]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/checkpoint.c
Merge tag 'nfs-for-4.9-4' of git://git.linux-nfs.org/projects/anna/linux-nfs
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 sbi->sb->s_flags |= MS_RDONLY;
33 if (!end_io)
34 f2fs_flush_merged_bios(sbi);
35 }
36
37 /*
38 * We guarantee no failure on the returned page.
39 */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 struct address_space *mapping = META_MAPPING(sbi);
43 struct page *page = NULL;
44 repeat:
45 page = f2fs_grab_cache_page(mapping, index, false);
46 if (!page) {
47 cond_resched();
48 goto repeat;
49 }
50 f2fs_wait_on_page_writeback(page, META, true);
51 if (!PageUptodate(page))
52 SetPageUptodate(page);
53 return page;
54 }
55
56 /*
57 * We guarantee no failure on the returned page.
58 */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 bool is_meta)
61 {
62 struct address_space *mapping = META_MAPPING(sbi);
63 struct page *page;
64 struct f2fs_io_info fio = {
65 .sbi = sbi,
66 .type = META,
67 .op = REQ_OP_READ,
68 .op_flags = READ_SYNC | REQ_META | REQ_PRIO,
69 .old_blkaddr = index,
70 .new_blkaddr = index,
71 .encrypted_page = NULL,
72 };
73
74 if (unlikely(!is_meta))
75 fio.op_flags &= ~REQ_META;
76 repeat:
77 page = f2fs_grab_cache_page(mapping, index, false);
78 if (!page) {
79 cond_resched();
80 goto repeat;
81 }
82 if (PageUptodate(page))
83 goto out;
84
85 fio.page = page;
86
87 if (f2fs_submit_page_bio(&fio)) {
88 f2fs_put_page(page, 1);
89 goto repeat;
90 }
91
92 lock_page(page);
93 if (unlikely(page->mapping != mapping)) {
94 f2fs_put_page(page, 1);
95 goto repeat;
96 }
97
98 /*
99 * if there is any IO error when accessing device, make our filesystem
100 * readonly and make sure do not write checkpoint with non-uptodate
101 * meta page.
102 */
103 if (unlikely(!PageUptodate(page)))
104 f2fs_stop_checkpoint(sbi, false);
105 out:
106 return page;
107 }
108
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 return __get_meta_page(sbi, index, true);
112 }
113
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117 return __get_meta_page(sbi, index, false);
118 }
119
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122 switch (type) {
123 case META_NAT:
124 break;
125 case META_SIT:
126 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127 return false;
128 break;
129 case META_SSA:
130 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131 blkaddr < SM_I(sbi)->ssa_blkaddr))
132 return false;
133 break;
134 case META_CP:
135 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136 blkaddr < __start_cp_addr(sbi)))
137 return false;
138 break;
139 case META_POR:
140 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141 blkaddr < MAIN_BLKADDR(sbi)))
142 return false;
143 break;
144 default:
145 BUG();
146 }
147
148 return true;
149 }
150
151 /*
152 * Readahead CP/NAT/SIT/SSA pages
153 */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155 int type, bool sync)
156 {
157 struct page *page;
158 block_t blkno = start;
159 struct f2fs_io_info fio = {
160 .sbi = sbi,
161 .type = META,
162 .op = REQ_OP_READ,
163 .op_flags = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : REQ_RAHEAD,
164 .encrypted_page = NULL,
165 };
166 struct blk_plug plug;
167
168 if (unlikely(type == META_POR))
169 fio.op_flags &= ~REQ_META;
170
171 blk_start_plug(&plug);
172 for (; nrpages-- > 0; blkno++) {
173
174 if (!is_valid_blkaddr(sbi, blkno, type))
175 goto out;
176
177 switch (type) {
178 case META_NAT:
179 if (unlikely(blkno >=
180 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181 blkno = 0;
182 /* get nat block addr */
183 fio.new_blkaddr = current_nat_addr(sbi,
184 blkno * NAT_ENTRY_PER_BLOCK);
185 break;
186 case META_SIT:
187 /* get sit block addr */
188 fio.new_blkaddr = current_sit_addr(sbi,
189 blkno * SIT_ENTRY_PER_BLOCK);
190 break;
191 case META_SSA:
192 case META_CP:
193 case META_POR:
194 fio.new_blkaddr = blkno;
195 break;
196 default:
197 BUG();
198 }
199
200 page = f2fs_grab_cache_page(META_MAPPING(sbi),
201 fio.new_blkaddr, false);
202 if (!page)
203 continue;
204 if (PageUptodate(page)) {
205 f2fs_put_page(page, 1);
206 continue;
207 }
208
209 fio.page = page;
210 fio.old_blkaddr = fio.new_blkaddr;
211 f2fs_submit_page_mbio(&fio);
212 f2fs_put_page(page, 0);
213 }
214 out:
215 f2fs_submit_merged_bio(sbi, META, READ);
