1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
22 #include <trace/events/f2fs.h>
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
26 static struct kmem_cache
*ino_entry_slab
;
27 struct kmem_cache
*f2fs_inode_entry_slab
;
29 void f2fs_stop_checkpoint(struct f2fs_sb_info
*sbi
, bool end_io
)
31 f2fs_build_fault_attr(sbi
, 0, 0);
32 set_ckpt_flags(sbi
, CP_ERROR_FLAG
);
34 f2fs_flush_merged_writes(sbi
);
38 * We guarantee no failure on the returned page.
40 struct page
*f2fs_grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
42 struct address_space
*mapping
= META_MAPPING(sbi
);
45 page
= f2fs_grab_cache_page(mapping
, index
, false);
50 f2fs_wait_on_page_writeback(page
, META
, true, true);
51 if (!PageUptodate(page
))
52 SetPageUptodate(page
);
56 static struct page
*__get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
,
59 struct address_space
*mapping
= META_MAPPING(sbi
);
61 struct f2fs_io_info fio
= {
65 .op_flags
= REQ_META
| REQ_PRIO
,
68 .encrypted_page
= NULL
,
73 if (unlikely(!is_meta
))
74 fio
.op_flags
&= ~REQ_META
;
76 page
= f2fs_grab_cache_page(mapping
, index
, false);
81 if (PageUptodate(page
))
86 err
= f2fs_submit_page_bio(&fio
);
88 f2fs_put_page(page
, 1);
92 f2fs_update_iostat(sbi
, FS_META_READ_IO
, F2FS_BLKSIZE
);
95 if (unlikely(page
->mapping
!= mapping
)) {
96 f2fs_put_page(page
, 1);
100 if (unlikely(!PageUptodate(page
))) {
101 f2fs_put_page(page
, 1);
102 return ERR_PTR(-EIO
);
108 struct page
*f2fs_get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
110 return __get_meta_page(sbi
, index
, true);
113 struct page
*f2fs_get_meta_page_retry(struct f2fs_sb_info
*sbi
, pgoff_t index
)
119 page
= __get_meta_page(sbi
, index
, true);
121 if (PTR_ERR(page
) == -EIO
&&
122 ++count
<= DEFAULT_RETRY_IO_COUNT
)
124 f2fs_stop_checkpoint(sbi
, false);
130 struct page
*f2fs_get_tmp_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
132 return __get_meta_page(sbi
, index
, false);
135 static bool __is_bitmap_valid(struct f2fs_sb_info
*sbi
, block_t blkaddr
,
138 struct seg_entry
*se
;
139 unsigned int segno
, offset
;
142 if (type
!= DATA_GENERIC_ENHANCE
&& type
!= DATA_GENERIC_ENHANCE_READ
)
145 segno
= GET_SEGNO(sbi
, blkaddr
);
146 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
147 se
= get_seg_entry(sbi
, segno
);
149 exist
= f2fs_test_bit(offset
, se
->cur_valid_map
);
150 if (!exist
&& type
== DATA_GENERIC_ENHANCE
) {
151 f2fs_err(sbi
, "Inconsistent error blkaddr:%u, sit bitmap:%d",
153 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
159 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info
*sbi
,
160 block_t blkaddr
, int type
)
166 if (unlikely(blkaddr
>= SIT_BLK_CNT(sbi
)))
170 if (unlikely(blkaddr
>= MAIN_BLKADDR(sbi
) ||
171 blkaddr
< SM_I(sbi
)->ssa_blkaddr
))
175 if (unlikely(blkaddr
>= SIT_I(sbi
)->sit_base_addr
||
176 blkaddr
< __start_cp_addr(sbi
)))
180 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
181 blkaddr
< MAIN_BLKADDR(sbi
)))
185 case DATA_GENERIC_ENHANCE
:
186 case DATA_GENERIC_ENHANCE_READ
:
187 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
188 blkaddr
< MAIN_BLKADDR(sbi
))) {
189 f2fs_warn(sbi
, "access invalid blkaddr:%u",
191 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
195 return __is_bitmap_valid(sbi
, blkaddr
, type
);
199 if (unlikely(blkaddr
< SEG0_BLKADDR(sbi
) ||
200 blkaddr
>= MAIN_BLKADDR(sbi
)))
211 * Readahead CP/NAT/SIT/SSA/POR pages
213 int f2fs_ra_meta_pages(struct f2fs_sb_info
*sbi
, block_t start
, int nrpages
,
217 block_t blkno
= start
;
218 struct f2fs_io_info fio
= {
222 .op_flags
= sync
? (REQ_META
| REQ_PRIO
) : REQ_RAHEAD
,
223 .encrypted_page
= NULL
,
225 .is_por
= (type
== META_POR
),
227 struct blk_plug plug
;
230 if (unlikely(type
== META_POR
))
231 fio
.op_flags
&= ~REQ_META
;
233 blk_start_plug(&plug
);
234 for (; nrpages
-- > 0; blkno
++) {
236 if (!f2fs_is_valid_blkaddr(sbi
, blkno
, type
))
241 if (unlikely(blkno
>=
242 NAT_BLOCK_OFFSET(NM_I(sbi
)->max_nid
)))
244 /* get nat block addr */
245 fio
.new_blkaddr
= current_nat_addr(sbi
,
246 blkno
* NAT_ENTRY_PER_BLOCK
);
249 if (unlikely(blkno
>= TOTAL_SEGS(sbi
)))
251 /* get sit block addr */
252 fio
.new_blkaddr
= current_sit_addr(sbi
,
253 blkno
* SIT_ENTRY_PER_BLOCK
);
258 fio
.new_blkaddr
= blkno
;
264 page
= f2fs_grab_cache_page(META_MAPPING(sbi
),
265 fio
.new_blkaddr
, false);
268 if (PageUptodate(page
)) {
269 f2fs_put_page(page
, 1);
274 err
= f2fs_submit_page_bio(&fio
);
275 f2fs_put_page(page
, err
? 1 : 0);
278 f2fs_update_iostat(sbi
, FS_META_READ_IO
, F2FS_BLKSIZE
);
281 blk_finish_plug(&plug
);
282 return blkno
- start
;
285 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info
*sbi
, pgoff_t index
)
288 bool readahead
= false;
290 page
= find_get_page(META_MAPPING(sbi
), index
);
291 if (!page
|| !PageUptodate(page
))
293 f2fs_put_page(page
, 0);
296 f2fs_ra_meta_pages(sbi
, index
, BIO_MAX_VECS
, META_POR
, true);
299 static int __f2fs_write_meta_page(struct page
*page
,
300 struct writeback_control
*wbc
,
301 enum iostat_type io_type
)
303 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
305 trace_f2fs_writepage(page
, META
);
307 if (unlikely(f2fs_cp_error(sbi
)))
309 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
311 if (wbc
->for_reclaim
&& page
->index
< GET_SUM_BLOCK(sbi
, 0))
314 f2fs_do_write_meta_page(sbi
, page
, io_type
);
315 dec_page_count(sbi
, F2FS_DIRTY_META
);
317 if (wbc
->for_reclaim
)
318 f2fs_submit_merged_write_cond(sbi
, NULL
, page
, 0, META
);
322 if (unlikely(f2fs_cp_error(sbi
)))
323 f2fs_submit_merged_write(sbi
, META
);
328 redirty_page_for_writepage(wbc
, page
);
329 return AOP_WRITEPAGE_ACTIVATE
;
332 static int f2fs_write_meta_page(struct page
*page
,
333 struct writeback_control
*wbc
)
