]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/super.c
Merge remote-tracking branch 'asoc/fix/wm8960' into tmp
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84
85 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
86 static struct file_system_type ext2_fs_type = {
87 .owner = THIS_MODULE,
88 .name = "ext2",
89 .mount = ext4_mount,
90 .kill_sb = kill_block_super,
91 .fs_flags = FS_REQUIRES_DEV,
92 };
93 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
94 #else
95 #define IS_EXT2_SB(sb) (0)
96 #endif
97
98
99 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
100 static struct file_system_type ext3_fs_type = {
101 .owner = THIS_MODULE,
102 .name = "ext3",
103 .mount = ext4_mount,
104 .kill_sb = kill_block_super,
105 .fs_flags = FS_REQUIRES_DEV,
106 };
107 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
108 #else
109 #define IS_EXT3_SB(sb) (0)
110 #endif
111
112 static int ext4_verify_csum_type(struct super_block *sb,
113 struct ext4_super_block *es)
114 {
115 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
116 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
117 return 1;
118
119 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
120 }
121
122 static __le32 ext4_superblock_csum(struct super_block *sb,
123 struct ext4_super_block *es)
124 {
125 struct ext4_sb_info *sbi = EXT4_SB(sb);
126 int offset = offsetof(struct ext4_super_block, s_checksum);
127 __u32 csum;
128
129 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
130
131 return cpu_to_le32(csum);
132 }
133
134 int ext4_superblock_csum_verify(struct super_block *sb,
135 struct ext4_super_block *es)
136 {
137 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
138 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
139 return 1;
140
141 return es->s_checksum == ext4_superblock_csum(sb, es);
142 }
143
144 void ext4_superblock_csum_set(struct super_block *sb)
145 {
146 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
147
148 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
149 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
150 return;
151
152 es->s_checksum = ext4_superblock_csum(sb, es);
153 }
154
155 void *ext4_kvmalloc(size_t size, gfp_t flags)
156 {
157 void *ret;
158
159 ret = kmalloc(size, flags);
160 if (!ret)
161 ret = __vmalloc(size, flags, PAGE_KERNEL);
162 return ret;
163 }
164
165 void *ext4_kvzalloc(size_t size, gfp_t flags)
166 {
167 void *ret;
168
169 ret = kzalloc(size, flags);
170 if (!ret)
171 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
172 return ret;
173 }
174
175 void ext4_kvfree(void *ptr)
176 {
177 if (is_vmalloc_addr(ptr))
178 vfree(ptr);
179 else
180 kfree(ptr);
181
182 }
183
184 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
185 struct ext4_group_desc *bg)
186 {
187 return le32_to_cpu(bg->bg_block_bitmap_lo) |
188 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
189 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
190 }
191
192 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
193 struct ext4_group_desc *bg)
194 {
195 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
196 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
197 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
198 }
199
200 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
201 struct ext4_group_desc *bg)
202 {
203 return le32_to_cpu(bg->bg_inode_table_lo) |
204 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
205 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
206 }
207
208 __u32 ext4_free_group_clusters(struct super_block *sb,
209 struct ext4_group_desc *bg)
210 {
211 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
212 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
213 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
214 }
215
216 __u32 ext4_free_inodes_count(struct super_block *sb,
217 struct ext4_group_desc *bg)
218 {
219 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
220 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
221 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
222 }
223
224 __u32 ext4_used_dirs_count(struct super_block *sb,
225 struct ext4_group_desc *bg)
226 {
227 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
228 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
229 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
230 }
231
232 __u32 ext4_itable_unused_count(struct super_block *sb,
233 struct ext4_group_desc *bg)
234 {
235 return le16_to_cpu(bg->bg_itable_unused_lo) |
236 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
237 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
238 }
239
240 void ext4_block_bitmap_set(struct super_block *sb,
241 struct ext4_group_desc *bg, ext4_fsblk_t blk)
242 {
243 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
244 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
245 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
246 }
247
248 void ext4_inode_bitmap_set(struct super_block *sb,
249 struct ext4_group_desc *bg, ext4_fsblk_t blk)
250 {
251 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
252 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
253 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
254 }
255
256 void ext4_inode_table_set(struct super_block *sb,
257 struct ext4_group_desc *bg, ext4_fsblk_t blk)
258 {
259 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
260 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
261 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
262 }
263
264 void ext4_free_group_clusters_set(struct super_block *sb,
265 struct ext4_group_desc *bg, __u32 count)
266 {
267 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
268 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
269 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
270 }
271
272 void ext4_free_inodes_set(struct super_block *sb,
273 struct ext4_group_desc *bg, __u32 count)
274 {
275 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
276 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
277 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
278 }
279
280 void ext4_used_dirs_set(struct super_block *sb,
281 struct ext4_group_desc *bg, __u32 count)
282 {
283 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
284 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
285 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
286 }
287
288 void ext4_itable_unused_set(struct super_block *sb,
289 struct ext4_group_desc *bg, __u32 count)
290 {
291 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
292 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
293 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
294 }
295
296
297 static void __save_error_info(struct super_block *sb, const char *func,
298 unsigned int line)
299 {
300 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
301
302 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
303 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
304 es->s_last_error_time = cpu_to_le32(get_seconds());
305 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
306 es->s_last_error_line = cpu_to_le32(line);
307 if (!es->s_first_error_time) {
308 es->s_first_error_time = es->s_last_error_time;
309 strncpy(es->s_first_error_func, func,
310 sizeof(es->s_first_error_func));
311 es->s_first_error_line = cpu_to_le32(line);
312 es->s_first_error_ino = es->s_last_error_ino;
313 es->s_first_error_block = es->s_last_error_block;
314 }
315 /*
316 * Start the daily error reporting function if it hasn't been
317 * started already
318 */
319 if (!es->s_error_count)
320 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
321 le32_add_cpu(&es->s_error_count, 1);
322 }
323
324 static void save_error_info(struct super_block *sb, const char *func,
325 unsigned int line)
326 {
327 __save_error_info(sb, func, line);
328 ext4_commit_super(sb, 1);
329 }
330
331 /*
332 * The del_gendisk() function uninitializes the disk-specific data
333 * structures, including the bdi structure, without telling anyone
334 * else. Once this happens, any attempt to call mark_buffer_dirty()
335 * (for example, by ext4_commit_super), will cause a kernel OOPS.
336 * This is a kludge to prevent these oops until we can put in a proper
337 * hook in del_gendisk() to inform the VFS and file system layers.
338 */
339 static int block_device_ejected(struct super_block *sb)
340 {
341 struct inode *bd_inode = sb->s_bdev->bd_inode;
342 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
343
344 return bdi->dev == NULL;
345 }
346
347 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
348 {
349 struct super_block *sb = journal->j_private;
350 struct ext4_sb_info *sbi = EXT4_SB(sb);
351 int error = is_journal_aborted(journal);
352 struct ext4_journal_cb_entry *jce, *tmp;
353
354 spin_lock(&sbi->s_md_lock);
355 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
356 list_del_init(&jce->jce_list);
357 spin_unlock(&sbi->s_md_lock);
358 jce->jce_func(sb, jce, error);
359 spin_lock(&sbi->s_md_lock);
360 }
361 spin_unlock(&sbi->s_md_lock);
362 }
363
364 /* Deal with the reporting of failure conditions on a filesystem such as
365 * inconsistencies detected or read IO failures.
366 *
367 * On ext2, we can store the error state of the filesystem in the
368 * superblock. That is not possible on ext4, because we may have other
369 * write ordering constraints on the superblock which prevent us from
370 * writing it out straight away; and given that the journal is about to
371 * be aborted, we can't rely on the current, or future, transactions to
372 * write out the superblock safely.
373 *
374 * We'll just use the jbd2_journal_abort() error code to record an error in
375 * the journal instead. On recovery, the journal will complain about
376 * that error until we've noted it down and cleared it.
377 */
378
379 static void ext4_handle_error(struct super_block *sb)
380 {
381 if (sb->s_flags & MS_RDONLY)
382 return;
383
384 if (!test_opt(sb, ERRORS_CONT)) {
385 journal_t *journal = EXT4_SB(sb)->s_journal;
386
387 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
388 if (journal)
389 jbd2_journal_abort(journal, -EIO);
390 }
391 if (test_opt(sb, ERRORS_RO)) {
392 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
393 sb->s_flags |= MS_RDONLY;
394 }
395 if (test_opt(sb, ERRORS_PANIC))
396 panic("EXT4-fs (device %s): panic forced after error\n",
397 sb->s_id);
398 }
399
400 void __ext4_error(struct super_block *sb, const char *function,
401 unsigned int line, const char *fmt, ...)
402 {
403 struct va_format vaf;
404 va_list args;
405
406 va_start(args, fmt);
407 vaf.fmt = fmt;
408 vaf.va = &args;
409 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
410 sb->s_id, function, line, current->comm, &vaf);
411 va_end(args);
412 save_error_info(sb, function, line);
413
414 ext4_handle_error(sb);
415 }
416
417 void ext4_error_inode(struct inode *inode, const char *function,
418 unsigned int line, ext4_fsblk_t block,
419 const char *fmt, ...)
420 {
421 va_list args;
422 struct va_format vaf;
423 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
424
425 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
426 es->s_last_error_block = cpu_to_le64(block);
427 save_error_info(inode->i_sb, function, line);
428 va_start(args, fmt);
429 vaf.fmt = fmt;
430 vaf.va = &args;
431 if (block)
432 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
433 "inode #%lu: block %llu: comm %s: %pV\n",
434 inode->i_sb->s_id, function, line, inode->i_ino,
435 block, current->comm, &vaf);
436 else
437 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
438 "inode #%lu: comm %s: %pV\n",
439 inode->i_sb->s_id, function, line, inode->i_ino,
440 current->comm, &vaf);
441 va_end(args);
442
443 ext4_handle_error(inode->i_sb);
444 }
445
446 void ext4_error_file(struct file *file, const char *function,
447 unsigned int line, ext4_fsblk_t block,
448 const char *fmt, ...)
449 {
450 va_list args;
451 struct va_format vaf;
452 struct ext4_super_block *es;
453 struct inode *inode = file_inode(file);
454 char pathname[80], *path;
455
456 es = EXT4_SB(inode->i_sb)->s_es;
457 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
458 save_error_info(inode->i_sb, function, line);
459 path = d_path(&(file->f_path), pathname, sizeof(pathname));
460 if (IS_ERR(path))
461 path = "(unknown)";
462 va_start(args, fmt);
463 vaf.fmt = fmt;
464 vaf.va = &args;
465 if (block)
466 printk(KERN_CRIT
467 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
468 "block %llu: comm %s: path %s: %pV\n",
469 inode->i_sb->s_id, function, line, inode->i_ino,
470 block, current->comm, path, &vaf);
471 else
472 printk(KERN_CRIT
473 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
474 "comm %s: path %s: %pV\n",
475 inode->i_sb->s_id, function, line, inode->i_ino,
476 current->comm, path, &vaf);
477 va_end(args);
478
479 ext4_handle_error(inode->i_sb);
480 }
481
482 const char *ext4_decode_error(struct super_block *sb, int errno,
483 char nbuf[16])
484 {
485 char *errstr = NULL;
486
487 switch (errno) {
488 case -EIO:
489 errstr = "IO failure";
490 break;
491 case -ENOMEM:
492 errstr = "Out of memory";
493 break;
494 case -EROFS:
495 if (!sb || (EXT4_SB(sb)->s_journal &&
496 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
497 errstr = "Journal has aborted";
498 else
499 errstr = "Readonly filesystem";
500 break;
501 default:
502 /* If the caller passed in an extra buffer for unknown
503 * errors, textualise them now. Else we just return
504 * NULL. */
505 if (nbuf) {
506 /* Check for truncated error codes... */
507 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
508 errstr = nbuf;
509 }
510 break;
511 }
512
513 return errstr;
514 }
515
516 /* __ext4_std_error decodes expected errors from journaling functions
517 * automatically and invokes the appropriate error response. */
518
519 void __ext4_std_error(struct super_block *sb, const char *function,
520 unsigned int line, int errno)
521 {
522 char nbuf[16];
523 const char *errstr;
524
525 /* Special case: if the error is EROFS, and we're not already
526 * inside a transaction, then there's really no point in logging
527 * an error. */
528 if (errno == -EROFS && journal_current_handle() == NULL &&
529 (sb->s_flags & MS_RDONLY))
530 return;
531
532 errstr = ext4_decode_error(sb, errno, nbuf);
533 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
534 sb->s_id, function, line, errstr);
535 save_error_info(sb, function, line);
536
537 ext4_handle_error(sb);
538 }
539
540 /*
541 * ext4_abort is a much stronger failure handler than ext4_error. The
542 * abort function may be used to deal with unrecoverable failures such
543 * as journal IO errors or ENOMEM at a critical moment in log management.
544 *
545 * We unconditionally force the filesystem into an ABORT|READONLY state,
546 * unless the error response on the fs has been set to panic in which
547 * case we take the easy way out and panic immediately.
548 */
549
550 void __ext4_abort(struct super_block *sb, const char *function,
551 unsigned int line, const char *fmt, ...)
552 {
553 va_list args;
554
555 save_error_info(sb, function, line);
556 va_start(args, fmt);
557 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
558 function, line);
559 vprintk(fmt, args);
560 printk("\n");
561 va_end(args);
562
563 if ((sb->s_flags & MS_RDONLY) == 0) {
564 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
565 sb->s_flags |= MS_RDONLY;
566 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
567 if (EXT4_SB(sb)->s_journal)
568 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
569 save_error_info(sb, function, line);
570 }
571 if (test_opt(sb, ERRORS_PANIC))
572 panic("EXT4-fs panic from previous error\n");
573 }
574
575 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
576 {
577 struct va_format vaf;
578 va_list args;
579
580 va_start(args, fmt);
581 vaf.fmt = fmt;
582 vaf.va = &args;
583 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
584 va_end(args);
585 }
586
587 void __ext4_warning(struct super_block *sb, const char *function,
588 unsigned int line, const char *fmt, ...)
589 {
590 struct va_format vaf;
591 va_list args;
592
593 va_start(args, fmt);
594 vaf.fmt = fmt;
595 vaf.va = &args;
596 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
597 sb->s_id, function, line, &vaf);
598 va_end(args);
599 }
600
601 void __ext4_grp_locked_error(const char *function, unsigned int line,
602 struct super_block *sb, ext4_group_t grp,
603 unsigned long ino, ext4_fsblk_t block,
604 const char *fmt, ...)
605 __releases(bitlock)
606 __acquires(bitlock)
607 {
608 struct va_format vaf;
609 va_list args;
610 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
611
612 es->s_last_error_ino = cpu_to_le32(ino);
613 es->s_last_error_block = cpu_to_le64(block);
614 __save_error_info(sb, function, line);
615
616 va_start(args, fmt);
617
618 vaf.fmt = fmt;
619 vaf.va = &args;
620 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
621 sb->s_id, function, line, grp);
622 if (ino)
623 printk(KERN_CONT "inode %lu: ", ino);
624 if (block)
625 printk(KERN_CONT "block %llu:", (unsigned long long) block);
626 printk(KERN_CONT "%pV\n", &vaf);
627 va_end(args);
628
629 if (test_opt(sb, ERRORS_CONT)) {
630 ext4_commit_super(sb, 0);
631 return;
632 }
633
634 ext4_unlock_group(sb, grp);
635 ext4_handle_error(sb);
636 /*
637 * We only get here in the ERRORS_RO case; relocking the group
638 * may be dangerous, but nothing bad will happen since the
639 * filesystem will have already been marked read/only and the
640 * journal has been aborted. We return 1 as a hint to callers
641 * who might what to use the return value from
642 * ext4_grp_locked_error() to distinguish between the
643 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
644 * aggressively from the ext4 function in question, with a
645 * more appropriate error code.
646 */
647 ext4_lock_group(sb, grp);
648 return;
649 }
650
651 void ext4_update_dynamic_rev(struct super_block *sb)
652 {
653 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
654
655 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
656 return;
657
658 ext4_warning(sb,
659 "updating to rev %d because of new feature flag, "
660 "running e2fsck is recommended",
661 EXT4_DYNAMIC_REV);
662
663 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
664 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
665 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
666 /* leave es->s_feature_*compat flags alone */
667 /* es->s_uuid will be set by e2fsck if empty */
668
669 /*
670 * The rest of the superblock fields should be zero, and if not it
671 * means they are likely already in use, so leave them alone. We
672 * can leave it up to e2fsck to clean up any inconsistencies there.
673 */
674 }
675
676 /*
677 * Open the external journal device
678 */
679 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
680 {
681 struct block_device *bdev;
682 char b[BDEVNAME_SIZE];
683
684 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
685 if (IS_ERR(bdev))
686 goto fail;
687 return bdev;
688
689 fail:
690 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
691 __bdevname(dev, b), PTR_ERR(bdev));
692 return NULL;
693 }
694
695 /*
696 * Release the journal device
697 */
698 static int ext4_blkdev_put(struct block_device *bdev)
699 {
700 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
701 }
702
703 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
704 {
705 struct block_device *bdev;
706 int ret = -ENODEV;
707
708 bdev = sbi->journal_bdev;
709 if (bdev) {
710 ret = ext4_blkdev_put(bdev);
711 sbi->journal_bdev = NULL;
712 }
713 return ret;
714 }
715
716 static inline struct inode *orphan_list_entry(struct list_head *l)
717 {
718 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
719 }
720
721 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
722 {
723 struct list_head *l;
724
725 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
726 le32_to_cpu(sbi->s_es->s_last_orphan));
727
728 printk(KERN_ERR "sb_info orphan list:\n");
729 list_for_each(l, &sbi->s_orphan) {
730 struct inode *inode = orphan_list_entry(l);
731 printk(KERN_ERR " "
732 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
733 inode->i_sb->s_id, inode->i_ino, inode,
734 inode->i_mode, inode->i_nlink,
735 NEXT_ORPHAN(inode));
736 }
737 }
738
739 static void ext4_put_super(struct super_block *sb)
740 {
741 struct ext4_sb_info *sbi = EXT4_SB(sb);
742 struct ext4_super_block *es = sbi->s_es;
743 int i, err;
744
745 ext4_unregister_li_request(sb);
746 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
747
748 flush_workqueue(sbi->dio_unwritten_wq);
749 destroy_workqueue(sbi->dio_unwritten_wq);
750
751 if (sbi->s_journal) {
752 err = jbd2_journal_destroy(sbi->s_journal);
753 sbi->s_journal = NULL;
754 if (err < 0)
755 ext4_abort(sb, "Couldn't clean up the journal");
756 }
757
758 ext4_es_unregister_shrinker(sb);
759 del_timer(&sbi->s_err_report);
760 ext4_release_system_zone(sb);
761 ext4_mb_release(sb);
762 ext4_ext_release(sb);
763 ext4_xattr_put_super(sb);
764
765 if (!(sb->s_flags & MS_RDONLY)) {
766 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
767 es->s_state = cpu_to_le16(sbi->s_mount_state);
768 }
769 if (!(sb->s_flags & MS_RDONLY))
770 ext4_commit_super(sb, 1);
771
772 if (sbi->s_proc) {
773 remove_proc_entry("options", sbi->s_proc);
774 remove_proc_entry(sb->s_id, ext4_proc_root);
775 }
776 kobject_del(&sbi->s_kobj);
777
778 for (i = 0; i < sbi->s_gdb_count; i++)
779 brelse(sbi->s_group_desc[i]);
780 ext4_kvfree(sbi->s_group_desc);
781 ext4_kvfree(sbi->s_flex_groups);
782 percpu_counter_destroy(&sbi->s_freeclusters_counter);
783 percpu_counter_destroy(&sbi->s_freeinodes_counter);
784 percpu_counter_destroy(&sbi->s_dirs_counter);
785 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
786 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
787 brelse(sbi->s_sbh);
788 #ifdef CONFIG_QUOTA
789 for (i = 0; i < MAXQUOTAS; i++)
790 kfree(sbi->s_qf_names[i]);
791 #endif
792
793 /* Debugging code just in case the in-memory inode orphan list
794 * isn't empty. The on-disk one can be non-empty if we've
795 * detected an error and taken the fs readonly, but the
796 * in-memory list had better be clean by this point. */
797 if (!list_empty(&sbi->s_orphan))
798 dump_orphan_list(sb, sbi);
799 J_ASSERT(list_empty(&sbi->s_orphan));
800
801 invalidate_bdev(sb->s_bdev);
802 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
803 /*
804 * Invalidate the journal device's buffers. We don't want them
805 * floating about in memory - the physical journal device may
806 * hotswapped, and it breaks the `ro-after' testing code.
