]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/checkpoint.c
1ff32926e1999daa26a954f2a3687b12f21b8043
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / checkpoint.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/checkpoint.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 f2fs_build_fault_attr(sbi, 0, 0);
32 set_ckpt_flags(sbi, CP_ERROR_FLAG);
33 if (!end_io)
34 f2fs_flush_merged_writes(sbi);
35 }
36
37 /*
38 * We guarantee no failure on the returned page.
39 */
40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 struct address_space *mapping = META_MAPPING(sbi);
43 struct page *page;
44 repeat:
45 page = f2fs_grab_cache_page(mapping, index, false);
46 if (!page) {
47 cond_resched();
48 goto repeat;
49 }
50 f2fs_wait_on_page_writeback(page, META, true, true);
51 if (!PageUptodate(page))
52 SetPageUptodate(page);
53 return page;
54 }
55
56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
57 bool is_meta)
58 {
59 struct address_space *mapping = META_MAPPING(sbi);
60 struct page *page;
61 struct f2fs_io_info fio = {
62 .sbi = sbi,
63 .type = META,
64 .op = REQ_OP_READ,
65 .op_flags = REQ_META | REQ_PRIO,
66 .old_blkaddr = index,
67 .new_blkaddr = index,
68 .encrypted_page = NULL,
69 .is_por = !is_meta,
70 };
71 int err;
72
73 if (unlikely(!is_meta))
74 fio.op_flags &= ~REQ_META;
75 repeat:
76 page = f2fs_grab_cache_page(mapping, index, false);
77 if (!page) {
78 cond_resched();
79 goto repeat;
80 }
81 if (PageUptodate(page))
82 goto out;
83
84 fio.page = page;
85
86 err = f2fs_submit_page_bio(&fio);
87 if (err) {
88 f2fs_put_page(page, 1);
89 return ERR_PTR(err);
90 }
91
92 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
93
94 lock_page(page);
95 if (unlikely(page->mapping != mapping)) {
96 f2fs_put_page(page, 1);
97 goto repeat;
98 }
99
100 if (unlikely(!PageUptodate(page))) {
101 f2fs_put_page(page, 1);
102 return ERR_PTR(-EIO);
103 }
104 out:
105 return page;
106 }
107
108 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
109 {
110 return __get_meta_page(sbi, index, true);
111 }
112
113 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
114 {
115 struct page *page;
116 int count = 0;
117
118 retry:
119 page = __get_meta_page(sbi, index, true);
120 if (IS_ERR(page)) {
121 if (PTR_ERR(page) == -EIO &&
122 ++count <= DEFAULT_RETRY_IO_COUNT)
123 goto retry;
124 f2fs_stop_checkpoint(sbi, false);
125 }
126 return page;
127 }
128
129 /* for POR only */
130 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
131 {
132 return __get_meta_page(sbi, index, false);
133 }
134
135 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
136 int type)
137 {
138 struct seg_entry *se;
139 unsigned int segno, offset;
140 bool exist;
141
142 if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
143 return true;
144
145 segno = GET_SEGNO(sbi, blkaddr);
146 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
147 se = get_seg_entry(sbi, segno);
148
149 exist = f2fs_test_bit(offset, se->cur_valid_map);
150 if (!exist && type == DATA_GENERIC_ENHANCE) {
151 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
152 blkaddr, exist);
153 set_sbi_flag(sbi, SBI_NEED_FSCK);
154 WARN_ON(1);
155 }
156 return exist;
157 }
158
159 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
160 block_t blkaddr, int type)
161 {
162 switch (type) {
163 case META_NAT:
164 break;
165 case META_SIT:
166 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
167 return false;
168 break;
169 case META_SSA:
170 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
171 blkaddr < SM_I(sbi)->ssa_blkaddr))
172 return false;
173 break;
174 case META_CP:
175 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
176 blkaddr < __start_cp_addr(sbi)))
177 return false;
178 break;
179 case META_POR:
180 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
181 blkaddr < MAIN_BLKADDR(sbi)))
182 return false;
183 break;
184 case DATA_GENERIC:
185 case DATA_GENERIC_ENHANCE:
186 case DATA_GENERIC_ENHANCE_READ:
187 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
188 blkaddr < MAIN_BLKADDR(sbi))) {
189 f2fs_warn(sbi, "access invalid blkaddr:%u",
190 blkaddr);
191 set_sbi_flag(sbi, SBI_NEED_FSCK);
192 WARN_ON(1);
193 return false;
194 } else {
195 return __is_bitmap_valid(sbi, blkaddr, type);
196 }
197 break;
198 case META_GENERIC:
199 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
200 blkaddr >= MAIN_BLKADDR(sbi)))
201 return false;
202 break;
203 default:
204 BUG();
205 }
206
207 return true;
208 }
209
210 /*
211 * Readahead CP/NAT/SIT/SSA/POR pages
212 */
213 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
214 int type, bool sync)
215 {
216 struct page *page;
217 block_t blkno = start;
218 struct f2fs_io_info fio = {
219 .sbi = sbi,
220 .type = META,
221 .op = REQ_OP_READ,
222 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
223 .encrypted_page = NULL,
224 .in_list = false,
225 .is_por = (type == META_POR),
226 };
227 struct blk_plug plug;
228 int err;
229
230 if (unlikely(type == META_POR))
231 fio.op_flags &= ~REQ_META;
232
233 blk_start_plug(&plug);
234 for (; nrpages-- > 0; blkno++) {
235
236 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
237 goto out;
238
239 switch (type) {
240 case META_NAT:
241 if (unlikely(blkno >=
242 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
243 blkno = 0;
244 /* get nat block addr */
245 fio.new_blkaddr = current_nat_addr(sbi,
246 blkno * NAT_ENTRY_PER_BLOCK);
247 break;
248 case META_SIT:
249 if (unlikely(blkno >= TOTAL_SEGS(sbi)))
250 goto out;
251 /* get sit block addr */
252 fio.new_blkaddr = current_sit_addr(sbi,
253 blkno * SIT_ENTRY_PER_BLOCK);
254 break;
255 case META_SSA:
256 case META_CP:
257 case META_POR:
258 fio.new_blkaddr = blkno;
259 break;
260 default:
261 BUG();
262 }
263
264 page = f2fs_grab_cache_page(META_MAPPING(sbi),
265 fio.new_blkaddr, false);
266 if (!page)
267 continue;
268 if (PageUptodate(page)) {
269 f2fs_put_page(page, 1);
270 continue;
271 }
272
273 fio.page = page;
274 err = f2fs_submit_page_bio(&fio);
275 f2fs_put_page(page, err ? 1 : 0);
276
277 if (!err)
278 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
279 }
280 out:
281 blk_finish_plug(&plug);
282 return blkno - start;
283 }
284
285 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
286 {
287 struct page *page;