335 return __f2fs_write_meta_page(page
, wbc
, FS_META_IO
);
338 static int f2fs_write_meta_pages(struct address_space
*mapping
,
339 struct writeback_control
*wbc
)
341 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
344 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
347 /* collect a number of dirty meta pages and write together */
348 if (wbc
->sync_mode
!= WB_SYNC_ALL
&&
349 get_pages(sbi
, F2FS_DIRTY_META
) <
350 nr_pages_to_skip(sbi
, META
))
353 /* if locked failed, cp will flush dirty pages instead */
354 if (!down_write_trylock(&sbi
->cp_global_sem
))
357 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
358 diff
= nr_pages_to_write(sbi
, META
, wbc
);
359 written
= f2fs_sync_meta_pages(sbi
, META
, wbc
->nr_to_write
, FS_META_IO
);
360 up_write(&sbi
->cp_global_sem
);
361 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- written
- diff
);
365 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_META
);
366 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
370 long f2fs_sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
371 long nr_to_write
, enum iostat_type io_type
)
373 struct address_space
*mapping
= META_MAPPING(sbi
);
374 pgoff_t index
= 0, prev
= ULONG_MAX
;
378 struct writeback_control wbc
= {
381 struct blk_plug plug
;
385 blk_start_plug(&plug
);
387 while ((nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
388 PAGECACHE_TAG_DIRTY
))) {
391 for (i
= 0; i
< nr_pages
; i
++) {
392 struct page
*page
= pvec
.pages
[i
];
394 if (prev
== ULONG_MAX
)
395 prev
= page
->index
- 1;
396 if (nr_to_write
!= LONG_MAX
&& page
->index
!= prev
+ 1) {
397 pagevec_release(&pvec
);
403 if (unlikely(page
->mapping
!= mapping
)) {
408 if (!PageDirty(page
)) {
409 /* someone wrote it for us */
410 goto continue_unlock
;
413 f2fs_wait_on_page_writeback(page
, META
, true, true);
415 if (!clear_page_dirty_for_io(page
))
416 goto continue_unlock
;
418 if (__f2fs_write_meta_page(page
, &wbc
, io_type
)) {
424 if (unlikely(nwritten
>= nr_to_write
))
427 pagevec_release(&pvec
);
432 f2fs_submit_merged_write(sbi
, type
);
434 blk_finish_plug(&plug
);
439 static int f2fs_set_meta_page_dirty(struct page
*page
)
441 trace_f2fs_set_page_dirty(page
, META
);
443 if (!PageUptodate(page
))
444 SetPageUptodate(page
);
445 if (!PageDirty(page
)) {
446 __set_page_dirty_nobuffers(page
);
447 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_META
);
448 set_page_private_reference(page
);
454 const struct address_space_operations f2fs_meta_aops
= {
455 .writepage
= f2fs_write_meta_page
,
456 .writepages
= f2fs_write_meta_pages
,
457 .set_page_dirty
= f2fs_set_meta_page_dirty
,
458 .invalidatepage
= f2fs_invalidate_page
,
459 .releasepage
= f2fs_release_page
,
460 #ifdef CONFIG_MIGRATION
461 .migratepage
= f2fs_migrate_page
,
465 static void __add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
,
466 unsigned int devidx
, int type
)
468 struct inode_management
*im
= &sbi
->im
[type
];
469 struct ino_entry
*e
= NULL
, *new = NULL
;
471 if (type
== FLUSH_INO
) {
473 e
= radix_tree_lookup(&im
->ino_root
, ino
);
479 new = f2fs_kmem_cache_alloc(ino_entry_slab
,
480 GFP_NOFS
, true, NULL
);
482 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
484 spin_lock(&im
->ino_lock
);
485 e
= radix_tree_lookup(&im
->ino_root
, ino
);
488 spin_unlock(&im
->ino_lock
);
492 if (unlikely(radix_tree_insert(&im
->ino_root
, ino
, e
)))
495 memset(e
, 0, sizeof(struct ino_entry
));
498 list_add_tail(&e
->list
, &im
->ino_list
);
499 if (type
!= ORPHAN_INO
)
503 if (type
== FLUSH_INO
)
504 f2fs_set_bit(devidx
, (char *)&e
->dirty_device
);
506 spin_unlock(&im
->ino_lock
);
507 radix_tree_preload_end();
510 kmem_cache_free(ino_entry_slab
, new);
513 static void __remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
515 struct inode_management
*im
= &sbi
->im
[type
];
518 spin_lock(&im
->ino_lock
);
519 e
= radix_tree_lookup(&im
->ino_root
, ino
);
522 radix_tree_delete(&im
->ino_root
, ino
);
524 spin_unlock(&im
->ino_lock
);
525 kmem_cache_free(ino_entry_slab
, e
);
528 spin_unlock(&im
->ino_lock
);
531 void f2fs_add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
533 /* add new dirty ino entry into list */
534 __add_ino_entry(sbi
, ino
, 0, type
);
537 void f2fs_remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
539 /* remove dirty ino entry from list */
540 __remove_ino_entry(sbi
, ino
, type
);
543 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
544 bool f2fs_exist_written_data(struct f2fs_sb_info
*sbi
, nid_t ino
, int mode
)
546 struct inode_management
*im
= &sbi
->im
[mode
];
549 spin_lock(&im
->ino_lock
);
550 e
= radix_tree_lookup(&im
->ino_root
, ino
);
551 spin_unlock(&im
->ino_lock
);
552 return e
? true : false;
555 void f2fs_release_ino_entry(struct f2fs_sb_info
*sbi
, bool all
)
557 struct ino_entry
*e
, *tmp
;
560 for (i
= all
? ORPHAN_INO
: APPEND_INO
; i
< MAX_INO_ENTRY
; i
++) {
561 struct inode_management
*im
= &sbi
->im
[i
];
563 spin_lock(&im
->ino_lock
);
564 list_for_each_entry_safe(e
, tmp
, &im
->ino_list
, list
) {
566 radix_tree_delete(&im
->ino_root
, e
->ino
);
567 kmem_cache_free(ino_entry_slab
, e
);
570 spin_unlock(&im
->ino_lock
);
574 void f2fs_set_dirty_device(struct f2fs_sb_info
*sbi
, nid_t ino
,
575 unsigned int devidx
, int type
)
577 __add_ino_entry(sbi
, ino
, devidx
, type
);
580 bool f2fs_is_dirty_device(struct f2fs_sb_info
*sbi
, nid_t ino
,
581 unsigned int devidx
, int type
)
583 struct inode_management
*im
= &sbi
->im
[type
];
585 bool is_dirty
= false;
587 spin_lock(&im
->ino_lock
);
588 e
= radix_tree_lookup(&im
->ino_root
, ino
);
589 if (e
&& f2fs_test_bit(devidx
, (char *)&e
->dirty_device
))
591 spin_unlock(&im
->ino_lock
);
595 int f2fs_acquire_orphan_inode(struct f2fs_sb_info
*sbi
)