807 */
808 sync_blockdev(sbi->journal_bdev);
809 invalidate_bdev(sbi->journal_bdev);
810 ext4_blkdev_remove(sbi);
811 }
812 if (sbi->s_mmp_tsk)
813 kthread_stop(sbi->s_mmp_tsk);
814 sb->s_fs_info = NULL;
815 /*
816 * Now that we are completely done shutting down the
817 * superblock, we need to actually destroy the kobject.
818 */
819 kobject_put(&sbi->s_kobj);
820 wait_for_completion(&sbi->s_kobj_unregister);
821 if (sbi->s_chksum_driver)
822 crypto_free_shash(sbi->s_chksum_driver);
823 kfree(sbi->s_blockgroup_lock);
824 kfree(sbi);
825 }
826
827 static struct kmem_cache *ext4_inode_cachep;
828
829 /*
830 * Called inside transaction, so use GFP_NOFS
831 */
832 static struct inode *ext4_alloc_inode(struct super_block *sb)
833 {
834 struct ext4_inode_info *ei;
835
836 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
837 if (!ei)
838 return NULL;
839
840 ei->vfs_inode.i_version = 1;
841 INIT_LIST_HEAD(&ei->i_prealloc_list);
842 spin_lock_init(&ei->i_prealloc_lock);
843 ext4_es_init_tree(&ei->i_es_tree);
844 rwlock_init(&ei->i_es_lock);
845 INIT_LIST_HEAD(&ei->i_es_lru);
846 ei->i_es_lru_nr = 0;
847 ei->i_reserved_data_blocks = 0;
848 ei->i_reserved_meta_blocks = 0;
849 ei->i_allocated_meta_blocks = 0;
850 ei->i_da_metadata_calc_len = 0;
851 ei->i_da_metadata_calc_last_lblock = 0;
852 spin_lock_init(&(ei->i_block_reservation_lock));
853 #ifdef CONFIG_QUOTA
854 ei->i_reserved_quota = 0;
855 #endif
856 ei->jinode = NULL;
857 INIT_LIST_HEAD(&ei->i_completed_io_list);
858 spin_lock_init(&ei->i_completed_io_lock);
859 ei->i_sync_tid = 0;
860 ei->i_datasync_tid = 0;
861 atomic_set(&ei->i_ioend_count, 0);
862 atomic_set(&ei->i_unwritten, 0);
863 INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work);
864
865 return &ei->vfs_inode;
866 }
867
868 static int ext4_drop_inode(struct inode *inode)
869 {
870 int drop = generic_drop_inode(inode);
871
872 trace_ext4_drop_inode(inode, drop);
873 return drop;
874 }
875
876 static void ext4_i_callback(struct rcu_head *head)
877 {
878 struct inode *inode = container_of(head, struct inode, i_rcu);
879 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
880 }
881
882 static void ext4_destroy_inode(struct inode *inode)
883 {
884 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
885 ext4_msg(inode->i_sb, KERN_ERR,
886 "Inode %lu (%p): orphan list check failed!",
887 inode->i_ino, EXT4_I(inode));
888 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
889 EXT4_I(inode), sizeof(struct ext4_inode_info),
890 true);
891 dump_stack();
892 }
893 call_rcu(&inode->i_rcu, ext4_i_callback);
894 }
895
896 static void init_once(void *foo)
897 {
898 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
899
900 INIT_LIST_HEAD(&ei->i_orphan);
901 init_rwsem(&ei->xattr_sem);
902 init_rwsem(&ei->i_data_sem);
903 inode_init_once(&ei->vfs_inode);
904 }
905
906 static int init_inodecache(void)
907 {
908 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
909 sizeof(struct ext4_inode_info),
910 0, (SLAB_RECLAIM_ACCOUNT|
911 SLAB_MEM_SPREAD),
912 init_once);
913 if (ext4_inode_cachep == NULL)
914 return -ENOMEM;
915 return 0;
916 }
917
918 static void destroy_inodecache(void)
919 {
920 /*
921 * Make sure all delayed rcu free inodes are flushed before we
922 * destroy cache.
923 */
924 rcu_barrier();
925 kmem_cache_destroy(ext4_inode_cachep);
926 }
927
928 void ext4_clear_inode(struct inode *inode)
929 {
930 invalidate_inode_buffers(inode);
931 clear_inode(inode);
932 dquot_drop(inode);
933 ext4_discard_preallocations(inode);
934 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
935 ext4_es_lru_del(inode);
936 if (EXT4_I(inode)->jinode) {
937 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
938 EXT4_I(inode)->jinode);
939 jbd2_free_inode(EXT4_I(inode)->jinode);
940 EXT4_I(inode)->jinode = NULL;
941 }
942 }
943
944 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
945 u64 ino, u32 generation)
946 {
947 struct inode *inode;
948
949 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
950 return ERR_PTR(-ESTALE);
951 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
952 return ERR_PTR(-ESTALE);
953
954 /* iget isn't really right if the inode is currently unallocated!!
955 *
956 * ext4_read_inode will return a bad_inode if the inode had been
957 * deleted, so we should be safe.
958 *
959 * Currently we don't know the generation for parent directory, so
960 * a generation of 0 means "accept any"
961 */
962 inode = ext4_iget(sb, ino);
963 if (IS_ERR(inode))
964 return ERR_CAST(inode);
965 if (generation && inode->i_generation != generation) {
966 iput(inode);
967 return ERR_PTR(-ESTALE);
968 }
969
970 return inode;
971 }
972
973 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
974 int fh_len, int fh_type)
975 {
976 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
977 ext4_nfs_get_inode);
978 }
979
980 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
981 int fh_len, int fh_type)
982 {
983 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
984 ext4_nfs_get_inode);
985 }
986
987 /*
988 * Try to release metadata pages (indirect blocks, directories) which are
989 * mapped via the block device. Since these pages could have journal heads
990 * which would prevent try_to_free_buffers() from freeing them, we must use
991 * jbd2 layer's try_to_free_buffers() function to release them.
992 */
993 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
994 gfp_t wait)
995 {
996 journal_t *journal = EXT4_SB(sb)->s_journal;
997
998 WARN_ON(PageChecked(page));
999 if (!page_has_buffers(page))
1000 return 0;
1001 if (journal)
1002 return jbd2_journal_try_to_free_buffers(journal, page,
1003 wait & ~__GFP_WAIT);
1004 return try_to_free_buffers(page);
1005 }
1006
1007 #ifdef CONFIG_QUOTA
1008 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1009 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1010
1011 static int ext4_write_dquot(struct dquot *dquot);
1012 static int ext4_acquire_dquot(struct dquot *dquot);
1013 static int ext4_release_dquot(struct dquot *dquot);
1014 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1015 static int ext4_write_info(struct super_block *sb, int type);
1016 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1017 struct path *path);
1018 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1019 int format_id);
1020 static int ext4_quota_off(struct super_block *sb, int type);
1021 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1022 static int ext4_quota_on_mount(struct super_block *sb, int type);
1023 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1024 size_t len, loff_t off);
1025 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1026 const char *data, size_t len, loff_t off);
1027 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1028 unsigned int flags);
1029 static int ext4_enable_quotas(struct super_block *sb);
1030
1031 static const struct dquot_operations ext4_quota_operations = {
1032 .get_reserved_space = ext4_get_reserved_space,
1033 .write_dquot = ext4_write_dquot,
1034 .acquire_dquot = ext4_acquire_dquot,
1035 .release_dquot = ext4_release_dquot,
1036 .mark_dirty = ext4_mark_dquot_dirty,
1037 .write_info = ext4_write_info,
1038 .alloc_dquot = dquot_alloc,
1039 .destroy_dquot = dquot_destroy,
1040 };
1041
1042 static const struct quotactl_ops ext4_qctl_operations = {
1043 .quota_on = ext4_quota_on,
1044 .quota_off = ext4_quota_off,
1045 .quota_sync = dquot_quota_sync,
1046 .get_info = dquot_get_dqinfo,
1047 .set_info = dquot_set_dqinfo,
1048 .get_dqblk = dquot_get_dqblk,
1049 .set_dqblk = dquot_set_dqblk
1050 };
1051
1052 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1053 .quota_on_meta = ext4_quota_on_sysfile,
1054 .quota_off = ext4_quota_off_sysfile,
1055 .quota_sync = dquot_quota_sync,
1056 .get_info = dquot_get_dqinfo,
1057 .set_info = dquot_set_dqinfo,
1058 .get_dqblk = dquot_get_dqblk,
1059 .set_dqblk = dquot_set_dqblk
1060 };
1061 #endif
1062
1063 static const struct super_operations ext4_sops = {
1064 .alloc_inode = ext4_alloc_inode,
1065 .destroy_inode = ext4_destroy_inode,
1066 .write_inode = ext4_write_inode,
1067 .dirty_inode = ext4_dirty_inode,
1068 .drop_inode = ext4_drop_inode,
1069 .evict_inode = ext4_evict_inode,
1070 .put_super = ext4_put_super,
1071 .sync_fs = ext4_sync_fs,
1072 .freeze_fs = ext4_freeze,
1073 .unfreeze_fs = ext4_unfreeze,
1074 .statfs = ext4_statfs,
1075 .remount_fs = ext4_remount,
1076 .show_options = ext4_show_options,
1077 #ifdef CONFIG_QUOTA
1078 .quota_read = ext4_quota_read,
1079 .quota_write = ext4_quota_write,
1080 #endif
1081 .bdev_try_to_free_page = bdev_try_to_free_page,
1082 };
1083
1084 static const struct super_operations ext4_nojournal_sops = {
1085 .alloc_inode = ext4_alloc_inode,
1086 .destroy_inode = ext4_destroy_inode,
1087 .write_inode = ext4_write_inode,
1088 .dirty_inode = ext4_dirty_inode,
1089 .drop_inode = ext4_drop_inode,
1090 .evict_inode = ext4_evict_inode,
1091 .put_super = ext4_put_super,
1092 .statfs = ext4_statfs,
1093 .remount_fs = ext4_remount,
1094 .show_options = ext4_show_options,
1095 #ifdef CONFIG_QUOTA
1096 .quota_read = ext4_quota_read,
1097 .quota_write = ext4_quota_write,
1098 #endif
1099 .bdev_try_to_free_page = bdev_try_to_free_page,
1100 };
1101
1102 static const struct export_operations ext4_export_ops = {
1103 .fh_to_dentry = ext4_fh_to_dentry,
1104 .fh_to_parent = ext4_fh_to_parent,
1105 .get_parent = ext4_get_parent,
1106 };
1107
1108 enum {
1109 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1110 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1111 Opt_nouid32, Opt_debug, Opt_removed,
1112 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1113 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1114 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1115 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1116 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1117 Opt_data_err_abort, Opt_data_err_ignore,
1118 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1119 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1120 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1121 Opt_usrquota, Opt_grpquota, Opt_i_version,
1122 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1123 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1124 Opt_inode_readahead_blks, Opt_journal_ioprio,
1125 Opt_dioread_nolock, Opt_dioread_lock,
1126 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1127 Opt_max_dir_size_kb,
1128 };
1129
1130 static const match_table_t tokens = {
1131 {Opt_bsd_df, "bsddf"},
1132 {Opt_minix_df, "minixdf"},
1133 {Opt_grpid, "grpid"},
1134 {Opt_grpid, "bsdgroups"},
1135 {Opt_nogrpid, "nogrpid"},
1136 {Opt_nogrpid, "sysvgroups"},
1137 {Opt_resgid, "resgid=%u"},
1138 {Opt_resuid, "resuid=%u"},
1139 {Opt_sb, "sb=%u"},
1140 {Opt_err_cont, "errors=continue"},
1141 {Opt_err_panic, "errors=panic"},
1142 {Opt_err_ro, "errors=remount-ro"},
1143 {Opt_nouid32, "nouid32"},
1144 {Opt_debug, "debug"},
1145 {Opt_removed, "oldalloc"},
1146 {Opt_removed, "orlov"},
1147 {Opt_user_xattr, "user_xattr"},
1148 {Opt_nouser_xattr, "nouser_xattr"},
1149 {Opt_acl, "acl"},
1150 {Opt_noacl, "noacl"},
1151 {Opt_noload, "norecovery"},
1152 {Opt_noload, "noload"},
1153 {Opt_removed, "nobh"},
1154 {Opt_removed, "bh"},
1155 {Opt_commit, "commit=%u"},
1156 {Opt_min_batch_time, "min_batch_time=%u"},
1157 {Opt_max_batch_time, "max_batch_time=%u"},
1158 {Opt_journal_dev, "journal_dev=%u"},
1159 {Opt_journal_checksum, "journal_checksum"},
1160 {Opt_journal_async_commit, "journal_async_commit"},
1161 {Opt_abort, "abort"},
1162 {Opt_data_journal, "data=journal"},
1163 {Opt_data_ordered, "data=ordered"},
1164 {Opt_data_writeback, "data=writeback"},
1165 {Opt_data_err_abort, "data_err=abort"},
1166 {Opt_data_err_ignore, "data_err=ignore"},
1167 {Opt_offusrjquota, "usrjquota="},
1168 {Opt_usrjquota, "usrjquota=%s"},
1169 {Opt_offgrpjquota, "grpjquota="},
1170 {Opt_grpjquota, "grpjquota=%s"},
1171 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1172 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1173 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1174 {Opt_grpquota, "grpquota"},
1175 {Opt_noquota, "noquota"},
1176 {Opt_quota, "quota"},
1177 {Opt_usrquota, "usrquota"},
1178 {Opt_barrier, "barrier=%u"},
1179 {Opt_barrier, "barrier"},
1180 {Opt_nobarrier, "nobarrier"},
1181 {Opt_i_version, "i_version"},
1182 {Opt_stripe, "stripe=%u"},
1183 {Opt_delalloc, "delalloc"},
1184 {Opt_nodelalloc, "nodelalloc"},
1185 {Opt_removed, "mblk_io_submit"},
1186 {Opt_removed, "nomblk_io_submit"},
1187 {Opt_block_validity, "block_validity"},
1188 {Opt_noblock_validity, "noblock_validity"},
1189 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1190 {Opt_journal_ioprio, "journal_ioprio=%u"},
1191 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1192 {Opt_auto_da_alloc, "auto_da_alloc"},
1193 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1194 {Opt_dioread_nolock, "dioread_nolock"},
1195 {Opt_dioread_lock, "dioread_lock"},
1196 {Opt_discard, "discard"},
1197 {Opt_nodiscard, "nodiscard"},
1198 {Opt_init_itable, "init_itable=%u"},
1199 {Opt_init_itable, "init_itable"},
1200 {Opt_noinit_itable, "noinit_itable"},
1201 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1202 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1203 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1204 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1205 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1206 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1207 {Opt_err, NULL},
1208 };
1209
1210 static ext4_fsblk_t get_sb_block(void **data)
1211 {
1212 ext4_fsblk_t sb_block;
1213 char *options = (char *) *data;
1214
1215 if (!options || strncmp(options, "sb=", 3) != 0)
1216 return 1; /* Default location */
1217
1218 options += 3;
1219 /* TODO: use simple_strtoll with >32bit ext4 */
1220 sb_block = simple_strtoul(options, &options, 0);
1221 if (*options && *options != ',') {
1222 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1223 (char *) *data);
1224 return 1;
1225 }
1226 if (*options == ',')
1227 options++;
1228 *data = (void *) options;
1229
1230 return sb_block;
1231 }
1232
1233 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1234 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1235 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1236
1237 #ifdef CONFIG_QUOTA
1238 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1239 {
1240 struct ext4_sb_info *sbi = EXT4_SB(sb);
1241 char *qname;
1242 int ret = -1;
1243
1244 if (sb_any_quota_loaded(sb) &&
1245 !sbi->s_qf_names[qtype]) {
1246 ext4_msg(sb, KERN_ERR,
1247 "Cannot change journaled "
1248 "quota options when quota turned on");
1249 return -1;
1250 }
1251 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1252 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1253 "when QUOTA feature is enabled");
1254 return -1;
1255 }
1256 qname = match_strdup(args);
1257 if (!qname) {
1258 ext4_msg(sb, KERN_ERR,
1259 "Not enough memory for storing quotafile name");
1260 return -1;
1261 }
1262 if (sbi->s_qf_names[qtype]) {
1263 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1264 ret = 1;
1265 else
1266 ext4_msg(sb, KERN_ERR,
1267 "%s quota file already specified",
1268 QTYPE2NAME(qtype));
1269 goto errout;
1270 }
1271 if (strchr(qname, '/')) {
1272 ext4_msg(sb, KERN_ERR,
1273 "quotafile must be on filesystem root");
1274 goto errout;
1275 }
1276 sbi->s_qf_names[qtype] = qname;
1277 set_opt(sb, QUOTA);
1278 return 1;
1279 errout:
1280 kfree(qname);
1281 return ret;
1282 }
1283
1284 static int clear_qf_name(struct super_block *sb, int qtype)
1285 {
1286
1287 struct ext4_sb_info *sbi = EXT4_SB(sb);
1288
1289 if (sb_any_quota_loaded(sb) &&
1290 sbi->s_qf_names[qtype]) {
1291 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1292 " when quota turned on");
1293 return -1;
1294 }
1295 kfree(sbi->s_qf_names[qtype]);
1296 sbi->s_qf_names[qtype] = NULL;
1297 return 1;
1298 }
1299 #endif
1300
1301 #define MOPT_SET 0x0001
1302 #define MOPT_CLEAR 0x0002
1303 #define MOPT_NOSUPPORT 0x0004
1304 #define MOPT_EXPLICIT 0x0008
1305 #define MOPT_CLEAR_ERR 0x0010
1306 #define MOPT_GTE0 0x0020
1307 #ifdef CONFIG_QUOTA
1308 #define MOPT_Q 0
1309 #define MOPT_QFMT 0x0040
1310 #else
1311 #define MOPT_Q MOPT_NOSUPPORT
1312 #define MOPT_QFMT MOPT_NOSUPPORT
1313 #endif
1314 #define MOPT_DATAJ 0x0080
1315 #define MOPT_NO_EXT2 0x0100
1316 #define MOPT_NO_EXT3 0x0200
1317 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1318
1319 static const struct mount_opts {
1320 int token;
1321 int mount_opt;
1322 int flags;
1323 } ext4_mount_opts[] = {
1324 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1325 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1326 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1327 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1328 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1329 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1330 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1331 MOPT_EXT4_ONLY | MOPT_SET},
1332 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1333 MOPT_EXT4_ONLY | MOPT_CLEAR},
1334 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1335 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1336 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1337 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1338 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1339 MOPT_EXT4_ONLY | MOPT_CLEAR | MOPT_EXPLICIT},
1340 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1341 MOPT_EXT4_ONLY | MOPT_SET},
1342 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1343 EXT4_MOUNT_JOURNAL_CHECKSUM),
1344 MOPT_EXT4_ONLY | MOPT_SET},
1345 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1346 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1347 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1348 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1349 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1350 MOPT_NO_EXT2 | MOPT_SET},
1351 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1352 MOPT_NO_EXT2 | MOPT_CLEAR},
1353 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1354 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1355 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1356 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1357 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1358 {Opt_commit, 0, MOPT_GTE0},
1359 {Opt_max_batch_time, 0, MOPT_GTE0},
1360 {Opt_min_batch_time, 0, MOPT_GTE0},
1361 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1362 {Opt_init_itable, 0, MOPT_GTE0},
1363 {Opt_stripe, 0, MOPT_GTE0},
1364 {Opt_resuid, 0, MOPT_GTE0},
1365 {Opt_resgid, 0, MOPT_GTE0},
1366 {Opt_journal_dev, 0, MOPT_GTE0},
1367 {Opt_journal_ioprio, 0, MOPT_GTE0},
1368 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1369 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1370 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1371 MOPT_NO_EXT2 | MOPT_DATAJ},
1372 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1373 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1374 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1375 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1376 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1377 #else
1378 {Opt_acl, 0, MOPT_NOSUPPORT},
1379 {Opt_noacl, 0, MOPT_NOSUPPORT},
1380 #endif
1381 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1382 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1383 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1384 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1385 MOPT_SET | MOPT_Q},
1386 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1387 MOPT_SET | MOPT_Q},
1388 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1389 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1390 {Opt_usrjquota, 0, MOPT_Q},
1391 {Opt_grpjquota, 0, MOPT_Q},
1392 {Opt_offusrjquota, 0, MOPT_Q},
1393 {Opt_offgrpjquota, 0, MOPT_Q},
1394 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1395 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1396 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1397 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1398 {Opt_err, 0, 0}
1399 };
1400
1401 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1402 substring_t *args, unsigned long *journal_devnum,
1403 unsigned int *journal_ioprio, int is_remount)
1404 {
1405 struct ext4_sb_info *sbi = EXT4_SB(sb);
1406 const struct mount_opts *m;
1407 kuid_t uid;
1408 kgid_t gid;
1409 int arg = 0;
1410
1411 #ifdef CONFIG_QUOTA
1412 if (token == Opt_usrjquota)
1413 return set_qf_name(sb, USRQUOTA, &args[0]);
1414 else if (token == Opt_grpjquota)
1415 return set_qf_name(sb, GRPQUOTA, &args[0]);
1416 else if (token == Opt_offusrjquota)
1417 return clear_qf_name(sb, USRQUOTA);
1418 else if (token == Opt_offgrpjquota)
1419 return clear_qf_name(sb, GRPQUOTA);
1420 #endif
1421 switch (token) {
1422 case Opt_noacl:
1423 case Opt_nouser_xattr:
1424 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1425 break;
1426 case Opt_sb:
1427 return 1; /* handled by get_sb_block() */
1428 case Opt_removed:
1429 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1430 return 1;
1431 case Opt_abort:
1432 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1433 return 1;
1434 case Opt_i_version:
1435 sb->s_flags |= MS_I_VERSION;
1436 return 1;
1437 }
1438
1439 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1440 if (token == m->token)
1441 break;
1442
1443 if (m->token == Opt_err) {
1444 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1445 "or missing value", opt);
1446 return -1;
1447 }
1448
1449 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1450 ext4_msg(sb, KERN_ERR,
1451 "Mount option \"%s\" incompatible with ext2", opt);
1452 return -1;
1453 }
1454 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1455 ext4_msg(sb, KERN_ERR,
1456 "Mount option \"%s\" incompatible with ext3", opt);
1457 return -1;
1458 }
1459
1460 if (args->from && match_int(args, &arg))
1461 return -1;
1462 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1463 return -1;
1464 if (m->flags & MOPT_EXPLICIT)
1465 set_opt2(sb, EXPLICIT_DELALLOC);
1466 if (m->flags & MOPT_CLEAR_ERR)
1467 clear_opt(sb, ERRORS_MASK);
1468 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1469 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1470 "options when quota turned on");
1471 return -1;
1472 }
1473
1474 if (m->flags & MOPT_NOSUPPORT) {
1475 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1476 } else if (token == Opt_commit) {
1477 if (arg == 0)
1478 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1479 sbi->s_commit_interval = HZ * arg;
1480 } else if (token == Opt_max_batch_time) {
1481 if (arg == 0)
1482 arg = EXT4_DEF_MAX_BATCH_TIME;
1483 sbi->s_max_batch_time = arg;
1484 } else if (token == Opt_min_batch_time) {
1485 sbi->s_min_batch_time = arg;
1486 } else if (token == Opt_inode_readahead_blks) {
1487 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1488 ext4_msg(sb, KERN_ERR,
1489 "EXT4-fs: inode_readahead_blks must be "
1490 "0 or a power of 2 smaller than 2^31");
1491 return -1;
1492 }
1493 sbi->s_inode_readahead_blks = arg;
1494 } else if (token == Opt_init_itable) {
1495 set_opt(sb, INIT_INODE_TABLE);
1496 if (!args->from)
1497 arg = EXT4_DEF_LI_WAIT_MULT;
1498 sbi->s_li_wait_mult = arg;
1499 } else if (token == Opt_max_dir_size_kb) {
1500 sbi->s_max_dir_size_kb = arg;
1501 } else if (token == Opt_stripe) {
1502 sbi->s_stripe = arg;
1503 } else if (token == Opt_resuid) {
1504 uid = make_kuid(current_user_ns(), arg);
1505 if (!uid_valid(uid)) {
1506 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1507 return -1;
1508 }
1509 sbi->s_resuid = uid;
1510 } else if (token == Opt_resgid) {
1511 gid = make_kgid(current_user_ns(), arg);
1512 if (!gid_valid(gid)) {
1513 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1514 return -1;
1515 }
1516 sbi->s_resgid = gid;
1517 } else if (token == Opt_journal_dev) {
1518 if (is_remount) {
1519 ext4_msg(sb, KERN_ERR,
1520 "Cannot specify journal on remount");
1521 return -1;
1522 }
1523 *journal_devnum = arg;
1524 } else if (token == Opt_journal_ioprio) {
1525 if (arg > 7) {
1526 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1527 " (must be 0-7)");
1528 return -1;
1529 }
1530 *journal_ioprio =
1531 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1532 } else if (m->flags & MOPT_DATAJ) {
1533 if (is_remount) {
1534 if (!sbi->s_journal)
1535 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1536 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1537 ext4_msg(sb, KERN_ERR,
1538 "Cannot change data mode on remount");
1539 return -1;
1540 }
1541 } else {
1542 clear_opt(sb, DATA_FLAGS);
1543 sbi->s_mount_opt |= m->mount_opt;
1544 }
1545 #ifdef CONFIG_QUOTA
1546 } else if (m->flags & MOPT_QFMT) {
1547 if (sb_any_quota_loaded(sb) &&
1548 sbi->s_jquota_fmt != m->mount_opt) {
1549 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1550 "quota options when quota turned on");
1551 return -1;
1552 }
1553 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1554 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1555 ext4_msg(sb, KERN_ERR,
1556 "Cannot set journaled quota options "
1557 "when QUOTA feature is enabled");
1558 return -1;
1559 }
1560 sbi->s_jquota_fmt = m->mount_opt;
1561 #endif
1562 } else {
1563 if (!args->from)
1564 arg = 1;
1565 if (m->flags & MOPT_CLEAR)
1566 arg = !arg;
1567 else if (unlikely(!(m->flags & MOPT_SET))) {
1568 ext4_msg(sb, KERN_WARNING,
1569 "buggy handling of option %s", opt);
1570 WARN_ON(1);
1571 return -1;
1572 }
1573 if (arg != 0)
1574 sbi->s_mount_opt |= m->mount_opt;
1575 else
1576 sbi->s_mount_opt &= ~m->mount_opt;
1577 }
1578 return 1;
1579 }
1580
1581 static int parse_options(char *options, struct super_block *sb,
1582 unsigned long *journal_devnum,
1583 unsigned int *journal_ioprio,
1584 int is_remount)
1585 {
1586 struct ext4_sb_info *sbi = EXT4_SB(sb);
1587 char *p;
1588 substring_t args[MAX_OPT_ARGS];
1589 int token;
1590
1591 if (!options)
1592 return 1;
1593
1594 while ((p = strsep(&options, ",")) != NULL) {
1595 if (!*p)
1596 continue;
1597 /*
1598 * Initialize args struct so we know whether arg was
1599 * found; some options take optional arguments.
1600 */
1601 args[0].to = args[0].from = NULL;
1602 token = match_token(p, tokens, args);
1603 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1604 journal_ioprio, is_remount) < 0)
1605 return 0;
1606 }
1607 #ifdef CONFIG_QUOTA
1608 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1609 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1610 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1611 "feature is enabled");
1612 return 0;
1613 }
1614 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1615 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1616 clear_opt(sb, USRQUOTA);
1617
1618 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1619 clear_opt(sb, GRPQUOTA);
1620
1621 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1622 ext4_msg(sb, KERN_ERR, "old and new quota "
1623 "format mixing");
1624 return 0;
1625 }
1626
1627 if (!sbi->s_jquota_fmt) {
1628 ext4_msg(sb, KERN_ERR, "journaled quota format "
1629 "not specified");
1630 return 0;
1631 }
1632 } else {
1633 if (sbi->s_jquota_fmt) {
1634 ext4_msg(sb, KERN_ERR, "journaled quota format "
1635 "specified with no journaling "
1636 "enabled");
1637 return 0;
1638 }
1639 }
1640 #endif
1641 if (test_opt(sb, DIOREAD_NOLOCK)) {
1642 int blocksize =
1643 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1644
1645 if (blocksize < PAGE_CACHE_SIZE) {
1646 ext4_msg(sb, KERN_ERR, "can't mount with "
1647 "dioread_nolock if block size != PAGE_SIZE");
1648 return 0;
1649 }
1650 }
1651 return 1;
1652 }
1653
1654 static inline void ext4_show_quota_options(struct seq_file *seq,
1655 struct super_block *sb)
1656 {
1657 #if defined(CONFIG_QUOTA)
1658 struct ext4_sb_info *sbi = EXT4_SB(sb);
1659
1660 if (sbi->s_jquota_fmt) {
1661 char *fmtname = "";
1662
1663 switch (sbi->s_jquota_fmt) {
1664 case QFMT_VFS_OLD:
1665 fmtname = "vfsold";
1666 break;
1667 case QFMT_VFS_V0:
1668 fmtname = "vfsv0";
1669 break;
1670 case QFMT_VFS_V1:
1671 fmtname = "vfsv1";
1672 break;
1673 }
1674 seq_printf(seq, ",jqfmt=%s", fmtname);
1675 }
1676
1677 if (sbi->s_qf_names[USRQUOTA])
1678 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1679
1680 if (sbi->s_qf_names[GRPQUOTA])
1681 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1682
1683 if (test_opt(sb, USRQUOTA))
1684 seq_puts(seq, ",usrquota");
1685
1686 if (test_opt(sb, GRPQUOTA))
1687 seq_puts(seq, ",grpquota");
1688 #endif
1689 }
1690
1691 static const char *token2str(int token)
1692 {
1693 const struct match_token *t;
1694
1695 for (t = tokens; t->token != Opt_err; t++)
1696 if (t->token == token && !strchr(t->pattern, '='))
1697 break;
1698 return t->pattern;
1699 }
1700
1701 /*
1702 * Show an option if
1703 * - it's set to a non-default value OR
1704 * - if the per-sb default is different from the global default
1705 */
1706 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1707 int nodefs)
1708 {
1709 struct ext4_sb_info *sbi = EXT4_SB(sb);
1710 struct ext4_super_block *es = sbi->s_es;
1711 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1712 const struct mount_opts *m;
1713 char sep = nodefs ? '\n' : ',';
1714
1715 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1716 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1717
1718 if (sbi->s_sb_block != 1)
1719 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1720
1721 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1722 int want_set = m->flags & MOPT_SET;
1723 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1724 (m->flags & MOPT_CLEAR_ERR))
1725 continue;
1726 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1727 continue; /* skip if same as the default */
1728 if ((want_set &&
1729 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1730 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1731 continue; /* select Opt_noFoo vs Opt_Foo */
1732 SEQ_OPTS_PRINT("%s", token2str(m->token));
1733 }
1734
1735 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1736 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1737 SEQ_OPTS_PRINT("resuid=%u",
1738 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1739 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1740 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1741 SEQ_OPTS_PRINT("resgid=%u",
1742 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1743 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1744 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1745 SEQ_OPTS_PUTS("errors=remount-ro");
1746 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1747 SEQ_OPTS_PUTS("errors=continue");
1748 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1749 SEQ_OPTS_PUTS("errors=panic");
1750 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1751 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1752 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1753 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1754 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1755 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1756 if (sb->s_flags & MS_I_VERSION)
1757 SEQ_OPTS_PUTS("i_version");
1758 if (nodefs || sbi->s_stripe)
1759 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1760 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1761 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1762 SEQ_OPTS_PUTS("data=journal");
1763 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1764 SEQ_OPTS_PUTS("data=ordered");
1765 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1766 SEQ_OPTS_PUTS("data=writeback");
1767 }
1768 if (nodefs ||
1769 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1770 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1771 sbi->s_inode_readahead_blks);
1772
1773 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1774 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1775 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1776 if (nodefs || sbi->s_max_dir_size_kb)
1777 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1778
1779 ext4_show_quota_options(seq, sb);
1780 return 0;
1781 }
1782
1783 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1784 {
1785 return _ext4_show_options(seq, root->d_sb, 0);
1786 }
1787
1788 static int options_seq_show(struct seq_file *seq, void *offset)
1789 {
1790 struct super_block *sb = seq->private;
1791 int rc;
1792
1793 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1794 rc = _ext4_show_options(seq, sb, 1);
1795 seq_puts(seq, "\n");
1796 return rc;
1797 }
1798
1799 static int options_open_fs(struct inode *inode, struct file *file)
1800 {
1801 return single_open(file, options_seq_show, PDE(inode)->data);
1802 }
1803
1804 static const struct file_operations ext4_seq_options_fops = {
1805 .owner = THIS_MODULE,
1806 .open = options_open_fs,
1807 .read = seq_read,
1808 .llseek = seq_lseek,
1809 .release = single_release,
1810 };
1811
1812 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1813 int read_only)
1814 {
1815 struct ext4_sb_info *sbi = EXT4_SB(sb);
1816 int res = 0;
1817
1818 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1819 ext4_msg(sb, KERN_ERR, "revision level too high, "
1820 "forcing read-only mode");
1821 res = MS_RDONLY;
1822 }
1823 if (read_only)
1824 goto done;
1825 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1826 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1827 "running e2fsck is recommended");
1828 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1829 ext4_msg(sb, KERN_WARNING,
1830 "warning: mounting fs with errors, "
1831 "running e2fsck is recommended");
1832 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1833 le16_to_cpu(es->s_mnt_count) >=
1834 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1835 ext4_msg(sb, KERN_WARNING,
1836 "warning: maximal mount count reached, "
1837 "running e2fsck is recommended");
1838 else if (le32_to_cpu(es->s_checkinterval) &&
1839 (le32_to_cpu(es->s_lastcheck) +
1840 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1841 ext4_msg(sb, KERN_WARNING,
1842 "warning: checktime reached, "
1843 "running e2fsck is recommended");
1844 if (!sbi->s_journal)
1845 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1846 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1847 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1848 le16_add_cpu(&es->s_mnt_count, 1);
1849 es->s_mtime = cpu_to_le32(get_seconds());
1850 ext4_update_dynamic_rev(sb);
1851 if (sbi->s_journal)
1852 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1853
1854 ext4_commit_super(sb, 1);
1855 done:
1856 if (test_opt(sb, DEBUG))
1857 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1858 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1859 sb->s_blocksize,
1860 sbi->s_groups_count,
1861 EXT4_BLOCKS_PER_GROUP(sb),
1862 EXT4_INODES_PER_GROUP(sb),
1863 sbi->s_mount_opt, sbi->s_mount_opt2);
1864
1865 cleancache_init_fs(sb);
1866 return res;
1867 }
1868
1869 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1870 {
1871 struct ext4_sb_info *sbi = EXT4_SB(sb);
1872 struct flex_groups *new_groups;
1873 int size;
1874
1875 if (!sbi->s_log_groups_per_flex)
1876 return 0;
1877
1878 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1879 if (size <= sbi->s_flex_groups_allocated)
1880 return 0;
1881
1882 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1883 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1884 if (!new_groups) {
1885 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1886 size / (int) sizeof(struct flex_groups));
1887 return -ENOMEM;
1888 }
1889
1890 if (sbi->s_flex_groups) {
1891 memcpy(new_groups, sbi->s_flex_groups,
1892 (sbi->s_flex_groups_allocated *
1893 sizeof(struct flex_groups)));
1894 ext4_kvfree(sbi->s_flex_groups);
1895 }
1896 sbi->s_flex_groups = new_groups;
1897 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1898 return 0;
1899 }
1900
1901 static int ext4_fill_flex_info(struct super_block *sb)
1902 {
1903 struct ext4_sb_info *sbi = EXT4_SB(sb);
1904 struct ext4_group_desc *gdp = NULL;
1905 ext4_group_t flex_group;
1906 unsigned int groups_per_flex = 0;
1907 int i, err;
1908
1909 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1910 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1911 sbi->s_log_groups_per_flex = 0;
1912 return 1;
1913 }
1914 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1915
1916 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1917 if (err)
1918 goto failed;
1919
1920 for (i = 0; i < sbi->s_groups_count; i++) {
1921 gdp = ext4_get_group_desc(sb, i, NULL);
1922
1923 flex_group = ext4_flex_group(sbi, i);
1924 atomic_add(ext4_free_inodes_count(sb, gdp),
1925 &sbi->s_flex_groups[flex_group].free_inodes);
1926 atomic_add(ext4_free_group_clusters(sb, gdp),
1927 &sbi->s_flex_groups[flex_group].free_clusters);
1928 atomic_add(ext4_used_dirs_count(sb, gdp),
1929 &sbi->s_flex_groups[flex_group].used_dirs);
1930 }
1931
1932 return 1;
1933 failed:
1934 return 0;
1935 }
1936
1937 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1938 struct ext4_group_desc *gdp)
1939 {
1940 int offset;
1941 __u16 crc = 0;
1942 __le32 le_group = cpu_to_le32(block_group);
1943
1944 if ((sbi->s_es->s_feature_ro_compat &
1945 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1946 /* Use new metadata_csum algorithm */
1947 __u16 old_csum;
1948 __u32 csum32;
1949
1950 old_csum = gdp->bg_checksum;
1951 gdp->bg_checksum = 0;
1952 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1953 sizeof(le_group));
1954 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1955 sbi->s_desc_size);
1956 gdp->bg_checksum = old_csum;
1957
1958 crc = csum32 & 0xFFFF;
1959 goto out;
1960 }
1961
1962 /* old crc16 code */
1963 offset = offsetof(struct ext4_group_desc, bg_checksum);
1964
1965 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1966 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1967 crc = crc16(crc, (__u8 *)gdp, offset);
1968 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1969 /* for checksum of struct ext4_group_desc do the rest...*/
1970 if ((sbi->s_es->s_feature_incompat &
1971 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1972 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1973 crc = crc16(crc, (__u8 *)gdp + offset,
1974 le16_to_cpu(sbi->s_es->s_desc_size) -
1975 offset);
1976
1977 out:
1978 return cpu_to_le16(crc);
1979 }
1980
1981 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
1982 struct ext4_group_desc *gdp)
1983 {
1984 if (ext4_has_group_desc_csum(sb) &&
1985 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
1986 block_group, gdp)))
1987 return 0;
1988
1989 return 1;
1990 }
1991
1992 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
1993 struct ext4_group_desc *gdp)
1994 {
1995 if (!ext4_has_group_desc_csum(sb))
1996 return;
1997 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
1998 }
1999
2000 /* Called at mount-time, super-block is locked */
2001 static int ext4_check_descriptors(struct super_block *sb,
2002 ext4_group_t *first_not_zeroed)
2003 {
2004 struct ext4_sb_info *sbi = EXT4_SB(sb);
2005 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2006 ext4_fsblk_t last_block;
2007 ext4_fsblk_t block_bitmap;
2008 ext4_fsblk_t inode_bitmap;
2009 ext4_fsblk_t inode_table;
2010 int flexbg_flag = 0;
2011 ext4_group_t i, grp = sbi->s_groups_count;
2012
2013 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2014 flexbg_flag = 1;
2015
2016 ext4_debug("Checking group descriptors");
2017
2018 for (i = 0; i < sbi->s_groups_count; i++) {
2019 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2020
2021 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2022 last_block = ext4_blocks_count(sbi->s_es) - 1;
2023 else
2024 last_block = first_block +
2025 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2026
2027 if ((grp == sbi->s_groups_count) &&
2028 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2029 grp = i;
2030
2031 block_bitmap = ext4_block_bitmap(sb, gdp);
2032 if (block_bitmap < first_block || block_bitmap > last_block) {
2033 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2034 "Block bitmap for group %u not in group "
2035 "(block %llu)!", i, block_bitmap);
2036 return 0;
2037 }
2038 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2039 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2040 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2041 "Inode bitmap for group %u not in group "
2042 "(block %llu)!", i, inode_bitmap);
2043 return 0;
2044 }
2045 inode_table = ext4_inode_table(sb, gdp);
2046 if (inode_table < first_block ||
2047 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2048 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2049 "Inode table for group %u not in group "
2050 "(block %llu)!", i, inode_table);
2051 return 0;
2052 }
2053 ext4_lock_group(sb, i);
2054 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2055 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2056 "Checksum for group %u failed (%u!=%u)",
2057 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2058 gdp)), le16_to_cpu(gdp->bg_checksum));
2059 if (!(sb->s_flags & MS_RDONLY)) {
2060 ext4_unlock_group(sb, i);
2061 return 0;
2062 }
2063 }
2064 ext4_unlock_group(sb, i);
2065 if (!flexbg_flag)
2066 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2067 }
2068 if (NULL != first_not_zeroed)
2069 *first_not_zeroed = grp;
2070
2071 ext4_free_blocks_count_set(sbi->s_es,
2072 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2073 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2074 return 1;
2075 }
2076
2077 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2078 * the superblock) which were deleted from all directories, but held open by
2079 * a process at the time of a crash. We walk the list and try to delete these
2080 * inodes at recovery time (only with a read-write filesystem).