288 bool readahead = false;
289
290 page = find_get_page(META_MAPPING(sbi), index);
291 if (!page || !PageUptodate(page))
292 readahead = true;
293 f2fs_put_page(page, 0);
294
295 if (readahead)
296 f2fs_ra_meta_pages(sbi, index, BIO_MAX_VECS, META_POR, true);
297 }
298
299 static int __f2fs_write_meta_page(struct page *page,
300 struct writeback_control *wbc,
301 enum iostat_type io_type)
302 {
303 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
304
305 trace_f2fs_writepage(page, META);
306
307 if (unlikely(f2fs_cp_error(sbi)))
308 goto redirty_out;
309 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
310 goto redirty_out;
311 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
312 goto redirty_out;
313
314 f2fs_do_write_meta_page(sbi, page, io_type);
315 dec_page_count(sbi, F2FS_DIRTY_META);
316
317 if (wbc->for_reclaim)
318 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
319
320 unlock_page(page);
321
322 if (unlikely(f2fs_cp_error(sbi)))
323 f2fs_submit_merged_write(sbi, META);
324
325 return 0;
326
327 redirty_out:
328 redirty_page_for_writepage(wbc, page);
329 return AOP_WRITEPAGE_ACTIVATE;
330 }
331
332 static int f2fs_write_meta_page(struct page *page,
333 struct writeback_control *wbc)
334 {
335 return __f2fs_write_meta_page(page, wbc, FS_META_IO);
336 }
337
338 static int f2fs_write_meta_pages(struct address_space *mapping,
339 struct writeback_control *wbc)
340 {
341 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
342 long diff, written;
343
344 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
345 goto skip_write;
346
347 /* collect a number of dirty meta pages and write together */
348 if (wbc->sync_mode != WB_SYNC_ALL &&
349 get_pages(sbi, F2FS_DIRTY_META) <
350 nr_pages_to_skip(sbi, META))
351 goto skip_write;
352
353 /* if locked failed, cp will flush dirty pages instead */
354 if (!down_write_trylock(&sbi->cp_global_sem))
355 goto skip_write;
356
357 trace_f2fs_writepages(mapping->host, wbc, META);
358 diff = nr_pages_to_write(sbi, META, wbc);
359 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
360 up_write(&sbi->cp_global_sem);
361 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
362 return 0;
363
364 skip_write:
365 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
366 trace_f2fs_writepages(mapping->host, wbc, META);
367 return 0;
368 }
369
370 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
371 long nr_to_write, enum iostat_type io_type)
372 {
373 struct address_space *mapping = META_MAPPING(sbi);
374 pgoff_t index = 0, prev = ULONG_MAX;
375 struct pagevec pvec;
376 long nwritten = 0;
377 int nr_pages;
378 struct writeback_control wbc = {
379 .for_reclaim = 0,
380 };
381 struct blk_plug plug;
382
383 pagevec_init(&pvec);
384
385 blk_start_plug(&plug);
386
387 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
388 PAGECACHE_TAG_DIRTY))) {
389 int i;
390
391 for (i = 0; i < nr_pages; i++) {
392 struct page *page = pvec.pages[i];
393
394 if (prev == ULONG_MAX)
395 prev = page->index - 1;
396 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
397 pagevec_release(&pvec);
398 goto stop;
399 }
400
401 lock_page(page);
402
403 if (unlikely(page->mapping != mapping)) {
404 continue_unlock:
405 unlock_page(page);
406 continue;
407 }
408 if (!PageDirty(page)) {
409 /* someone wrote it for us */
410 goto continue_unlock;
411 }
412
413 f2fs_wait_on_page_writeback(page, META, true, true);
414
415 if (!clear_page_dirty_for_io(page))
416 goto continue_unlock;
417
418 if (__f2fs_write_meta_page(page, &wbc, io_type)) {
419 unlock_page(page);
420 break;
421 }
422 nwritten++;
423 prev = page->index;
424 if (unlikely(nwritten >= nr_to_write))
425 break;
426 }
427 pagevec_release(&pvec);
428 cond_resched();
429 }
430 stop:
431 if (nwritten)
432 f2fs_submit_merged_write(sbi, type);
433
434 blk_finish_plug(&plug);
435
436 return nwritten;
437 }
438
439 static int f2fs_set_meta_page_dirty(struct page *page)
440 {
441 trace_f2fs_set_page_dirty(page, META);
442
443 if (!PageUptodate(page))
444 SetPageUptodate(page);
445 if (!PageDirty(page)) {
446 __set_page_dirty_nobuffers(page);
447 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
448 set_page_private_reference(page);
449 return 1;
450 }
451 return 0;
452 }
453
454 const struct address_space_operations f2fs_meta_aops = {
455 .writepage = f2fs_write_meta_page,
456 .writepages = f2fs_write_meta_pages,
457 .set_page_dirty = f2fs_set_meta_page_dirty,
458 .invalidatepage = f2fs_invalidate_page,
459 .releasepage = f2fs_release_page,
460 #ifdef CONFIG_MIGRATION
461 .migratepage = f2fs_migrate_page,
462 #endif
463 };
464
465 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
466 unsigned int devidx, int type)
467 {
468 struct inode_management *im = &sbi->im[type];
469 struct ino_entry *e = NULL, *new = NULL;
470
471 if (type == FLUSH_INO) {
472 rcu_read_lock();
473 e = radix_tree_lookup(&im->ino_root, ino);
474 rcu_read_unlock();
475 }
476
477 retry:
478 if (!e)
479 new = f2fs_kmem_cache_alloc(ino_entry_slab,
480 GFP_NOFS, true, NULL);
481
482 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
483
484 spin_lock(&im->ino_lock);
485 e = radix_tree_lookup(&im->ino_root, ino);
486 if (!e) {
487 if (!new) {
488 spin_unlock(&im->ino_lock);
489 goto retry;
490 }
491 e = new;
492 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
493 f2fs_bug_on(sbi, 1);
494
495 memset(e, 0, sizeof(struct ino_entry));
496 e->ino = ino;
497
498 list_add_tail(&e->list, &im->ino_list);
499 if (type != ORPHAN_INO)
500 im->ino_num++;
501 }
502
503 if (type == FLUSH_INO)
504 f2fs_set_bit(devidx, (char *)&e->dirty_device);
505
506 spin_unlock(&im->ino_lock);
507 radix_tree_preload_end();
508
509 if (new && e != new)
510 kmem_cache_free(ino_entry_slab, new);
511 }
512
513 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
514 {
515 struct inode_management *im = &sbi->im[type];
516 struct ino_entry *e;
517
518 spin_lock(&im->ino_lock);
519 e = radix_tree_lookup(&im->ino_root, ino);
520 if (e) {
521 list_del(&e->list);
522 radix_tree_delete(&im->ino_root, ino);
523 im->ino_num--;
524 spin_unlock(&im->ino_lock);
525 kmem_cache_free(ino_entry_slab, e);
526 return;
527 }
528 spin_unlock(&im->ino_lock);
529 }
530
531 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
532 {
533 /* add new dirty ino entry into list */