597 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
600 spin_lock(&im
->ino_lock
);
602 if (time_to_inject(sbi
, FAULT_ORPHAN
)) {
603 spin_unlock(&im
->ino_lock
);
604 f2fs_show_injection_info(sbi
, FAULT_ORPHAN
);
608 if (unlikely(im
->ino_num
>= sbi
->max_orphans
))
612 spin_unlock(&im
->ino_lock
);
617 void f2fs_release_orphan_inode(struct f2fs_sb_info
*sbi
)
619 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
621 spin_lock(&im
->ino_lock
);
622 f2fs_bug_on(sbi
, im
->ino_num
== 0);
624 spin_unlock(&im
->ino_lock
);
627 void f2fs_add_orphan_inode(struct inode
*inode
)
629 /* add new orphan ino entry into list */
630 __add_ino_entry(F2FS_I_SB(inode
), inode
->i_ino
, 0, ORPHAN_INO
);
631 f2fs_update_inode_page(inode
);
634 void f2fs_remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
636 /* remove orphan entry from orphan list */
637 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
640 static int recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
646 inode
= f2fs_iget_retry(sbi
->sb
, ino
);
649 * there should be a bug that we can't find the entry
652 f2fs_bug_on(sbi
, PTR_ERR(inode
) == -ENOENT
);
653 return PTR_ERR(inode
);
656 err
= dquot_initialize(inode
);
664 /* truncate all the data during iput */
667 err
= f2fs_get_node_info(sbi
, ino
, &ni
);
671 /* ENOMEM was fully retried in f2fs_evict_inode. */
672 if (ni
.blk_addr
!= NULL_ADDR
) {
679 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
680 f2fs_warn(sbi
, "%s: orphan failed (ino=%x), run fsck to fix.",
685 int f2fs_recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
687 block_t start_blk
, orphan_blocks
, i
, j
;
688 unsigned int s_flags
= sbi
->sb
->s_flags
;
694 if (!is_set_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
))
697 if (bdev_read_only(sbi
->sb
->s_bdev
)) {
698 f2fs_info(sbi
, "write access unavailable, skipping orphan cleanup");
702 if (s_flags
& SB_RDONLY
) {
703 f2fs_info(sbi
, "orphan cleanup on readonly fs");
704 sbi
->sb
->s_flags
&= ~SB_RDONLY
;
708 /* Needed for iput() to work correctly and not trash data */
709 sbi
->sb
->s_flags
|= SB_ACTIVE
;
712 * Turn on quotas which were not enabled for read-only mounts if
713 * filesystem has quota feature, so that they are updated correctly.
715 quota_enabled
= f2fs_enable_quota_files(sbi
, s_flags
& SB_RDONLY
);
718 start_blk
= __start_cp_addr(sbi
) + 1 + __cp_payload(sbi
);
719 orphan_blocks
= __start_sum_addr(sbi
) - 1 - __cp_payload(sbi
);
721 f2fs_ra_meta_pages(sbi
, start_blk
, orphan_blocks
, META_CP
, true);
723 for (i
= 0; i
< orphan_blocks
; i
++) {
725 struct f2fs_orphan_block
*orphan_blk
;
727 page
= f2fs_get_meta_page(sbi
, start_blk
+ i
);
733 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
734 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
735 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
737 err
= recover_orphan_inode(sbi
, ino
);
739 f2fs_put_page(page
, 1);
743 f2fs_put_page(page
, 1);
745 /* clear Orphan Flag */
746 clear_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
);
748 set_sbi_flag(sbi
, SBI_IS_RECOVERED
);
751 /* Turn quotas off */
753 f2fs_quota_off_umount(sbi
->sb
);
755 sbi
->sb
->s_flags
= s_flags
; /* Restore SB_RDONLY status */
760 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
762 struct list_head
*head
;
763 struct f2fs_orphan_block
*orphan_blk
= NULL
;
764 unsigned int nentries
= 0;
765 unsigned short index
= 1;
766 unsigned short orphan_blocks
;
767 struct page
*page
= NULL
;
768 struct ino_entry
*orphan
= NULL
;
769 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
771 orphan_blocks
= GET_ORPHAN_BLOCKS(im
->ino_num
);
774 * we don't need to do spin_lock(&im->ino_lock) here, since all the
775 * orphan inode operations are covered under f2fs_lock_op().
776 * And, spin_lock should be avoided due to page operations below.
778 head
= &im
->ino_list
;
780 /* loop for each orphan inode entry and write them in Jornal block */
781 list_for_each_entry(orphan
, head
, list
) {
783 page
= f2fs_grab_meta_page(sbi
, start_blk
++);
785 (struct f2fs_orphan_block
*)page_address(page
);
786 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
789 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
791 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
793 * an orphan block is full of 1020 entries,
794 * then we need to flush current orphan blocks
795 * and bring another one in memory
797 orphan_blk
->blk_addr
= cpu_to_le16(index
);
798 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
799 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
800 set_page_dirty(page
);
801 f2fs_put_page(page
, 1);
809 orphan_blk
->blk_addr
= cpu_to_le16(index
);
810 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
811 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
812 set_page_dirty(page
);
813 f2fs_put_page(page
, 1);
817 static __u32
f2fs_checkpoint_chksum(struct f2fs_sb_info
*sbi
,
818 struct f2fs_checkpoint
*ckpt
)
820 unsigned int chksum_ofs
= le32_to_cpu(ckpt
->checksum_offset
);
823 chksum
= f2fs_crc32(sbi
, ckpt
, chksum_ofs
);
824 if (chksum_ofs
< CP_CHKSUM_OFFSET
) {
825 chksum_ofs
+= sizeof(chksum
);
826 chksum
= f2fs_chksum(sbi
, chksum
, (__u8
*)ckpt
+ chksum_ofs
,
827 F2FS_BLKSIZE
- chksum_ofs
);
832 static int get_checkpoint_version(struct f2fs_sb_info
*sbi
, block_t cp_addr
,
833 struct f2fs_checkpoint
**cp_block
, struct page
**cp_page
,
834 unsigned long long *version
)
836 size_t crc_offset
= 0;
839 *cp_page
= f2fs_get_meta_page(sbi
, cp_addr
);
840 if (IS_ERR(*cp_page
))
841 return PTR_ERR(*cp_page
);
843 *cp_block
= (struct f2fs_checkpoint
*)page_address(*cp_page
);
845 crc_offset
= le32_to_cpu((*cp_block
)->checksum_offset
);
846 if (crc_offset
< CP_MIN_CHKSUM_OFFSET
||
847 crc_offset
> CP_CHKSUM_OFFSET
) {