2081 *
2082 * In order to keep the orphan inode chain consistent during traversal (in
2083 * case of crash during recovery), we link each inode into the superblock
2084 * orphan list_head and handle it the same way as an inode deletion during
2085 * normal operation (which journals the operations for us).
2086 *
2087 * We only do an iget() and an iput() on each inode, which is very safe if we
2088 * accidentally point at an in-use or already deleted inode. The worst that
2089 * can happen in this case is that we get a "bit already cleared" message from
2090 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2091 * e2fsck was run on this filesystem, and it must have already done the orphan
2092 * inode cleanup for us, so we can safely abort without any further action.
2093 */
2094 static void ext4_orphan_cleanup(struct super_block *sb,
2095 struct ext4_super_block *es)
2096 {
2097 unsigned int s_flags = sb->s_flags;
2098 int nr_orphans = 0, nr_truncates = 0;
2099 #ifdef CONFIG_QUOTA
2100 int i;
2101 #endif
2102 if (!es->s_last_orphan) {
2103 jbd_debug(4, "no orphan inodes to clean up\n");
2104 return;
2105 }
2106
2107 if (bdev_read_only(sb->s_bdev)) {
2108 ext4_msg(sb, KERN_ERR, "write access "
2109 "unavailable, skipping orphan cleanup");
2110 return;
2111 }
2112
2113 /* Check if feature set would not allow a r/w mount */
2114 if (!ext4_feature_set_ok(sb, 0)) {
2115 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2116 "unknown ROCOMPAT features");
2117 return;
2118 }
2119
2120 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2121 /* don't clear list on RO mount w/ errors */
2122 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2123 jbd_debug(1, "Errors on filesystem, "
2124 "clearing orphan list.\n");
2125 es->s_last_orphan = 0;
2126 }
2127 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2128 return;
2129 }
2130
2131 if (s_flags & MS_RDONLY) {
2132 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2133 sb->s_flags &= ~MS_RDONLY;
2134 }
2135 #ifdef CONFIG_QUOTA
2136 /* Needed for iput() to work correctly and not trash data */
2137 sb->s_flags |= MS_ACTIVE;
2138 /* Turn on quotas so that they are updated correctly */
2139 for (i = 0; i < MAXQUOTAS; i++) {
2140 if (EXT4_SB(sb)->s_qf_names[i]) {
2141 int ret = ext4_quota_on_mount(sb, i);
2142 if (ret < 0)
2143 ext4_msg(sb, KERN_ERR,
2144 "Cannot turn on journaled "
2145 "quota: error %d", ret);
2146 }
2147 }
2148 #endif
2149
2150 while (es->s_last_orphan) {
2151 struct inode *inode;
2152
2153 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2154 if (IS_ERR(inode)) {
2155 es->s_last_orphan = 0;
2156 break;
2157 }
2158
2159 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2160 dquot_initialize(inode);
2161 if (inode->i_nlink) {
2162 ext4_msg(sb, KERN_DEBUG,
2163 "%s: truncating inode %lu to %lld bytes",
2164 __func__, inode->i_ino, inode->i_size);
2165 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2166 inode->i_ino, inode->i_size);
2167 mutex_lock(&inode->i_mutex);
2168 ext4_truncate(inode);
2169 mutex_unlock(&inode->i_mutex);
2170 nr_truncates++;
2171 } else {
2172 ext4_msg(sb, KERN_DEBUG,
2173 "%s: deleting unreferenced inode %lu",
2174 __func__, inode->i_ino);
2175 jbd_debug(2, "deleting unreferenced inode %lu\n",
2176 inode->i_ino);
2177 nr_orphans++;
2178 }
2179 iput(inode); /* The delete magic happens here! */
2180 }
2181
2182 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2183
2184 if (nr_orphans)
2185 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2186 PLURAL(nr_orphans));
2187 if (nr_truncates)
2188 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2189 PLURAL(nr_truncates));
2190 #ifdef CONFIG_QUOTA
2191 /* Turn quotas off */
2192 for (i = 0; i < MAXQUOTAS; i++) {
2193 if (sb_dqopt(sb)->files[i])
2194 dquot_quota_off(sb, i);
2195 }
2196 #endif
2197 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2198 }
2199
2200 /*
2201 * Maximal extent format file size.
2202 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2203 * extent format containers, within a sector_t, and within i_blocks
2204 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2205 * so that won't be a limiting factor.
2206 *
2207 * However there is other limiting factor. We do store extents in the form
2208 * of starting block and length, hence the resulting length of the extent
2209 * covering maximum file size must fit into on-disk format containers as
2210 * well. Given that length is always by 1 unit bigger than max unit (because
2211 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2212 *
2213 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2214 */
2215 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2216 {
2217 loff_t res;
2218 loff_t upper_limit = MAX_LFS_FILESIZE;
2219
2220 /* small i_blocks in vfs inode? */
2221 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2222 /*
2223 * CONFIG_LBDAF is not enabled implies the inode
2224 * i_block represent total blocks in 512 bytes
2225 * 32 == size of vfs inode i_blocks * 8
2226 */
2227 upper_limit = (1LL << 32) - 1;
2228
2229 /* total blocks in file system block size */
2230 upper_limit >>= (blkbits - 9);
2231 upper_limit <<= blkbits;
2232 }
2233
2234 /*
2235 * 32-bit extent-start container, ee_block. We lower the maxbytes
2236 * by one fs block, so ee_len can cover the extent of maximum file
2237 * size
2238 */
2239 res = (1LL << 32) - 1;
2240 res <<= blkbits;
2241
2242 /* Sanity check against vm- & vfs- imposed limits */
2243 if (res > upper_limit)
2244 res = upper_limit;
2245
2246 return res;
2247 }
2248
2249 /*
2250 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2251 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2252 * We need to be 1 filesystem block less than the 2^48 sector limit.
2253 */
2254 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2255 {
2256 loff_t res = EXT4_NDIR_BLOCKS;
2257 int meta_blocks;
2258 loff_t upper_limit;
2259 /* This is calculated to be the largest file size for a dense, block
2260 * mapped file such that the file's total number of 512-byte sectors,
2261 * including data and all indirect blocks, does not exceed (2^48 - 1).
2262 *
2263 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2264 * number of 512-byte sectors of the file.
2265 */
2266
2267 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2268 /*
2269 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2270 * the inode i_block field represents total file blocks in
2271 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2272 */
2273 upper_limit = (1LL << 32) - 1;
2274
2275 /* total blocks in file system block size */
2276 upper_limit >>= (bits - 9);
2277
2278 } else {
2279 /*
2280 * We use 48 bit ext4_inode i_blocks
2281 * With EXT4_HUGE_FILE_FL set the i_blocks
2282 * represent total number of blocks in
2283 * file system block size
2284 */
2285 upper_limit = (1LL << 48) - 1;
2286
2287 }
2288
2289 /* indirect blocks */
2290 meta_blocks = 1;
2291 /* double indirect blocks */
2292 meta_blocks += 1 + (1LL << (bits-2));
2293 /* tripple indirect blocks */
2294 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2295
2296 upper_limit -= meta_blocks;
2297 upper_limit <<= bits;
2298
2299 res += 1LL << (bits-2);
2300 res += 1LL << (2*(bits-2));
2301 res += 1LL << (3*(bits-2));
2302 res <<= bits;
2303 if (res > upper_limit)
2304 res = upper_limit;
2305
2306 if (res > MAX_LFS_FILESIZE)
2307 res = MAX_LFS_FILESIZE;
2308
2309 return res;
2310 }
2311
2312 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2313 ext4_fsblk_t logical_sb_block, int nr)
2314 {
2315 struct ext4_sb_info *sbi = EXT4_SB(sb);
2316 ext4_group_t bg, first_meta_bg;
2317 int has_super = 0;
2318
2319 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2320
2321 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2322 nr < first_meta_bg)
2323 return logical_sb_block + nr + 1;
2324 bg = sbi->s_desc_per_block * nr;
2325 if (ext4_bg_has_super(sb, bg))
2326 has_super = 1;
2327
2328 return (has_super + ext4_group_first_block_no(sb, bg));
2329 }
2330
2331 /**
2332 * ext4_get_stripe_size: Get the stripe size.
2333 * @sbi: In memory super block info
2334 *
2335 * If we have specified it via mount option, then
2336 * use the mount option value. If the value specified at mount time is
2337 * greater than the blocks per group use the super block value.
2338 * If the super block value is greater than blocks per group return 0.
2339 * Allocator needs it be less than blocks per group.
2340 *
2341 */
2342 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2343 {
2344 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2345 unsigned long stripe_width =
2346 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2347 int ret;
2348
2349 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2350 ret = sbi->s_stripe;
2351 else if (stripe_width <= sbi->s_blocks_per_group)
2352 ret = stripe_width;
2353 else if (stride <= sbi->s_blocks_per_group)
2354 ret = stride;
2355 else
2356 ret = 0;
2357
2358 /*
2359 * If the stripe width is 1, this makes no sense and
2360 * we set it to 0 to turn off stripe handling code.
2361 */
2362 if (ret <= 1)
2363 ret = 0;
2364
2365 return ret;
2366 }
2367
2368 /* sysfs supprt */
2369
2370 struct ext4_attr {
2371 struct attribute attr;
2372 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2373 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2374 const char *, size_t);
2375 int offset;
2376 };
2377
2378 static int parse_strtoul(const char *buf,
2379 unsigned long max, unsigned long *value)
2380 {
2381 char *endp;
2382
2383 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2384 endp = skip_spaces(endp);
2385 if (*endp || *value > max)
2386 return -EINVAL;
2387
2388 return 0;
2389 }
2390
2391 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2392 struct ext4_sb_info *sbi,
2393 char *buf)
2394 {
2395 return snprintf(buf, PAGE_SIZE, "%llu\n",
2396 (s64) EXT4_C2B(sbi,
2397 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2398 }
2399
2400 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2401 struct ext4_sb_info *sbi, char *buf)
2402 {
2403 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2404
2405 if (!sb->s_bdev->bd_part)
2406 return snprintf(buf, PAGE_SIZE, "0\n");
2407 return snprintf(buf, PAGE_SIZE, "%lu\n",
2408 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2409 sbi->s_sectors_written_start) >> 1);
2410 }
2411
2412 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2413 struct ext4_sb_info *sbi, char *buf)
2414 {
2415 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2416
2417 if (!sb->s_bdev->bd_part)
2418 return snprintf(buf, PAGE_SIZE, "0\n");
2419 return snprintf(buf, PAGE_SIZE, "%llu\n",
2420 (unsigned long long)(sbi->s_kbytes_written +
2421 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2422 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2423 }
2424
2425 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2426 struct ext4_sb_info *sbi,
2427 const char *buf, size_t count)
2428 {
2429 unsigned long t;
2430
2431 if (parse_strtoul(buf, 0x40000000, &t))
2432 return -EINVAL;
2433
2434 if (t && !is_power_of_2(t))
2435 return -EINVAL;
2436
2437 sbi->s_inode_readahead_blks = t;
2438 return count;
2439 }
2440
2441 static ssize_t sbi_ui_show(struct ext4_attr *a,
2442 struct ext4_sb_info *sbi, char *buf)
2443 {
2444 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2445
2446 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2447 }
2448
2449 static ssize_t sbi_ui_store(struct ext4_attr *a,
2450 struct ext4_sb_info *sbi,
2451 const char *buf, size_t count)
2452 {
2453 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2454 unsigned long t;
2455
2456 if (parse_strtoul(buf, 0xffffffff, &t))
2457 return -EINVAL;
2458 *ui = t;
2459 return count;
2460 }
2461
2462 static ssize_t trigger_test_error(struct ext4_attr *a,
2463 struct ext4_sb_info *sbi,
2464 const char *buf, size_t count)
2465 {
2466 int len = count;
2467
2468 if (!capable(CAP_SYS_ADMIN))
2469 return -EPERM;
2470
2471 if (len && buf[len-1] == '\n')
2472 len--;
2473
2474 if (len)
2475 ext4_error(sbi->s_sb, "%.*s", len, buf);
2476 return count;
2477 }
2478
2479 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2480 static struct ext4_attr ext4_attr_##_name = { \
2481 .attr = {.name = __stringify(_name), .mode = _mode }, \
2482 .show = _show, \
2483 .store = _store, \
2484 .offset = offsetof(struct ext4_sb_info, _elname), \
2485 }
2486 #define EXT4_ATTR(name, mode, show, store) \
2487 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2488
2489 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2490 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2491 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2492 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2493 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2494 #define ATTR_LIST(name) &ext4_attr_##name.attr
2495
2496 EXT4_RO_ATTR(delayed_allocation_blocks);
2497 EXT4_RO_ATTR(session_write_kbytes);
2498 EXT4_RO_ATTR(lifetime_write_kbytes);
2499 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2500 inode_readahead_blks_store, s_inode_readahead_blks);
2501 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2502 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2503 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2504 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2505 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2506 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2507 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2508 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2509 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2510 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2511
2512 static struct attribute *ext4_attrs[] = {
2513 ATTR_LIST(delayed_allocation_blocks),
2514 ATTR_LIST(session_write_kbytes),
2515 ATTR_LIST(lifetime_write_kbytes),
2516 ATTR_LIST(inode_readahead_blks),
2517 ATTR_LIST(inode_goal),
2518 ATTR_LIST(mb_stats),
2519 ATTR_LIST(mb_max_to_scan),
2520 ATTR_LIST(mb_min_to_scan),
2521 ATTR_LIST(mb_order2_req),
2522 ATTR_LIST(mb_stream_req),
2523 ATTR_LIST(mb_group_prealloc),
2524 ATTR_LIST(max_writeback_mb_bump),
2525 ATTR_LIST(extent_max_zeroout_kb),
2526 ATTR_LIST(trigger_fs_error),
2527 NULL,
2528 };
2529
2530 /* Features this copy of ext4 supports */
2531 EXT4_INFO_ATTR(lazy_itable_init);
2532 EXT4_INFO_ATTR(batched_discard);
2533 EXT4_INFO_ATTR(meta_bg_resize);
2534
2535 static struct attribute *ext4_feat_attrs[] = {
2536 ATTR_LIST(lazy_itable_init),
2537 ATTR_LIST(batched_discard),
2538 ATTR_LIST(meta_bg_resize),
2539 NULL,
2540 };
2541
2542 static ssize_t ext4_attr_show(struct kobject *kobj,
2543 struct attribute *attr, char *buf)
2544 {
2545 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2546 s_kobj);
2547 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2548
2549 return a->show ? a->show(a, sbi, buf) : 0;
2550 }
2551
2552 static ssize_t ext4_attr_store(struct kobject *kobj,
2553 struct attribute *attr,
2554 const char *buf, size_t len)
2555 {
2556 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2557 s_kobj);
2558 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2559
2560 return a->store ? a->store(a, sbi, buf, len) : 0;
2561 }
2562
2563 static void ext4_sb_release(struct kobject *kobj)
2564 {
2565 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2566 s_kobj);
2567 complete(&sbi->s_kobj_unregister);
2568 }
2569
2570 static const struct sysfs_ops ext4_attr_ops = {
2571 .show = ext4_attr_show,
2572 .store = ext4_attr_store,
2573 };
2574
2575 static struct kobj_type ext4_ktype = {
2576 .default_attrs = ext4_attrs,
2577 .sysfs_ops = &ext4_attr_ops,
2578 .release = ext4_sb_release,
2579 };
2580
2581 static void ext4_feat_release(struct kobject *kobj)
2582 {
2583 complete(&ext4_feat->f_kobj_unregister);
2584 }
2585
2586 static struct kobj_type ext4_feat_ktype = {
2587 .default_attrs = ext4_feat_attrs,
2588 .sysfs_ops = &ext4_attr_ops,
2589 .release = ext4_feat_release,
2590 };
2591
2592 /*
2593 * Check whether this filesystem can be mounted based on
2594 * the features present and the RDONLY/RDWR mount requested.
2595 * Returns 1 if this filesystem can be mounted as requested,
2596 * 0 if it cannot be.