534 __add_ino_entry(sbi, ino, 0, type);
535 }
536
537 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
538 {
539 /* remove dirty ino entry from list */
540 __remove_ino_entry(sbi, ino, type);
541 }
542
543 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
544 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
545 {
546 struct inode_management *im = &sbi->im[mode];
547 struct ino_entry *e;
548
549 spin_lock(&im->ino_lock);
550 e = radix_tree_lookup(&im->ino_root, ino);
551 spin_unlock(&im->ino_lock);
552 return e ? true : false;
553 }
554
555 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
556 {
557 struct ino_entry *e, *tmp;
558 int i;
559
560 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
561 struct inode_management *im = &sbi->im[i];
562
563 spin_lock(&im->ino_lock);
564 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
565 list_del(&e->list);
566 radix_tree_delete(&im->ino_root, e->ino);
567 kmem_cache_free(ino_entry_slab, e);
568 im->ino_num--;
569 }
570 spin_unlock(&im->ino_lock);
571 }
572 }
573
574 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
575 unsigned int devidx, int type)
576 {
577 __add_ino_entry(sbi, ino, devidx, type);
578 }
579
580 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
581 unsigned int devidx, int type)
582 {
583 struct inode_management *im = &sbi->im[type];
584 struct ino_entry *e;
585 bool is_dirty = false;
586
587 spin_lock(&im->ino_lock);
588 e = radix_tree_lookup(&im->ino_root, ino);
589 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
590 is_dirty = true;
591 spin_unlock(&im->ino_lock);
592 return is_dirty;
593 }
594
595 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
596 {
597 struct inode_management *im = &sbi->im[ORPHAN_INO];
598 int err = 0;
599
600 spin_lock(&im->ino_lock);
601
602 if (time_to_inject(sbi, FAULT_ORPHAN)) {
603 spin_unlock(&im->ino_lock);
604 f2fs_show_injection_info(sbi, FAULT_ORPHAN);
605 return -ENOSPC;
606 }
607
608 if (unlikely(im->ino_num >= sbi->max_orphans))
609 err = -ENOSPC;
610 else
611 im->ino_num++;
612 spin_unlock(&im->ino_lock);
613
614 return err;
615 }
616
617 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
618 {
619 struct inode_management *im = &sbi->im[ORPHAN_INO];
620
621 spin_lock(&im->ino_lock);
622 f2fs_bug_on(sbi, im->ino_num == 0);
623 im->ino_num--;
624 spin_unlock(&im->ino_lock);
625 }
626
627 void f2fs_add_orphan_inode(struct inode *inode)
628 {
629 /* add new orphan ino entry into list */
630 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
631 f2fs_update_inode_page(inode);
632 }
633
634 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
635 {
636 /* remove orphan entry from orphan list */
637 __remove_ino_entry(sbi, ino, ORPHAN_INO);
638 }
639
640 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
641 {
642 struct inode *inode;
643 struct node_info ni;
644 int err;
645
646 inode = f2fs_iget_retry(sbi->sb, ino);
647 if (IS_ERR(inode)) {
648 /*
649 * there should be a bug that we can't find the entry
650 * to orphan inode.
651 */
652 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
653 return PTR_ERR(inode);
654 }
655
656 err = dquot_initialize(inode);
657 if (err) {
658 iput(inode);
659 goto err_out;
660 }
661
662 clear_nlink(inode);
663
664 /* truncate all the data during iput */
665 iput(inode);
666
667 err = f2fs_get_node_info(sbi, ino, &ni);
668 if (err)
669 goto err_out;
670
671 /* ENOMEM was fully retried in f2fs_evict_inode. */
672 if (ni.blk_addr != NULL_ADDR) {
673 err = -EIO;
674 goto err_out;
675 }
676 return 0;
677
678 err_out:
679 set_sbi_flag(sbi, SBI_NEED_FSCK);
680 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
681 __func__, ino);
682 return err;
683 }
684
685 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
686 {
687 block_t start_blk, orphan_blocks, i, j;
688 unsigned int s_flags = sbi->sb->s_flags;
689 int err = 0;
690 #ifdef CONFIG_QUOTA
691 int quota_enabled;
692 #endif
693
694 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
695 return 0;
696
697 if (bdev_read_only(sbi->sb->s_bdev)) {
698 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
699 return 0;
700 }
701
702 if (s_flags & SB_RDONLY) {
703 f2fs_info(sbi, "orphan cleanup on readonly fs");
704 sbi->sb->s_flags &= ~SB_RDONLY;
705 }
706
707 #ifdef CONFIG_QUOTA
708 /* Needed for iput() to work correctly and not trash data */
709 sbi->sb->s_flags |= SB_ACTIVE;
710
711 /*
712 * Turn on quotas which were not enabled for read-only mounts if
713 * filesystem has quota feature, so that they are updated correctly.
714 */
715 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
716 #endif
717
718 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
719 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
720
721 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
722
723 for (i = 0; i < orphan_blocks; i++) {
724 struct page *page;
725 struct f2fs_orphan_block *orphan_blk;
726
727 page = f2fs_get_meta_page(sbi, start_blk + i);
728 if (IS_ERR(page)) {
729 err = PTR_ERR(page);
730 goto out;
731 }
732
733 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
734 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
735 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
736
737 err = recover_orphan_inode(sbi, ino);
738 if (err) {
739 f2fs_put_page(page, 1);
740 goto out;
741 }
742 }
743 f2fs_put_page(page, 1);
744 }
745 /* clear Orphan Flag */
746 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
747 out:
748 set_sbi_flag(sbi, SBI_IS_RECOVERED);
749
750 #ifdef CONFIG_QUOTA
751 /* Turn quotas off */
752 if (quota_enabled)
753 f2fs_quota_off_umount(sbi->sb);
754 #endif
755 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
756
757 return err;
758 }
759
760 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
761 {
762 struct list_head *head;
763 struct f2fs_orphan_block *orphan_blk = NULL;
764 unsigned int nentries = 0;
765 unsigned short index = 1;
766 unsigned short orphan_blocks;
767 struct page *page = NULL;
768 struct ino_entry *orphan = NULL;
769 struct inode_management *im = &sbi->im[ORPHAN_INO];
770
771 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
772
773 /*
774 * we don't need to do spin_lock(&im->ino_lock) here, since all the
775 * orphan inode operations are covered under f2fs_lock_op().