848 f2fs_put_page(*cp_page
, 1);
849 f2fs_warn(sbi
, "invalid crc_offset: %zu", crc_offset
);
853 crc
= f2fs_checkpoint_chksum(sbi
, *cp_block
);
854 if (crc
!= cur_cp_crc(*cp_block
)) {
855 f2fs_put_page(*cp_page
, 1);
856 f2fs_warn(sbi
, "invalid crc value");
860 *version
= cur_cp_version(*cp_block
);
864 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
865 block_t cp_addr
, unsigned long long *version
)
867 struct page
*cp_page_1
= NULL
, *cp_page_2
= NULL
;
868 struct f2fs_checkpoint
*cp_block
= NULL
;
869 unsigned long long cur_version
= 0, pre_version
= 0;
870 unsigned int cp_blocks
;
873 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
874 &cp_page_1
, version
);
878 cp_blocks
= le32_to_cpu(cp_block
->cp_pack_total_block_count
);
880 if (cp_blocks
> sbi
->blocks_per_seg
|| cp_blocks
<= F2FS_CP_PACKS
) {
881 f2fs_warn(sbi
, "invalid cp_pack_total_block_count:%u",
882 le32_to_cpu(cp_block
->cp_pack_total_block_count
));
885 pre_version
= *version
;
887 cp_addr
+= cp_blocks
- 1;
888 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
889 &cp_page_2
, version
);
892 cur_version
= *version
;
894 if (cur_version
== pre_version
) {
895 *version
= cur_version
;
896 f2fs_put_page(cp_page_2
, 1);
899 f2fs_put_page(cp_page_2
, 1);
901 f2fs_put_page(cp_page_1
, 1);
905 int f2fs_get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
907 struct f2fs_checkpoint
*cp_block
;
908 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
909 struct page
*cp1
, *cp2
, *cur_page
;
910 unsigned long blk_size
= sbi
->blocksize
;
911 unsigned long long cp1_version
= 0, cp2_version
= 0;
912 unsigned long long cp_start_blk_no
;
913 unsigned int cp_blks
= 1 + __cp_payload(sbi
);
918 sbi
->ckpt
= f2fs_kvzalloc(sbi
, array_size(blk_size
, cp_blks
),
923 * Finding out valid cp block involves read both
924 * sets( cp pack 1 and cp pack 2)
926 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
927 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
929 /* The second checkpoint pack should start at the next segment */
930 cp_start_blk_no
+= ((unsigned long long)1) <<
931 le32_to_cpu(fsb
->log_blocks_per_seg
);
932 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
935 if (ver_after(cp2_version
, cp1_version
))
948 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
949 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
952 sbi
->cur_cp_pack
= 1;
954 sbi
->cur_cp_pack
= 2;
956 /* Sanity checking of checkpoint */
957 if (f2fs_sanity_check_ckpt(sbi
)) {
959 goto free_fail_no_cp
;
965 cp_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
967 cp_blk_no
+= 1 << le32_to_cpu(fsb
->log_blocks_per_seg
);
969 for (i
= 1; i
< cp_blks
; i
++) {
970 void *sit_bitmap_ptr
;
971 unsigned char *ckpt
= (unsigned char *)sbi
->ckpt
;
973 cur_page
= f2fs_get_meta_page(sbi
, cp_blk_no
+ i
);
974 if (IS_ERR(cur_page
)) {
975 err
= PTR_ERR(cur_page
);
976 goto free_fail_no_cp
;
978 sit_bitmap_ptr
= page_address(cur_page
);
979 memcpy(ckpt
+ i
* blk_size
, sit_bitmap_ptr
, blk_size
);
980 f2fs_put_page(cur_page
, 1);
983 f2fs_put_page(cp1
, 1);
984 f2fs_put_page(cp2
, 1);
988 f2fs_put_page(cp1
, 1);
989 f2fs_put_page(cp2
, 1);
995 static void __add_dirty_inode(struct inode
*inode
, enum inode_type type
)
997 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
998 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
1000 if (is_inode_flag_set(inode
, flag
))
1003 set_inode_flag(inode
, flag
);
1004 if (!f2fs_is_volatile_file(inode
))
1005 list_add_tail(&F2FS_I(inode
)->dirty_list
,
1006 &sbi
->inode_list
[type
]);
1007 stat_inc_dirty_inode(sbi
, type
);
1010 static void __remove_dirty_inode(struct inode
*inode
, enum inode_type type
)
1012 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
1014 if (get_dirty_pages(inode
) || !is_inode_flag_set(inode
, flag
))
1017 list_del_init(&F2FS_I(inode
)->dirty_list
);
1018 clear_inode_flag(inode
, flag
);
1019 stat_dec_dirty_inode(F2FS_I_SB(inode
), type
);
1022 void f2fs_update_dirty_page(struct inode
*inode
, struct page
*page
)
1024 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1025 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
1027 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
1028 !S_ISLNK(inode
->i_mode
))
1031 spin_lock(&sbi
->inode_lock
[type
]);
1032 if (type
!= FILE_INODE
|| test_opt(sbi
, DATA_FLUSH
))
1033 __add_dirty_inode(inode
, type
);
1034 inode_inc_dirty_pages(inode
);
1035 spin_unlock(&sbi
->inode_lock
[type
]);
1037 set_page_private_reference(page
);
1040 void f2fs_remove_dirty_inode(struct inode
*inode
)
1042 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1043 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
1045 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
1046 !S_ISLNK(inode
->i_mode
))
1049 if (type
== FILE_INODE
&& !test_opt(sbi
, DATA_FLUSH
))
1052 spin_lock(&sbi
->inode_lock
[type
]);
1053 __remove_dirty_inode(inode
, type
);
1054 spin_unlock(&sbi
->inode_lock
[type
]);
1057 int f2fs_sync_dirty_inodes(struct f2fs_sb_info
*sbi
, enum inode_type type
)
1059 struct list_head
*head
;
1060 struct inode
*inode
;
1061 struct f2fs_inode_info
*fi
;
1062 bool is_dir
= (type
== DIR_INODE
);
1063 unsigned long ino
= 0;
1065 trace_f2fs_sync_dirty_inodes_enter(sbi
->sb
, is_dir
,
1066 get_pages(sbi
, is_dir
?
1067 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
1069 if (unlikely(f2fs_cp_error(sbi
))) {
1070 trace_f2fs_sync_dirty_inodes_exit(sbi
->sb
, is_dir
,
1071 get_pages(sbi
, is_dir
?
1072 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
1076 spin_lock(&sbi
->inode_lock
[type
]);
1078 head
= &sbi
->inode_list
[type
];
1079 if (list_empty(head
)) {
1080 spin_unlock(&sbi
->inode_lock
[type
]);
1081 trace_f2fs_sync_dirty_inodes_exit(sbi
->sb
, is_dir
,
1082 get_pages(sbi
, is_dir
?