216 blk_finish_plug(&plug);
217 return blkno - start;
218 }
219
220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 {
222 struct page *page;
223 bool readahead = false;
224
225 page = find_get_page(META_MAPPING(sbi), index);
226 if (!page || !PageUptodate(page))
227 readahead = true;
228 f2fs_put_page(page, 0);
229
230 if (readahead)
231 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
232 }
233
234 static int f2fs_write_meta_page(struct page *page,
235 struct writeback_control *wbc)
236 {
237 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238
239 trace_f2fs_writepage(page, META);
240
241 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242 goto redirty_out;
243 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244 goto redirty_out;
245 if (unlikely(f2fs_cp_error(sbi)))
246 goto redirty_out;
247
248 write_meta_page(sbi, page);
249 dec_page_count(sbi, F2FS_DIRTY_META);
250
251 if (wbc->for_reclaim)
252 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
253
254 unlock_page(page);
255
256 if (unlikely(f2fs_cp_error(sbi)))
257 f2fs_submit_merged_bio(sbi, META, WRITE);
258
259 return 0;
260
261 redirty_out:
262 redirty_page_for_writepage(wbc, page);
263 return AOP_WRITEPAGE_ACTIVATE;
264 }
265
266 static int f2fs_write_meta_pages(struct address_space *mapping,
267 struct writeback_control *wbc)
268 {
269 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
270 long diff, written;
271
272 /* collect a number of dirty meta pages and write together */
273 if (wbc->for_kupdate ||
274 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
275 goto skip_write;
276
277 trace_f2fs_writepages(mapping->host, wbc, META);
278
279 /* if mounting is failed, skip writing node pages */
280 mutex_lock(&sbi->cp_mutex);
281 diff = nr_pages_to_write(sbi, META, wbc);
282 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
283 mutex_unlock(&sbi->cp_mutex);
284 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
285 return 0;
286
287 skip_write:
288 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
289 trace_f2fs_writepages(mapping->host, wbc, META);
290 return 0;
291 }
292
293 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
294 long nr_to_write)
295 {
296 struct address_space *mapping = META_MAPPING(sbi);
297 pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
298 struct pagevec pvec;
299 long nwritten = 0;
300 struct writeback_control wbc = {
301 .for_reclaim = 0,
302 };
303 struct blk_plug plug;
304
305 pagevec_init(&pvec, 0);
306
307 blk_start_plug(&plug);
308
309 while (index <= end) {
310 int i, nr_pages;
311 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
312 PAGECACHE_TAG_DIRTY,
313 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
314 if (unlikely(nr_pages == 0))
315 break;
316
317 for (i = 0; i < nr_pages; i++) {
318 struct page *page = pvec.pages[i];
319
320 if (prev == ULONG_MAX)
321 prev = page->index - 1;
322 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
323 pagevec_release(&pvec);
324 goto stop;
325 }
326
327 lock_page(page);
328
329 if (unlikely(page->mapping != mapping)) {
330 continue_unlock:
331 unlock_page(page);
332 continue;
333 }
334 if (!PageDirty(page)) {
335 /* someone wrote it for us */
336 goto continue_unlock;
337 }
338
339 f2fs_wait_on_page_writeback(page, META, true);
340
341 BUG_ON(PageWriteback(page));
342 if (!clear_page_dirty_for_io(page))
343 goto continue_unlock;
344
345 if (mapping->a_ops->writepage(page, &wbc)) {
346 unlock_page(page);
347 break;
348 }
349 nwritten++;
350 prev = page->index;
351 if (unlikely(nwritten >= nr_to_write))
352 break;
353 }
354 pagevec_release(&pvec);
355 cond_resched();
356 }
357 stop:
358 if (nwritten)
359 f2fs_submit_merged_bio(sbi, type, WRITE);
360
361 blk_finish_plug(&plug);
362
363 return nwritten;
364 }
365
366 static int f2fs_set_meta_page_dirty(struct page *page)
367 {
368 trace_f2fs_set_page_dirty(page, META);
369
370 if (!PageUptodate(page))
371 SetPageUptodate(page);
372 if (!PageDirty(page)) {
373 f2fs_set_page_dirty_nobuffers(page);
374 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
375 SetPagePrivate(page);
376 f2fs_trace_pid(page);
377 return 1;
378 }
379 return 0;
380 }
381
382 const struct address_space_operations f2fs_meta_aops = {
383 .writepage = f2fs_write_meta_page,