776 * And, spin_lock should be avoided due to page operations below.
777 */
778 head = &im->ino_list;
779
780 /* loop for each orphan inode entry and write them in Jornal block */
781 list_for_each_entry(orphan, head, list) {
782 if (!page) {
783 page = f2fs_grab_meta_page(sbi, start_blk++);
784 orphan_blk =
785 (struct f2fs_orphan_block *)page_address(page);
786 memset(orphan_blk, 0, sizeof(*orphan_blk));
787 }
788
789 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
790
791 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
792 /*
793 * an orphan block is full of 1020 entries,
794 * then we need to flush current orphan blocks
795 * and bring another one in memory
796 */
797 orphan_blk->blk_addr = cpu_to_le16(index);
798 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
799 orphan_blk->entry_count = cpu_to_le32(nentries);
800 set_page_dirty(page);
801 f2fs_put_page(page, 1);
802 index++;
803 nentries = 0;
804 page = NULL;
805 }
806 }
807
808 if (page) {
809 orphan_blk->blk_addr = cpu_to_le16(index);
810 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
811 orphan_blk->entry_count = cpu_to_le32(nentries);
812 set_page_dirty(page);
813 f2fs_put_page(page, 1);
814 }
815 }
816
817 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
818 struct f2fs_checkpoint *ckpt)
819 {
820 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
821 __u32 chksum;
822
823 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
824 if (chksum_ofs < CP_CHKSUM_OFFSET) {
825 chksum_ofs += sizeof(chksum);
826 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
827 F2FS_BLKSIZE - chksum_ofs);
828 }
829 return chksum;
830 }
831
832 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
833 struct f2fs_checkpoint **cp_block, struct page **cp_page,
834 unsigned long long *version)
835 {
836 size_t crc_offset = 0;
837 __u32 crc;
838
839 *cp_page = f2fs_get_meta_page(sbi, cp_addr);
840 if (IS_ERR(*cp_page))
841 return PTR_ERR(*cp_page);
842
843 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
844
845 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
846 if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
847 crc_offset > CP_CHKSUM_OFFSET) {
848 f2fs_put_page(*cp_page, 1);
849 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
850 return -EINVAL;
851 }
852
853 crc = f2fs_checkpoint_chksum(sbi, *cp_block);
854 if (crc != cur_cp_crc(*cp_block)) {
855 f2fs_put_page(*cp_page, 1);
856 f2fs_warn(sbi, "invalid crc value");
857 return -EINVAL;
858 }
859
860 *version = cur_cp_version(*cp_block);
861 return 0;
862 }
863
864 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
865 block_t cp_addr, unsigned long long *version)
866 {
867 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
868 struct f2fs_checkpoint *cp_block = NULL;
869 unsigned long long cur_version = 0, pre_version = 0;
870 unsigned int cp_blocks;
871 int err;
872
873 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
874 &cp_page_1, version);
875 if (err)
876 return NULL;
877
878 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
879
880 if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
881 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
882 le32_to_cpu(cp_block->cp_pack_total_block_count));
883 goto invalid_cp;
884 }
885 pre_version = *version;
886
887 cp_addr += cp_blocks - 1;
888 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
889 &cp_page_2, version);
890 if (err)
891 goto invalid_cp;
892 cur_version = *version;
893
894 if (cur_version == pre_version) {
895 *version = cur_version;
896 f2fs_put_page(cp_page_2, 1);
897 return cp_page_1;
898 }
899 f2fs_put_page(cp_page_2, 1);
900 invalid_cp:
901 f2fs_put_page(cp_page_1, 1);
902 return NULL;
903 }
904
905 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
906 {
907 struct f2fs_checkpoint *cp_block;
908 struct f2fs_super_block *fsb = sbi->raw_super;
909 struct page *cp1, *cp2, *cur_page;
910 unsigned long blk_size = sbi->blocksize;
911 unsigned long long cp1_version = 0, cp2_version = 0;
912 unsigned long long cp_start_blk_no;
913 unsigned int cp_blks = 1 + __cp_payload(sbi);
914 block_t cp_blk_no;
915 int i;
916 int err;
917
918 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
919 GFP_KERNEL);
920 if (!sbi->ckpt)
921 return -ENOMEM;
922 /*
923 * Finding out valid cp block involves read both
924 * sets( cp pack 1 and cp pack 2)
925 */
926 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
927 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
928
929 /* The second checkpoint pack should start at the next segment */
930 cp_start_blk_no += ((unsigned long long)1) <<
931 le32_to_cpu(fsb->log_blocks_per_seg);
932 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
933
934 if (cp1 && cp2) {
935 if (ver_after(cp2_version, cp1_version))
936 cur_page = cp2;
937 else
938 cur_page = cp1;
939 } else if (cp1) {
940 cur_page = cp1;
941 } else if (cp2) {
942 cur_page = cp2;
943 } else {
944 err = -EFSCORRUPTED;
945 goto fail_no_cp;
946 }
947
948 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
949 memcpy(sbi->ckpt, cp_block, blk_size);
950
951 if (cur_page == cp1)
952 sbi->cur_cp_pack = 1;
953 else
954 sbi->cur_cp_pack = 2;
955
956 /* Sanity checking of checkpoint */
957 if (f2fs_sanity_check_ckpt(sbi)) {
958 err = -EFSCORRUPTED;
959 goto free_fail_no_cp;
960 }
961
962 if (cp_blks <= 1)
963 goto done;
964
965 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
966 if (cur_page == cp2)
967 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
968
969 for (i = 1; i < cp_blks; i++) {
970 void *sit_bitmap_ptr;
971 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
972
973 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
974 if (IS_ERR(cur_page)) {
975 err = PTR_ERR(cur_page);
976 goto free_fail_no_cp;
977 }
978 sit_bitmap_ptr = page_address(cur_page);
979 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
980 f2fs_put_page(cur_page, 1);
981 }
982 done:
983 f2fs_put_page(cp1, 1);
984 f2fs_put_page(cp2, 1);
985 return 0;
986
987 free_fail_no_cp:
988 f2fs_put_page(cp1, 1);
989 f2fs_put_page(cp2, 1);
990 fail_no_cp:
991 kvfree(sbi->ckpt);
992 return err;
993 }
994
995 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
996 {
997 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
998 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
999
1000 if (is_inode_flag_set(inode, flag))
1001 return;
1002
1003 set_inode_flag(inode, flag);
1004 if (!f2fs_is_volatile_file(inode))
1005 list_add_tail(&F2FS_I(inode)->dirty_list,
1006 &sbi->inode_list[type]);
1007 stat_inc_dirty_inode(sbi, type);
