, "Filesystem error recorded "
4415 "from previous mount: %s", errstr);
4416 ext4_warning(sb, "Marking fs in need of filesystem check.");
4417
4418 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4419 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4420 ext4_commit_super(sb, 1);
4421
4422 jbd2_journal_clear_err(journal);
4423 jbd2_journal_update_sb_errno(journal);
4424 }
4425 }
4426
4427 /*
4428 * Force the running and committing transactions to commit,
4429 * and wait on the commit.
4430 */
4431 int ext4_force_commit(struct super_block *sb)
4432 {
4433 journal_t *journal;
4434
4435 if (sb->s_flags & MS_RDONLY)
4436 return 0;
4437
4438 journal = EXT4_SB(sb)->s_journal;
4439 return ext4_journal_force_commit(journal);
4440 }
4441
4442 static int ext4_sync_fs(struct super_block *sb, int wait)
4443 {
4444 int ret = 0;
4445 tid_t target;
4446 struct ext4_sb_info *sbi = EXT4_SB(sb);
4447
4448 trace_ext4_sync_fs(sb, wait);
4449 flush_workqueue(sbi->dio_unwritten_wq);
4450 /*
4451 * Writeback quota in non-journalled quota case - journalled quota has
4452 * no dirty dquots
4453 */
4454 dquot_writeback_dquots(sb, -1);
4455 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4456 if (wait)
4457 jbd2_log_wait_commit(sbi->s_journal, target);
4458 }
4459 return ret;
4460 }
4461
4462 /*
4463 * LVM calls this function before a (read-only) snapshot is created. This
4464 * gives us a chance to flush the journal completely and mark the fs clean.
4465 *
4466 * Note that only this function cannot bring a filesystem to be in a clean
4467 * state independently. It relies on upper layer to stop all data & metadata
4468 * modifications.
4469 */
4470 static int ext4_freeze(struct super_block *sb)
4471 {
4472 int error = 0;
4473 journal_t *journal;
4474
4475 if (sb->s_flags & MS_RDONLY)
4476 return 0;
4477
4478 journal = EXT4_SB(sb)->s_journal;
4479
4480 /* Now we set up the journal barrier. */
4481 jbd2_journal_lock_updates(journal);
4482
4483 /*
4484 * Don't clear the needs_recovery flag if we failed to flush
4485 * the journal.
4486 */
4487 error = jbd2_journal_flush(journal);
4488 if (error < 0)
4489 goto out;
4490
4491 /* Journal blocked and flushed, clear needs_recovery flag. */
4492 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4493 error = ext4_commit_super(sb, 1);
4494 out:
4495 /* we rely on upper layer to stop further updates */
4496 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4497 return error;
4498 }
4499
4500 /*
4501 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4502 * flag here, even though the filesystem is not technically dirty yet.