384 .writepages = f2fs_write_meta_pages,
385 .set_page_dirty = f2fs_set_meta_page_dirty,
386 .invalidatepage = f2fs_invalidate_page,
387 .releasepage = f2fs_release_page,
388 #ifdef CONFIG_MIGRATION
389 .migratepage = f2fs_migrate_page,
390 #endif
391 };
392
393 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
394 {
395 struct inode_management *im = &sbi->im[type];
396 struct ino_entry *e, *tmp;
397
398 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
399 retry:
400 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
401
402 spin_lock(&im->ino_lock);
403 e = radix_tree_lookup(&im->ino_root, ino);
404 if (!e) {
405 e = tmp;
406 if (radix_tree_insert(&im->ino_root, ino, e)) {
407 spin_unlock(&im->ino_lock);
408 radix_tree_preload_end();
409 goto retry;
410 }
411 memset(e, 0, sizeof(struct ino_entry));
412 e->ino = ino;
413
414 list_add_tail(&e->list, &im->ino_list);
415 if (type != ORPHAN_INO)
416 im->ino_num++;
417 }
418 spin_unlock(&im->ino_lock);
419 radix_tree_preload_end();
420
421 if (e != tmp)
422 kmem_cache_free(ino_entry_slab, tmp);
423 }
424
425 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
426 {
427 struct inode_management *im = &sbi->im[type];
428 struct ino_entry *e;
429
430 spin_lock(&im->ino_lock);
431 e = radix_tree_lookup(&im->ino_root, ino);
432 if (e) {
433 list_del(&e->list);
434 radix_tree_delete(&im->ino_root, ino);
435 im->ino_num--;
436 spin_unlock(&im->ino_lock);
437 kmem_cache_free(ino_entry_slab, e);
438 return;
439 }
440 spin_unlock(&im->ino_lock);
441 }
442
443 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
444 {
445 /* add new dirty ino entry into list */
446 __add_ino_entry(sbi, ino, type);
447 }
448
449 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
450 {
451 /* remove dirty ino entry from list */
452 __remove_ino_entry(sbi, ino, type);
453 }
454
455 /* mode should be APPEND_INO or UPDATE_INO */
456 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
457 {
458 struct inode_management *im = &sbi->im[mode];
459 struct ino_entry *e;
460
461 spin_lock(&im->ino_lock);
462 e = radix_tree_lookup(&im->ino_root, ino);
463 spin_unlock(&im->ino_lock);
464 return e ? true : false;
465 }
466
467 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
468 {
469 struct ino_entry *e, *tmp;
470 int i;
471
472 for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
473 struct inode_management *im = &sbi->im[i];
474
475 spin_lock(&im->ino_lock);
476 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
477 list_del(&e->list);
478 radix_tree_delete(&im->ino_root, e->ino);
479 kmem_cache_free(ino_entry_slab, e);
480 im->ino_num--;
481 }
482 spin_unlock(&im->ino_lock);
483 }
484 }
485
486 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
487 {
488 struct inode_management *im = &sbi->im[ORPHAN_INO];
489 int err = 0;
490
491 spin_lock(&im->ino_lock);
492
493 #ifdef CONFIG_F2FS_FAULT_INJECTION
494 if (time_to_inject(sbi, FAULT_ORPHAN)) {
495 spin_unlock(&im->ino_lock);
496 return -ENOSPC;
497 }
498 #endif
499 if (unlikely(im->ino_num >= sbi->max_orphans))
500 err = -ENOSPC;
501 else
502 im->ino_num++;
503 spin_unlock(&im->ino_lock);
504
505 return err;
506 }
507
508 void release_orphan_inode(struct f2fs_sb_info *sbi)
509 {
510 struct inode_management *im = &sbi->im[ORPHAN_INO];
511
512 spin_lock(&im->ino_lock);
513 f2fs_bug_on(sbi, im->ino_num == 0);
514 im->ino_num--;
515 spin_unlock(&im->ino_lock);
516 }
517
518 void add_orphan_inode(struct inode *inode)
519 {
520 /* add new orphan ino entry into list */
521 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
522 update_inode_page(inode);
523 }
524
525 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
526 {
527 /* remove orphan entry from orphan list */
528 __remove_ino_entry(sbi, ino, ORPHAN_INO);
529 }
530
531 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
532 {
533 struct inode *inode;
534 struct node_info ni;
535 int err = acquire_orphan_inode(sbi);
536
537 if (err) {
538 set_sbi_flag(sbi, SBI_NEED_FSCK);
539 f2fs_msg(sbi->sb, KERN_WARNING,
540 "%s: orphan failed (ino=%x), run fsck to fix.",
541 __func__, ino);
542 return err;
543 }
544
545 __add_ino_entry(sbi, ino, ORPHAN_INO);
546
547 inode = f2fs_iget_retry(sbi->sb, ino);
548 if (IS_ERR(inode)) {
549 /*
550 * there should be a bug that we can't find the entry
551 * to orphan inode.
