]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/checkpoint.c
f2fs: use f2fs_io_info to clean up messy parameters during IO path
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *ino_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29 * We guarantee no failure on the returned page.
30 */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33 struct address_space *mapping = META_MAPPING(sbi);
34 struct page *page = NULL;
35 repeat:
36 page = grab_cache_page(mapping, index);
37 if (!page) {
38 cond_resched();
39 goto repeat;
40 }
41 f2fs_wait_on_page_writeback(page, META);
42 SetPageUptodate(page);
43 return page;
44 }
45
46 /*
47 * We guarantee no failure on the returned page.
48 */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51 struct address_space *mapping = META_MAPPING(sbi);
52 struct page *page;
53 struct f2fs_io_info fio = {
54 .type = META,
55 .rw = READ_SYNC | REQ_META | REQ_PRIO,
56 .blk_addr = index,
57 };
58 repeat:
59 page = grab_cache_page(mapping, index);
60 if (!page) {
61 cond_resched();
62 goto repeat;
63 }
64 if (PageUptodate(page))
65 goto out;
66
67 if (f2fs_submit_page_bio(sbi, page, &fio))
68 goto repeat;
69
70 lock_page(page);
71 if (unlikely(page->mapping != mapping)) {
72 f2fs_put_page(page, 1);
73 goto repeat;
74 }
75 out:
76 return page;
77 }
78
79 static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi,
80 block_t blkaddr, int type)
81 {
82 switch (type) {
83 case META_NAT:
84 break;
85 case META_SIT:
86 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
87 return false;
88 break;
89 case META_SSA:
90 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
91 blkaddr < SM_I(sbi)->ssa_blkaddr))
92 return false;
93 break;
94 case META_CP:
95 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
96 blkaddr < __start_cp_addr(sbi)))
97 return false;
98 break;
99 case META_POR:
100 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
101 blkaddr < MAIN_BLKADDR(sbi)))
102 return false;
103 break;
104 default:
105 BUG();
106 }
107
108 return true;
109 }
110
111 /*
112 * Readahead CP/NAT/SIT/SSA pages
113 */
114 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
115 {
116 block_t prev_blk_addr = 0;
117 struct page *page;
118 block_t blkno = start;
119 struct f2fs_io_info fio = {
120 .type = META,
121 .rw = READ_SYNC | REQ_META | REQ_PRIO
122 };
123
124 for (; nrpages-- > 0; blkno++) {
125
126 if (!is_valid_blkaddr(sbi, blkno, type))
127 goto out;
128
129 switch (type) {
130 case META_NAT:
131 if (unlikely(blkno >=
132 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
133 blkno = 0;
134 /* get nat block addr */
135 fio.blk_addr = current_nat_addr(sbi,
136 blkno * NAT_ENTRY_PER_BLOCK);
137 break;
138 case META_SIT:
139 /* get sit block addr */
140 fio.blk_addr = current_sit_addr(sbi,
141 blkno * SIT_ENTRY_PER_BLOCK);
142 if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
143 goto out;
144 prev_blk_addr = fio.blk_addr;
145 break;
146 case META_SSA:
147 case META_CP:
148 case META_POR:
149 fio.blk_addr = blkno;
150 break;
151 default:
152 BUG();
153 }
154
155 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
156 if (!page)
157 continue;
158 if (PageUptodate(page)) {
159 f2fs_put_page(page, 1);
160 continue;
161 }
162
163 f2fs_submit_page_mbio(sbi, page, &fio);
164 f2fs_put_page(page, 0);
165 }
166 out:
167 f2fs_submit_merged_bio(sbi, META, READ);
168 return blkno - start;
169 }
170
171 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
172 {
173 struct page *page;
174 bool readahead = false;
175
176 page = find_get_page(META_MAPPING(sbi), index);
177 if (!page || (page && !PageUptodate(page)))
178 readahead = true;
179 f2fs_put_page(page, 0);
180
181 if (readahead)
182 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
183 }
184
185 static int f2fs_write_meta_page(struct page *page,
186 struct writeback_control *wbc)
187 {
188 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
189
190 trace_f2fs_writepage(page, META);
191
192 if (unlikely(sbi->por_doing))
193 goto redirty_out;
194 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
195 goto redirty_out;