4503 */
4504 static int ext4_unfreeze(struct super_block *sb)
4505 {
4506 if (sb->s_flags & MS_RDONLY)
4507 return 0;
4508
4509 /* Reset the needs_recovery flag before the fs is unlocked. */
4510 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4511 ext4_commit_super(sb, 1);
4512 return 0;
4513 }
4514
4515 /*
4516 * Structure to save mount options for ext4_remount's benefit
4517 */
4518 struct ext4_mount_options {
4519 unsigned long s_mount_opt;
4520 unsigned long s_mount_opt2;
4521 kuid_t s_resuid;
4522 kgid_t s_resgid;
4523 unsigned long s_commit_interval;
4524 u32 s_min_batch_time, s_max_batch_time;
4525 #ifdef CONFIG_QUOTA
4526 int s_jquota_fmt;
4527 char *s_qf_names[MAXQUOTAS];
4528 #endif
4529 };
4530
4531 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4532 {
4533 struct ext4_super_block *es;
4534 struct ext4_sb_info *sbi = EXT4_SB(sb);
4535 unsigned long old_sb_flags;
4536 struct ext4_mount_options old_opts;
4537 int enable_quota = 0;
4538 ext4_group_t g;
4539 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4540 int err = 0;
4541 #ifdef CONFIG_QUOTA
4542 int i, j;
4543 #endif
4544 char *orig_data = kstrdup(data, GFP_KERNEL);
4545
4546 /* Store the original options */
4547 old_sb_flags = sb->s_flags;
4548 old_opts.s_mount_opt = sbi->s_mount_opt;
4549 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4550 old_opts.s_resuid = sbi->s_resuid;
4551 old_opts.s_resgid = sbi->s_resgid;
4552 old_opts.s_commit_interval = sbi->s_commit_interval;
4553 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4554 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4555 #ifdef CONFIG_QUOTA
4556 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4557 for (i = 0; i < MAXQUOTAS; i++)
4558 if (sbi->s_qf_names[i]) {
4559 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4560 GFP_KERNEL);
4561 if (!old_opts.s_qf_names[i]) {
4562 for (j = 0; j < i; j++)
4563 kfree(old_opts.s_qf_names[j]);
4564 kfree(orig_data);
4565 return -ENOMEM;
4566 }
4567 } else
4568 old_opts.s_qf_names[i] = NULL;
4569 #endif
4570 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4571 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4572
4573 /*
4574 * Allow the "check" option to be passed as a remount option.
4575 */
4576 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4577 err = -EINVAL;
4578 goto restore_opts;
4579 }
4580
4581 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4582 ext4_abort(sb, "Abort forced by user");
4583
4584 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4585 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4586
4587 es = sbi->s_es;
4588
4589 if (sbi->s_journal) {
4590 ext4_init_journal_params(sb, sbi->s_journal);
4591 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4592 }
4593
4594 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4595 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4596 err = -EROFS;
4597 goto restore_opts;
4598 }
4599
4600 if (*flags & MS_RDONLY) {
4601 err = dquot_suspend(sb, -1);
4602 if (err < 0)
4603 goto restore_opts;
4604
4605 /*
4606 * First of all, the unconditional stuff we have to do
4607 * to disable replay of the journal when we next remount
4608 */
4609 sb->s_flags |= MS_RDONLY;
4610
4611 /*
4612 * OK, test if we are remounting a valid rw partition
4613 * readonly, and if so set the rdonly flag and then
4614 * mark the partition as valid again.
4615 */
4616 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4617 (sbi->s_mount_state & EXT4_VALID_FS))
4618 es->s_state = cpu_to_le16(sbi->s_mount_state);
4619
4620 if (sbi->s_journal)
4621 ext4_mark_recovery_complete(sb, es);
4622 } else {
4623 /* Make sure we can mount this feature set readwrite */
4624 if (!ext4_feature_set_ok(sb, 0)) {
4625 err = -EROFS;
4626 goto restore_opts;
4627 }
4628 /*
4629 * Make sure the group descriptor checksums
4630 * are sane. If they aren't, refuse to remount r/w.
4631 */
4632 for (g = 0; g < sbi->s_groups_count; g++) {
4633 struct ext4_group_desc *gdp =
4634 ext4_get_group_desc(sb, g, NULL);
4635
4636 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4637 ext4_msg(sb, KERN_ERR,
4638 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4639 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4640 le16_to_cpu(gdp->bg_checksum));
4641 err = -EINVAL;
4642 goto restore_opts;
4643 }
4644 }
4645
4646 /*
4647 * If we have an unprocessed orphan list hanging
4648 * around from a previously readonly bdev mount,
4649 * require a full umount/remount for now.
4650 */
4651 if (es->s_last_orphan) {
4652 ext4_msg(sb, KERN_WARNING, "Couldn't "
4653 "remount RDWR because of unprocessed "
4654 "orphan inode list. Please "
4655 "umount/remount instead");
4656 err = -EINVAL;
4657 goto restore_opts;
4658 }
4659
4660 /*
4661 * Mounting a RDONLY partition read-write, so reread
4662 * and store the current valid flag. (It may have
4663 * been changed by e2fsck since we originally mounted
4664 * the partition.)