552 */
553 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
554 return PTR_ERR(inode);
555 }
556
557 clear_nlink(inode);
558
559 /* truncate all the data during iput */
560 iput(inode);
561
562 get_node_info(sbi, ino, &ni);
563
564 /* ENOMEM was fully retried in f2fs_evict_inode. */
565 if (ni.blk_addr != NULL_ADDR) {
566 set_sbi_flag(sbi, SBI_NEED_FSCK);
567 f2fs_msg(sbi->sb, KERN_WARNING,
568 "%s: orphan failed (ino=%x), run fsck to fix.",
569 __func__, ino);
570 return -EIO;
571 }
572 __remove_ino_entry(sbi, ino, ORPHAN_INO);
573 return 0;
574 }
575
576 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
577 {
578 block_t start_blk, orphan_blocks, i, j;
579 int err;
580
581 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
582 return 0;
583
584 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
585 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
586
587 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
588
589 for (i = 0; i < orphan_blocks; i++) {
590 struct page *page = get_meta_page(sbi, start_blk + i);
591 struct f2fs_orphan_block *orphan_blk;
592
593 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
594 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
595 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
596 err = recover_orphan_inode(sbi, ino);
597 if (err) {
598 f2fs_put_page(page, 1);
599 return err;
600 }
601 }
602 f2fs_put_page(page, 1);
603 }
604 /* clear Orphan Flag */
605 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
606 return 0;
607 }
608
609 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
610 {
611 struct list_head *head;
612 struct f2fs_orphan_block *orphan_blk = NULL;
613 unsigned int nentries = 0;
614 unsigned short index = 1;
615 unsigned short orphan_blocks;
616 struct page *page = NULL;
617 struct ino_entry *orphan = NULL;
618 struct inode_management *im = &sbi->im[ORPHAN_INO];
619
620 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
621
622 /*
623 * we don't need to do spin_lock(&im->ino_lock) here, since all the
624 * orphan inode operations are covered under f2fs_lock_op().
625 * And, spin_lock should be avoided due to page operations below.
626 */
627 head = &im->ino_list;
628
629 /* loop for each orphan inode entry and write them in Jornal block */
630 list_for_each_entry(orphan, head, list) {
631 if (!page) {
632 page = grab_meta_page(sbi, start_blk++);
633 orphan_blk =
634 (struct f2fs_orphan_block *)page_address(page);
635 memset(orphan_blk, 0, sizeof(*orphan_blk));
636 }
637
638 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
639
640 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
641 /*
642 * an orphan block is full of 1020 entries,
643 * then we need to flush current orphan blocks
644 * and bring another one in memory
645 */
646 orphan_blk->blk_addr = cpu_to_le16(index);
647 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
648 orphan_blk->entry_count = cpu_to_le32(nentries);
649 set_page_dirty(page);
650 f2fs_put_page(page, 1);
651 index++;
652 nentries = 0;
653 page = NULL;
654 }
655 }
656
657 if (page) {
658 orphan_blk->blk_addr = cpu_to_le16(index);
659 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
660 orphan_blk->entry_count = cpu_to_le32(nentries);
661 set_page_dirty(page);
662 f2fs_put_page(page, 1);
663 }
664 }
665
666 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
667 struct f2fs_checkpoint **cp_block, struct page **cp_page,
668 unsigned long long *version)
669 {
670 unsigned long blk_size = sbi->blocksize;
671 size_t crc_offset = 0;
672 __u32 crc = 0;
673
674 *cp_page = get_meta_page(sbi, cp_addr);
675 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
676
677 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
678 if (crc_offset >= blk_size) {
679 f2fs_msg(sbi->sb, KERN_WARNING,
680 "invalid crc_offset: %zu", crc_offset);
681 return -EINVAL;
682 }
683
684 crc = le32_to_cpu(*((__le32 *)((unsigned char *)*cp_block
685 + crc_offset)));
686 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
687 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
688 return -EINVAL;
689 }
690
691 *version = cur_cp_version(*cp_block);
692 return 0;
693 }
694
695 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
696 block_t cp_addr, unsigned long long *version)
697 {
698 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
699 struct f2fs_checkpoint *cp_block = NULL;
700 unsigned long long cur_version = 0, pre_version = 0;
701 int err;
702
703 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
704 &cp_page_1, version);
705 if (err)
706 goto invalid_cp1;
707 pre_version = *version;