196 if (unlikely(f2fs_cp_error(sbi)))
197 goto redirty_out;
198
199 f2fs_wait_on_page_writeback(page, META);
200 write_meta_page(sbi, page);
201 dec_page_count(sbi, F2FS_DIRTY_META);
202 unlock_page(page);
203
204 if (wbc->for_reclaim)
205 f2fs_submit_merged_bio(sbi, META, WRITE);
206 return 0;
207
208 redirty_out:
209 redirty_page_for_writepage(wbc, page);
210 return AOP_WRITEPAGE_ACTIVATE;
211 }
212
213 static int f2fs_write_meta_pages(struct address_space *mapping,
214 struct writeback_control *wbc)
215 {
216 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
217 long diff, written;
218
219 trace_f2fs_writepages(mapping->host, wbc, META);
220
221 /* collect a number of dirty meta pages and write together */
222 if (wbc->for_kupdate ||
223 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
224 goto skip_write;
225
226 /* if mounting is failed, skip writing node pages */
227 mutex_lock(&sbi->cp_mutex);
228 diff = nr_pages_to_write(sbi, META, wbc);
229 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
230 mutex_unlock(&sbi->cp_mutex);
231 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
232 return 0;
233
234 skip_write:
235 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
236 return 0;
237 }
238
239 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
240 long nr_to_write)
241 {
242 struct address_space *mapping = META_MAPPING(sbi);
243 pgoff_t index = 0, end = LONG_MAX;
244 struct pagevec pvec;
245 long nwritten = 0;
246 struct writeback_control wbc = {
247 .for_reclaim = 0,
248 };
249
250 pagevec_init(&pvec, 0);
251
252 while (index <= end) {
253 int i, nr_pages;
254 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
255 PAGECACHE_TAG_DIRTY,
256 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
257 if (unlikely(nr_pages == 0))
258 break;
259
260 for (i = 0; i < nr_pages; i++) {
261 struct page *page = pvec.pages[i];
262
263 lock_page(page);
264
265 if (unlikely(page->mapping != mapping)) {
266 continue_unlock:
267 unlock_page(page);
268 continue;
269 }
270 if (!PageDirty(page)) {
271 /* someone wrote it for us */
272 goto continue_unlock;
273 }
274
275 if (!clear_page_dirty_for_io(page))
276 goto continue_unlock;
277
278 if (f2fs_write_meta_page(page, &wbc)) {
279 unlock_page(page);
280 break;
281 }
282 nwritten++;
283 if (unlikely(nwritten >= nr_to_write))
284 break;
285 }
286 pagevec_release(&pvec);
287 cond_resched();
288 }
289
290 if (nwritten)
291 f2fs_submit_merged_bio(sbi, type, WRITE);
292
293 return nwritten;
294 }
295
296 static int f2fs_set_meta_page_dirty(struct page *page)
297 {
298 trace_f2fs_set_page_dirty(page, META);
299
300 SetPageUptodate(page);
301 if (!PageDirty(page)) {
302 __set_page_dirty_nobuffers(page);
303 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
304 return 1;
305 }
306 return 0;
307 }
308
309 const struct address_space_operations f2fs_meta_aops = {
310 .writepage = f2fs_write_meta_page,
311 .writepages = f2fs_write_meta_pages,
312 .set_page_dirty = f2fs_set_meta_page_dirty,
313 };
314
315 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
316 {
317 struct inode_management *im = &sbi->im[type];
318 struct ino_entry *e;
319 retry:
320 if (radix_tree_preload(GFP_NOFS)) {
321 cond_resched();
322 goto retry;
323 }
324
325 spin_lock(&im->ino_lock);
326
327 e = radix_tree_lookup(&im->ino_root, ino);
328 if (!e) {
329 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
330 if (!e) {
331 spin_unlock(&im->ino_lock);
332 radix_tree_preload_end();
333 goto retry;
334 }
335 if (radix_tree_insert(&im->ino_root, ino, e)) {
336 spin_unlock(&im->ino_lock);
337 kmem_cache_free(ino_entry_slab, e);
338 radix_tree_preload_end();
339 goto retry;
340 }
341 memset(e, 0, sizeof(struct ino_entry));
342 e->ino = ino;
343
344 list_add_tail(&e->list, &im->ino_list);
345 if (type != ORPHAN_INO)
346 im->ino_num++;
347 }
348 spin_unlock(&im->ino_lock);
349 radix_tree_preload_end();
350 }
351
352 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
353 {
354 struct inode_management *im = &sbi->im[type];
355 struct ino_entry *e;
356
357 spin_lock(&im->ino_lock);