4665 */
4666 if (sbi->s_journal)
4667 ext4_clear_journal_err(sb, es);
4668 sbi->s_mount_state = le16_to_cpu(es->s_state);
4669 if (!ext4_setup_super(sb, es, 0))
4670 sb->s_flags &= ~MS_RDONLY;
4671 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4672 EXT4_FEATURE_INCOMPAT_MMP))
4673 if (ext4_multi_mount_protect(sb,
4674 le64_to_cpu(es->s_mmp_block))) {
4675 err = -EROFS;
4676 goto restore_opts;
4677 }
4678 enable_quota = 1;
4679 }
4680 }
4681
4682 /*
4683 * Reinitialize lazy itable initialization thread based on
4684 * current settings
4685 */
4686 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4687 ext4_unregister_li_request(sb);
4688 else {
4689 ext4_group_t first_not_zeroed;
4690 first_not_zeroed = ext4_has_uninit_itable(sb);
4691 ext4_register_li_request(sb, first_not_zeroed);
4692 }
4693
4694 ext4_setup_system_zone(sb);
4695 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4696 ext4_commit_super(sb, 1);
4697
4698 #ifdef CONFIG_QUOTA
4699 /* Release old quota file names */
4700 for (i = 0; i < MAXQUOTAS; i++)
4701 kfree(old_opts.s_qf_names[i]);
4702 if (enable_quota) {
4703 if (sb_any_quota_suspended(sb))
4704 dquot_resume(sb, -1);
4705 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4706 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4707 err = ext4_enable_quotas(sb);
4708 if (err)
4709 goto restore_opts;
4710 }
4711 }
4712 #endif
4713
4714 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4715 kfree(orig_data);
4716 return 0;
4717
4718 restore_opts:
4719 sb->s_flags = old_sb_flags;
4720 sbi->s_mount_opt = old_opts.s_mount_opt;
4721 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4722 sbi->s_resuid = old_opts.s_resuid;
4723 sbi->s_resgid = old_opts.s_resgid;
4724 sbi->s_commit_interval = old_opts.s_commit_interval;
4725 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4726 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4727 #ifdef CONFIG_QUOTA
4728 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4729 for (i = 0; i < MAXQUOTAS; i++) {
4730 kfree(sbi->s_qf_names[i]);
4731 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4732 }
4733 #endif
4734 kfree(orig_data);
4735 return err;
4736 }
4737
4738 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4739 {
4740 struct super_block *sb = dentry->d_sb;
4741 struct ext4_sb_info *sbi = EXT4_SB(sb);
4742 struct ext4_super_block *es = sbi->s_es;
4743 ext4_fsblk_t overhead = 0;
4744 u64 fsid;
4745 s64 bfree;
4746
4747 if (!test_opt(sb, MINIX_DF))
4748 overhead = sbi->s_overhead;
4749
4750 buf->f_type = EXT4_SUPER_MAGIC;
4751 buf->f_bsize = sb->s_blocksize;
4752 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4753 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4754 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4755 /* prevent underflow in case that few free space is available */
4756 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4757 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4758 if (buf->f_bfree < ext4_r_blocks_count(es))
4759 buf->f_bavail = 0;
4760 buf->f_files = le32_to_cpu(es->s_inodes_count);
4761 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4762 buf->f_namelen = EXT4_NAME_LEN;
4763 fsid = le64_to_cpup((void *)es->s_uuid) ^
4764 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4765 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4766 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4767
4768 return 0;
4769 }
4770
4771 /* Helper function for writing quotas on sync - we need to start transaction
4772 * before quota file is locked for write. Otherwise the are possible deadlocks:
4773 * Process 1 Process 2
4774 * ext4_create() quota_sync()
4775 * jbd2_journal_start() write_dquot()
4776 * dquot_initialize() down(dqio_mutex)