708
709 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
710 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
711 &cp_page_2, version);
712 if (err)
713 goto invalid_cp2;
714 cur_version = *version;
715
716 if (cur_version == pre_version) {
717 *version = cur_version;
718 f2fs_put_page(cp_page_2, 1);
719 return cp_page_1;
720 }
721 invalid_cp2:
722 f2fs_put_page(cp_page_2, 1);
723 invalid_cp1:
724 f2fs_put_page(cp_page_1, 1);
725 return NULL;
726 }
727
728 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
729 {
730 struct f2fs_checkpoint *cp_block;
731 struct f2fs_super_block *fsb = sbi->raw_super;
732 struct page *cp1, *cp2, *cur_page;
733 unsigned long blk_size = sbi->blocksize;
734 unsigned long long cp1_version = 0, cp2_version = 0;
735 unsigned long long cp_start_blk_no;
736 unsigned int cp_blks = 1 + __cp_payload(sbi);
737 block_t cp_blk_no;
738 int i;
739
740 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
741 if (!sbi->ckpt)
742 return -ENOMEM;
743 /*
744 * Finding out valid cp block involves read both
745 * sets( cp pack1 and cp pack 2)
746 */
747 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
748 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
749
750 /* The second checkpoint pack should start at the next segment */
751 cp_start_blk_no += ((unsigned long long)1) <<
752 le32_to_cpu(fsb->log_blocks_per_seg);
753 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
754
755 if (cp1 && cp2) {
756 if (ver_after(cp2_version, cp1_version))
757 cur_page = cp2;
758 else
759 cur_page = cp1;
760 } else if (cp1) {
761 cur_page = cp1;
762 } else if (cp2) {
763 cur_page = cp2;
764 } else {
765 goto fail_no_cp;
766 }
767
768 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
769 memcpy(sbi->ckpt, cp_block, blk_size);
770
771 /* Sanity checking of checkpoint */
772 if (sanity_check_ckpt(sbi))
773 goto fail_no_cp;
774
775 if (cp_blks <= 1)
776 goto done;
777
778 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
779 if (cur_page == cp2)
780 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
781
782 for (i = 1; i < cp_blks; i++) {
783 void *sit_bitmap_ptr;
784 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
785
786 cur_page = get_meta_page(sbi, cp_blk_no + i);
787 sit_bitmap_ptr = page_address(cur_page);
788 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
789 f2fs_put_page(cur_page, 1);
790 }
791 done:
792 f2fs_put_page(cp1, 1);
793 f2fs_put_page(cp2, 1);
794 return 0;
795
796 fail_no_cp:
797 kfree(sbi->ckpt);
798 return -EINVAL;
799 }
800
801 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
802 {
803 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
804 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
805
806 if (is_inode_flag_set(inode, flag))
807 return;
808
809 set_inode_flag(inode, flag);
810 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
811 stat_inc_dirty_inode(sbi, type);
812 }
813
814 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
815 {
816 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
817
818 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
819 return;
820
821 list_del_init(&F2FS_I(inode)->dirty_list);
822 clear_inode_flag(inode, flag);
823 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
824 }
825
826 void update_dirty_page(struct inode *inode, struct page *page)
827 {
828 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
829 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
830
831 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
832 !S_ISLNK(inode->i_mode))
833 return;
834
835 spin_lock(&sbi->inode_lock[type]);
836 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
837 __add_dirty_inode(inode, type);
838 inode_inc_dirty_pages(inode);
839 spin_unlock(&sbi->inode_lock[type]);
840
841 SetPagePrivate(page);
842 f2fs_trace_pid(page);
843 }
844
845 void remove_dirty_inode(struct inode *inode)
846 {
847 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
848 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
849
850 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
851 !S_ISLNK(inode->i_mode))
852 return;
853
854 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
855 return;
856
857 spin_lock(&sbi->inode_lock[type]);
858 __remove_dirty_inode(inode, type);
859 spin_unlock(&sbi->inode_lock[type]);
860 }
861
862 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
863 {
864 struct list_head *head;
865 struct inode *inode;
866 struct f2fs_inode_info *fi;
867 bool is_dir = (type == DIR_INODE);
868
869 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
870 get_pages(sbi, is_dir ?