358 e = radix_tree_lookup(&im->ino_root, ino);
359 if (e) {
360 list_del(&e->list);
361 radix_tree_delete(&im->ino_root, ino);
362 im->ino_num--;
363 spin_unlock(&im->ino_lock);
364 kmem_cache_free(ino_entry_slab, e);
365 return;
366 }
367 spin_unlock(&im->ino_lock);
368 }
369
370 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
371 {
372 /* add new dirty ino entry into list */
373 __add_ino_entry(sbi, ino, type);
374 }
375
376 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
377 {
378 /* remove dirty ino entry from list */
379 __remove_ino_entry(sbi, ino, type);
380 }
381
382 /* mode should be APPEND_INO or UPDATE_INO */
383 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
384 {
385 struct inode_management *im = &sbi->im[mode];
386 struct ino_entry *e;
387
388 spin_lock(&im->ino_lock);
389 e = radix_tree_lookup(&im->ino_root, ino);
390 spin_unlock(&im->ino_lock);
391 return e ? true : false;
392 }
393
394 void release_dirty_inode(struct f2fs_sb_info *sbi)
395 {
396 struct ino_entry *e, *tmp;
397 int i;
398
399 for (i = APPEND_INO; i <= UPDATE_INO; i++) {
400 struct inode_management *im = &sbi->im[i];
401
402 spin_lock(&im->ino_lock);
403 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
404 list_del(&e->list);
405 radix_tree_delete(&im->ino_root, e->ino);
406 kmem_cache_free(ino_entry_slab, e);
407 im->ino_num--;
408 }
409 spin_unlock(&im->ino_lock);
410 }
411 }
412
413 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
414 {
415 struct inode_management *im = &sbi->im[ORPHAN_INO];
416 int err = 0;
417
418 spin_lock(&im->ino_lock);
419 if (unlikely(im->ino_num >= sbi->max_orphans))
420 err = -ENOSPC;
421 else
422 im->ino_num++;
423 spin_unlock(&im->ino_lock);
424
425 return err;
426 }
427
428 void release_orphan_inode(struct f2fs_sb_info *sbi)
429 {
430 struct inode_management *im = &sbi->im[ORPHAN_INO];
431
432 spin_lock(&im->ino_lock);
433 f2fs_bug_on(sbi, im->ino_num == 0);
434 im->ino_num--;
435 spin_unlock(&im->ino_lock);
436 }
437
438 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
439 {
440 /* add new orphan ino entry into list */
441 __add_ino_entry(sbi, ino, ORPHAN_INO);
442 }
443
444 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
445 {
446 /* remove orphan entry from orphan list */
447 __remove_ino_entry(sbi, ino, ORPHAN_INO);
448 }
449
450 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
451 {
452 struct inode *inode = f2fs_iget(sbi->sb, ino);
453 f2fs_bug_on(sbi, IS_ERR(inode));
454 clear_nlink(inode);
455
456 /* truncate all the data during iput */
457 iput(inode);
458 }
459
460 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
461 {
462 block_t start_blk, orphan_blkaddr, i, j;
463
464 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
465 return;
466
467 sbi->por_doing = true;
468
469 start_blk = __start_cp_addr(sbi) + 1 +
470 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
471 orphan_blkaddr = __start_sum_addr(sbi) - 1;
472
473 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
474
475 for (i = 0; i < orphan_blkaddr; i++) {
476 struct page *page = get_meta_page(sbi, start_blk + i);
477 struct f2fs_orphan_block *orphan_blk;
478
479 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
480 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
481 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
482 recover_orphan_inode(sbi, ino);
483 }
484 f2fs_put_page(page, 1);
485 }
486 /* clear Orphan Flag */
487 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
488 sbi->por_doing = false;
489 return;
490 }
491
492 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
493 {
494 struct list_head *head;
495 struct f2fs_orphan_block *orphan_blk = NULL;
496 unsigned int nentries = 0;
497 unsigned short index;
498 unsigned short orphan_blocks;
499 struct page *page = NULL;
500 struct ino_entry *orphan = NULL;
501 struct inode_management *im = &sbi->im[ORPHAN_INO];
502
503 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
504
505 for (index = 0; index < orphan_blocks; index++)
506 grab_meta_page(sbi, start_blk + index);
507
508 index = 1;