1083 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
1086 fi
= list_first_entry(head
, struct f2fs_inode_info
, dirty_list
);
1087 inode
= igrab(&fi
->vfs_inode
);
1088 spin_unlock(&sbi
->inode_lock
[type
]);
1090 unsigned long cur_ino
= inode
->i_ino
;
1092 F2FS_I(inode
)->cp_task
= current
;
1094 filemap_fdatawrite(inode
->i_mapping
);
1096 F2FS_I(inode
)->cp_task
= NULL
;
1099 /* We need to give cpu to another writers. */
1106 * We should submit bio, since it exists several
1107 * wribacking dentry pages in the freeing inode.
1109 f2fs_submit_merged_write(sbi
, DATA
);
1115 int f2fs_sync_inode_meta(struct f2fs_sb_info
*sbi
)
1117 struct list_head
*head
= &sbi
->inode_list
[DIRTY_META
];
1118 struct inode
*inode
;
1119 struct f2fs_inode_info
*fi
;
1120 s64 total
= get_pages(sbi
, F2FS_DIRTY_IMETA
);
1123 if (unlikely(f2fs_cp_error(sbi
)))
1126 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
1127 if (list_empty(head
)) {
1128 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
1131 fi
= list_first_entry(head
, struct f2fs_inode_info
,
1133 inode
= igrab(&fi
->vfs_inode
);
1134 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
1136 sync_inode_metadata(inode
, 0);
1138 /* it's on eviction */
1139 if (is_inode_flag_set(inode
, FI_DIRTY_INODE
))
1140 f2fs_update_inode_page(inode
);
1147 static void __prepare_cp_block(struct f2fs_sb_info
*sbi
)
1149 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1150 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1151 nid_t last_nid
= nm_i
->next_scan_nid
;
1153 next_free_nid(sbi
, &last_nid
);
1154 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
1155 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
1156 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
1157 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
1160 static bool __need_flush_quota(struct f2fs_sb_info
*sbi
)
1164 if (!is_journalled_quota(sbi
))
1167 if (!down_write_trylock(&sbi
->quota_sem
))
1169 if (is_sbi_flag_set(sbi
, SBI_QUOTA_SKIP_FLUSH
)) {
1171 } else if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_REPAIR
)) {
1173 } else if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_FLUSH
)) {
1174 clear_sbi_flag(sbi
, SBI_QUOTA_NEED_FLUSH
);
1176 } else if (get_pages(sbi
, F2FS_DIRTY_QDATA
)) {
1179 up_write(&sbi
->quota_sem
);
1184 * Freeze all the FS-operations for checkpoint.
1186 static int block_operations(struct f2fs_sb_info
*sbi
)
1188 struct writeback_control wbc
= {
1189 .sync_mode
= WB_SYNC_ALL
,
1190 .nr_to_write
= LONG_MAX
,
1193 int err
= 0, cnt
= 0;
1196 * Let's flush inline_data in dirty node pages.
1198 f2fs_flush_inline_data(sbi
);
1202 if (__need_flush_quota(sbi
)) {
1205 if (++cnt
> DEFAULT_RETRY_QUOTA_FLUSH_COUNT
) {
1206 set_sbi_flag(sbi
, SBI_QUOTA_SKIP_FLUSH
);
1207 set_sbi_flag(sbi
, SBI_QUOTA_NEED_FLUSH
);
1208 goto retry_flush_dents
;
1210 f2fs_unlock_all(sbi
);
1212 /* only failed during mount/umount/freeze/quotactl */
1213 locked
= down_read_trylock(&sbi
->sb
->s_umount
);
1214 f2fs_quota_sync(sbi
->sb
, -1);
1216 up_read(&sbi
->sb
->s_umount
);
1218 goto retry_flush_quotas
;
1222 /* write all the dirty dentry pages */
1223 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
1224 f2fs_unlock_all(sbi
);
1225 err
= f2fs_sync_dirty_inodes(sbi
, DIR_INODE
);
1229 goto retry_flush_quotas
;
1233 * POR: we should ensure that there are no dirty node pages
1234 * until finishing nat/sit flush. inode->i_blocks can be updated.
1236 down_write(&sbi
->node_change
);
1238 if (get_pages(sbi
, F2FS_DIRTY_IMETA
)) {
1239 up_write(&sbi
->node_change
);
1240 f2fs_unlock_all(sbi
);
1241 err
= f2fs_sync_inode_meta(sbi
);
1245 goto retry_flush_quotas
;
1249 down_write(&sbi
->node_write
);
1251 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
1252 up_write(&sbi
->node_write
);
1253 atomic_inc(&sbi
->wb_sync_req
[NODE
]);
1254 err
= f2fs_sync_node_pages(sbi
, &wbc
, false, FS_CP_NODE_IO
);
1255 atomic_dec(&sbi
->wb_sync_req
[NODE
]);
1257 up_write(&sbi
->node_change
);
1258 f2fs_unlock_all(sbi
);
1262 goto retry_flush_nodes
;
1266 * sbi->node_change is used only for AIO write_begin path which produces
1267 * dirty node blocks and some checkpoint values by block allocation.
1269 __prepare_cp_block(sbi
);
1270 up_write(&sbi
->node_change
);
1274 static void unblock_operations(struct f2fs_sb_info
*sbi
)
1276 up_write(&sbi
->node_write
);
1277 f2fs_unlock_all(sbi
);
1280 void f2fs_wait_on_all_pages(struct f2fs_sb_info
*sbi
, int type
)
1285 if (!get_pages(sbi
, type
))
1288 if (unlikely(f2fs_cp_error(sbi
)))
1291 if (type
== F2FS_DIRTY_META
)
1292 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
,
1294 else if (type
== F2FS_WB_CP_DATA
)
1295 f2fs_submit_merged_write(sbi
, DATA
);
1297 prepare_to_wait(&sbi
->cp_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
1298 io_schedule_timeout(DEFAULT_IO_TIMEOUT
);
1300 finish_wait(&sbi
->cp_wait
, &wait
);
1303 static void update_ckpt_flags(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1305 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
;
1306 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1307 unsigned long flags
;
1309 if (cpc
->reason
& CP_UMOUNT
) {
1310 if (le32_to_cpu(ckpt
->cp_pack_total_block_count
) +
1311 NM_I(sbi
)->nat_bits_blocks
> sbi
->blocks_per_seg
) {
1312 clear_ckpt_flags(sbi
, CP_NAT_BITS_FLAG
);
1313 f2fs_notice(sbi
, "Disable nat_bits due to no space");
1314 } else if (!is_set_ckpt_flags(sbi
, CP_NAT_BITS_FLAG
) &&
1315 f2fs_nat_bitmap_enabled(sbi
)) {
1316 f2fs_enable_nat_bits(sbi
);
1317 set_ckpt_flags(sbi
, CP_NAT_BITS_FLAG
);
1318 f2fs_notice(sbi
, "Rebuild and enable nat_bits");
1322 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1324 if (cpc
->reason
& CP_TRIMMED
)
1325 __set_ckpt_flags(ckpt
, CP_TRIMMED_FLAG
);
1327 __clear_ckpt_flags(ckpt
, CP_TRIMMED_FLAG
);
1329 if (cpc
->reason
& CP_UMOUNT
)
1330 __set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1332 __clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1334 if (cpc
->reason
& CP_FASTBOOT
)
1335 __set_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1337 __clear_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1340 __set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1342 __clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1344 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
1345 __set_ckpt_flags(ckpt
, CP_FSCK_FLAG
);
1347 if (is_sbi_flag_set(sbi
, SBI_IS_RESIZEFS
))
1348 __set_ckpt_flags(ckpt
, CP_RESIZEFS_FLAG
);
1350 __clear_ckpt_flags(ckpt
, CP_RESIZEFS_FLAG
);
1352 if (is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))
1353 __set_ckpt_flags(ckpt
, CP_DISABLED_FLAG
);
1355 __clear_ckpt_flags(ckpt
, CP_DISABLED_FLAG
);
1357 if (is_sbi_flag_set(sbi
, SBI_CP_DISABLED_QUICK
))
1358 __set_ckpt_flags(ckpt
, CP_DISABLED_QUICK_FLAG
);
1360 __clear_ckpt_flags(ckpt