871 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
872 retry:
873 if (unlikely(f2fs_cp_error(sbi)))
874 return -EIO;
875
876 spin_lock(&sbi->inode_lock[type]);
877
878 head = &sbi->inode_list[type];
879 if (list_empty(head)) {
880 spin_unlock(&sbi->inode_lock[type]);
881 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
882 get_pages(sbi, is_dir ?
883 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
884 return 0;
885 }
886 fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
887 inode = igrab(&fi->vfs_inode);
888 spin_unlock(&sbi->inode_lock[type]);
889 if (inode) {
890 filemap_fdatawrite(inode->i_mapping);
891 iput(inode);
892 } else {
893 /*
894 * We should submit bio, since it exists several
895 * wribacking dentry pages in the freeing inode.
896 */
897 f2fs_submit_merged_bio(sbi, DATA, WRITE);
898 cond_resched();
899 }
900 goto retry;
901 }
902
903 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
904 {
905 struct list_head *head = &sbi->inode_list[DIRTY_META];
906 struct inode *inode;
907 struct f2fs_inode_info *fi;
908 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
909
910 while (total--) {
911 if (unlikely(f2fs_cp_error(sbi)))
912 return -EIO;
913
914 spin_lock(&sbi->inode_lock[DIRTY_META]);
915 if (list_empty(head)) {
916 spin_unlock(&sbi->inode_lock[DIRTY_META]);
917 return 0;
918 }
919 fi = list_entry(head->next, struct f2fs_inode_info,
920 gdirty_list);
921 inode = igrab(&fi->vfs_inode);
922 spin_unlock(&sbi->inode_lock[DIRTY_META]);
923 if (inode) {
924 update_inode_page(inode);
925 iput(inode);
926 }
927 };
928 return 0;
929 }
930
931 /*
932 * Freeze all the FS-operations for checkpoint.
933 */
934 static int block_operations(struct f2fs_sb_info *sbi)
935 {
936 struct writeback_control wbc = {
937 .sync_mode = WB_SYNC_ALL,
938 .nr_to_write = LONG_MAX,
939 .for_reclaim = 0,
940 };
941 struct blk_plug plug;
942 int err = 0;
943
944 blk_start_plug(&plug);
945
946 retry_flush_dents:
947 f2fs_lock_all(sbi);
948 /* write all the dirty dentry pages */
949 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
950 f2fs_unlock_all(sbi);
951 err = sync_dirty_inodes(sbi, DIR_INODE);
952 if (err)
953 goto out;
954 goto retry_flush_dents;
955 }
956
957 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
958 f2fs_unlock_all(sbi);
959 err = f2fs_sync_inode_meta(sbi);
960 if (err)
961 goto out;
962 goto retry_flush_dents;
963 }
964
965 /*
966 * POR: we should ensure that there are no dirty node pages
967 * until finishing nat/sit flush.