1008 }
1009
1010 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1011 {
1012 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1013
1014 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1015 return;
1016
1017 list_del_init(&F2FS_I(inode)->dirty_list);
1018 clear_inode_flag(inode, flag);
1019 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1020 }
1021
1022 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
1023 {
1024 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1025 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1026
1027 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1028 !S_ISLNK(inode->i_mode))
1029 return;
1030
1031 spin_lock(&sbi->inode_lock[type]);
1032 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1033 __add_dirty_inode(inode, type);
1034 inode_inc_dirty_pages(inode);
1035 spin_unlock(&sbi->inode_lock[type]);
1036
1037 set_page_private_reference(page);
1038 }
1039
1040 void f2fs_remove_dirty_inode(struct inode *inode)
1041 {
1042 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1043 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1044
1045 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1046 !S_ISLNK(inode->i_mode))
1047 return;
1048
1049 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1050 return;
1051
1052 spin_lock(&sbi->inode_lock[type]);
1053 __remove_dirty_inode(inode, type);
1054 spin_unlock(&sbi->inode_lock[type]);
1055 }
1056
1057 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1058 {
1059 struct list_head *head;
1060 struct inode *inode;
1061 struct f2fs_inode_info *fi;
1062 bool is_dir = (type == DIR_INODE);
1063 unsigned long ino = 0;
1064
1065 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1066 get_pages(sbi, is_dir ?
1067 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1068 retry:
1069 if (unlikely(f2fs_cp_error(sbi))) {
1070 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1071 get_pages(sbi, is_dir ?
1072 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1073 return -EIO;
1074 }
1075
1076 spin_lock(&sbi->inode_lock[type]);
1077
1078 head = &sbi->inode_list[type];
1079 if (list_empty(head)) {
1080 spin_unlock(&sbi->inode_lock[type]);
1081 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1082 get_pages(sbi, is_dir ?
1083 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1084 return 0;
1085 }
1086 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1087 inode = igrab(&fi->vfs_inode);
1088 spin_unlock(&sbi->inode_lock[type]);
1089 if (inode) {
1090 unsigned long cur_ino = inode->i_ino;
1091
1092 F2FS_I(inode)->cp_task = current;
1093
1094 filemap_fdatawrite(inode->i_mapping);
1095
1096 F2FS_I(inode)->cp_task = NULL;
1097
1098 iput(inode);
1099 /* We need to give cpu to another writers. */
1100 if (ino == cur_ino)
1101 cond_resched();
1102 else
1103 ino = cur_ino;
1104 } else {
1105 /*
1106 * We should submit bio, since it exists several
1107 * wribacking dentry pages in the freeing inode.
1108 */
1109 f2fs_submit_merged_write(sbi, DATA);
1110 cond_resched();
1111 }
1112 goto retry;
1113 }
1114
1115 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1116 {
1117 struct list_head *head = &sbi->inode_list[DIRTY_META];
1118 struct inode *inode;
1119 struct f2fs_inode_info *fi;
1120 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1121
1122 while (total--) {
1123 if (unlikely(f2fs_cp_error(sbi)))
1124 return -EIO;
1125
1126 spin_lock(&sbi->inode_lock[DIRTY_META]);
1127 if (list_empty(head)) {
1128 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1129 return 0;
1130 }
1131 fi = list_first_entry(head, struct f2fs_inode_info,
1132 gdirty_list);
1133 inode = igrab(&fi->vfs_inode);
1134 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1135 if (inode) {
1136 sync_inode_metadata(inode, 0);
1137
1138 /* it's on eviction */
1139 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1140 f2fs_update_inode_page(inode);
1141 iput(inode);
1142 }
1143 }
1144 return 0;
1145 }
1146
1147 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1148 {
1149 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1150 struct f2fs_nm_info *nm_i = NM_I(sbi);
1151 nid_t last_nid = nm_i->next_scan_nid;
1152
1153 next_free_nid(sbi, &last_nid);
1154 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1155 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1156 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1157 ckpt->next_free_nid = cpu_to_le32(last_nid);
1158 }
1159
1160 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1161 {
1162 bool ret = false;
1163
1164 if (!is_journalled_quota(sbi))
1165 return false;
1166
1167 if (!down_write_trylock(&sbi->quota_sem))
1168 return true;
1169 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1170 ret = false;
1171 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1172 ret = false;
1173 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1174 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1175 ret = true;
1176 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1177 ret = true;
1178 }
1179 up_write(&sbi->quota_sem);
1180 return ret;
1181 }
1182
1183 /*
1184 * Freeze all the FS-operations for checkpoint.
1185 */
1186 static int block_operations(struct f2fs_sb_info *sbi)
1187 {
1188 struct writeback_control wbc = {
1189 .sync_mode = WB_SYNC_ALL,
1190 .nr_to_write = LONG_MAX,
1191 .for_reclaim = 0,
1192 };
1193 int err = 0, cnt = 0;
1194
1195 /*
1196 * Let's flush inline_data in dirty node pages.
1197 */
1198 f2fs_flush_inline_data(sbi);
1199
1200 retry_flush_quotas:
1201 f2fs_lock_all(sbi);
1202 if (__need_flush_quota(sbi)) {
1203 int locked;
1204
1205 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1206 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1207 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1208 goto retry_flush_dents;
1209 }
1210 f2fs_unlock_all(sbi);
1211
1212 /* only failed during mount/umount/freeze/quotactl */
1213 locked = down_read_trylock(&sbi->sb->s_umount);
1214 f2fs_quota_sync(sbi->sb, -1);
1215 if (locked)
1216 up_read(&sbi->sb->s_umount);
1217 cond_resched();
1218 goto retry_flush_quotas;
1219 }
1220
1221 retry_flush_dents:
1222 /* write all the dirty dentry pages */
1223 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1224 f2fs_unlock_all(sbi);
1225 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1226 if (err)
1227 return err;
1228 cond_resched();
1229 goto retry_flush_quotas;
1230 }
1231
1232 /*
1233 * POR: we should ensure that there are no dirty node pages
1234 * until finishing nat/sit flush. inode->i_blocks can be updated.