2597 */
2598 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2599 {
2600 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2601 ext4_msg(sb, KERN_ERR,
2602 "Couldn't mount because of "
2603 "unsupported optional features (%x)",
2604 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2605 ~EXT4_FEATURE_INCOMPAT_SUPP));
2606 return 0;
2607 }
2608
2609 if (readonly)
2610 return 1;
2611
2612 /* Check that feature set is OK for a read-write mount */
2613 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2614 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2615 "unsupported optional features (%x)",
2616 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2617 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2618 return 0;
2619 }
2620 /*
2621 * Large file size enabled file system can only be mounted
2622 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2623 */
2624 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2625 if (sizeof(blkcnt_t) < sizeof(u64)) {
2626 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2627 "cannot be mounted RDWR without "
2628 "CONFIG_LBDAF");
2629 return 0;
2630 }
2631 }
2632 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2633 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2634 ext4_msg(sb, KERN_ERR,
2635 "Can't support bigalloc feature without "
2636 "extents feature\n");
2637 return 0;
2638 }
2639
2640 #ifndef CONFIG_QUOTA
2641 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2642 !readonly) {
2643 ext4_msg(sb, KERN_ERR,
2644 "Filesystem with quota feature cannot be mounted RDWR "
2645 "without CONFIG_QUOTA");
2646 return 0;
2647 }
2648 #endif /* CONFIG_QUOTA */
2649 return 1;
2650 }
2651
2652 /*
2653 * This function is called once a day if we have errors logged
2654 * on the file system
2655 */
2656 static void print_daily_error_info(unsigned long arg)
2657 {
2658 struct super_block *sb = (struct super_block *) arg;
2659 struct ext4_sb_info *sbi;
2660 struct ext4_super_block *es;
2661
2662 sbi = EXT4_SB(sb);
2663 es = sbi->s_es;
2664
2665 if (es->s_error_count)
2666 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2667 le32_to_cpu(es->s_error_count));
2668 if (es->s_first_error_time) {
2669 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2670 sb->s_id, le32_to_cpu(es->s_first_error_time),
2671 (int) sizeof(es->s_first_error_func),
2672 es->s_first_error_func,
2673 le32_to_cpu(es->s_first_error_line));
2674 if (es->s_first_error_ino)
2675 printk(": inode %u",
2676 le32_to_cpu(es->s_first_error_ino));
2677 if (es->s_first_error_block)
2678 printk(": block %llu", (unsigned long long)
2679 le64_to_cpu(es->s_first_error_block));
2680 printk("\n");
2681 }
2682 if (es->s_last_error_time) {
2683 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2684 sb->s_id, le32_to_cpu(es->s_last_error_time),
2685 (int) sizeof(es->s_last_error_func),
2686 es->s_last_error_func,
2687 le32_to_cpu(es->s_last_error_line));
2688 if (es->s_last_error_ino)
2689 printk(": inode %u",
2690 le32_to_cpu(es->s_last_error_ino));
2691 if (es->s_last_error_block)
2692 printk(": block %llu", (unsigned long long)
2693 le64_to_cpu(es->s_last_error_block));
2694 printk("\n");
2695 }
2696 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2697 }
2698
2699 /* Find next suitable group and run ext4_init_inode_table */
2700 static int ext4_run_li_request(struct ext4_li_request *elr)
2701 {
2702 struct ext4_group_desc *gdp = NULL;
2703 ext4_group_t group, ngroups;
2704 struct super_block *sb;
2705 unsigned long timeout = 0;
2706 int ret = 0;
2707
2708 sb = elr->lr_super;
2709 ngroups = EXT4_SB(sb)->s_groups_count;
2710
2711 sb_start_write(sb);
2712 for (group = elr->lr_next_group; group < ngroups; group++) {
2713 gdp = ext4_get_group_desc(sb, group, NULL);
2714 if (!gdp) {
2715 ret = 1;
2716 break;
2717 }
2718
2719 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2720 break;
2721 }
2722
2723 if (group >= ngroups)
2724 ret = 1;
2725
2726 if (!ret) {
2727 timeout = jiffies;
2728 ret = ext4_init_inode_table(sb, group,
2729 elr->lr_timeout ? 0 : 1);
2730 if (elr->lr_timeout == 0) {
2731 timeout = (jiffies - timeout) *
2732 elr->lr_sbi->s_li_wait_mult;
2733 elr->lr_timeout = timeout;
2734 }
2735 elr->lr_next_sched = jiffies + elr->lr_timeout;
2736 elr->lr_next_group = group + 1;
2737 }
2738 sb_end_write(sb);
2739
2740 return ret;
2741 }
2742
2743 /*
2744 * Remove lr_request from the list_request and free the
2745 * request structure. Should be called with li_list_mtx held
2746 */
2747 static void ext4_remove_li_request(struct ext4_li_request *elr)
2748 {
2749 struct ext4_sb_info *sbi;
2750
2751 if (!elr)
2752 return;
2753
2754 sbi = elr->lr_sbi;
2755
2756 list_del(&elr->lr_request);
2757 sbi->s_li_request = NULL;
2758 kfree(elr);
2759 }
2760
2761 static void ext4_unregister_li_request(struct super_block *sb)
2762 {
2763 mutex_lock(&ext4_li_mtx);
2764 if (!ext4_li_info) {
2765 mutex_unlock(&ext4_li_mtx);
2766 return;
2767 }
2768
2769 mutex_lock(&ext4_li_info->li_list_mtx);
2770 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2771 mutex_unlock(&ext4_li_info->li_list_mtx);
2772 mutex_unlock(&ext4_li_mtx);
2773 }
2774
2775 static struct task_struct *ext4_lazyinit_task;
2776
2777 /*
2778 * This is the function where ext4lazyinit thread lives. It walks
2779 * through the request list searching for next scheduled filesystem.
2780 * When such a fs is found, run the lazy initialization request
2781 * (ext4_rn_li_request) and keep track of the time spend in this
2782 * function. Based on that time we compute next schedule time of
2783 * the request. When walking through the list is complete, compute
2784 * next waking time and put itself into sleep.
2785 */
2786 static int ext4_lazyinit_thread(void *arg)
2787 {
2788 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2789 struct list_head *pos, *n;
2790 struct ext4_li_request *elr;
2791 unsigned long next_wakeup, cur;
2792
2793 BUG_ON(NULL == eli);
2794
2795 cont_thread:
2796 while (true) {
2797 next_wakeup = MAX_JIFFY_OFFSET;
2798
2799 mutex_lock(&eli->li_list_mtx);
2800 if (list_empty(&eli->li_request_list)) {
2801 mutex_unlock(&eli->li_list_mtx);
2802 goto exit_thread;
2803 }
2804
2805 list_for_each_safe(pos, n, &eli->li_request_list) {
2806 elr = list_entry(pos, struct ext4_li_request,
2807 lr_request);
2808
2809 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2810 if (ext4_run_li_request(elr) != 0) {
2811 /* error, remove the lazy_init job */
2812 ext4_remove_li_request(elr);
2813 continue;
2814 }
2815 }
2816
2817 if (time_before(elr->lr_next_sched, next_wakeup))
2818 next_wakeup = elr->lr_next_sched;
2819 }
2820 mutex_unlock(&eli->li_list_mtx);
2821
2822 try_to_freeze();
2823
2824 cur = jiffies;
2825 if ((time_after_eq(cur, next_wakeup)) ||
2826 (MAX_JIFFY_OFFSET == next_wakeup)) {
2827 cond_resched();
2828 continue;
2829 }
2830
2831 schedule_timeout_interruptible(next_wakeup - cur);
2832
2833 if (kthread_should_stop()) {
2834 ext4_clear_request_list();
2835 goto exit_thread;
2836 }
2837 }
2838
2839 exit_thread:
2840 /*
2841 * It looks like the request list is empty, but we need
2842 * to check it under the li_list_mtx lock, to prevent any
2843 * additions into it, and of course we should lock ext4_li_mtx
2844 * to atomically free the list and ext4_li_info, because at
2845 * this point another ext4 filesystem could be registering
2846 * new one.
2847 */
2848 mutex_lock(&ext4_li_mtx);
2849 mutex_lock(&eli->li_list_mtx);
2850 if (!list_empty(&eli->li_request_list)) {
2851 mutex_unlock(&eli->li_list_mtx);
2852 mutex_unlock(&ext4_li_mtx);
2853 goto cont_thread;
2854 }
2855 mutex_unlock(&eli->li_list_mtx);
2856 kfree(ext4_li_info);
2857 ext4_li_info = NULL;
2858 mutex_unlock(&ext4_li_mtx);
2859
2860 return 0;
2861 }
2862
2863 static void ext4_clear_request_list(void)
2864 {
2865 struct list_head *pos, *n;
2866 struct ext4_li_request *elr;
2867
2868 mutex_lock(&ext4_li_info->li_list_mtx);
2869 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2870 elr = list_entry(pos, struct ext4_li_request,
2871 lr_request);
2872 ext4_remove_li_request(elr);
2873 }
2874 mutex_unlock(&ext4_li_info->li_list_mtx);
2875 }
2876
2877 static int ext4_run_lazyinit_thread(void)
2878 {
2879 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2880 ext4_li_info, "ext4lazyinit");
2881 if (IS_ERR(ext4_lazyinit_task)) {
2882 int err = PTR_ERR(ext4_lazyinit_task);
2883 ext4_clear_request_list();
2884 kfree(ext4_li_info);
2885 ext4_li_info = NULL;
2886 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2887 "initialization thread\n",
2888 err);
2889 return err;
2890 }
2891 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2892 return 0;
2893 }
2894
2895 /*
2896 * Check whether it make sense to run itable init. thread or not.
2897 * If there is at least one uninitialized inode table, return
2898 * corresponding group number, else the loop goes through all
2899 * groups and return total number of groups.
2900 */
2901 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2902 {
2903 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2904 struct ext4_group_desc *gdp = NULL;
2905
2906 for (group = 0; group < ngroups; group++) {
2907 gdp = ext4_get_group_desc(sb, group, NULL);
2908 if (!gdp)
2909 continue;
2910
2911 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2912 break;
2913 }
2914
2915 return group;
2916 }
2917
2918 static int ext4_li_info_new(void)
2919 {
2920 struct ext4_lazy_init *eli = NULL;
2921
2922 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2923 if (!eli)
2924 return -ENOMEM;
2925
2926 INIT_LIST_HEAD(&eli->li_request_list);
2927 mutex_init(&eli->li_list_mtx);
2928
2929 eli->li_state |= EXT4_LAZYINIT_QUIT;
2930
2931 ext4_li_info = eli;
2932
2933 return 0;
2934 }
2935
2936 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2937 ext4_group_t start)
2938 {
2939 struct ext4_sb_info *sbi = EXT4_SB(sb);
2940 struct ext4_li_request *elr;
2941 unsigned long rnd;
2942
2943 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2944 if (!elr)
2945 return NULL;
2946
2947 elr->lr_super = sb;
2948 elr->lr_sbi = sbi;
2949 elr->lr_next_group = start;
2950
2951 /*
2952 * Randomize first schedule time of the request to
2953 * spread the inode table initialization requests
2954 * better.
2955 */
2956 get_random_bytes(&rnd, sizeof(rnd));
2957 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2958 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2959
2960 return elr;
2961 }
2962
2963 int ext4_register_li_request(struct super_block *sb,
2964 ext4_group_t first_not_zeroed)
2965 {
2966 struct ext4_sb_info *sbi = EXT4_SB(sb);
2967 struct ext4_li_request *elr = NULL;
2968 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2969 int ret = 0;
2970
2971 mutex_lock(&ext4_li_mtx);
2972 if (sbi->s_li_request != NULL) {
2973 /*
2974 * Reset timeout so it can be computed again, because
2975 * s_li_wait_mult might have changed.
2976 */
2977 sbi->s_li_request->lr_timeout = 0;
2978 goto out;
2979 }
2980
2981 if (first_not_zeroed == ngroups ||
2982 (sb->s_flags & MS_RDONLY) ||
2983 !test_opt(sb, INIT_INODE_TABLE))
2984 goto out;
2985
2986 elr = ext4_li_request_new(sb, first_not_zeroed);
2987 if (!elr) {
2988 ret = -ENOMEM;
2989 goto out;
2990 }
2991
2992 if (NULL == ext4_li_info) {
2993 ret = ext4_li_info_new();
2994 if (ret)
2995 goto out;
2996 }
2997
2998 mutex_lock(&ext4_li_info->li_list_mtx);
2999 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3000 mutex_unlock(&ext4_li_info->li_list_mtx);
3001
3002 sbi->s_li_request = elr;
3003 /*
3004 * set elr to NULL here since it has been inserted to
3005 * the request_list and the removal and free of it is
3006 * handled by ext4_clear_request_list from now on.
3007 */
3008 elr = NULL;
3009
3010 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3011 ret = ext4_run_lazyinit_thread();
3012 if (ret)
3013 goto out;
3014 }
3015 out:
3016 mutex_unlock(&ext4_li_mtx);
3017 if (ret)
3018 kfree(elr);
3019 return ret;
3020 }
3021
3022 /*
3023 * We do not need to lock anything since this is called on
3024 * module unload.
3025 */
3026 static void ext4_destroy_lazyinit_thread(void)
3027 {
3028 /*
3029 * If thread exited earlier
3030 * there's nothing to be done.
3031 */
3032 if (!ext4_li_info || !ext4_lazyinit_task)
3033 return;
3034
3035 kthread_stop(ext4_lazyinit_task);
3036 }
3037
3038 static int set_journal_csum_feature_set(struct super_block *sb)
3039 {
3040 int ret = 1;
3041 int compat, incompat;
3042 struct ext4_sb_info *sbi = EXT4_SB(sb);
3043
3044 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3045 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3046 /* journal checksum v2 */
3047 compat = 0;
3048 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3049 } else {
3050 /* journal checksum v1 */
3051 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3052 incompat = 0;
3053 }
3054
3055 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3056 ret = jbd2_journal_set_features(sbi->s_journal,
3057 compat, 0,
3058 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3059 incompat);
3060 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3061 ret = jbd2_journal_set_features(sbi->s_journal,
3062 compat, 0,
3063 incompat);
3064 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3065 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3066 } else {
3067 jbd2_journal_clear_features(sbi->s_journal,
3068 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3069 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3070 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3071 }
3072
3073 return ret;
3074 }
3075
3076 /*
3077 * Note: calculating the overhead so we can be compatible with
3078 * historical BSD practice is quite difficult in the face of
3079 * clusters/bigalloc. This is because multiple metadata blocks from
3080 * different block group can end up in the same allocation cluster.
3081 * Calculating the exact overhead in the face of clustered allocation
3082 * requires either O(all block bitmaps) in memory or O(number of block
3083 * groups**2) in time. We will still calculate the superblock for
3084 * older file systems --- and if we come across with a bigalloc file
3085 * system with zero in s_overhead_clusters the estimate will be close to
3086 * correct especially for very large cluster sizes --- but for newer
3087 * file systems, it's better to calculate this figure once at mkfs
3088 * time, and store it in the superblock. If the superblock value is
3089 * present (even for non-bigalloc file systems), we will use it.
3090 */
3091 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3092 char *buf)
3093 {
3094 struct ext4_sb_info *sbi = EXT4_SB(sb);
3095 struct ext4_group_desc *gdp;
3096 ext4_fsblk_t first_block, last_block, b;
3097 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3098 int s, j, count = 0;
3099
3100 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3101 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3102 sbi->s_itb_per_group + 2);
3103
3104 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3105 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3106 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3107 for (i = 0; i < ngroups; i++) {
3108 gdp = ext4_get_group_desc(sb, i, NULL);
3109 b = ext4_block_bitmap(sb, gdp);
3110 if (b >= first_block && b <= last_block) {
3111 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3112 count++;
3113 }
3114 b = ext4_inode_bitmap(sb, gdp);
3115 if (b >= first_block && b <= last_block) {
3116 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3117 count++;
3118 }
3119 b = ext4_inode_table(sb, gdp);
3120 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3121 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3122 int c = EXT4_B2C(sbi, b - first_block);
3123 ext4_set_bit(c, buf);
3124 count++;
3125 }
3126 if (i != grp)
3127 continue;
3128 s = 0;
3129 if (ext4_bg_has_super(sb, grp)) {
3130 ext4_set_bit(s++, buf);
3131 count++;
3132 }
3133 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3134 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3135 count++;
3136 }
3137 }
3138 if (!count)
3139 return 0;
3140 return EXT4_CLUSTERS_PER_GROUP(sb) -
3141 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3142 }
3143
3144 /*
3145 * Compute the overhead and stash it in sbi->s_overhead
3146 */
3147 int ext4_calculate_overhead(struct super_block *sb)
3148 {
3149 struct ext4_sb_info *sbi = EXT4_SB(sb);
3150 struct ext4_super_block *es = sbi->s_es;
3151 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3152 ext4_fsblk_t overhead = 0;
3153 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3154
3155 if (!buf)
3156 return -ENOMEM;
3157
3158 /*
3159 * Compute the overhead (FS structures). This is constant
3160 * for a given filesystem unless the number of block groups
3161 * changes so we cache the previous value until it does.
3162 */
3163
3164 /*
3165 * All of the blocks before first_data_block are overhead
3166 */
3167 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3168
3169 /*
3170 * Add the overhead found in each block group
3171 */
3172 for (i = 0; i < ngroups; i++) {
3173 int blks;
3174
3175 blks = count_overhead(sb, i, buf);
3176 overhead += blks;
3177 if (blks)
3178 memset(buf, 0, PAGE_SIZE);
3179 cond_resched();
3180 }
3181 /* Add the journal blocks as well */
3182 if (sbi->s_journal)
3183 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3184
3185 sbi->s_overhead = overhead;
3186 smp_wmb();
3187 free_page((unsigned long) buf);
3188 return 0;
3189 }
3190
3191 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3192 {
3193 char *orig_data = kstrdup(data, GFP_KERNEL);
3194 struct buffer_head *bh;
3195 struct ext4_super_block *es = NULL;
3196 struct ext4_sb_info *sbi;
3197 ext4_fsblk_t block;
3198 ext4_fsblk_t sb_block = get_sb_block(&data);
3199 ext4_fsblk_t logical_sb_block;
3200 unsigned long offset = 0;
3201 unsigned long journal_devnum = 0;
3202 unsigned long def_mount_opts;
3203 struct inode *root;
3204 char *cp;
3205 const char *descr;
3206 int ret = -ENOMEM;
3207 int blocksize, clustersize;
3208 unsigned int db_count;
3209 unsigned int i;
3210 int needs_recovery, has_huge_files, has_bigalloc;
3211 __u64 blocks_count;
3212 int err = 0;
3213 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3214 ext4_group_t first_not_zeroed;
3215
3216 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3217 if (!sbi)
3218 goto out_free_orig;
3219
3220 sbi->s_blockgroup_lock =
3221 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3222 if (!sbi->s_blockgroup_lock) {
3223 kfree(sbi);
3224 goto out_free_orig;
3225 }
3226 sb->s_fs_info = sbi;
3227 sbi->s_sb = sb;
3228 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3229 sbi->s_sb_block = sb_block;
3230 if (sb->s_bdev->bd_part)
3231 sbi->s_sectors_written_start =
3232 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3233
3234 /* Cleanup superblock name */
3235 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3236 *cp = '!';
3237
3238 /* -EINVAL is default */
3239 ret = -EINVAL;
3240 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3241 if (!blocksize) {
3242 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3243 goto out_fail;
3244 }
3245
3246 /*
3247 * The ext4 superblock will not be buffer aligned for other than 1kB
3248 * block sizes. We need to calculate the offset from buffer start.
3249 */
3250 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3251 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3252 offset = do_div(logical_sb_block, blocksize);
3253 } else {
3254 logical_sb_block = sb_block;
3255 }
3256
3257 if (!(bh = sb_bread(sb, logical_sb_block))) {
3258 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3259 goto out_fail;
3260 }
3261 /*
3262 * Note: s_es must be initialized as soon as possible because
3263 * some ext4 macro-instructions depend on its value
3264 */
3265 es = (struct ext4_super_block *) (bh->b_data + offset);
3266 sbi->s_es = es;
3267 sb->s_magic = le16_to_cpu(es->s_magic);
3268 if (sb->s_magic != EXT4_SUPER_MAGIC)
3269 goto cantfind_ext4;
3270 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3271
3272 /* Warn if metadata_csum and gdt_csum are both set. */
3273 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3274 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3275 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3276 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3277 "redundant flags; please run fsck.");
3278
3279 /* Check for a known checksum algorithm */
3280 if (!ext4_verify_csum_type(sb, es)) {
3281 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3282 "unknown checksum algorithm.");
3283 silent = 1;
3284 goto cantfind_ext4;
3285 }
3286
3287 /* Load the checksum driver */
3288 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3289 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3290 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3291 if (IS_ERR(sbi->s_chksum_driver)) {
3292 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3293 ret = PTR_ERR(sbi->s_chksum_driver);
3294 sbi->s_chksum_driver = NULL;
3295 goto failed_mount;
3296 }
3297 }
3298
3299 /* Check superblock checksum */
3300 if (!ext4_superblock_csum_verify(sb, es)) {
3301 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3302 "invalid superblock checksum. Run e2fsck?");
3303 silent = 1;
3304 goto cantfind_ext4;
3305 }
3306
3307 /* Precompute checksum seed for all metadata */
3308 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3309 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3310 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3311 sizeof(es->s_uuid));
3312
3313 /* Set defaults before we parse the mount options */
3314 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3315 set_opt(sb, INIT_INODE_TABLE);
3316 if (def_mount_opts & EXT4_DEFM_DEBUG)
3317 set_opt(sb, DEBUG);
3318 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3319 set_opt(sb, GRPID);
3320 if (def_mount_opts & EXT4_DEFM_UID16)
3321 set_opt(sb, NO_UID32);
3322 /* xattr user namespace & acls are now defaulted on */
3323 set_opt(sb, XATTR_USER);
3324 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3325 set_opt(sb, POSIX_ACL);
3326 #endif
3327 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3328 set_opt(sb, JOURNAL_DATA);
3329 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3330 set_opt(sb, ORDERED_DATA);
3331 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3332 set_opt(sb, WRITEBACK_DATA);
3333
3334 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3335 set_opt(sb, ERRORS_PANIC);
3336 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3337 set_opt(sb, ERRORS_CONT);
3338 else
3339 set_opt(sb, ERRORS_RO);
3340 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3341 set_opt(sb, BLOCK_VALIDITY);
3342 if (def_mount_opts & EXT4_DEFM_DISCARD)
3343 set_opt(sb, DISCARD);
3344
3345 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3346 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3347 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3348 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3349 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3350
3351 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3352 set_opt(sb, BARRIER);
3353
3354 /*
3355 * enable delayed allocation by default
3356 * Use -o nodelalloc to turn it off
3357 */
3358 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3359 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3360 set_opt(sb, DELALLOC);
3361
3362 /*
3363 * set default s_li_wait_mult for lazyinit, for the case there is
3364 * no mount option specified.