4777 * down(dqio_mutex) jbd2_journal_start()
4778 *
4779 */
4780
4781 #ifdef CONFIG_QUOTA
4782
4783 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4784 {
4785 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4786 }
4787
4788 static int ext4_write_dquot(struct dquot *dquot)
4789 {
4790 int ret, err;
4791 handle_t *handle;
4792 struct inode *inode;
4793
4794 inode = dquot_to_inode(dquot);
4795 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4796 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4797 if (IS_ERR(handle))
4798 return PTR_ERR(handle);
4799 ret = dquot_commit(dquot);
4800 err = ext4_journal_stop(handle);
4801 if (!ret)
4802 ret = err;
4803 return ret;
4804 }
4805
4806 static int ext4_acquire_dquot(struct dquot *dquot)
4807 {
4808 int ret, err;
4809 handle_t *handle;
4810
4811 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4812 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4813 if (IS_ERR(handle))
4814 return PTR_ERR(handle);
4815 ret = dquot_acquire(dquot);
4816 err = ext4_journal_stop(handle);
4817 if (!ret)
4818 ret = err;
4819 return ret;
4820 }
4821
4822 static int ext4_release_dquot(struct dquot *dquot)
4823 {
4824 int ret, err;
4825 handle_t *handle;
4826
4827 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4828 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4829 if (IS_ERR(handle)) {
4830 /* Release dquot anyway to avoid endless cycle in dqput() */
4831 dquot_release(dquot);
4832 return PTR_ERR(handle);
4833 }
4834 ret = dquot_release(dquot);
4835 err = ext4_journal_stop(handle);
4836 if (!ret)
4837 ret = err;
4838 return ret;
4839 }
4840
4841 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4842 {
4843 struct super_block *sb = dquot->dq_sb;
4844 struct ext4_sb_info *sbi = EXT4_SB(sb);
4845
4846 /* Are we journaling quotas? */
4847 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
4848 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4849 dquot_mark_dquot_dirty(dquot);
4850 return ext4_write_dquot(dquot);
4851 } else {
4852 return dquot_mark_dquot_dirty(dquot);
4853 }
4854 }
4855
4856 static int ext4_write_info(struct super_block *sb, int type)
4857 {
4858 int ret, err;
4859 handle_t *handle;
4860
4861 /* Data block + inode block */
4862 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
4863 if (IS_ERR(handle))
4864 return PTR_ERR(handle);
4865 ret = dquot_commit_info(sb, type);
4866 err = ext4_journal_stop(handle);
4867 if (!ret)
4868 ret = err;
4869 return ret;
4870 }
4871
4872 /*
4873 * Turn on quotas during mount time - we need to find
4874 * the quota file and such...
4875 */
4876 static int ext4_quota_on_mount(struct super_block *sb, int type)
4877 {
4878 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4879 EXT4_SB(sb)->s_jquota_fmt, type);
4880 }
4881
4882 /*
4883 * Standard function to be called on quota_on
4884 */
4885 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4886 struct path *path)
4887 {
4888 int err;
4889
4890 if (!test_opt(sb, QUOTA))
4891 return -EINVAL;
4892
4893 /* Quotafile not on the same filesystem? */
4894 if (path->dentry->d_sb != sb)
4895 return -EXDEV;
4896 /* Journaling quota? */
4897 if (EXT4_SB(sb)->s_qf_names[type]) {
4898 /* Quotafile not in fs root? */
4899 if (path->dentry->d_parent != sb->s_root)
4900 ext4_msg(sb, KERN_WARNING,
4901 "Quota file not on filesystem root. "
4902 "Journaled quota will not work");
4903 }
4904
4905 /*
4906 * When we journal data on quota file, we have to flush journal to see
4907 * all updates to the file when we bypass pagecache...
4908 */
4909 if (EXT4_SB(sb)->s_journal &&
4910 ext4_should_journal_data(path->dentry->d_inode)) {
4911 /*
4912 * We don't need to lock updates but journal_flush() could
4913 * otherwise be livelocked...