1235 */
1236 down_write(&sbi->node_change);
1237
1238 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1239 up_write(&sbi->node_change);
1240 f2fs_unlock_all(sbi);
1241 err = f2fs_sync_inode_meta(sbi);
1242 if (err)
1243 return err;
1244 cond_resched();
1245 goto retry_flush_quotas;
1246 }
1247
1248 retry_flush_nodes:
1249 down_write(&sbi->node_write);
1250
1251 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1252 up_write(&sbi->node_write);
1253 atomic_inc(&sbi->wb_sync_req[NODE]);
1254 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1255 atomic_dec(&sbi->wb_sync_req[NODE]);
1256 if (err) {
1257 up_write(&sbi->node_change);
1258 f2fs_unlock_all(sbi);
1259 return err;
1260 }
1261 cond_resched();
1262 goto retry_flush_nodes;
1263 }
1264
1265 /*
1266 * sbi->node_change is used only for AIO write_begin path which produces
1267 * dirty node blocks and some checkpoint values by block allocation.
1268 */
1269 __prepare_cp_block(sbi);
1270 up_write(&sbi->node_change);
1271 return err;
1272 }
1273
1274 static void unblock_operations(struct f2fs_sb_info *sbi)
1275 {
1276 up_write(&sbi->node_write);
1277 f2fs_unlock_all(sbi);
1278 }
1279
1280 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1281 {
1282 DEFINE_WAIT(wait);
1283
1284 for (;;) {
1285 if (!get_pages(sbi, type))
1286 break;
1287
1288 if (unlikely(f2fs_cp_error(sbi)))
1289 break;
1290
1291 if (type == F2FS_DIRTY_META)
1292 f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1293 FS_CP_META_IO);
1294 else if (type == F2FS_WB_CP_DATA)
1295 f2fs_submit_merged_write(sbi, DATA);
1296
1297 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1298 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1299 }
1300 finish_wait(&sbi->cp_wait, &wait);
1301 }
1302
1303 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1304 {
1305 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1306 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1307 unsigned long flags;
1308
1309 if (cpc->reason & CP_UMOUNT) {
1310 if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1311 NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) {
1312 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1313 f2fs_notice(sbi, "Disable nat_bits due to no space");
1314 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1315 f2fs_nat_bitmap_enabled(sbi)) {
1316 f2fs_enable_nat_bits(sbi);
1317 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1318 f2fs_notice(sbi, "Rebuild and enable nat_bits");
1319 }
1320 }
1321
1322 spin_lock_irqsave(&sbi->cp_lock, flags);
1323
1324 if (cpc->reason & CP_TRIMMED)
1325 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1326 else
1327 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1328
1329 if (cpc->reason & CP_UMOUNT)
1330 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1331 else
1332 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1333
1334 if (cpc->reason & CP_FASTBOOT)
1335 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1336 else
1337 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1338
1339 if (orphan_num)
1340 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1341 else
1342 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1343
1344 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1345 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1346
1347 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1348 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1349 else
1350 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1351
1352 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1353 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1354 else
1355 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1356
1357 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1358 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1359 else
1360 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1361
1362 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1363 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1364 else
1365 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1366
1367 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1368 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1369
1370 /* set this flag to activate crc|cp_ver for recovery */
1371 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1372 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1373
1374 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1375 }
1376
1377 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1378 void *src, block_t blk_addr)
1379 {
1380 struct writeback_control wbc = {
1381 .for_reclaim = 0,
1382 };
1383
1384 /*
1385 * pagevec_lookup_tag and lock_page again will take
1386 * some extra time. Therefore, f2fs_update_meta_pages and
1387 * f2fs_sync_meta_pages are combined in this function.
1388 */
1389 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1390 int err;
1391
1392 f2fs_wait_on_page_writeback(page, META, true, true);
1393
1394 memcpy(page_address(page), src, PAGE_SIZE);
1395
1396 set_page_dirty(page);
1397 if (unlikely(!clear_page_dirty_for_io(page)))
1398 f2fs_bug_on(sbi, 1);
1399
1400 /* writeout cp pack 2 page */
1401 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1402 if (unlikely(err && f2fs_cp_error(sbi))) {
1403 f2fs_put_page(page, 1);
1404 return;
1405 }
1406
1407 f2fs_bug_on(sbi, err);
1408 f2fs_put_page(page, 0);
1409
1410 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1411 f2fs_submit_merged_write(sbi, META_FLUSH);
1412 }
1413
1414 static inline u64 get_sectors_written(struct block_device *bdev)
1415 {
1416 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1417 }
1418
1419 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1420 {
1421 if (f2fs_is_multi_device(sbi)) {
1422 u64 sectors = 0;
1423 int i;
1424
1425 for (i = 0; i < sbi->s_ndevs; i++)
1426 sectors += get_sectors_written(FDEV(i).bdev);
1427
1428 return sectors;
1429 }
1430
1431 return get_sectors_written(sbi->sb->s_bdev);
1432 }
1433
1434 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1435 {
1436 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1437 struct f2fs_nm_info *nm_i = NM_I(sbi);
1438 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1439 block_t start_blk;
1440 unsigned int data_sum_blocks, orphan_blocks;
1441 __u32 crc32 = 0;
1442 int i;
1443 int cp_payload_blks = __cp_payload(sbi);
1444 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1445 u64 kbytes_written;
1446 int err;
1447
1448 /* Flush all the NAT/SIT pages */
1449 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1450
1451 /* start to update checkpoint, cp ver is already updated previously */
1452 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1453 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1454 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1455 ckpt->cur_node_segno[i] =
1456 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1457 ckpt->cur_node_blkoff[i] =