509 spin_lock(&im->ino_lock);
510 head = &im->ino_list;
511
512 /* loop for each orphan inode entry and write them in Jornal block */
513 list_for_each_entry(orphan, head, list) {
514 if (!page) {
515 page = find_get_page(META_MAPPING(sbi), start_blk++);
516 f2fs_bug_on(sbi, !page);
517 orphan_blk =
518 (struct f2fs_orphan_block *)page_address(page);
519 memset(orphan_blk, 0, sizeof(*orphan_blk));
520 f2fs_put_page(page, 0);
521 }
522
523 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
524
525 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
526 /*
527 * an orphan block is full of 1020 entries,
528 * then we need to flush current orphan blocks
529 * and bring another one in memory
530 */
531 orphan_blk->blk_addr = cpu_to_le16(index);
532 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
533 orphan_blk->entry_count = cpu_to_le32(nentries);
534 set_page_dirty(page);
535 f2fs_put_page(page, 1);
536 index++;
537 nentries = 0;
538 page = NULL;
539 }
540 }
541
542 if (page) {
543 orphan_blk->blk_addr = cpu_to_le16(index);
544 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
545 orphan_blk->entry_count = cpu_to_le32(nentries);
546 set_page_dirty(page);
547 f2fs_put_page(page, 1);
548 }
549
550 spin_unlock(&im->ino_lock);
551 }
552
553 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
554 block_t cp_addr, unsigned long long *version)
555 {
556 struct page *cp_page_1, *cp_page_2 = NULL;
557 unsigned long blk_size = sbi->blocksize;
558 struct f2fs_checkpoint *cp_block;
559 unsigned long long cur_version = 0, pre_version = 0;
560 size_t crc_offset;
561 __u32 crc = 0;
562
563 /* Read the 1st cp block in this CP pack */
564 cp_page_1 = get_meta_page(sbi, cp_addr);
565
566 /* get the version number */
567 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
568 crc_offset = le32_to_cpu(cp_block->checksum_offset);
569 if (crc_offset >= blk_size)
570 goto invalid_cp1;
571
572 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
573 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
574 goto invalid_cp1;
575
576 pre_version = cur_cp_version(cp_block);
577
578 /* Read the 2nd cp block in this CP pack */
579 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
580 cp_page_2 = get_meta_page(sbi, cp_addr);
581
582 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
583 crc_offset = le32_to_cpu(cp_block->checksum_offset);
584 if (crc_offset >= blk_size)
585 goto invalid_cp2;
586
587 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
588 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
589 goto invalid_cp2;
590
591 cur_version = cur_cp_version(cp_block);
592
593 if (cur_version == pre_version) {
594 *version = cur_version;
595 f2fs_put_page(cp_page_2, 1);
596 return cp_page_1;
597 }
598 invalid_cp2:
599 f2fs_put_page(cp_page_2, 1);
600 invalid_cp1:
601 f2fs_put_page(cp_page_1, 1);
602 return NULL;
603 }
604
605 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
606 {
607 struct f2fs_checkpoint *cp_block;
608 struct f2fs_super_block *fsb = sbi->raw_super;
609 struct page *cp1, *cp2, *cur_page;
610 unsigned long blk_size = sbi->blocksize;
611 unsigned long long cp1_version = 0, cp2_version = 0;
612 unsigned long long cp_start_blk_no;
613 unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
614 block_t cp_blk_no;
615 int i;
616
617 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
618 if (!sbi->ckpt)
619 return -ENOMEM;
620 /*
621 * Finding out valid cp block involves read both
622 * sets( cp pack1 and cp pack 2)
623 */
624 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
625 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
626
627 /* The second checkpoint pack should start at the next segment */
628 cp_start_blk_no += ((unsigned long long)1) <<
629 le32_to_cpu(fsb->log_blocks_per_seg);
630 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
631
632 if (cp1 && cp2) {
633 if (ver_after(cp2_version, cp1_version))
634 cur_page = cp2;
635 else
636 cur_page = cp1;
637 } else if (cp1) {
638 cur_page = cp1;
639 } else if (cp2) {
640 cur_page = cp2;
641 } else {
642 goto fail_no_cp;
643 }
644