4914 */
4915 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4916 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4917 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4918 if (err)
4919 return err;
4920 }
4921
4922 return dquot_quota_on(sb, type, format_id, path);
4923 }
4924
4925 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
4926 unsigned int flags)
4927 {
4928 int err;
4929 struct inode *qf_inode;
4930 unsigned long qf_inums[MAXQUOTAS] = {
4931 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4932 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4933 };
4934
4935 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
4936
4937 if (!qf_inums[type])
4938 return -EPERM;
4939
4940 qf_inode = ext4_iget(sb, qf_inums[type]);
4941 if (IS_ERR(qf_inode)) {
4942 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
4943 return PTR_ERR(qf_inode);
4944 }
4945
4946 err = dquot_enable(qf_inode, type, format_id, flags);
4947 iput(qf_inode);
4948
4949 return err;
4950 }
4951
4952 /* Enable usage tracking for all quota types. */
4953 static int ext4_enable_quotas(struct super_block *sb)
4954 {
4955 int type, err = 0;
4956 unsigned long qf_inums[MAXQUOTAS] = {
4957 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4958 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4959 };
4960
4961 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
4962 for (type = 0; type < MAXQUOTAS; type++) {
4963 if (qf_inums[type]) {
4964 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
4965 DQUOT_USAGE_ENABLED);
4966 if (err) {
4967 ext4_warning(sb,
4968 "Failed to enable quota tracking "
4969 "(type=%d, err=%d). Please run "
4970 "e2fsck to fix.", type, err);
4971 return err;
4972 }
4973 }
4974 }
4975 return 0;
4976 }
4977
4978 /*
4979 * quota_on function that is used when QUOTA feature is set.
4980 */
4981 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
4982 int format_id)
4983 {
4984 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
4985 return -EINVAL;
4986
4987 /*
4988 * USAGE was enabled at mount time. Only need to enable LIMITS now.
4989 */
4990 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
4991 }
4992
4993 static int ext4_quota_off(struct super_block *sb, int type)
4994 {
4995 struct inode *inode = sb_dqopt(sb)->files[type];
4996 handle_t *handle;
4997
4998 /* Force all delayed allocation blocks to be allocated.
4999 * Caller already holds s_umount sem */
5000 if (test_opt(sb, DELALLOC))
5001 sync_filesystem(sb);
5002
5003 if (!inode)
5004 goto out;
5005
5006 /* Update modification times of quota files when userspace can
5007 * start looking at them */
5008 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5009 if (IS_ERR(handle))
5010 goto out;
5011 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5012 ext4_mark_inode_dirty(handle, inode);
5013 ext4_journal_stop(handle);
5014
5015 out:
5016 return dquot_quota_off(sb, type);
5017 }
5018
5019 /*
5020 * quota_off function that is used when QUOTA feature is set.
5021 */
5022 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5023 {
5024 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5025 return -EINVAL;
5026
5027 /* Disable only the limits. */
5028 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5029 }
5030
5031 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5032 * acquiring the locks... As quota files are never truncated and quota code
5033 * itself serializes the operations (and no one else should touch the files)
5034 * we don't have to be afraid of races */
5035 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5036 size_t len, loff_t off)
5037 {
5038 struct inode *inode = sb_dqopt(sb)->files[type];
5039 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5040 int err = 0;
5041 int offset = off & (sb->s_blocksize - 1);
5042 int tocopy;
5043 size_t toread;
5044 struct buffer_head *bh;
5045 loff_t i_size = i_size_read(inode);
5046
5047 if (off > i_size)
5048 return 0;
5049 if (off+len > i_size)
5050 len = i_size-off;
5051 toread = len;
5052 while (toread > 0) {
5053 tocopy = sb->s_blocksize - offset < toread ?