3365 */
3366 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3367
3368 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3369 &journal_devnum, &journal_ioprio, 0)) {
3370 ext4_msg(sb, KERN_WARNING,
3371 "failed to parse options in superblock: %s",
3372 sbi->s_es->s_mount_opts);
3373 }
3374 sbi->s_def_mount_opt = sbi->s_mount_opt;
3375 if (!parse_options((char *) data, sb, &journal_devnum,
3376 &journal_ioprio, 0))
3377 goto failed_mount;
3378
3379 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3380 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3381 "with data=journal disables delayed "
3382 "allocation and O_DIRECT support!\n");
3383 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3384 ext4_msg(sb, KERN_ERR, "can't mount with "
3385 "both data=journal and delalloc");
3386 goto failed_mount;
3387 }
3388 if (test_opt(sb, DIOREAD_NOLOCK)) {
3389 ext4_msg(sb, KERN_ERR, "can't mount with "
3390 "both data=journal and delalloc");
3391 goto failed_mount;
3392 }
3393 if (test_opt(sb, DELALLOC))
3394 clear_opt(sb, DELALLOC);
3395 }
3396
3397 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3398 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3399
3400 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3401 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3402 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3403 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3404 ext4_msg(sb, KERN_WARNING,
3405 "feature flags set on rev 0 fs, "
3406 "running e2fsck is recommended");
3407
3408 if (IS_EXT2_SB(sb)) {
3409 if (ext2_feature_set_ok(sb))
3410 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3411 "using the ext4 subsystem");
3412 else {
3413 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3414 "to feature incompatibilities");
3415 goto failed_mount;
3416 }
3417 }
3418
3419 if (IS_EXT3_SB(sb)) {
3420 if (ext3_feature_set_ok(sb))
3421 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3422 "using the ext4 subsystem");
3423 else {
3424 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3425 "to feature incompatibilities");
3426 goto failed_mount;
3427 }
3428 }
3429
3430 /*
3431 * Check feature flags regardless of the revision level, since we
3432 * previously didn't change the revision level when setting the flags,
3433 * so there is a chance incompat flags are set on a rev 0 filesystem.
3434 */
3435 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3436 goto failed_mount;
3437
3438 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3439 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3440 blocksize > EXT4_MAX_BLOCK_SIZE) {
3441 ext4_msg(sb, KERN_ERR,
3442 "Unsupported filesystem blocksize %d", blocksize);
3443 goto failed_mount;
3444 }
3445
3446 if (sb->s_blocksize != blocksize) {
3447 /* Validate the filesystem blocksize */
3448 if (!sb_set_blocksize(sb, blocksize)) {
3449 ext4_msg(sb, KERN_ERR, "bad block size %d",
3450 blocksize);
3451 goto failed_mount;
3452 }
3453
3454 brelse(bh);
3455 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3456 offset = do_div(logical_sb_block, blocksize);
3457 bh = sb_bread(sb, logical_sb_block);
3458 if (!bh) {
3459 ext4_msg(sb, KERN_ERR,
3460 "Can't read superblock on 2nd try");
3461 goto failed_mount;
3462 }
3463 es = (struct ext4_super_block *)(bh->b_data + offset);
3464 sbi->s_es = es;
3465 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3466 ext4_msg(sb, KERN_ERR,
3467 "Magic mismatch, very weird!");
3468 goto failed_mount;
3469 }
3470 }
3471
3472 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3473 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3474 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3475 has_huge_files);
3476 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3477
3478 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3479 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3480 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3481 } else {
3482 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3483 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3484 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3485 (!is_power_of_2(sbi->s_inode_size)) ||
3486 (sbi->s_inode_size > blocksize)) {
3487 ext4_msg(sb, KERN_ERR,
3488 "unsupported inode size: %d",
3489 sbi->s_inode_size);
3490 goto failed_mount;
3491 }
3492 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3493 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3494 }
3495
3496 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3497 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3498 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3499 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3500 !is_power_of_2(sbi->s_desc_size)) {
3501 ext4_msg(sb, KERN_ERR,
3502 "unsupported descriptor size %lu",
3503 sbi->s_desc_size);
3504 goto failed_mount;
3505 }
3506 } else
3507 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3508
3509 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3510 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3511 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3512 goto cantfind_ext4;
3513
3514 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3515 if (sbi->s_inodes_per_block == 0)
3516 goto cantfind_ext4;
3517 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3518 sbi->s_inodes_per_block;
3519 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3520 sbi->s_sbh = bh;
3521 sbi->s_mount_state = le16_to_cpu(es->s_state);
3522 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3523 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3524
3525 for (i = 0; i < 4; i++)
3526 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3527 sbi->s_def_hash_version = es->s_def_hash_version;
3528 i = le32_to_cpu(es->s_flags);
3529 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3530 sbi->s_hash_unsigned = 3;
3531 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3532 #ifdef __CHAR_UNSIGNED__
3533 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3534 sbi->s_hash_unsigned = 3;
3535 #else
3536 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3537 #endif
3538 }
3539
3540 /* Handle clustersize */
3541 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3542 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3543 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3544 if (has_bigalloc) {
3545 if (clustersize < blocksize) {
3546 ext4_msg(sb, KERN_ERR,
3547 "cluster size (%d) smaller than "
3548 "block size (%d)", clustersize, blocksize);
3549 goto failed_mount;
3550 }
3551 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3552 le32_to_cpu(es->s_log_block_size);
3553 sbi->s_clusters_per_group =
3554 le32_to_cpu(es->s_clusters_per_group);
3555 if (sbi->s_clusters_per_group > blocksize * 8) {
3556 ext4_msg(sb, KERN_ERR,
3557 "#clusters per group too big: %lu",
3558 sbi->s_clusters_per_group);
3559 goto failed_mount;
3560 }
3561 if (sbi->s_blocks_per_group !=
3562 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3563 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3564 "clusters per group (%lu) inconsistent",
3565 sbi->s_blocks_per_group,
3566 sbi->s_clusters_per_group);
3567 goto failed_mount;
3568 }
3569 } else {
3570 if (clustersize != blocksize) {
3571 ext4_warning(sb, "fragment/cluster size (%d) != "
3572 "block size (%d)", clustersize,
3573 blocksize);
3574 clustersize = blocksize;
3575 }
3576 if (sbi->s_blocks_per_group > blocksize * 8) {
3577 ext4_msg(sb, KERN_ERR,
3578 "#blocks per group too big: %lu",
3579 sbi->s_blocks_per_group);
3580 goto failed_mount;
3581 }
3582 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3583 sbi->s_cluster_bits = 0;
3584 }
3585 sbi->s_cluster_ratio = clustersize / blocksize;
3586
3587 if (sbi->s_inodes_per_group > blocksize * 8) {
3588 ext4_msg(sb, KERN_ERR,
3589 "#inodes per group too big: %lu",
3590 sbi->s_inodes_per_group);
3591 goto failed_mount;
3592 }
3593
3594 /*
3595 * Test whether we have more sectors than will fit in sector_t,
3596 * and whether the max offset is addressable by the page cache.
3597 */
3598 err = generic_check_addressable(sb->s_blocksize_bits,
3599 ext4_blocks_count(es));
3600 if (err) {
3601 ext4_msg(sb, KERN_ERR, "filesystem"
3602 " too large to mount safely on this system");
3603 if (sizeof(sector_t) < 8)
3604 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3605 goto failed_mount;
3606 }
3607
3608 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3609 goto cantfind_ext4;
3610
3611 /* check blocks count against device size */
3612 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3613 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3614 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3615 "exceeds size of device (%llu blocks)",
3616 ext4_blocks_count(es), blocks_count);
3617 goto failed_mount;
3618 }
3619
3620 /*
3621 * It makes no sense for the first data block to be beyond the end
3622 * of the filesystem.
3623 */
3624 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3625 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3626 "block %u is beyond end of filesystem (%llu)",
3627 le32_to_cpu(es->s_first_data_block),
3628 ext4_blocks_count(es));
3629 goto failed_mount;
3630 }
3631 blocks_count = (ext4_blocks_count(es) -
3632 le32_to_cpu(es->s_first_data_block) +
3633 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3634 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3635 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3636 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3637 "(block count %llu, first data block %u, "
3638 "blocks per group %lu)", sbi->s_groups_count,
3639 ext4_blocks_count(es),
3640 le32_to_cpu(es->s_first_data_block),
3641 EXT4_BLOCKS_PER_GROUP(sb));
3642 goto failed_mount;
3643 }
3644 sbi->s_groups_count = blocks_count;
3645 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3646 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3647 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3648 EXT4_DESC_PER_BLOCK(sb);
3649 sbi->s_group_desc = ext4_kvmalloc(db_count *
3650 sizeof(struct buffer_head *),
3651 GFP_KERNEL);
3652 if (sbi->s_group_desc == NULL) {
3653 ext4_msg(sb, KERN_ERR, "not enough memory");
3654 ret = -ENOMEM;
3655 goto failed_mount;
3656 }
3657
3658 if (ext4_proc_root)
3659 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3660
3661 if (sbi->s_proc)
3662 proc_create_data("options", S_IRUGO, sbi->s_proc,
3663 &ext4_seq_options_fops, sb);
3664
3665 bgl_lock_init(sbi->s_blockgroup_lock);
3666
3667 for (i = 0; i < db_count; i++) {
3668 block = descriptor_loc(sb, logical_sb_block, i);
3669 sbi->s_group_desc[i] = sb_bread(sb, block);
3670 if (!sbi->s_group_desc[i]) {
3671 ext4_msg(sb, KERN_ERR,
3672 "can't read group descriptor %d", i);
3673 db_count = i;
3674 goto failed_mount2;
3675 }
3676 }
3677 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3678 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3679 goto failed_mount2;
3680 }
3681 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3682 if (!ext4_fill_flex_info(sb)) {
3683 ext4_msg(sb, KERN_ERR,
3684 "unable to initialize "
3685 "flex_bg meta info!");
3686 goto failed_mount2;
3687 }
3688
3689 sbi->s_gdb_count = db_count;
3690 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3691 spin_lock_init(&sbi->s_next_gen_lock);
3692
3693 init_timer(&sbi->s_err_report);
3694 sbi->s_err_report.function = print_daily_error_info;
3695 sbi->s_err_report.data = (unsigned long) sb;
3696
3697 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3698 ext4_count_free_clusters(sb));
3699 if (!err) {
3700 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3701 ext4_count_free_inodes(sb));
3702 }
3703 if (!err) {
3704 err = percpu_counter_init(&sbi->s_dirs_counter,
3705 ext4_count_dirs(sb));
3706 }
3707 if (!err) {
3708 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3709 }
3710 if (!err) {
3711 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3712 }
3713 if (err) {
3714 ext4_msg(sb, KERN_ERR, "insufficient memory");
3715 goto failed_mount3;
3716 }
3717
3718 sbi->s_stripe = ext4_get_stripe_size(sbi);
3719 sbi->s_max_writeback_mb_bump = 128;
3720 sbi->s_extent_max_zeroout_kb = 32;
3721
3722 /* Register extent status tree shrinker */
3723 ext4_es_register_shrinker(sb);
3724
3725 /*
3726 * set up enough so that it can read an inode
3727 */
3728 if (!test_opt(sb, NOLOAD) &&
3729 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3730 sb->s_op = &ext4_sops;
3731 else
3732 sb->s_op = &ext4_nojournal_sops;
3733 sb->s_export_op = &ext4_export_ops;
3734 sb->s_xattr = ext4_xattr_handlers;
3735 #ifdef CONFIG_QUOTA
3736 sb->dq_op = &ext4_quota_operations;
3737 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3738 sb->s_qcop = &ext4_qctl_sysfile_operations;
3739 else
3740 sb->s_qcop = &ext4_qctl_operations;
3741 #endif
3742 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3743
3744 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3745 mutex_init(&sbi->s_orphan_lock);
3746
3747 sb->s_root = NULL;
3748
3749 needs_recovery = (es->s_last_orphan != 0 ||
3750 EXT4_HAS_INCOMPAT_FEATURE(sb,
3751 EXT4_FEATURE_INCOMPAT_RECOVER));
3752
3753 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3754 !(sb->s_flags & MS_RDONLY))
3755 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3756 goto failed_mount3;
3757
3758 /*
3759 * The first inode we look at is the journal inode. Don't try
3760 * root first: it may be modified in the journal!
3761 */
3762 if (!test_opt(sb, NOLOAD) &&
3763 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3764 if (ext4_load_journal(sb, es, journal_devnum))
3765 goto failed_mount3;
3766 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3767 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3768 ext4_msg(sb, KERN_ERR, "required journal recovery "
3769 "suppressed and not mounted read-only");
3770 goto failed_mount_wq;
3771 } else {
3772 clear_opt(sb, DATA_FLAGS);
3773 sbi->s_journal = NULL;
3774 needs_recovery = 0;
3775 goto no_journal;
3776 }
3777
3778 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3779 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3780 JBD2_FEATURE_INCOMPAT_64BIT)) {
3781 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3782 goto failed_mount_wq;
3783 }
3784
3785 if (!set_journal_csum_feature_set(sb)) {
3786 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3787 "feature set");
3788 goto failed_mount_wq;
3789 }
3790
3791 /* We have now updated the journal if required, so we can
3792 * validate the data journaling mode. */
3793 switch (test_opt(sb, DATA_FLAGS)) {
3794 case 0:
3795 /* No mode set, assume a default based on the journal
3796 * capabilities: ORDERED_DATA if the journal can
3797 * cope, else JOURNAL_DATA
3798 */
3799 if (jbd2_journal_check_available_features
3800 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3801 set_opt(sb, ORDERED_DATA);
3802 else
3803 set_opt(sb, JOURNAL_DATA);
3804 break;
3805
3806 case EXT4_MOUNT_ORDERED_DATA:
3807 case EXT4_MOUNT_WRITEBACK_DATA:
3808 if (!jbd2_journal_check_available_features
3809 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3810 ext4_msg(sb, KERN_ERR, "Journal does not support "
3811 "requested data journaling mode");
3812 goto failed_mount_wq;
3813 }
3814 default:
3815 break;
3816 }
3817 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3818
3819 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3820
3821 /*
3822 * The journal may have updated the bg summary counts, so we
3823 * need to update the global counters.
3824 */
3825 percpu_counter_set(&sbi->s_freeclusters_counter,
3826 ext4_count_free_clusters(sb));
3827 percpu_counter_set(&sbi->s_freeinodes_counter,
3828 ext4_count_free_inodes(sb));
3829 percpu_counter_set(&sbi->s_dirs_counter,
3830 ext4_count_dirs(sb));
3831 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3832
3833 no_journal:
3834 /*
3835 * Get the # of file system overhead blocks from the
3836 * superblock if present.
3837 */
3838 if (es->s_overhead_clusters)
3839 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3840 else {
3841 err = ext4_calculate_overhead(sb);
3842 if (err)
3843 goto failed_mount_wq;
3844 }
3845
3846 /*
3847 * The maximum number of concurrent works can be high and
3848 * concurrency isn't really necessary. Limit it to 1.
3849 */
3850 EXT4_SB(sb)->dio_unwritten_wq =
3851 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3852 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3853 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3854 ret = -ENOMEM;
3855 goto failed_mount_wq;
3856 }
3857
3858 /*
3859 * The jbd2_journal_load will have done any necessary log recovery,
3860 * so we can safely mount the rest of the filesystem now.
3861 */
3862
3863 root = ext4_iget(sb, EXT4_ROOT_INO);
3864 if (IS_ERR(root)) {
3865 ext4_msg(sb, KERN_ERR, "get root inode failed");
3866 ret = PTR_ERR(root);
3867 root = NULL;
3868 goto failed_mount4;
3869 }
3870 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3871 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3872 iput(root);
3873 goto failed_mount4;
3874 }
3875 sb->s_root = d_make_root(root);
3876 if (!sb->s_root) {
3877 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3878 ret = -ENOMEM;
3879 goto failed_mount4;
3880 }
3881
3882 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3883 sb->s_flags |= MS_RDONLY;
3884
3885 /* determine the minimum size of new large inodes, if present */
3886 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3887 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3888 EXT4_GOOD_OLD_INODE_SIZE;
3889 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3890 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3891 if (sbi->s_want_extra_isize <
3892 le16_to_cpu(es->s_want_extra_isize))
3893 sbi->s_want_extra_isize =
3894 le16_to_cpu(es->s_want_extra_isize);
3895 if (sbi->s_want_extra_isize <
3896 le16_to_cpu(es->s_min_extra_isize))
3897 sbi->s_want_extra_isize =
3898 le16_to_cpu(es->s_min_extra_isize);
3899 }
3900 }
3901 /* Check if enough inode space is available */
3902 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3903 sbi->s_inode_size) {
3904 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3905 EXT4_GOOD_OLD_INODE_SIZE;
3906 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3907 "available");
3908 }
3909
3910 err = ext4_setup_system_zone(sb);
3911 if (err) {
3912 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3913 "zone (%d)", err);
3914 goto failed_mount4a;
3915 }
3916
3917 ext4_ext_init(sb);
3918 err = ext4_mb_init(sb);
3919 if (err) {
3920 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3921 err);
3922 goto failed_mount5;
3923 }
3924
3925 err = ext4_register_li_request(sb, first_not_zeroed);
3926 if (err)
3927 goto failed_mount6;
3928
3929 sbi->s_kobj.kset = ext4_kset;
3930 init_completion(&sbi->s_kobj_unregister);
3931 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3932 "%s", sb->s_id);
3933 if (err)
3934 goto failed_mount7;
3935
3936 #ifdef CONFIG_QUOTA
3937 /* Enable quota usage during mount. */
3938 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
3939 !(sb->s_flags & MS_RDONLY)) {
3940 err = ext4_enable_quotas(sb);
3941 if (err)
3942 goto failed_mount8;
3943 }
3944 #endif /* CONFIG_QUOTA */
3945
3946 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3947 ext4_orphan_cleanup(sb, es);
3948 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3949 if (needs_recovery) {
3950 ext4_msg(sb, KERN_INFO, "recovery complete");
3951 ext4_mark_recovery_complete(sb, es);
3952 }
3953 if (EXT4_SB(sb)->s_journal) {
3954 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3955 descr = " journalled data mode";
3956 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3957 descr = " ordered data mode";
3958 else
3959 descr = " writeback data mode";
3960 } else
3961 descr = "out journal";
3962
3963 if (test_opt(sb, DISCARD)) {
3964 struct request_queue *q = bdev_get_queue(sb->s_bdev);
3965 if (!blk_queue_discard(q))
3966 ext4_msg(sb, KERN_WARNING,
3967 "mounting with \"discard\" option, but "
3968 "the device does not support discard");
3969 }
3970
3971 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3972 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3973 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3974
3975 if (es->s_error_count)
3976 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3977
3978 kfree(orig_data);
3979 return 0;
3980
3981 cantfind_ext4:
3982 if (!silent)
3983 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3984 goto failed_mount;
3985
3986 #ifdef CONFIG_QUOTA
3987 failed_mount8:
3988 kobject_del(&sbi->s_kobj);
3989 #endif
3990 failed_mount7:
3991 ext4_unregister_li_request(sb);
3992 failed_mount6:
3993 ext4_mb_release(sb);
3994 failed_mount5:
3995 ext4_ext_release(sb);
3996 ext4_release_system_zone(sb);
3997 failed_mount4a:
3998 dput(sb->s_root);
3999 sb->s_root = NULL;
4000 failed_mount4:
4001 ext4_msg(sb, KERN_ERR, "mount failed");
4002 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4003 failed_mount_wq:
4004 if (sbi->s_journal) {
4005 jbd2_journal_destroy(sbi->s_journal);
4006 sbi->s_journal = NULL;
4007 }
4008 failed_mount3:
4009 del_timer(&sbi->s_err_report);
4010 if (sbi->s_flex_groups)
4011 ext4_kvfree(sbi->s_flex_groups);
4012 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4013 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4014 percpu_counter_destroy(&sbi->s_dirs_counter);
4015 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4016 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4017 if (sbi->s_mmp_tsk)
4018 kthread_stop(sbi->s_mmp_tsk);
4019 failed_mount2:
4020 for (i = 0; i < db_count; i++)
4021 brelse(sbi->s_group_desc[i]);
4022 ext4_kvfree(sbi->s_group_desc);
4023 failed_mount:
4024 if (sbi->s_chksum_driver)
4025 crypto_free_shash(sbi->s_chksum_driver);
4026 if (sbi->s_proc) {
4027 remove_proc_entry("options", sbi->s_proc);
4028 remove_proc_entry(sb->s_id, ext4_proc_root);
4029 }
4030 #ifdef CONFIG_QUOTA
4031 for (i = 0; i < MAXQUOTAS; i++)
4032 kfree(sbi->s_qf_names[i]);
4033 #endif
4034 ext4_blkdev_remove(sbi);
4035 brelse(bh);
4036 out_fail:
4037 sb->s_fs_info = NULL;
4038 kfree(sbi->s_blockgroup_lock);
4039 kfree(sbi);
4040 out_free_orig:
4041 kfree(orig_data);
4042 return err ? err : ret;
4043 }
4044
4045 /*
4046 * Setup any per-fs journal parameters now. We'll do this both on
4047 * initial mount, once the journal has been initialised but before we've
4048 * done any recovery; and again on any subsequent remount.