645 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
646 memcpy(sbi->ckpt, cp_block, blk_size);
647
648 if (cp_blks <= 1)
649 goto done;
650
651 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
652 if (cur_page == cp2)
653 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
654
655 for (i = 1; i < cp_blks; i++) {
656 void *sit_bitmap_ptr;
657 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
658
659 cur_page = get_meta_page(sbi, cp_blk_no + i);
660 sit_bitmap_ptr = page_address(cur_page);
661 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
662 f2fs_put_page(cur_page, 1);
663 }
664 done:
665 f2fs_put_page(cp1, 1);
666 f2fs_put_page(cp2, 1);
667 return 0;
668
669 fail_no_cp:
670 kfree(sbi->ckpt);
671 return -EINVAL;
672 }
673
674 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
675 {
676 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
677
678 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
679 return -EEXIST;
680
681 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
682 F2FS_I(inode)->dirty_dir = new;
683 list_add_tail(&new->list, &sbi->dir_inode_list);
684 stat_inc_dirty_dir(sbi);
685 return 0;
686 }
687
688 void update_dirty_page(struct inode *inode, struct page *page)
689 {
690 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
691 struct dir_inode_entry *new;
692 int ret = 0;
693
694 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
695 return;
696
697 if (!S_ISDIR(inode->i_mode)) {
698 inode_inc_dirty_pages(inode);
699 goto out;
700 }
701
702 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
703 new->inode = inode;
704 INIT_LIST_HEAD(&new->list);
705
706 spin_lock(&sbi->dir_inode_lock);
707 ret = __add_dirty_inode(inode, new);
708 inode_inc_dirty_pages(inode);
709 spin_unlock(&sbi->dir_inode_lock);
710
711 if (ret)
712 kmem_cache_free(inode_entry_slab, new);
713 out:
714 SetPagePrivate(page);
715 }
716
717 void add_dirty_dir_inode(struct inode *inode)
718 {
719 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
720 struct dir_inode_entry *new =
721 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
722 int ret = 0;
723
724 new->inode = inode;
725 INIT_LIST_HEAD(&new->list);
726
727 spin_lock(&sbi->dir_inode_lock);
728 ret = __add_dirty_inode(inode, new);
729 spin_unlock(&sbi->dir_inode_lock);
730
731 if (ret)
732 kmem_cache_free(inode_entry_slab, new);
733 }
734
735 void remove_dirty_dir_inode(struct inode *inode)
736 {
737 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
738 struct dir_inode_entry *entry;
739
740 if (!S_ISDIR(inode->i_mode))
741 return;
742
743 spin_lock(&sbi->dir_inode_lock);
744 if (get_dirty_pages(inode) ||
745 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
746 spin_unlock(&sbi->dir_inode_lock);
747 return;
748 }
749
750 entry = F2FS_I(inode)->dirty_dir;
751 list_del(&entry->list);
752 F2FS_I(inode)->dirty_dir = NULL;
753 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
754 stat_dec_dirty_dir(sbi);
755 spin_unlock(&sbi->dir_inode_lock);
756 kmem_cache_free(inode_entry_slab, entry);
757
758 /* Only from the recovery routine */
759 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
760 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
761 iput(inode);
762 }
763 }
764
765 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
766 {
767 struct list_head *head;
768 struct dir_inode_entry *entry;
769 struct inode *inode;
770 retry:
771 if (unlikely(f2fs_cp_error(sbi)))
772 return;
773
774 spin_lock(&sbi->dir_inode_lock);
775
776 head = &sbi->dir_inode_list;
777 if (list_empty(head)) {
778 spin_unlock(&sbi->dir_inode_lock);
779 return;
780 }
781 entry = list_entry(head->next, struct dir_inode_entry, list);
782 inode = igrab(entry->inode);
783 spin_unlock(&sbi->dir_inode_lock);
784 if (inode) {
785 filemap_fdatawrite(inode->i_mapping);
786 iput(inode);
787 } else {
788 /*
789 * We should submit bio, since it exists several
790 * wribacking dentry pages in the freeing inode.
791 */
792 f2fs_submit_merged_bio(sbi, DATA, WRITE);
793 }
794 goto retry;
795 }
796
797 /*
798 * Freeze all the FS-operations for checkpoint.