968 */
969 retry_flush_nodes:
970 down_write(&sbi->node_write);
971
972 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
973 up_write(&sbi->node_write);
974 err = sync_node_pages(sbi, &wbc);
975 if (err) {
976 f2fs_unlock_all(sbi);
977 goto out;
978 }
979 goto retry_flush_nodes;
980 }
981 out:
982 blk_finish_plug(&plug);
983 return err;
984 }
985
986 static void unblock_operations(struct f2fs_sb_info *sbi)
987 {
988 up_write(&sbi->node_write);
989
990 build_free_nids(sbi);
991 f2fs_unlock_all(sbi);
992 }
993
994 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
995 {
996 DEFINE_WAIT(wait);
997
998 for (;;) {
999 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1000
1001 if (!atomic_read(&sbi->nr_wb_bios))
1002 break;
1003
1004 io_schedule_timeout(5*HZ);
1005 }
1006 finish_wait(&sbi->cp_wait, &wait);
1007 }
1008
1009 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1010 {
1011 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1012 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1013
1014 spin_lock(&sbi->cp_lock);
1015
1016 if (cpc->reason == CP_UMOUNT)
1017 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1018 else
1019 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1020
1021 if (cpc->reason == CP_FASTBOOT)
1022 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1023 else
1024 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1025
1026 if (orphan_num)
1027 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1028 else
1029 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1030
1031 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1032 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1033
1034 /* set this flag to activate crc|cp_ver for recovery */
1035 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1036
1037 spin_unlock(&sbi->cp_lock);
1038 }
1039
1040 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1041 {
1042 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1043 struct f2fs_nm_info *nm_i = NM_I(sbi);
1044 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1045 nid_t last_nid = nm_i->next_scan_nid;
1046 block_t start_blk;
1047 unsigned int data_sum_blocks, orphan_blocks;
1048 __u32 crc32 = 0;
1049 int i;
1050 int cp_payload_blks = __cp_payload(sbi);
1051 struct super_block *sb = sbi->sb;
1052 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1053 u64 kbytes_written;
1054
1055 /* Flush all the NAT/SIT pages */
1056 while (get_pages(sbi, F2FS_DIRTY_META)) {
1057 sync_meta_pages(sbi, META, LONG_MAX);
1058 if (unlikely(f2fs_cp_error(sbi)))
1059 return -EIO;
1060 }
1061
1062 next_free_nid(sbi, &last_nid);
1063
1064 /*
1065 * modify checkpoint
1066 * version number is already updated
1067 */
1068 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1069 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1070 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1071 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1072 ckpt->cur_node_segno[i] =
1073 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1074 ckpt->cur_node_blkoff[i] =
1075 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1076 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1077 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1078 }
1079 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1080 ckpt->cur_data_segno[i] =
1081 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1082 ckpt->cur_data_blkoff[i] =
1083 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1084 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1085 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1086 }
1087
1088 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1089 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1090 ckpt->next_free_nid = cpu_to_le32(last_nid);
1091
1092 /* 2 cp + n data seg summary + orphan inode blocks */
1093 data_sum_blocks = npages_for_summary_flush(sbi, false);
1094 spin_lock(&sbi->cp_lock);
1095 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1096 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1097 else
1098 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1099 spin_unlock(&sbi->cp_lock);
1100
1101 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1102 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1103 orphan_blocks);
1104
1105 if (__remain_node_summaries(cpc->reason))
1106 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1107 cp_payload_blks + data_sum_blocks +
1108 orphan_blocks + NR_CURSEG_NODE_TYPE);
1109 else
1110 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1111 cp_payload_blks + data_sum_blocks +
1112 orphan_blocks);
1113
1114 /* update ckpt flag for checkpoint */
1115 update_ckpt_flags(sbi, cpc);
1116
1117 /* update SIT/NAT bitmap */
1118 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1119 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1120
1121 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1122 *((__le32 *)((unsigned char *)ckpt +
1123 le32_to_cpu(ckpt->checksum_offset)))
1124 = cpu_to_le32(crc32);
1125
1126 start_blk = __start_cp_addr(sbi);
1127
1128 /* need to wait for end_io results */
1129 wait_on_all_pages_writeback(sbi);
1130 if (unlikely(f2fs_cp_error(sbi)))
1131 return -EIO;
1132
1133 /* write out checkpoint buffer at block 0 */
1134 update_meta_page(sbi, ckpt, start_blk++);
1135
1136 for (i = 1; i < 1 + cp_payload_blks; i++)
1137 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1138 start_blk++);
1139
1140 if (orphan_num) {
1141 write_orphan_inodes(sbi, start_blk);
1142 start_blk += orphan_blocks;
1143 }
1144
1145 write_data_summaries(sbi, start_blk);
1146 start_blk += data_sum_blocks;
1147
1148 /* Record write statistics in the hot node summary */
1149 kbytes_written = sbi->kbytes_written;
1150 if (sb->s_bdev->bd_part)
1151 kbytes_written += BD_PART_WRITTEN(sbi);
1152
1153 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1154
1155 if (__remain_node_summaries(cpc->reason)) {
1156 write_node_summaries(sbi, start_blk);
1157 start_blk += NR_CURSEG_NODE_TYPE;
1158 }
1159
1160 /* writeout checkpoint block */
1161 update_meta_page(sbi, ckpt, start_blk);
1162
1163 /* wait for previous submitted node/meta pages writeback */
1164 wait_on_all_pages_writeback(sbi);
1165
1166 if (unlikely(f2fs_cp_error(sbi)))
1167 return -EIO;
1168
1169 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1170 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1171
1172 /* update user_block_counts */
1173 sbi->last_valid_block_count = sbi->total_valid_block_count;
1174 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1175
1176 /* Here, we only have one bio having CP pack */
1177 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1178
1179 /* wait for previous submitted meta pages writeback */
1180 wait_on_all_pages_writeback(sbi);
1181
1182 release_ino_entry(sbi, false);
1183
1184 if (unlikely(f2fs_cp_error(sbi)))
1185 return -EIO;
1186
1187 clear_prefree_segments(sbi, cpc);
1188 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1189 clear_sbi_flag(sbi, SBI_NEED_CP);
1190
1191 /*
1192 * redirty superblock if metadata like node page or inode cache is
1193 * updated during writing checkpoint.