1458 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1459 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1460 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1461 }
1462 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1463 ckpt->cur_data_segno[i] =
1464 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1465 ckpt->cur_data_blkoff[i] =
1466 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1467 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1468 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1469 }
1470
1471 /* 2 cp + n data seg summary + orphan inode blocks */
1472 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1473 spin_lock_irqsave(&sbi->cp_lock, flags);
1474 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1475 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1476 else
1477 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1478 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1479
1480 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1481 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1482 orphan_blocks);
1483
1484 if (__remain_node_summaries(cpc->reason))
1485 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1486 cp_payload_blks + data_sum_blocks +
1487 orphan_blocks + NR_CURSEG_NODE_TYPE);
1488 else
1489 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1490 cp_payload_blks + data_sum_blocks +
1491 orphan_blocks);
1492
1493 /* update ckpt flag for checkpoint */
1494 update_ckpt_flags(sbi, cpc);
1495
1496 /* update SIT/NAT bitmap */
1497 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1498 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1499
1500 crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1501 *((__le32 *)((unsigned char *)ckpt +
1502 le32_to_cpu(ckpt->checksum_offset)))
1503 = cpu_to_le32(crc32);
1504
1505 start_blk = __start_cp_next_addr(sbi);
1506
1507 /* write nat bits */
1508 if ((cpc->reason & CP_UMOUNT) &&
1509 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1510 __u64 cp_ver = cur_cp_version(ckpt);
1511 block_t blk;
1512
1513 cp_ver |= ((__u64)crc32 << 32);
1514 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1515
1516 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1517 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1518 f2fs_update_meta_page(sbi, nm_i->nat_bits +
1519 (i << F2FS_BLKSIZE_BITS), blk + i);
1520 }
1521
1522 /* write out checkpoint buffer at block 0 */
1523 f2fs_update_meta_page(sbi, ckpt, start_blk++);
1524
1525 for (i = 1; i < 1 + cp_payload_blks; i++)
1526 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1527 start_blk++);
1528
1529 if (orphan_num) {
1530 write_orphan_inodes(sbi, start_blk);
1531 start_blk += orphan_blocks;
1532 }
1533
1534 f2fs_write_data_summaries(sbi, start_blk);
1535 start_blk += data_sum_blocks;
1536
1537 /* Record write statistics in the hot node summary */
1538 kbytes_written = sbi->kbytes_written;
1539 kbytes_written += (f2fs_get_sectors_written(sbi) -
1540 sbi->sectors_written_start) >> 1;
1541 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1542
1543 if (__remain_node_summaries(cpc->reason)) {
1544 f2fs_write_node_summaries(sbi, start_blk);
1545 start_blk += NR_CURSEG_NODE_TYPE;
1546 }
1547
1548 /* update user_block_counts */
1549 sbi->last_valid_block_count = sbi->total_valid_block_count;
1550 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1551
1552 /* Here, we have one bio having CP pack except cp pack 2 page */
1553 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1554 /* Wait for all dirty meta pages to be submitted for IO */
1555 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1556
1557 /* wait for previous submitted meta pages writeback */
1558 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1559
1560 /* flush all device cache */
1561 err = f2fs_flush_device_cache(sbi);
1562 if (err)
1563 return err;
1564
1565 /* barrier and flush checkpoint cp pack 2 page if it can */
1566 commit_checkpoint(sbi, ckpt, start_blk);
1567 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1568
1569 /*
1570 * invalidate intermediate page cache borrowed from meta inode which are
1571 * used for migration of encrypted, verity or compressed inode's blocks.
1572 */
1573 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1574 f2fs_sb_has_compression(sbi))
1575 invalidate_mapping_pages(META_MAPPING(sbi),
1576 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1577
1578 f2fs_release_ino_entry(sbi, false);
1579
1580 f2fs_reset_fsync_node_info(sbi);
1581
1582 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1583 clear_sbi_flag(sbi, SBI_NEED_CP);
1584 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1585
1586 spin_lock(&sbi->stat_lock);
1587 sbi->unusable_block_count = 0;
1588 spin_unlock(&sbi->stat_lock);
1589
1590 __set_cp_next_pack(sbi);
1591
1592 /*
1593 * redirty superblock if metadata like node page or inode cache is
1594 * updated during writing checkpoint.
1595 */
1596 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1597 get_pages(sbi, F2FS_DIRTY_IMETA))
1598 set_sbi_flag(sbi, SBI_IS_DIRTY);
1599
1600 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1601
1602 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1603 }
1604
1605 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1606 {
1607 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1608 unsigned long long ckpt_ver;
1609 int err = 0;
1610
1611 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1612 return -EROFS;
1613
1614 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1615 if (cpc->reason != CP_PAUSE)
1616 return 0;
1617 f2fs_warn(sbi, "Start checkpoint disabled!");
1618 }
1619 if (cpc->reason != CP_RESIZE)
1620 down_write(&sbi->cp_global_sem);
1621
1622 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1623 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1624 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1625 goto out;
1626 if (unlikely(f2fs_cp_error(sbi))) {
1627 err = -EIO;
1628 goto out;
1629 }
1630
1631 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1632
1633 err = block_operations(sbi);
1634 if (err)
1635 goto out;
1636
1637 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1638
1639 f2fs_flush_merged_writes(sbi);
1640
1641 /* this is the case of multiple fstrims without any changes */
1642 if (cpc->reason & CP_DISCARD) {
1643 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1644 unblock_operations(sbi);
1645 goto out;
1646 }
1647
1648 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1649 SIT_I(sbi)->dirty_sentries == 0 &&
1650 prefree_segments(sbi) == 0) {
1651 f2fs_flush_sit_entries(sbi, cpc);
1652 f2fs_clear_prefree_segments(sbi, cpc);
1653 unblock_operations(sbi);
1654 goto out;
1655 }
1656 }
1657
1658 /*
1659 * update checkpoint pack index
1660 * Increase the version number so that
1661 * SIT entries and seg summaries are written at correct place
1662 */
1663 ckpt_ver = cur_cp_version(ckpt);
1664 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1665
1666 /* write cached NAT/SIT entries to NAT/SIT area */