799 */
800 static int block_operations(struct f2fs_sb_info *sbi)
801 {
802 struct writeback_control wbc = {
803 .sync_mode = WB_SYNC_ALL,
804 .nr_to_write = LONG_MAX,
805 .for_reclaim = 0,
806 };
807 struct blk_plug plug;
808 int err = 0;
809
810 blk_start_plug(&plug);
811
812 retry_flush_dents:
813 f2fs_lock_all(sbi);
814 /* write all the dirty dentry pages */
815 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
816 f2fs_unlock_all(sbi);
817 sync_dirty_dir_inodes(sbi);
818 if (unlikely(f2fs_cp_error(sbi))) {
819 err = -EIO;
820 goto out;
821 }
822 goto retry_flush_dents;
823 }
824
825 /*
826 * POR: we should ensure that there are no dirty node pages
827 * until finishing nat/sit flush.
828 */
829 retry_flush_nodes:
830 down_write(&sbi->node_write);
831
832 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
833 up_write(&sbi->node_write);
834 sync_node_pages(sbi, 0, &wbc);
835 if (unlikely(f2fs_cp_error(sbi))) {
836 f2fs_unlock_all(sbi);
837 err = -EIO;
838 goto out;
839 }
840 goto retry_flush_nodes;
841 }
842 out:
843 blk_finish_plug(&plug);
844 return err;
845 }
846
847 static void unblock_operations(struct f2fs_sb_info *sbi)
848 {
849 up_write(&sbi->node_write);
850 f2fs_unlock_all(sbi);
851 }
852
853 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
854 {
855 DEFINE_WAIT(wait);
856
857 for (;;) {
858 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
859
860 if (!get_pages(sbi, F2FS_WRITEBACK))
861 break;
862
863 io_schedule();
864 }
865 finish_wait(&sbi->cp_wait, &wait);
866 }
867
868 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
869 {
870 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
871 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
872 struct f2fs_nm_info *nm_i = NM_I(sbi);
873 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
874 nid_t last_nid = nm_i->next_scan_nid;
875 block_t start_blk;
876 struct page *cp_page;
877 unsigned int data_sum_blocks, orphan_blocks;
878 __u32 crc32 = 0;
879 void *kaddr;
880 int i;
881 int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
882
883 /*
884 * This avoids to conduct wrong roll-forward operations and uses
885 * metapages, so should be called prior to sync_meta_pages below.
886 */
887 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
888
889 /* Flush all the NAT/SIT pages */
890 while (get_pages(sbi, F2FS_DIRTY_META)) {
891 sync_meta_pages(sbi, META, LONG_MAX);
892 if (unlikely(f2fs_cp_error(sbi)))
893 return;
894 }
895
896 next_free_nid(sbi, &last_nid);
897
898 /*
899 * modify checkpoint
900 * version number is already updated
901 */
902 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
903 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
904 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
905 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
906 ckpt->cur_node_segno[i] =
907 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
908 ckpt->cur_node_blkoff[i] =
909 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
910 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
911 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
912 }
913 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
914 ckpt->cur_data_segno[i] =
915 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
916 ckpt->cur_data_blkoff[i] =
917 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
918 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
919 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
920 }
921
922 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
923 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
924 ckpt->next_free_nid = cpu_to_le32(last_nid);
925
926 /* 2 cp + n data seg summary + orphan inode blocks */
927 data_sum_blocks = npages_for_summary_flush(sbi, false);
928 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
929 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
930 else
931 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
932
933 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
934 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
935 orphan_blocks);
936
937 if (cpc->reason == CP_UMOUNT) {
938 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
939 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
940 cp_payload_blks + data_sum_blocks +
941 orphan_blocks + NR_CURSEG_NODE_TYPE);
942 } else {
943 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
944 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
945 cp_payload_blks + data_sum_blocks +
946 orphan_blocks);
947 }
948
949 if (orphan_num)
950 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
951 else
952 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
953
954 if (sbi->need_fsck)
955 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
956
957 /* update SIT/NAT bitmap */
958 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
959 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