, CP_DISABLED_QUICK_FLAG
);
1362 if (is_sbi_flag_set(sbi
, SBI_QUOTA_SKIP_FLUSH
))
1363 __set_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1365 __clear_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1367 if (is_sbi_flag_set(sbi
, SBI_QUOTA_NEED_REPAIR
))
1368 __set_ckpt_flags(ckpt
, CP_QUOTA_NEED_FSCK_FLAG
);
1370 /* set this flag to activate crc|cp_ver for recovery */
1371 __set_ckpt_flags(ckpt
, CP_CRC_RECOVERY_FLAG
);
1372 __clear_ckpt_flags(ckpt
, CP_NOCRC_RECOVERY_FLAG
);
1374 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1377 static void commit_checkpoint(struct f2fs_sb_info
*sbi
,
1378 void *src
, block_t blk_addr
)
1380 struct writeback_control wbc
= {
1385 * pagevec_lookup_tag and lock_page again will take
1386 * some extra time. Therefore, f2fs_update_meta_pages and
1387 * f2fs_sync_meta_pages are combined in this function.
1389 struct page
*page
= f2fs_grab_meta_page(sbi
, blk_addr
);
1392 f2fs_wait_on_page_writeback(page
, META
, true, true);
1394 memcpy(page_address(page
), src
, PAGE_SIZE
);
1396 set_page_dirty(page
);
1397 if (unlikely(!clear_page_dirty_for_io(page
)))
1398 f2fs_bug_on(sbi
, 1);
1400 /* writeout cp pack 2 page */
1401 err
= __f2fs_write_meta_page(page
, &wbc
, FS_CP_META_IO
);
1402 if (unlikely(err
&& f2fs_cp_error(sbi
))) {
1403 f2fs_put_page(page
, 1);
1407 f2fs_bug_on(sbi
, err
);
1408 f2fs_put_page(page
, 0);
1410 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1411 f2fs_submit_merged_write(sbi
, META_FLUSH
);
1414 static inline u64
get_sectors_written(struct block_device
*bdev
)
1416 return (u64
)part_stat_read(bdev
, sectors
[STAT_WRITE
]);
1419 u64
f2fs_get_sectors_written(struct f2fs_sb_info
*sbi
)
1421 if (f2fs_is_multi_device(sbi
)) {
1425 for (i
= 0; i
< sbi
->s_ndevs
; i
++)
1426 sectors
+= get_sectors_written(FDEV(i
).bdev
);
1431 return get_sectors_written(sbi
->sb
->s_bdev
);
1434 static int do_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1436 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1437 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1438 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
, flags
;
1440 unsigned int data_sum_blocks
, orphan_blocks
;
1443 int cp_payload_blks
= __cp_payload(sbi
);
1444 struct curseg_info
*seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
1448 /* Flush all the NAT/SIT pages */
1449 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
, FS_CP_META_IO
);
1451 /* start to update checkpoint, cp ver is already updated previously */
1452 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
, true));
1453 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
1454 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
1455 ckpt
->cur_node_segno
[i
] =
1456 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
1457 ckpt
->cur_node_blkoff
[i
] =
1458 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
1459 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
1460 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
1462 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
1463 ckpt
->cur_data_segno
[i
] =
1464 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
1465 ckpt
->cur_data_blkoff
[i
] =
1466 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
1467 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
1468 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
1471 /* 2 cp + n data seg summary + orphan inode blocks */
1472 data_sum_blocks
= f2fs_npages_for_summary_flush(sbi
, false);
1473 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1474 if (data_sum_blocks
< NR_CURSEG_DATA_TYPE
)
1475 __set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1477 __clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1478 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1480 orphan_blocks
= GET_ORPHAN_BLOCKS(orphan_num
);
1481 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + cp_payload_blks
+
1484 if (__remain_node_summaries(cpc
->reason
))
1485 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1486 cp_payload_blks
+ data_sum_blocks
+
1487 orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
1489 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1490 cp_payload_blks
+ data_sum_blocks
+
1493 /* update ckpt flag for checkpoint */
1494 update_ckpt_flags(sbi
, cpc
);
1496 /* update SIT/NAT bitmap */
1497 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
1498 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
1500 crc32
= f2fs_checkpoint_chksum(sbi
, ckpt
);
1501 *((__le32
*)((unsigned char *)ckpt
+
1502 le32_to_cpu(ckpt
->checksum_offset
)))
1503 = cpu_to_le32(crc32
);
1505 start_blk
= __start_cp_next_addr(sbi
);
1507 /* write nat bits */
1508 if ((cpc
->reason
& CP_UMOUNT
) &&
1509 is_set_ckpt_flags(sbi
, CP_NAT_BITS_FLAG
)) {
1510 __u64 cp_ver
= cur_cp_version(ckpt
);
1513 cp_ver
|= ((__u64
)crc32
<< 32);
1514 *(__le64
*)nm_i
->nat_bits
= cpu_to_le64(cp_ver
);
1516 blk
= start_blk
+ sbi
->blocks_per_seg
- nm_i
->nat_bits_blocks
;
1517 for (i
= 0; i
< nm_i
->nat_bits_blocks
; i
++)
1518 f2fs_update_meta_page(sbi
, nm_i
->nat_bits
+
1519 (i
<< F2FS_BLKSIZE_BITS
), blk
+ i
);
1522 /* write out checkpoint buffer at block 0 */
1523 f2fs_update_meta_page(sbi
, ckpt
, start_blk
++);
1525 for (i
= 1; i
< 1 + cp_payload_blks
; i
++)
1526 f2fs_update_meta_page(sbi
, (char *)ckpt
+ i
* F2FS_BLKSIZE
,
1530 write_orphan_inodes(sbi
, start_blk
);
1531 start_blk
+= orphan_blocks
;
1534 f2fs_write_data_summaries(sbi
, start_blk
);
1535 start_blk
+= data_sum_blocks
;
1537 /* Record write statistics in the hot node summary */
1538 kbytes_written
= sbi
->kbytes_written
;
1539 kbytes_written
+= (f2fs_get_sectors_written(sbi
) -
1540 sbi
->sectors_written_start
) >> 1;
1541 seg_i
->journal
->info
.kbytes_written
= cpu_to_le64(kbytes_written
);
1543 if (__remain_node_summaries(cpc
->reason
)) {
1544 f2fs_write_node_summaries(sbi
, start_blk
);
1545 start_blk
+= NR_CURSEG_NODE_TYPE
;
1548 /* update user_block_counts */
1549 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1550 percpu_counter_set(&sbi
->alloc_valid_block_count
, 0);
1552 /* Here, we have one bio having CP pack except cp pack 2 page */
1553 f2fs_sync_meta_pages(sbi
, META
, LONG_MAX
, FS_CP_META_IO
);
1554 /* Wait for all dirty meta pages to be submitted for IO */
1555 f2fs_wait_on_all_pages(sbi
, F2FS_DIRTY_META
);
1557 /* wait for previous submitted meta pages writeback */
1558 f2fs_wait_on_all_pages(sbi
, F2FS_WB_CP_DATA
);
1560 /* flush all device cache */
1561 err
= f2fs_flush_device_cache(sbi
);
1565 /* barrier and flush checkpoint cp pack 2 page if it can */
1566 commit_checkpoint(sbi
, ckpt
, start_blk
);
1567 f2fs_wait_on_all_pages(sbi
, F2FS_WB_CP_DATA
);
1570 * invalidate intermediate page cache borrowed from meta inode which are
1571 * used for migration of encrypted, verity or compressed inode's blocks.