1194 */
1195 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1196 get_pages(sbi, F2FS_DIRTY_IMETA))
1197 set_sbi_flag(sbi, SBI_IS_DIRTY);
1198
1199 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1200
1201 return 0;
1202 }
1203
1204 /*
1205 * We guarantee that this checkpoint procedure will not fail.
1206 */
1207 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1208 {
1209 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1210 unsigned long long ckpt_ver;
1211 int err = 0;
1212
1213 mutex_lock(&sbi->cp_mutex);
1214
1215 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1216 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1217 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1218 goto out;
1219 if (unlikely(f2fs_cp_error(sbi))) {
1220 err = -EIO;
1221 goto out;
1222 }
1223 if (f2fs_readonly(sbi->sb)) {
1224 err = -EROFS;
1225 goto out;
1226 }
1227
1228 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1229
1230 err = block_operations(sbi);
1231 if (err)
1232 goto out;
1233
1234 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1235
1236 f2fs_flush_merged_bios(sbi);
1237
1238 /* this is the case of multiple fstrims without any changes */
1239 if (cpc->reason == CP_DISCARD && !is_sbi_flag_set(sbi, SBI_IS_DIRTY)) {
1240 f2fs_bug_on(sbi, NM_I(sbi)->dirty_nat_cnt);
1241 f2fs_bug_on(sbi, SIT_I(sbi)->dirty_sentries);
1242 f2fs_bug_on(sbi, prefree_segments(sbi));
1243 flush_sit_entries(sbi, cpc);
1244 clear_prefree_segments(sbi, cpc);
1245 f2fs_wait_all_discard_bio(sbi);
1246 unblock_operations(sbi);
1247 goto out;
1248 }
1249
1250 /*
1251 * update checkpoint pack index
1252 * Increase the version number so that
1253 * SIT entries and seg summaries are written at correct place
1254 */
1255 ckpt_ver = cur_cp_version(ckpt);
1256 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1257
1258 /* write cached NAT/SIT entries to NAT/SIT area */
1259 flush_nat_entries(sbi);
1260 flush_sit_entries(sbi, cpc);
1261
1262 /* unlock all the fs_lock[] in do_checkpoint() */
1263 err = do_checkpoint(sbi, cpc);
1264
1265 f2fs_wait_all_discard_bio(sbi);
1266
1267 unblock_operations(sbi);
1268 stat_inc_cp_count(sbi->stat_info);
1269
1270 if (cpc->reason == CP_RECOVERY)
1271 f2fs_msg(sbi->sb, KERN_NOTICE,
1272 "checkpoint: version = %llx", ckpt_ver);
1273
1274 /* do checkpoint periodically */
1275 f2fs_update_time(sbi, CP_TIME);
1276 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1277 out:
1278 mutex_unlock(&sbi->cp_mutex);
1279 return err;
1280 }
1281
1282 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1283 {
1284 int i;
1285
1286 for (i = 0; i < MAX_INO_ENTRY; i++) {
1287 struct inode_management *im = &sbi->im[i];
1288
1289 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1290 spin_lock_init(&im->ino_lock);
1291 INIT_LIST_HEAD(&im->ino_list);
1292 im->ino_num = 0;
1293 }
1294
1295 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1296 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1297 F2FS_ORPHANS_PER_BLOCK;
1298 }
1299
1300 int __init create_checkpoint_caches(void)
1301 {
1302 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1303 sizeof(struct ino_entry));
1304 if (!ino_entry_slab)
1305 return -ENOMEM;
1306 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1307 sizeof(struct inode_entry));
1308 if (!inode_entry_slab) {
1309 kmem_cache_destroy(ino_entry_slab);
1310 return -ENOMEM;
1311 }
1312 return 0;
1313 }
1314
1315 void destroy_checkpoint_caches(void)
1316 {
1317 kmem_cache_destroy(ino_entry_slab);
1318 kmem_cache_destroy(inode_entry_slab);
1319 }