5054 sb->s_blocksize - offset : toread;
5055 bh = ext4_bread(NULL, inode, blk, 0, &err);
5056 if (err)
5057 return err;
5058 if (!bh) /* A hole? */
5059 memset(data, 0, tocopy);
5060 else
5061 memcpy(data, bh->b_data+offset, tocopy);
5062 brelse(bh);
5063 offset = 0;
5064 toread -= tocopy;
5065 data += tocopy;
5066 blk++;
5067 }
5068 return len;
5069 }
5070
5071 /* Write to quotafile (we know the transaction is already started and has
5072 * enough credits) */
5073 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5074 const char *data, size_t len, loff_t off)
5075 {
5076 struct inode *inode = sb_dqopt(sb)->files[type];
5077 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5078 int err = 0;
5079 int offset = off & (sb->s_blocksize - 1);
5080 struct buffer_head *bh;
5081 handle_t *handle = journal_current_handle();
5082
5083 if (EXT4_SB(sb)->s_journal && !handle) {
5084 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5085 " cancelled because transaction is not started",
5086 (unsigned long long)off, (unsigned long long)len);
5087 return -EIO;
5088 }
5089 /*
5090 * Since we account only one data block in transaction credits,
5091 * then it is impossible to cross a block boundary.
5092 */
5093 if (sb->s_blocksize - offset < len) {
5094 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5095 " cancelled because not block aligned",
5096 (unsigned long long)off, (unsigned long long)len);
5097 return -EIO;
5098 }
5099
5100 bh = ext4_bread(handle, inode, blk, 1, &err);
5101 if (!bh)
5102 goto out;
5103 err = ext4_journal_get_write_access(handle, bh);
5104 if (err) {
5105 brelse(bh);
5106 goto out;
5107 }
5108 lock_buffer(bh);
5109 memcpy(bh->b_data+offset, data, len);
5110 flush_dcache_page(bh->b_page);
5111 unlock_buffer(bh);
5112 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5113 brelse(bh);
5114 out:
5115 if (err)
5116 return err;
5117 if (inode->i_size < off + len) {
5118 i_size_write(inode, off + len);
5119 EXT4_I(inode)->i_disksize = inode->i_size;
5120 ext4_mark_inode_dirty(handle, inode);
5121 }
5122 return len;
5123 }
5124
5125 #endif
5126
5127 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5128 const char *dev_name, void *data)
5129 {
5130 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5131 }
5132
5133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5134 static inline void register_as_ext2(void)
5135 {
5136 int err = register_filesystem(&ext2_fs_type);
5137 if (err)
5138 printk(KERN_WARNING
5139 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5140 }
5141
5142 static inline void unregister_as_ext2(void)
5143 {
5144 unregister_filesystem(&ext2_fs_type);
5145 }
5146
5147 static inline int ext2_feature_set_ok(struct super_block *sb)
5148 {
5149 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5150 return 0;
5151 if (sb->s_flags & MS_RDONLY)
5152 return 1;
5153 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5154 return 0;
5155 return 1;
5156 }
5157 #else
5158 static inline void register_as_ext2(void) { }
5159 static inline void unregister_as_ext2(void) { }
5160 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5161 #endif
5162
5163 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5164 static inline void register_as_ext3(void)
5165 {
5166 int err = register_filesystem(&ext3_fs_type);
5167 if (err)
5168 printk(KERN_WARNING
5169 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5170 }
5171
5172 static inline void unregister_as_ext3(void)
5173 {
5174 unregister_filesystem(&ext3_fs_type);
5175 }
5176
5177 static inline int ext3_feature_set_ok(struct super_block *sb)
5178 {
5179 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5180 return 0;
5181 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5182 return 0;