1573 if (f2fs_sb_has_encrypt(sbi
) || f2fs_sb_has_verity(sbi
) ||
1574 f2fs_sb_has_compression(sbi
))
1575 invalidate_mapping_pages(META_MAPPING(sbi
),
1576 MAIN_BLKADDR(sbi
), MAX_BLKADDR(sbi
) - 1);
1578 f2fs_release_ino_entry(sbi
, false);
1580 f2fs_reset_fsync_node_info(sbi
);
1582 clear_sbi_flag(sbi
, SBI_IS_DIRTY
);
1583 clear_sbi_flag(sbi
, SBI_NEED_CP
);
1584 clear_sbi_flag(sbi
, SBI_QUOTA_SKIP_FLUSH
);
1586 spin_lock(&sbi
->stat_lock
);
1587 sbi
->unusable_block_count
= 0;
1588 spin_unlock(&sbi
->stat_lock
);
1590 __set_cp_next_pack(sbi
);
1593 * redirty superblock if metadata like node page or inode cache is
1594 * updated during writing checkpoint.
1596 if (get_pages(sbi
, F2FS_DIRTY_NODES
) ||
1597 get_pages(sbi
, F2FS_DIRTY_IMETA
))
1598 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1600 f2fs_bug_on(sbi
, get_pages(sbi
, F2FS_DIRTY_DENTS
));
1602 return unlikely(f2fs_cp_error(sbi
)) ? -EIO
: 0;
1605 int f2fs_write_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1607 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1608 unsigned long long ckpt_ver
;
1611 if (f2fs_readonly(sbi
->sb
) || f2fs_hw_is_readonly(sbi
))
1614 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))) {
1615 if (cpc
->reason
!= CP_PAUSE
)
1617 f2fs_warn(sbi
, "Start checkpoint disabled!");
1619 if (cpc
->reason
!= CP_RESIZE
)
1620 down_write(&sbi
->cp_global_sem
);
1622 if (!is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) &&
1623 ((cpc
->reason
& CP_FASTBOOT
) || (cpc
->reason
& CP_SYNC
) ||
1624 ((cpc
->reason
& CP_DISCARD
) && !sbi
->discard_blks
)))
1626 if (unlikely(f2fs_cp_error(sbi
))) {
1631 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "start block_ops");
1633 err
= block_operations(sbi
);
1637 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish block_ops");
1639 f2fs_flush_merged_writes(sbi
);
1641 /* this is the case of multiple fstrims without any changes */
1642 if (cpc
->reason
& CP_DISCARD
) {
1643 if (!f2fs_exist_trim_candidates(sbi
, cpc
)) {
1644 unblock_operations(sbi
);
1648 if (NM_I(sbi
)->nat_cnt
[DIRTY_NAT
] == 0 &&
1649 SIT_I(sbi
)->dirty_sentries
== 0 &&
1650 prefree_segments(sbi
) == 0) {
1651 f2fs_flush_sit_entries(sbi
, cpc
);
1652 f2fs_clear_prefree_segments(sbi
, cpc
);
1653 unblock_operations(sbi
);
1659 * update checkpoint pack index
1660 * Increase the version number so that
1661 * SIT entries and seg summaries are written at correct place
1663 ckpt_ver
= cur_cp_version(ckpt
);
1664 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
1666 /* write cached NAT/SIT entries to NAT/SIT area */
1667 err
= f2fs_flush_nat_entries(sbi
, cpc
);
1669 f2fs_err(sbi
, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err
);
1670 f2fs_bug_on(sbi
, !f2fs_cp_error(sbi
));
1674 f2fs_flush_sit_entries(sbi
, cpc
);
1676 /* save inmem log status */
1677 f2fs_save_inmem_curseg(sbi
);
1679 err
= do_checkpoint(sbi
, cpc
);
1681 f2fs_err(sbi
, "do_checkpoint failed err:%d, stop checkpoint", err
);
1682 f2fs_bug_on(sbi
, !f2fs_cp_error(sbi
));
1683 f2fs_release_discard_addrs(sbi
);
1685 f2fs_clear_prefree_segments(sbi
, cpc
);
1688 f2fs_restore_inmem_curseg(sbi
);
1690 unblock_operations(sbi
);
1691 stat_inc_cp_count(sbi
->stat_info
);
1693 if (cpc
->reason
& CP_RECOVERY
)
1694 f2fs_notice(sbi
, "checkpoint: version = %llx", ckpt_ver
);
1696 /* update CP_TIME to trigger checkpoint periodically */
1697 f2fs_update_time(sbi
, CP_TIME
);
1698 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish checkpoint");
1700 if (cpc
->reason
!= CP_RESIZE
)
1701 up_write(&sbi
->cp_global_sem
);
1705 void f2fs_init_ino_entry_info(struct f2fs_sb_info
*sbi
)
1709 for (i
= 0; i
< MAX_INO_ENTRY
; i
++) {
1710 struct inode_management
*im
= &sbi
->im
[i
];
1712 INIT_RADIX_TREE(&im
->ino_root
, GFP_ATOMIC
);
1713 spin_lock_init(&im
->ino_lock
);
1714 INIT_LIST_HEAD(&im
->ino_list
);
1718 sbi
->max_orphans
= (sbi
->blocks_per_seg
- F2FS_CP_PACKS
-
1719 NR_CURSEG_PERSIST_TYPE
- __cp_payload(sbi
)) *
1720 F2FS_ORPHANS_PER_BLOCK
;
1723 int __init
f2fs_create_checkpoint_caches(void)
1725 ino_entry_slab
= f2fs_kmem_cache_create("f2fs_ino_entry",
1726 sizeof(struct ino_entry
));
1727 if (!ino_entry_slab
)
1729 f2fs_inode_entry_slab
= f2fs_kmem_cache_create("f2fs_inode_entry",
1730 sizeof(struct inode_entry
));
1731 if (!f2fs_inode_entry_slab
) {
1732 kmem_cache_destroy(ino_entry_slab
);
1738 void f2fs_destroy_checkpoint_caches(void)