4049 */
4050 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4051 {
4052 struct ext4_sb_info *sbi = EXT4_SB(sb);
4053
4054 journal->j_commit_interval = sbi->s_commit_interval;
4055 journal->j_min_batch_time = sbi->s_min_batch_time;
4056 journal->j_max_batch_time = sbi->s_max_batch_time;
4057
4058 write_lock(&journal->j_state_lock);
4059 if (test_opt(sb, BARRIER))
4060 journal->j_flags |= JBD2_BARRIER;
4061 else
4062 journal->j_flags &= ~JBD2_BARRIER;
4063 if (test_opt(sb, DATA_ERR_ABORT))
4064 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4065 else
4066 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4067 write_unlock(&journal->j_state_lock);
4068 }
4069
4070 static journal_t *ext4_get_journal(struct super_block *sb,
4071 unsigned int journal_inum)
4072 {
4073 struct inode *journal_inode;
4074 journal_t *journal;
4075
4076 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4077
4078 /* First, test for the existence of a valid inode on disk. Bad
4079 * things happen if we iget() an unused inode, as the subsequent
4080 * iput() will try to delete it. */
4081
4082 journal_inode = ext4_iget(sb, journal_inum);
4083 if (IS_ERR(journal_inode)) {
4084 ext4_msg(sb, KERN_ERR, "no journal found");
4085 return NULL;
4086 }
4087 if (!journal_inode->i_nlink) {
4088 make_bad_inode(journal_inode);
4089 iput(journal_inode);
4090 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4091 return NULL;
4092 }
4093
4094 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4095 journal_inode, journal_inode->i_size);
4096 if (!S_ISREG(journal_inode->i_mode)) {
4097 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4098 iput(journal_inode);
4099 return NULL;
4100 }
4101
4102 journal = jbd2_journal_init_inode(journal_inode);
4103 if (!journal) {
4104 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4105 iput(journal_inode);
4106 return NULL;
4107 }
4108 journal->j_private = sb;
4109 ext4_init_journal_params(sb, journal);
4110 return journal;
4111 }
4112
4113 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4114 dev_t j_dev)
4115 {
4116 struct buffer_head *bh;
4117 journal_t *journal;
4118 ext4_fsblk_t start;
4119 ext4_fsblk_t len;
4120 int hblock, blocksize;
4121 ext4_fsblk_t sb_block;
4122 unsigned long offset;
4123 struct ext4_super_block *es;
4124 struct block_device *bdev;
4125
4126 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4127
4128 bdev = ext4_blkdev_get(j_dev, sb);
4129 if (bdev == NULL)
4130 return NULL;
4131
4132 blocksize = sb->s_blocksize;
4133 hblock = bdev_logical_block_size(bdev);
4134 if (blocksize < hblock) {
4135 ext4_msg(sb, KERN_ERR,
4136 "blocksize too small for journal device");
4137 goto out_bdev;
4138 }
4139
4140 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4141 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4142 set_blocksize(bdev, blocksize);
4143 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4144 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4145 "external journal");
4146 goto out_bdev;
4147 }
4148
4149 es = (struct ext4_super_block *) (bh->b_data + offset);
4150 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4151 !(le32_to_cpu(es->s_feature_incompat) &
4152 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4153 ext4_msg(sb, KERN_ERR, "external journal has "
4154 "bad superblock");
4155 brelse(bh);
4156 goto out_bdev;
4157 }
4158
4159 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4160 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4161 brelse(bh);
4162 goto out_bdev;
4163 }
4164
4165 len = ext4_blocks_count(es);
4166 start = sb_block + 1;
4167 brelse(bh); /* we're done with the superblock */
4168
4169 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4170 start, len, blocksize);
4171 if (!journal) {
4172 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4173 goto out_bdev;
4174 }
4175 journal->j_private = sb;
4176 ll_rw_block(READ, 1, &journal->j_sb_buffer);
4177 wait_on_buffer(journal->j_sb_buffer);
4178 if (!buffer_uptodate(journal->j_sb_buffer)) {
4179 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4180 goto out_journal;
4181 }
4182 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4183 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4184 "user (unsupported) - %d",
4185 be32_to_cpu(journal->j_superblock->s_nr_users));
4186 goto out_journal;
4187 }
4188 EXT4_SB(sb)->journal_bdev = bdev;
4189 ext4_init_journal_params(sb, journal);
4190 return journal;
4191
4192 out_journal:
4193 jbd2_journal_destroy(journal);
4194 out_bdev:
4195 ext4_blkdev_put(bdev);
4196 return NULL;
4197 }
4198
4199 static int ext4_load_journal(struct super_block *sb,
4200 struct ext4_super_block *es,
4201 unsigned long journal_devnum)
4202 {
4203 journal_t *journal;
4204 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4205 dev_t journal_dev;
4206 int err = 0;
4207 int really_read_only;
4208
4209 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4210
4211 if (journal_devnum &&
4212 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4213 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4214 "numbers have changed");
4215 journal_dev = new_decode_dev(journal_devnum);
4216 } else
4217 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4218
4219 really_read_only = bdev_read_only(sb->s_bdev);
4220
4221 /*
4222 * Are we loading a blank journal or performing recovery after a
4223 * crash? For recovery, we need to check in advance whether we
4224 * can get read-write access to the device.
4225 */
4226 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4227 if (sb->s_flags & MS_RDONLY) {
4228 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4229 "required on readonly filesystem");
4230 if (really_read_only) {
4231 ext4_msg(sb, KERN_ERR, "write access "
4232 "unavailable, cannot proceed");
4233 return -EROFS;
4234 }
4235 ext4_msg(sb, KERN_INFO, "write access will "
4236 "be enabled during recovery");
4237 }
4238 }
4239
4240 if (journal_inum && journal_dev) {
4241 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4242 "and inode journals!");
4243 return -EINVAL;
4244 }
4245
4246 if (journal_inum) {
4247 if (!(journal = ext4_get_journal(sb, journal_inum)))
4248 return -EINVAL;
4249 } else {
4250 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4251 return -EINVAL;
4252 }
4253
4254 if (!(journal->j_flags & JBD2_BARRIER))
4255 ext4_msg(sb, KERN_INFO, "barriers disabled");
4256
4257 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4258 err = jbd2_journal_wipe(journal, !really_read_only);
4259 if (!err) {
4260 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4261 if (save)
4262 memcpy(save, ((char *) es) +
4263 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4264 err = jbd2_journal_load(journal);
4265 if (save)
4266 memcpy(((char *) es) + EXT4_S_ERR_START,
4267 save, EXT4_S_ERR_LEN);
4268 kfree(save);
4269 }
4270
4271 if (err) {
4272 ext4_msg(sb, KERN_ERR, "error loading journal");
4273 jbd2_journal_destroy(journal);
4274 return err;
4275 }
4276
4277 EXT4_SB(sb)->s_journal = journal;
4278 ext4_clear_journal_err(sb, es);
4279
4280 if (!really_read_only && journal_devnum &&
4281 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4282 es->s_journal_dev = cpu_to_le32(journal_devnum);
4283
4284 /* Make sure we flush the recovery flag to disk. */
4285 ext4_commit_super(sb, 1);
4286 }
4287
4288 return 0;
4289 }
4290
4291 static int ext4_commit_super(struct super_block *sb, int sync)
4292 {
4293 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4294 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4295 int error = 0;
4296
4297 if (!sbh || block_device_ejected(sb))
4298 return error;
4299 if (buffer_write_io_error(sbh)) {
4300 /*
4301 * Oh, dear. A previous attempt to write the
4302 * superblock failed. This could happen because the
4303 * USB device was yanked out. Or it could happen to
4304 * be a transient write error and maybe the block will
4305 * be remapped. Nothing we can do but to retry the
4306 * write and hope for the best.
4307 */
4308 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4309 "superblock detected");
4310 clear_buffer_write_io_error(sbh);
4311 set_buffer_uptodate(sbh);
4312 }
4313 /*
4314 * If the file system is mounted read-only, don't update the
4315 * superblock write time. This avoids updating the superblock
4316 * write time when we are mounting the root file system
4317 * read/only but we need to replay the journal; at that point,
4318 * for people who are east of GMT and who make their clock
4319 * tick in localtime for Windows bug-for-bug compatibility,
4320 * the clock is set in the future, and this will cause e2fsck
4321 * to complain and force a full file system check.
4322 */
4323 if (!(sb->s_flags & MS_RDONLY))
4324 es->s_wtime = cpu_to_le32(get_seconds());
4325 if (sb->s_bdev->bd_part)
4326 es->s_kbytes_written =
4327 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4328 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4329 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4330 else
4331 es->s_kbytes_written =
4332 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4333 ext4_free_blocks_count_set(es,
4334 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4335 &EXT4_SB(sb)->s_freeclusters_counter)));
4336 es->s_free_inodes_count =
4337 cpu_to_le32(percpu_counter_sum_positive(
4338 &EXT4_SB(sb)->s_freeinodes_counter));
4339 BUFFER_TRACE(sbh, "marking dirty");
4340 ext4_superblock_csum_set(sb);
4341 mark_buffer_dirty(sbh);
4342 if (sync) {
4343 error = sync_dirty_buffer(sbh);
4344 if (error)
4345 return error;
4346
4347 error = buffer_write_io_error(sbh);
4348 if (error) {
4349 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4350 "superblock");
4351 clear_buffer_write_io_error(sbh);
4352 set_buffer_uptodate(sbh);
4353 }
4354 }
4355 return error;
4356 }
4357
4358 /*
4359 * Have we just finished recovery? If so, and if we are mounting (or
4360 * remounting) the filesystem readonly, then we will end up with a
4361 * consistent fs on disk. Record that fact.
4362 */
4363 static void ext4_mark_recovery_complete(struct super_block *sb,
4364 struct ext4_super_block *es)
4365 {
4366 journal_t *journal = EXT4_SB(sb)->s_journal;
4367
4368 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4369 BUG_ON(journal != NULL);
4370 return;
4371 }
4372 jbd2_journal_lock_updates(journal);
4373 if (jbd2_journal_flush(journal) < 0)
4374 goto out;
4375
4376 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4377 sb->s_flags & MS_RDONLY) {
4378 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4379 ext4_commit_super(sb, 1);
4380 }
4381
4382 out:
4383 jbd2_journal_unlock_updates(journal);
4384 }
4385
4386 /*
4387 * If we are mounting (or read-write remounting) a filesystem whose journal
4388 * has recorded an error from a previous lifetime, move that error to the
4389 * main filesystem now.
4390 */
4391 static void ext4_clear_journal_err(struct super_block *sb,
4392 struct ext4_super_block *es)
4393 {
4394 journal_t *journal;
4395 int j_errno;
4396 const char *errstr;
4397
4398 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4399
4400 journal = EXT4_SB(sb)->s_journal;
4401
4402 /*
4403 * Now check for any error status which may have been recorded in the
4404 * journal by a prior ext4_error() or ext4_abort()
4405 */
4406
4407 j_errno = jbd2_journal_errno(journal);
4408 if (j_errno) {
4409 char nbuf[16];
4410
4411 errstr = ext4_decode_error(sb, j_errno, nbuf);
4412 ext4_warning(sb, "Filesystem error recorded "
4413 "from previous mount: %s", errstr);
4414 ext4_warning(sb, "Marking fs in need of filesystem check.");
4415
4416 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4417 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4418 ext4_commit_super(sb, 1);
4419
4420 jbd2_journal_clear_err(journal);
4421 jbd2_journal_update_sb_errno(journal);
4422 }
4423 }
4424
4425 /*
4426 * Force the running and committing transactions to commit,
4427 * and wait on the commit.
4428 */
4429 int ext4_force_commit(struct super_block *sb)
4430 {
4431 journal_t *journal;
4432
4433 if (sb->s_flags & MS_RDONLY)
4434 return 0;
4435
4436 journal = EXT4_SB(sb)->s_journal;
4437 return ext4_journal_force_commit(journal);
4438 }
4439
4440 static int ext4_sync_fs(struct super_block *sb, int wait)
4441 {
4442 int ret = 0;
4443 tid_t target;
4444 struct ext4_sb_info *sbi = EXT4_SB(sb);
4445
4446 trace_ext4_sync_fs(sb, wait);
4447 flush_workqueue(sbi->dio_unwritten_wq);
4448 /*
4449 * Writeback quota in non-journalled quota case - journalled quota has
4450 * no dirty dquots
4451 */
4452 dquot_writeback_dquots(sb, -1);
4453 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4454 if (wait)
4455 jbd2_log_wait_commit(sbi->s_journal, target);
4456 }
4457 return ret;
4458 }
4459
4460 /*
4461 * LVM calls this function before a (read-only) snapshot is created. This
4462 * gives us a chance to flush the journal completely and mark the fs clean.
4463 *
4464 * Note that only this function cannot bring a filesystem to be in a clean
4465 * state independently. It relies on upper layer to stop all data & metadata
4466 * modifications.
4467 */
4468 static int ext4_freeze(struct super_block *sb)
4469 {
4470 int error = 0;
4471 journal_t *journal;
4472
4473 if (sb->s_flags & MS_RDONLY)
4474 return 0;
4475
4476 journal = EXT4_SB(sb)->s_journal;
4477
4478 /* Now we set up the journal barrier. */
4479 jbd2_journal_lock_updates(journal);
4480
4481 /*
4482 * Don't clear the needs_recovery flag if we failed to flush
4483 * the journal.
4484 */
4485 error = jbd2_journal_flush(journal);
4486 if (error < 0)
4487 goto out;
4488
4489 /* Journal blocked and flushed, clear needs_recovery flag. */
4490 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4491 error = ext4_commit_super(sb, 1);
4492 out:
4493 /* we rely on upper layer to stop further updates */
4494 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4495 return error;
4496 }
4497
4498 /*
4499 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4500 * flag here, even though the filesystem is not technically dirty yet.
4501 */
4502 static int ext4_unfreeze(struct super_block *sb)
4503 {
4504 if (sb->s_flags & MS_RDONLY)
4505 return 0;
4506
4507 /* Reset the needs_recovery flag before the fs is unlocked. */
4508 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4509 ext4_commit_super(sb, 1);
4510 return 0;
4511 }
4512
4513 /*
4514 * Structure to save mount options for ext4_remount's benefit
4515 */
4516 struct ext4_mount_options {
4517 unsigned long s_mount_opt;
4518 unsigned long s_mount_opt2;
4519 kuid_t s_resuid;
4520 kgid_t s_resgid;
4521 unsigned long s_commit_interval;
4522 u32 s_min_batch_time, s_max_batch_time;
4523 #ifdef CONFIG_QUOTA
4524 int s_jquota_fmt;
4525 char *s_qf_names[MAXQUOTAS];
4526 #endif
4527 };
4528
4529 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4530 {
4531 struct ext4_super_block *es;
4532 struct ext4_sb_info *sbi = EXT4_SB(sb);
4533 unsigned long old_sb_flags;
4534 struct ext4_mount_options old_opts;
4535 int enable_quota = 0;
4536 ext4_group_t g;
4537 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4538 int err = 0;
4539 #ifdef CONFIG_QUOTA
4540 int i, j;
4541 #endif
4542 char *orig_data = kstrdup(data, GFP_KERNEL);
4543
4544 /* Store the original options */
4545 old_sb_flags = sb->s_flags;
4546 old_opts.s_mount_opt = sbi->s_mount_opt;
4547 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4548 old_opts.s_resuid = sbi->s_resuid;
4549 old_opts.s_resgid = sbi->s_resgid;
4550 old_opts.s_commit_interval = sbi->s_commit_interval;
4551 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4552 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4553 #ifdef CONFIG_QUOTA
4554 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4555 for (i = 0; i < MAXQUOTAS; i++)
4556 if (sbi->s_qf_names[i]) {
4557 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4558 GFP_KERNEL);
4559 if (!old_opts.s_qf_names[i]) {
4560 for (j = 0; j < i; j++)
4561 kfree(old_opts.s_qf_names[j]);
4562 kfree(orig_data);
4563 return -ENOMEM;
4564 }
4565 } else
4566 old_opts.s_qf_names[i] = NULL;
4567 #endif
4568 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4569 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4570
4571 /*
4572 * Allow the "check" option to be passed as a remount option.
4573 */
4574 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4575 err = -EINVAL;
4576 goto restore_opts;
4577 }
4578
4579 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4580 ext4_abort(sb, "Abort forced by user");
4581
4582 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4583 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4584
4585 es = sbi->s_es;
4586
4587 if (sbi->s_journal) {
4588 ext4_init_journal_params(sb, sbi->s_journal);
4589 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4590 }
4591
4592 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4593 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4594 err = -EROFS;
4595 goto restore_opts;
4596 }
4597
4598 if (*flags & MS_RDONLY) {
4599 err = dquot_suspend(sb, -1);
4600 if (err < 0)
4601 goto restore_opts;
4602
4603 /*
4604 * First of all, the unconditional stuff we have to do
4605 * to disable replay of the journal when we next remount
4606 */
4607 sb->s_flags |= MS_RDONLY;
4608
4609 /*
4610 * OK, test if we are remounting a valid rw partition
4611 * readonly, and if so set the rdonly flag and then
4612 * mark the partition as valid again.
4613 */
4614 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4615 (sbi->s_mount_state & EXT4_VALID_FS))
4616 es->s_state = cpu_to_le16(sbi->s_mount_state);
4617
4618 if (sbi->s_journal)
4619 ext4_mark_recovery_complete(sb, es);
4620 } else {
4621 /* Make sure we can mount this feature set readwrite */
4622 if (!ext4_feature_set_ok(sb, 0)) {
4623 err = -EROFS;
4624 goto restore_opts;
4625 }
4626 /*
4627 * Make sure the group descriptor checksums
4628 * are sane. If they aren't, refuse to remount r/w.