5183 if (sb->s_flags & MS_RDONLY)
5184 return 1;
5185 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5186 return 0;
5187 return 1;
5188 }
5189 #else
5190 static inline void register_as_ext3(void) { }
5191 static inline void unregister_as_ext3(void) { }
5192 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5193 #endif
5194
5195 static struct file_system_type ext4_fs_type = {
5196 .owner = THIS_MODULE,
5197 .name = "ext4",
5198 .mount = ext4_mount,
5199 .kill_sb = kill_block_super,
5200 .fs_flags = FS_REQUIRES_DEV,
5201 };
5202 MODULE_ALIAS_FS("ext4");
5203
5204 static int __init ext4_init_feat_adverts(void)
5205 {
5206 struct ext4_features *ef;
5207 int ret = -ENOMEM;
5208
5209 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5210 if (!ef)
5211 goto out;
5212
5213 ef->f_kobj.kset = ext4_kset;
5214 init_completion(&ef->f_kobj_unregister);
5215 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5216 "features");
5217 if (ret) {
5218 kfree(ef);
5219 goto out;
5220 }
5221
5222 ext4_feat = ef;
5223 ret = 0;
5224 out:
5225 return ret;
5226 }
5227
5228 static void ext4_exit_feat_adverts(void)
5229 {
5230 kobject_put(&ext4_feat->f_kobj);
5231 wait_for_completion(&ext4_feat->f_kobj_unregister);
5232 kfree(ext4_feat);
5233 }
5234
5235 /* Shared across all ext4 file systems */
5236 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5237 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5238
5239 static int __init ext4_init_fs(void)
5240 {
5241 int i, err;
5242
5243 ext4_li_info = NULL;
5244 mutex_init(&ext4_li_mtx);
5245
5246 /* Build-time check for flags consistency */
5247 ext4_check_flag_values();
5248
5249 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5250 mutex_init(&ext4__aio_mutex[i]);
5251 init_waitqueue_head(&ext4__ioend_wq[i]);
5252 }
5253
5254 err = ext4_init_es();
5255 if (err)
5256 return err;
5257
5258 err = ext4_init_pageio();
5259 if (err)
5260 goto out7;
5261
5262 err = ext4_init_system_zone();
5263 if (err)
5264 goto out6;
5265 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5266 if (!ext4_kset) {
5267 err = -ENOMEM;
5268 goto out5;
5269 }
5270 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5271
5272 err = ext4_init_feat_adverts();
5273 if (err)
5274 goto out4;
5275
5276 err = ext4_init_mballoc();
5277 if (err)
5278 goto out3;
5279
5280 err = ext4_init_xattr();
5281 if (err)
5282 goto out2;
5283 err = init_inodecache();
5284 if (err)
5285 goto out1;
5286 register_as_ext3();
5287 register_as_ext2();
5288 err = register_filesystem(&ext4_fs_type);
5289 if (err)
5290 goto out;
5291
5292 return 0;
5293 out:
5294 unregister_as_ext2();
5295 unregister_as_ext3();
5296 destroy_inodecache();
5297 out1:
5298 ext4_exit_xattr();
5299 out2:
5300 ext4_exit_mballoc();
5301 out3:
5302 ext4_exit_feat_adverts();
5303 out4:
5304 if (ext4_proc_root)
5305 remove_proc_entry("fs/ext4", NULL);
5306 kset_unregister(ext4_kset);
5307 out5:
5308 ext4_exit_system_zone();
5309 out6:
5310 ext4_exit_pageio();
5311 out7:
5312 ext4_exit_es();
5313
5314 return err;
5315 }
5316
5317 static void __exit ext4_exit_fs(void)
5318 {
5319 ext4_destroy_lazyinit_thread();
5320 unregister_as_ext2();
5321 unregister_as_ext3();
5322 unregister_filesystem(&ext4_fs_type);
5323 destroy_inodecache();
5324 ext4_exit_xattr();
5325 ext4_exit_mballoc();
5326 ext4_exit_feat_adverts();
5327 remove_proc_entry("fs/ext4", NULL);
5328 kset_unregister(ext4_kset);
5329 ext4_exit_system_zone();
5330 ext4_exit_pageio();
5331 }
5332
5333 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5334 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5335 MODULE_LICENSE("GPL");
5336 module_init(ext4_init_fs)
5337 module_exit(ext4_exit_fs)