1740 kmem_cache_destroy(ino_entry_slab
);
1741 kmem_cache_destroy(f2fs_inode_entry_slab
);
1744 static int __write_checkpoint_sync(struct f2fs_sb_info
*sbi
)
1746 struct cp_control cpc
= { .reason
= CP_SYNC
, };
1749 down_write(&sbi
->gc_lock
);
1750 err
= f2fs_write_checkpoint(sbi
, &cpc
);
1751 up_write(&sbi
->gc_lock
);
1756 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info
*sbi
)
1758 struct ckpt_req_control
*cprc
= &sbi
->cprc_info
;
1759 struct ckpt_req
*req
, *next
;
1760 struct llist_node
*dispatch_list
;
1761 u64 sum_diff
= 0, diff
, count
= 0;
1764 dispatch_list
= llist_del_all(&cprc
->issue_list
);
1767 dispatch_list
= llist_reverse_order(dispatch_list
);
1769 ret
= __write_checkpoint_sync(sbi
);
1770 atomic_inc(&cprc
->issued_ckpt
);
1772 llist_for_each_entry_safe(req
, next
, dispatch_list
, llnode
) {
1773 diff
= (u64
)ktime_ms_delta(ktime_get(), req
->queue_time
);
1775 complete(&req
->wait
);
1780 atomic_sub(count
, &cprc
->queued_ckpt
);
1781 atomic_add(count
, &cprc
->total_ckpt
);
1783 spin_lock(&cprc
->stat_lock
);
1784 cprc
->cur_time
= (unsigned int)div64_u64(sum_diff
, count
);
1785 if (cprc
->peak_time
< cprc
->cur_time
)
1786 cprc
->peak_time
= cprc
->cur_time
;
1787 spin_unlock(&cprc
->stat_lock
);
1790 static int issue_checkpoint_thread(void *data
)
1792 struct f2fs_sb_info
*sbi
= data
;
1793 struct ckpt_req_control
*cprc
= &sbi
->cprc_info
;
1794 wait_queue_head_t
*q
= &cprc
->ckpt_wait_queue
;
1796 if (kthread_should_stop())
1799 if (!llist_empty(&cprc
->issue_list
))
1800 __checkpoint_and_complete_reqs(sbi
);
1802 wait_event_interruptible(*q
,
1803 kthread_should_stop() || !llist_empty(&cprc
->issue_list
));
1807 static void flush_remained_ckpt_reqs(struct f2fs_sb_info
*sbi
,
1808 struct ckpt_req
*wait_req
)
1810 struct ckpt_req_control
*cprc
= &sbi
->cprc_info
;
1812 if (!llist_empty(&cprc
->issue_list
)) {
1813 __checkpoint_and_complete_reqs(sbi
);
1815 /* already dispatched by issue_checkpoint_thread */
1817 wait_for_completion(&wait_req
->wait
);
1821 static void init_ckpt_req(struct ckpt_req
*req
)
1823 memset(req
, 0, sizeof(struct ckpt_req
));
1825 init_completion(&req
->wait
);
1826 req
->queue_time
= ktime_get();
1829 int f2fs_issue_checkpoint(struct f2fs_sb_info
*sbi
)
1831 struct ckpt_req_control
*cprc
= &sbi
->cprc_info
;
1832 struct ckpt_req req
;
1833 struct cp_control cpc
;
1835 cpc
.reason
= __get_cp_reason(sbi
);
1836 if (!test_opt(sbi
, MERGE_CHECKPOINT
) || cpc
.reason
!= CP_SYNC
) {
1839 down_write(&sbi
->gc_lock
);
1840 ret
= f2fs_write_checkpoint(sbi
, &cpc
);
1841 up_write(&sbi
->gc_lock
);
1846 if (!cprc
->f2fs_issue_ckpt
)
1847 return __write_checkpoint_sync(sbi
);
1849 init_ckpt_req(&req
);
1851 llist_add(&req
.llnode
, &cprc
->issue_list
);
1852 atomic_inc(&cprc
->queued_ckpt
);
1855 * update issue_list before we wake up issue_checkpoint thread,
1856 * this smp_mb() pairs with another barrier in ___wait_event(),
1857 * see more details in comments of waitqueue_active().
1861 if (waitqueue_active(&cprc
->ckpt_wait_queue
))
1862 wake_up(&cprc
->ckpt_wait_queue
);
1864 if (cprc
->f2fs_issue_ckpt
)
1865 wait_for_completion(&req
.wait
);
1867 flush_remained_ckpt_reqs(sbi
, &req
);
1872 int f2fs_start_ckpt_thread(struct f2fs_sb_info
*sbi
)
1874 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
1875 struct ckpt_req_control
*cprc
= &sbi
->cprc_info
;
1877 if (cprc
->f2fs_issue_ckpt
)
1880 cprc
->f2fs_issue_ckpt
= kthread_run(issue_checkpoint_thread
, sbi
,
1881 "f2fs_ckpt-%u:%u", MAJOR(dev
), MINOR(dev
));
1882 if (IS_ERR(cprc
->f2fs_issue_ckpt
)) {
1883 cprc
->f2fs_issue_ckpt
= NULL
;
1887 set_task_ioprio(cprc
->f2fs_issue_ckpt
, cprc
->ckpt_thread_ioprio
);
1892 void f2fs_stop_ckpt_thread(struct f2fs_sb_info
*sbi
)
1894 struct ckpt_req_control
*cprc
= &sbi
->cprc_info
;
1896 if (cprc
->f2fs_issue_ckpt
) {
1897 struct task_struct
*ckpt_task
= cprc
->f2fs_issue_ckpt
;
1899 cprc
->f2fs_issue_ckpt
= NULL
;
1900 kthread_stop(ckpt_task
);
1902 flush_remained_ckpt_reqs(sbi
, NULL
);
1906 void f2fs_init_ckpt_req_control(struct f2fs_sb_info
*sbi
)
1908 struct ckpt_req_control
*cprc
= &sbi
->cprc_info
;
1910 atomic_set(&cprc
->issued_ckpt
, 0);
1911 atomic_set(&cprc
->total_ckpt
, 0);
1912 atomic_set(&cprc
->queued_ckpt
, 0);
1913 cprc
->ckpt_thread_ioprio
= DEFAULT_CHECKPOINT_IOPRIO
;
1914 init_waitqueue_head(&cprc
->ckpt_wait_queue
);
1915 init_llist_head(&cprc
->issue_list
);
1916 spin_lock_init(&cprc
->stat_lock
);