4629 */
4630 for (g = 0; g < sbi->s_groups_count; g++) {
4631 struct ext4_group_desc *gdp =
4632 ext4_get_group_desc(sb, g, NULL);
4633
4634 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4635 ext4_msg(sb, KERN_ERR,
4636 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4637 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4638 le16_to_cpu(gdp->bg_checksum));
4639 err = -EINVAL;
4640 goto restore_opts;
4641 }
4642 }
4643
4644 /*
4645 * If we have an unprocessed orphan list hanging
4646 * around from a previously readonly bdev mount,
4647 * require a full umount/remount for now.
4648 */
4649 if (es->s_last_orphan) {
4650 ext4_msg(sb, KERN_WARNING, "Couldn't "
4651 "remount RDWR because of unprocessed "
4652 "orphan inode list. Please "
4653 "umount/remount instead");
4654 err = -EINVAL;
4655 goto restore_opts;
4656 }
4657
4658 /*
4659 * Mounting a RDONLY partition read-write, so reread
4660 * and store the current valid flag. (It may have
4661 * been changed by e2fsck since we originally mounted
4662 * the partition.)
4663 */
4664 if (sbi->s_journal)
4665 ext4_clear_journal_err(sb, es);
4666 sbi->s_mount_state = le16_to_cpu(es->s_state);
4667 if (!ext4_setup_super(sb, es, 0))
4668 sb->s_flags &= ~MS_RDONLY;
4669 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4670 EXT4_FEATURE_INCOMPAT_MMP))
4671 if (ext4_multi_mount_protect(sb,
4672 le64_to_cpu(es->s_mmp_block))) {
4673 err = -EROFS;
4674 goto restore_opts;
4675 }
4676 enable_quota = 1;
4677 }
4678 }
4679
4680 /*
4681 * Reinitialize lazy itable initialization thread based on
4682 * current settings
4683 */
4684 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4685 ext4_unregister_li_request(sb);
4686 else {
4687 ext4_group_t first_not_zeroed;
4688 first_not_zeroed = ext4_has_uninit_itable(sb);
4689 ext4_register_li_request(sb, first_not_zeroed);
4690 }
4691
4692 ext4_setup_system_zone(sb);
4693 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4694 ext4_commit_super(sb, 1);
4695
4696 #ifdef CONFIG_QUOTA
4697 /* Release old quota file names */
4698 for (i = 0; i < MAXQUOTAS; i++)
4699 kfree(old_opts.s_qf_names[i]);
4700 if (enable_quota) {
4701 if (sb_any_quota_suspended(sb))
4702 dquot_resume(sb, -1);
4703 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4704 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4705 err = ext4_enable_quotas(sb);
4706 if (err)
4707 goto restore_opts;
4708 }
4709 }
4710 #endif
4711
4712 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4713 kfree(orig_data);
4714 return 0;
4715
4716 restore_opts:
4717 sb->s_flags = old_sb_flags;
4718 sbi->s_mount_opt = old_opts.s_mount_opt;
4719 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4720 sbi->s_resuid = old_opts.s_resuid;
4721 sbi->s_resgid = old_opts.s_resgid;
4722 sbi->s_commit_interval = old_opts.s_commit_interval;
4723 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4724 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4725 #ifdef CONFIG_QUOTA
4726 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4727 for (i = 0; i < MAXQUOTAS; i++) {
4728 kfree(sbi->s_qf_names[i]);
4729 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4730 }
4731 #endif
4732 kfree(orig_data);
4733 return err;
4734 }
4735
4736 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4737 {
4738 struct super_block *sb = dentry->d_sb;
4739 struct ext4_sb_info *sbi = EXT4_SB(sb);
4740 struct ext4_super_block *es = sbi->s_es;
4741 ext4_fsblk_t overhead = 0;
4742 u64 fsid;
4743 s64 bfree;
4744
4745 if (!test_opt(sb, MINIX_DF))
4746 overhead = sbi->s_overhead;
4747
4748 buf->f_type = EXT4_SUPER_MAGIC;
4749 buf->f_bsize = sb->s_blocksize;
4750 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4751 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4752 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4753 /* prevent underflow in case that few free space is available */
4754 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4755 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4756 if (buf->f_bfree < ext4_r_blocks_count(es))
4757 buf->f_bavail = 0;
4758 buf->f_files = le32_to_cpu(es->s_inodes_count);
4759 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4760 buf->f_namelen = EXT4_NAME_LEN;
4761 fsid = le64_to_cpup((void *)es->s_uuid) ^
4762 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4763 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4764 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4765
4766 return 0;
4767 }
4768
4769 /* Helper function for writing quotas on sync - we need to start transaction
4770 * before quota file is locked for write. Otherwise the are possible deadlocks:
4771 * Process 1 Process 2
4772 * ext4_create() quota_sync()
4773 * jbd2_journal_start() write_dquot()
4774 * dquot_initialize() down(dqio_mutex)
4775 * down(dqio_mutex) jbd2_journal_start()
4776 *
4777 */
4778
4779 #ifdef CONFIG_QUOTA
4780
4781 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4782 {
4783 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4784 }
4785
4786 static int ext4_write_dquot(struct dquot *dquot)
4787 {
4788 int ret, err;
4789 handle_t *handle;
4790 struct inode *inode;
4791
4792 inode = dquot_to_inode(dquot);
4793 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4794 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4795 if (IS_ERR(handle))
4796 return PTR_ERR(handle);
4797 ret = dquot_commit(dquot);
4798 err = ext4_journal_stop(handle);
4799 if (!ret)
4800 ret = err;
4801 return ret;
4802 }
4803
4804 static int ext4_acquire_dquot(struct dquot *dquot)
4805 {
4806 int ret, err;
4807 handle_t *handle;
4808
4809 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4810 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4811 if (IS_ERR(handle))
4812 return PTR_ERR(handle);
4813 ret = dquot_acquire(dquot);
4814 err = ext4_journal_stop(handle);
4815 if (!ret)
4816 ret = err;
4817 return ret;
4818 }
4819
4820 static int ext4_release_dquot(struct dquot *dquot)
4821 {
4822 int ret, err;
4823 handle_t *handle;
4824
4825 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4826 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4827 if (IS_ERR(handle)) {
4828 /* Release dquot anyway to avoid endless cycle in dqput() */
4829 dquot_release(dquot);
4830 return PTR_ERR(handle);
4831 }
4832 ret = dquot_release(dquot);
4833 err = ext4_journal_stop(handle);
4834 if (!ret)
4835 ret = err;
4836 return ret;
4837 }
4838
4839 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4840 {
4841 struct super_block *sb = dquot->dq_sb;
4842 struct ext4_sb_info *sbi = EXT4_SB(sb);
4843
4844 /* Are we journaling quotas? */
4845 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
4846 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4847 dquot_mark_dquot_dirty(dquot);
4848 return ext4_write_dquot(dquot);
4849 } else {
4850 return dquot_mark_dquot_dirty(dquot);
4851 }
4852 }
4853
4854 static int ext4_write_info(struct super_block *sb, int type)
4855 {
4856 int ret, err;
4857 handle_t *handle;
4858
4859 /* Data block + inode block */
4860 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
4861 if (IS_ERR(handle))
4862 return PTR_ERR(handle);
4863 ret = dquot_commit_info(sb, type);
4864 err = ext4_journal_stop(handle);
4865 if (!ret)
4866 ret = err;
4867 return ret;
4868 }
4869
4870 /*
4871 * Turn on quotas during mount time - we need to find
4872 * the quota file and such...
4873 */
4874 static int ext4_quota_on_mount(struct super_block *sb, int type)
4875 {
4876 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4877 EXT4_SB(sb)->s_jquota_fmt, type);
4878 }
4879
4880 /*
4881 * Standard function to be called on quota_on
4882 */
4883 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4884 struct path *path)
4885 {
4886 int err;
4887
4888 if (!test_opt(sb, QUOTA))
4889 return -EINVAL;
4890
4891 /* Quotafile not on the same filesystem? */
4892 if (path->dentry->d_sb != sb)
4893 return -EXDEV;
4894 /* Journaling quota? */
4895 if (EXT4_SB(sb)->s_qf_names[type]) {
4896 /* Quotafile not in fs root? */
4897 if (path->dentry->d_parent != sb->s_root)
4898 ext4_msg(sb, KERN_WARNING,
4899 "Quota file not on filesystem root. "
4900 "Journaled quota will not work");
4901 }
4902
4903 /*
4904 * When we journal data on quota file, we have to flush journal to see
4905 * all updates to the file when we bypass pagecache...
4906 */
4907 if (EXT4_SB(sb)->s_journal &&
4908 ext4_should_journal_data(path->dentry->d_inode)) {
4909 /*
4910 * We don't need to lock updates but journal_flush() could
4911 * otherwise be livelocked...
4912 */
4913 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4914 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4915 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4916 if (err)
4917 return err;
4918 }
4919
4920 return dquot_quota_on(sb, type, format_id, path);
4921 }
4922
4923 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
4924 unsigned int flags)
4925 {
4926 int err;
4927 struct inode *qf_inode;
4928 unsigned long qf_inums[MAXQUOTAS] = {
4929 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4930 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4931 };
4932
4933 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
4934
4935 if (!qf_inums[type])
4936 return -EPERM;
4937
4938 qf_inode = ext4_iget(sb, qf_inums[type]);
4939 if (IS_ERR(qf_inode)) {
4940 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
4941 return PTR_ERR(qf_inode);
4942 }
4943
4944 err = dquot_enable(qf_inode, type, format_id, flags);
4945 iput(qf_inode);
4946
4947 return err;
4948 }
4949
4950 /* Enable usage tracking for all quota types. */
4951 static int ext4_enable_quotas(struct super_block *sb)
4952 {
4953 int type, err = 0;
4954 unsigned long qf_inums[MAXQUOTAS] = {
4955 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4956 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4957 };
4958
4959 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
4960 for (type = 0; type < MAXQUOTAS; type++) {
4961 if (qf_inums[type]) {
4962 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
4963 DQUOT_USAGE_ENABLED);
4964 if (err) {
4965 ext4_warning(sb,
4966 "Failed to enable quota tracking "
4967 "(type=%d, err=%d). Please run "
4968 "e2fsck to fix.", type, err);
4969 return err;
4970 }
4971 }
4972 }
4973 return 0;
4974 }
4975
4976 /*
4977 * quota_on function that is used when QUOTA feature is set.
4978 */
4979 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
4980 int format_id)
4981 {
4982 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
4983 return -EINVAL;
4984
4985 /*
4986 * USAGE was enabled at mount time. Only need to enable LIMITS now.
4987 */
4988 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
4989 }
4990
4991 static int ext4_quota_off(struct super_block *sb, int type)
4992 {
4993 struct inode *inode = sb_dqopt(sb)->files[type];
4994 handle_t *handle;
4995
4996 /* Force all delayed allocation blocks to be allocated.
4997 * Caller already holds s_umount sem */
4998 if (test_opt(sb, DELALLOC))
4999 sync_filesystem(sb);
5000
5001 if (!inode)
5002 goto out;
5003
5004 /* Update modification times of quota files when userspace can
5005 * start looking at them */
5006 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5007 if (IS_ERR(handle))
5008 goto out;
5009 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5010 ext4_mark_inode_dirty(handle, inode);
5011 ext4_journal_stop(handle);
5012
5013 out:
5014 return dquot_quota_off(sb, type);
5015 }
5016
5017 /*
5018 * quota_off function that is used when QUOTA feature is set.
5019 */
5020 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5021 {
5022 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5023 return -EINVAL;
5024
5025 /* Disable only the limits. */
5026 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5027 }
5028
5029 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5030 * acquiring the locks... As quota files are never truncated and quota code
5031 * itself serializes the operations (and no one else should touch the files)
5032 * we don't have to be afraid of races */
5033 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5034 size_t len, loff_t off)
5035 {
5036 struct inode *inode = sb_dqopt(sb)->files[type];
5037 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5038 int err = 0;
5039 int offset = off & (sb->s_blocksize - 1);
5040 int tocopy;
5041 size_t toread;
5042 struct buffer_head *bh;
5043 loff_t i_size = i_size_read(inode);
5044
5045 if (off > i_size)
5046 return 0;
5047 if (off+len > i_size)
5048 len = i_size-off;
5049 toread = len;
5050 while (toread > 0) {
5051 tocopy = sb->s_blocksize - offset < toread ?
5052 sb->s_blocksize - offset : toread;
5053 bh = ext4_bread(NULL, inode, blk, 0, &err);
5054 if (err)
5055 return err;
5056 if (!bh) /* A hole? */
5057 memset(data, 0, tocopy);
5058 else
5059 memcpy(data, bh->b_data+offset, tocopy);
5060 brelse(bh);
5061 offset = 0;
5062 toread -= tocopy;
5063 data += tocopy;
5064 blk++;
5065 }
5066 return len;
5067 }
5068
5069 /* Write to quotafile (we know the transaction is already started and has
5070 * enough credits) */
5071 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5072 const char *data, size_t len, loff_t off)
5073 {
5074 struct inode *inode = sb_dqopt(sb)->files[type];
5075 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5076 int err = 0;
5077 int offset = off & (sb->s_blocksize - 1);
5078 struct buffer_head *bh;
5079 handle_t *handle = journal_current_handle();
5080
5081 if (EXT4_SB(sb)->s_journal && !handle) {
5082 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5083 " cancelled because transaction is not started",
5084 (unsigned long long)off, (unsigned long long)len);
5085 return -EIO;
5086 }
5087 /*
5088 * Since we account only one data block in transaction credits,
5089 * then it is impossible to cross a block boundary.
5090 */
5091 if (sb->s_blocksize - offset < len) {
5092 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5093 " cancelled because not block aligned",
5094 (unsigned long long)off, (unsigned long long)len);
5095 return -EIO;
5096 }
5097
5098 bh = ext4_bread(handle, inode, blk, 1, &err);
5099 if (!bh)
5100 goto out;
5101 err = ext4_journal_get_write_access(handle, bh);
5102 if (err) {
5103 brelse(bh);
5104 goto out;
5105 }
5106 lock_buffer(bh);
5107 memcpy(bh->b_data+offset, data, len);
5108 flush_dcache_page(bh->b_page);
5109 unlock_buffer(bh);
5110 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5111 brelse(bh);
5112 out:
5113 if (err)
5114 return err;
5115 if (inode->i_size < off + len) {
5116 i_size_write(inode, off + len);
5117 EXT4_I(inode)->i_disksize = inode->i_size;
5118 ext4_mark_inode_dirty(handle, inode);
5119 }
5120 return len;
5121 }
5122
5123 #endif
5124
5125 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5126 const char *dev_name, void *data)
5127 {
5128 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5129 }
5130
5131 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5132 static inline void register_as_ext2(void)
5133 {
5134 int err = register_filesystem(&ext2_fs_type);
5135 if (err)
5136 printk(KERN_WARNING
5137 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5138 }
5139
5140 static inline void unregister_as_ext2(void)
5141 {
5142 unregister_filesystem(&ext2_fs_type);
5143 }
5144
5145 static inline int ext2_feature_set_ok(struct super_block *sb)
5146 {
5147 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5148 return 0;
5149 if (sb->s_flags & MS_RDONLY)
5150 return 1;
5151 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5152 return 0;
5153 return 1;
5154 }
5155 MODULE_ALIAS("ext2");
5156 #else
5157 static inline void register_as_ext2(void) { }
5158 static inline void unregister_as_ext2(void) { }
5159 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5160 #endif
5161
5162 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5163 static inline void register_as_ext3(void)
5164 {
5165 int err = register_filesystem(&ext3_fs_type);
5166 if (err)
5167 printk(KERN_WARNING
5168 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5169 }
5170
5171 static inline void unregister_as_ext3(void)
5172 {
5173 unregister_filesystem(&ext3_fs_type);
5174 }
5175
5176 static inline int ext3_feature_set_ok(struct super_block *sb)
5177 {
5178 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5179 return 0;
5180 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5181 return 0;
5182 if (sb->s_flags & MS_RDONLY)
5183 return 1;
5184 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5185 return 0;
5186 return 1;
5187 }
5188 MODULE_ALIAS("ext3");
5189 #else
5190 static inline void register_as_ext3(void) { }
5191 static inline void unregister_as_ext3(void) { }
5192 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5193 #endif
5194
5195 static struct file_system_type ext4_fs_type = {
5196 .owner = THIS_MODULE,
5197 .name = "ext4",
5198 .mount = ext4_mount,
5199 .kill_sb = kill_block_super,
5200 .fs_flags = FS_REQUIRES_DEV,
5201 };
5202
5203 static int __init ext4_init_feat_adverts(void)
5204 {
5205 struct ext4_features *ef;
5206 int ret = -ENOMEM;
5207
5208 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5209 if (!ef)
5210 goto out;
5211
5212 ef->f_kobj.kset = ext4_kset;
5213 init_completion(&ef->f_kobj_unregister);
5214 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5215 "features");
5216 if (ret) {
5217 kfree(ef);
5218 goto out;
5219 }
5220
5221 ext4_feat = ef;
5222 ret = 0;
5223 out:
5224 return ret;
5225 }
5226
5227 static void ext4_exit_feat_adverts(void)
5228 {
5229 kobject_put(&ext4_feat->f_kobj);
5230 wait_for_completion(&ext4_feat->f_kobj_unregister);
5231 kfree(ext4_feat);
5232 }
5233
5234 /* Shared across all ext4 file systems */
5235 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5236 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5237
5238 static int __init ext4_init_fs(void)
5239 {
5240 int i, err;
5241
5242 ext4_li_info = NULL;
5243 mutex_init(&ext4_li_mtx);
5244
5245 /* Build-time check for flags consistency */
5246 ext4_check_flag_values();
5247
5248 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5249 mutex_init(&ext4__aio_mutex[i]);
5250 init_waitqueue_head(&ext4__ioend_wq[i]);
5251 }
5252
5253 err = ext4_init_es();
5254 if (err)
5255 return err;
5256
5257 err = ext4_init_pageio();
5258 if (err)
5259 goto out7;
5260
5261 err = ext4_init_system_zone();
5262 if (err)
5263 goto out6;
5264 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5265 if (!ext4_kset) {
5266 err = -ENOMEM;
5267 goto out5;
5268 }
5269 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5270
5271 err = ext4_init_feat_adverts();
5272 if (err)
5273 goto out4;
5274
5275 err = ext4_init_mballoc();
5276 if (err)
5277 goto out3;
5278
5279 err = ext4_init_xattr();
5280 if (err)
5281 goto out2;
5282 err = init_inodecache();
5283 if (err)
5284 goto out1;
5285 register_as_ext3();
5286 register_as_ext2();
5287 err = register_filesystem(&ext4_fs_type);
5288 if (err)
5289 goto out;
5290
5291 return 0;
5292 out:
5293 unregister_as_ext2();
5294 unregister_as_ext3();
5295 destroy_inodecache();
5296 out1:
5297 ext4_exit_xattr();
5298 out2:
5299 ext4_exit_mballoc();
5300 out3:
5301 ext4_exit_feat_adverts();
5302 out4:
5303 if (ext4_proc_root)
5304 remove_proc_entry("fs/ext4", NULL);
5305 kset_unregister(ext4_kset);
5306 out5:
5307 ext4_exit_system_zone();
5308 out6:
5309 ext4_exit_pageio();
5310 out7:
5311 ext4_exit_es();
5312
5313 return err;
5314 }
5315
5316 static void __exit ext4_exit_fs(void)
5317 {
5318 ext4_destroy_lazyinit_thread();
5319 unregister_as_ext2();
5320 unregister_as_ext3();
5321 unregister_filesystem(&ext4_fs_type);
5322 destroy_inodecache();
5323 ext4_exit_xattr();
5324 ext4_exit_mballoc();
5325 ext4_exit_feat_adverts();
5326 remove_proc_entry("fs/ext4", NULL);
5327 kset_unregister(ext4_kset);
5328 ext4_exit_system_zone();
5329 ext4_exit_pageio();
5330 }
5331
5332 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5333 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5334 MODULE_LICENSE("GPL");
5335 module_init(ext4_init_fs)
5336 module_exit(ext4_exit_fs)