960
961 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
962 *((__le32 *)((unsigned char *)ckpt +
963 le32_to_cpu(ckpt->checksum_offset)))
964 = cpu_to_le32(crc32);
965
966 start_blk = __start_cp_addr(sbi);
967
968 /* write out checkpoint buffer at block 0 */
969 cp_page = grab_meta_page(sbi, start_blk++);
970 kaddr = page_address(cp_page);
971 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
972 set_page_dirty(cp_page);
973 f2fs_put_page(cp_page, 1);
974
975 for (i = 1; i < 1 + cp_payload_blks; i++) {
976 cp_page = grab_meta_page(sbi, start_blk++);
977 kaddr = page_address(cp_page);
978 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
979 (1 << sbi->log_blocksize));
980 set_page_dirty(cp_page);
981 f2fs_put_page(cp_page, 1);
982 }
983
984 if (orphan_num) {
985 write_orphan_inodes(sbi, start_blk);
986 start_blk += orphan_blocks;
987 }
988
989 write_data_summaries(sbi, start_blk);
990 start_blk += data_sum_blocks;
991 if (cpc->reason == CP_UMOUNT) {
992 write_node_summaries(sbi, start_blk);
993 start_blk += NR_CURSEG_NODE_TYPE;
994 }
995
996 /* writeout checkpoint block */
997 cp_page = grab_meta_page(sbi, start_blk);
998 kaddr = page_address(cp_page);
999 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
1000 set_page_dirty(cp_page);
1001 f2fs_put_page(cp_page, 1);
1002
1003 /* wait for previous submitted node/meta pages writeback */
1004 wait_on_all_pages_writeback(sbi);
1005
1006 if (unlikely(f2fs_cp_error(sbi)))
1007 return;
1008
1009 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1010 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1011
1012 /* update user_block_counts */
1013 sbi->last_valid_block_count = sbi->total_valid_block_count;
1014 sbi->alloc_valid_block_count = 0;
1015
1016 /* Here, we only have one bio having CP pack */
1017 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1018
1019 /* wait for previous submitted meta pages writeback */
1020 wait_on_all_pages_writeback(sbi);
1021
1022 release_dirty_inode(sbi);
1023
1024 if (unlikely(f2fs_cp_error(sbi)))
1025 return;
1026
1027 clear_prefree_segments(sbi);
1028 F2FS_RESET_SB_DIRT(sbi);
1029 }
1030
1031 /*
1032 * We guarantee that this checkpoint procedure will not fail.
1033 */
1034 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1035 {
1036 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1037 unsigned long long ckpt_ver;
1038
1039 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1040
1041 mutex_lock(&sbi->cp_mutex);
1042
1043 if (!sbi->s_dirty && cpc->reason != CP_DISCARD)
1044 goto out;
1045 if (unlikely(f2fs_cp_error(sbi)))
1046 goto out;
1047 if (block_operations(sbi))
1048 goto out;
1049
1050 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1051
1052 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1053 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1054 f2fs_submit_merged_bio(sbi, META, WRITE);
1055
1056 /*
1057 * update checkpoint pack index
1058 * Increase the version number so that
1059 * SIT entries and seg summaries are written at correct place
1060 */
1061 ckpt_ver = cur_cp_version(ckpt);
1062 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1063
1064 /* write cached NAT/SIT entries to NAT/SIT area */
1065 flush_nat_entries(sbi);
1066 flush_sit_entries(sbi, cpc);
1067
1068 /* unlock all the fs_lock[] in do_checkpoint() */
1069 do_checkpoint(sbi, cpc);
1070
1071 unblock_operations(sbi);
1072 stat_inc_cp_count(sbi->stat_info);
1073 out:
1074 mutex_unlock(&sbi->cp_mutex);
1075 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1076 }
1077
1078 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1079 {
1080 int i;
1081
1082 for (i = 0; i < MAX_INO_ENTRY; i++) {
1083 struct inode_management *im = &sbi->im[i];
1084
1085 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1086 spin_lock_init(&im->ino_lock);
1087 INIT_LIST_HEAD(&im->ino_list);
1088 im->ino_num = 0;
1089 }
1090
1091 /*
1092 * considering 512 blocks in a segment 8 blocks are needed for cp
1093 * and log segment summaries. Remaining blocks are used to keep
1094 * orphan entries with the limitation one reserved segment
1095 * for cp pack we can have max 1020*504 orphan entries
1096 */
1097 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1098 NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
1099 }
1100
1101 int __init create_checkpoint_caches(void)
1102 {
1103 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1104 sizeof(struct ino_entry));
1105 if (!ino_entry_slab)
1106 return -ENOMEM;
1107 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
1108 sizeof(struct dir_inode_entry));
1109 if (!inode_entry_slab) {
1110 kmem_cache_destroy(ino_entry_slab);
1111 return -ENOMEM;
1112 }
1113 return 0;
1114 }
1115
1116 void destroy_checkpoint_caches(void)
1117 {
1118 kmem_cache_destroy(ino_entry_slab);
1119 kmem_cache_destroy(inode_entry_slab);
1120 }