1667 err = f2fs_flush_nat_entries(sbi, cpc);
1668 if (err) {
1669 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1670 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1671 goto stop;
1672 }
1673
1674 f2fs_flush_sit_entries(sbi, cpc);
1675
1676 /* save inmem log status */
1677 f2fs_save_inmem_curseg(sbi);
1678
1679 err = do_checkpoint(sbi, cpc);
1680 if (err) {
1681 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1682 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1683 f2fs_release_discard_addrs(sbi);
1684 } else {
1685 f2fs_clear_prefree_segments(sbi, cpc);
1686 }
1687
1688 f2fs_restore_inmem_curseg(sbi);
1689 stop:
1690 unblock_operations(sbi);
1691 stat_inc_cp_count(sbi->stat_info);
1692
1693 if (cpc->reason & CP_RECOVERY)
1694 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1695
1696 /* update CP_TIME to trigger checkpoint periodically */
1697 f2fs_update_time(sbi, CP_TIME);
1698 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1699 out:
1700 if (cpc->reason != CP_RESIZE)
1701 up_write(&sbi->cp_global_sem);
1702 return err;
1703 }
1704
1705 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1706 {
1707 int i;
1708
1709 for (i = 0; i < MAX_INO_ENTRY; i++) {
1710 struct inode_management *im = &sbi->im[i];
1711
1712 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1713 spin_lock_init(&im->ino_lock);
1714 INIT_LIST_HEAD(&im->ino_list);
1715 im->ino_num = 0;
1716 }
1717
1718 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1719 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1720 F2FS_ORPHANS_PER_BLOCK;
1721 }
1722
1723 int __init f2fs_create_checkpoint_caches(void)
1724 {
1725 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1726 sizeof(struct ino_entry));
1727 if (!ino_entry_slab)
1728 return -ENOMEM;
1729 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1730 sizeof(struct inode_entry));
1731 if (!f2fs_inode_entry_slab) {
1732 kmem_cache_destroy(ino_entry_slab);
1733 return -ENOMEM;
1734 }
1735 return 0;
1736 }
1737
1738 void f2fs_destroy_checkpoint_caches(void)
1739 {
1740 kmem_cache_destroy(ino_entry_slab);
1741 kmem_cache_destroy(f2fs_inode_entry_slab);
1742 }
1743
1744 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1745 {
1746 struct cp_control cpc = { .reason = CP_SYNC, };
1747 int err;
1748
1749 down_write(&sbi->gc_lock);
1750 err = f2fs_write_checkpoint(sbi, &cpc);
1751 up_write(&sbi->gc_lock);
1752
1753 return err;
1754 }
1755
1756 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1757 {
1758 struct ckpt_req_control *cprc = &sbi->cprc_info;
1759 struct ckpt_req *req, *next;
1760 struct llist_node *dispatch_list;
1761 u64 sum_diff = 0, diff, count = 0;
1762 int ret;
1763
1764 dispatch_list = llist_del_all(&cprc->issue_list);
1765 if (!dispatch_list)
1766 return;
1767 dispatch_list = llist_reverse_order(dispatch_list);
1768
1769 ret = __write_checkpoint_sync(sbi);
1770 atomic_inc(&cprc->issued_ckpt);
1771
1772 llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1773 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1774 req->ret = ret;
1775 complete(&req->wait);
1776
1777 sum_diff += diff;
1778 count++;
1779 }
1780 atomic_sub(count, &cprc->queued_ckpt);
1781 atomic_add(count, &cprc->total_ckpt);
1782
1783 spin_lock(&cprc->stat_lock);
1784 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1785 if (cprc->peak_time < cprc->cur_time)
1786 cprc->peak_time = cprc->cur_time;
1787 spin_unlock(&cprc->stat_lock);
1788 }
1789
1790 static int issue_checkpoint_thread(void *data)
1791 {
1792 struct f2fs_sb_info *sbi = data;
1793 struct ckpt_req_control *cprc = &sbi->cprc_info;
1794 wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1795 repeat:
1796 if (kthread_should_stop())
1797 return 0;
1798
1799 if (!llist_empty(&cprc->issue_list))
1800 __checkpoint_and_complete_reqs(sbi);
1801
1802 wait_event_interruptible(*q,
1803 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1804 goto repeat;
1805 }
1806
1807 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1808 struct ckpt_req *wait_req)
1809 {
1810 struct ckpt_req_control *cprc = &sbi->cprc_info;
1811
1812 if (!llist_empty(&cprc->issue_list)) {
1813 __checkpoint_and_complete_reqs(sbi);
1814 } else {
1815 /* already dispatched by issue_checkpoint_thread */
1816 if (wait_req)
1817 wait_for_completion(&wait_req->wait);
1818 }
1819 }
1820
1821 static void init_ckpt_req(struct ckpt_req *req)
1822 {
1823 memset(req, 0, sizeof(struct ckpt_req));
1824
1825 init_completion(&req->wait);
1826 req->queue_time = ktime_get();
1827 }
1828
1829 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1830 {
1831 struct ckpt_req_control *cprc = &sbi->cprc_info;
1832 struct ckpt_req req;
1833 struct cp_control cpc;
1834
1835 cpc.reason = __get_cp_reason(sbi);
1836 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1837 int ret;
1838
1839 down_write(&sbi->gc_lock);
1840 ret = f2fs_write_checkpoint(sbi, &cpc);
1841 up_write(&sbi->gc_lock);
1842
1843 return ret;
1844 }
1845
1846 if (!cprc->f2fs_issue_ckpt)
1847 return __write_checkpoint_sync(sbi);
1848
1849 init_ckpt_req(&req);
1850
1851 llist_add(&req.llnode, &cprc->issue_list);
1852 atomic_inc(&cprc->queued_ckpt);
1853
1854 /*
1855 * update issue_list before we wake up issue_checkpoint thread,
1856 * this smp_mb() pairs with another barrier in ___wait_event(),
1857 * see more details in comments of waitqueue_active().
1858 */
1859 smp_mb();
1860
1861 if (waitqueue_active(&cprc->ckpt_wait_queue))
1862 wake_up(&cprc->ckpt_wait_queue);
1863
1864 if (cprc->f2fs_issue_ckpt)
1865 wait_for_completion(&req.wait);
1866 else
1867 flush_remained_ckpt_reqs(sbi, &req);
1868
1869 return req.ret;
1870 }
1871
1872 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1873 {
1874 dev_t dev = sbi->sb->s_bdev->bd_dev;
1875 struct ckpt_req_control *cprc = &sbi->cprc_info;
1876
1877 if (cprc->f2fs_issue_ckpt)
1878 return 0;
1879
1880 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1881 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1882 if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1883 cprc->f2fs_issue_ckpt = NULL;
1884 return -ENOMEM;
1885 }
1886
1887 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1888
1889 return 0;
1890 }
1891
1892 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1893 {
1894 struct ckpt_req_control *cprc = &sbi->cprc_info;
1895
1896 if (cprc->f2fs_issue_ckpt) {
1897 struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt;
1898
1899 cprc->f2fs_issue_ckpt = NULL;
1900 kthread_stop(ckpt_task);
1901
1902 flush_remained_ckpt_reqs(sbi, NULL);
1903 }
1904 }
1905
1906 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1907 {
1908 struct ckpt_req_control *cprc = &sbi->cprc_info;
1909
1910 atomic_set(&cprc->issued_ckpt, 0);
1911 atomic_set(&cprc->total_ckpt, 0);
1912 atomic_set(&cprc->queued_ckpt, 0);
1913 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1914 init_waitqueue_head(&cprc->ckpt_wait_queue);
1915 init_llist_head(&cprc->issue_list);
1916 spin_lock_init(&cprc->stat_lock);
1917 }