]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/checkpoint.c
mmc: core: prepend 0x to OCR entry in sysfs
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 if (!end_io)
33 f2fs_flush_merged_writes(sbi);
34 }
35
36 /*
37 * We guarantee no failure on the returned page.
38 */
39 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
40 {
41 struct address_space *mapping = META_MAPPING(sbi);
42 struct page *page = NULL;
43 repeat:
44 page = f2fs_grab_cache_page(mapping, index, false);
45 if (!page) {
46 cond_resched();
47 goto repeat;
48 }
49 f2fs_wait_on_page_writeback(page, META, true);
50 if (!PageUptodate(page))
51 SetPageUptodate(page);
52 return page;
53 }
54
55 /*
56 * We guarantee no failure on the returned page.
57 */
58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
59 bool is_meta)
60 {
61 struct address_space *mapping = META_MAPPING(sbi);
62 struct page *page;
63 struct f2fs_io_info fio = {
64 .sbi = sbi,
65 .type = META,
66 .op = REQ_OP_READ,
67 .op_flags = REQ_META | REQ_PRIO,
68 .old_blkaddr = index,
69 .new_blkaddr = index,
70 .encrypted_page = NULL,
71 };
72
73 if (unlikely(!is_meta))
74 fio.op_flags &= ~REQ_META;
75 repeat:
76 page = f2fs_grab_cache_page(mapping, index, false);
77 if (!page) {
78 cond_resched();
79 goto repeat;
80 }
81 if (PageUptodate(page))
82 goto out;
83
84 fio.page = page;
85
86 if (f2fs_submit_page_bio(&fio)) {
87 f2fs_put_page(page, 1);
88 goto repeat;
89 }
90
91 lock_page(page);
92 if (unlikely(page->mapping != mapping)) {
93 f2fs_put_page(page, 1);
94 goto repeat;
95 }
96
97 /*
98 * if there is any IO error when accessing device, make our filesystem
99 * readonly and make sure do not write checkpoint with non-uptodate
100 * meta page.
101 */
102 if (unlikely(!PageUptodate(page)))
103 f2fs_stop_checkpoint(sbi, false);
104 out:
105 return page;
106 }
107
108 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
109 {
110 return __get_meta_page(sbi, index, true);
111 }
112
113 /* for POR only */
114 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
115 {
116 return __get_meta_page(sbi, index, false);
117 }
118
119 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
120 {
121 switch (type) {
122 case META_NAT:
123 break;
124 case META_SIT:
125 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
126 return false;
127 break;
128 case META_SSA:
129 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
130 blkaddr < SM_I(sbi)->ssa_blkaddr))
131 return false;
132 break;
133 case META_CP:
134 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
135 blkaddr < __start_cp_addr(sbi)))
136 return false;
137 break;
138 case META_POR:
139 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
140 blkaddr < MAIN_BLKADDR(sbi)))
141 return false;
142 break;
143 default:
144 BUG();
145 }
146
147 return true;
148 }
149
150 /*
151 * Readahead CP/NAT/SIT/SSA pages
152 */
153 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
154 int type, bool sync)
155 {
156 struct page *page;
157 block_t blkno = start;
158 struct f2fs_io_info fio = {
159 .sbi = sbi,
160 .type = META,
161 .op = REQ_OP_READ,
162 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
163 .encrypted_page = NULL,
164 .in_list = false,
165 };
166 struct blk_plug plug;
167
168 if (unlikely(type == META_POR))
169 fio.op_flags &= ~REQ_META;
170
171 blk_start_plug(&plug);
172 for (; nrpages-- > 0; blkno++) {
173
174 if (!is_valid_blkaddr(sbi, blkno, type))
175 goto out;
176
177 switch (type) {
178 case META_NAT:
179 if (unlikely(blkno >=
180 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181 blkno = 0;
182 /* get nat block addr */
183 fio.new_blkaddr = current_nat_addr(sbi,
184 blkno * NAT_ENTRY_PER_BLOCK);
185 break;
186 case META_SIT:
187 /* get sit block addr */
188 fio.new_blkaddr = current_sit_addr(sbi,
189 blkno * SIT_ENTRY_PER_BLOCK);
190 break;
191 case META_SSA:
192 case META_CP:
193 case META_POR:
194 fio.new_blkaddr = blkno;
195 break;
196 default:
197 BUG();
198 }
199
200 page = f2fs_grab_cache_page(META_MAPPING(sbi),
201 fio.new_blkaddr, false);
202 if (!page)
203 continue;
204 if (PageUptodate(page)) {
205 f2fs_put_page(page, 1);
206 continue;
207 }
208
209 fio.page = page;
210 f2fs_submit_page_bio(&fio);
211 f2fs_put_page(page, 0);
212 }
213 out:
214 blk_finish_plug(&plug);
215 return blkno - start;
216 }
217
218 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
219 {
220 struct page *page;
221 bool readahead = false;
222
223 page = find_get_page(META_MAPPING(sbi), index);
224 if (!page || !PageUptodate(page))
225 readahead = true;
226 f2fs_put_page(page, 0);
227
228 if (readahead)
229 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
230 }
231
232 static int __f2fs_write_meta_page(struct page *page,
233 struct writeback_control *wbc,
234 enum iostat_type io_type)
235 {
236 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
237
238 trace_f2fs_writepage(page, META);
239
240 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
241 goto redirty_out;
242 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
243 goto redirty_out;
244 if (unlikely(f2fs_cp_error(sbi)))
245 goto redirty_out;
246
247 write_meta_page(sbi, page, io_type);
248 dec_page_count(sbi, F2FS_DIRTY_META);
249
250 if (wbc->for_reclaim)
251 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
252 0, page->index, META);
253
254 unlock_page(page);
255
256 if (unlikely(f2fs_cp_error(sbi)))
257 f2fs_submit_merged_write(sbi, META);
258
259 return 0;
260
261 redirty_out:
262 redirty_page_for_writepage(wbc, page);
263 return AOP_WRITEPAGE_ACTIVATE;
264 }
265
266 static int f2fs_write_meta_page(struct page *page,
267 struct writeback_control *wbc)
268 {
269 return __f2fs_write_meta_page(page, wbc, FS_META_IO);
270 }
271
272 static int f2fs_write_meta_pages(struct address_space *mapping,
273 struct writeback_control *wbc)
274 {
275 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
276 long diff, written;
277
278 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
279 goto skip_write;
280
281 /* collect a number of dirty meta pages and write together */
282 if (wbc->for_kupdate ||
283 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
284 goto skip_write;
285
286 /* if locked failed, cp will flush dirty pages instead */
287 if (!mutex_trylock(&sbi->cp_mutex))
288 goto skip_write;
289
290 trace_f2fs_writepages(mapping->host, wbc, META);
291 diff = nr_pages_to_write(sbi, META, wbc);
292 written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
293 mutex_unlock(&sbi->cp_mutex);
294 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
295 return 0;
296
297 skip_write:
298 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
299 trace_f2fs_writepages(mapping->host, wbc, META);
300 return 0;
301 }
302
303 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
304 long nr_to_write, enum iostat_type io_type)
305 {
306 struct address_space *mapping = META_MAPPING(sbi);
307 pgoff_t index = 0, prev = ULONG_MAX;
308 struct pagevec pvec;
309 long nwritten = 0;
310 int nr_pages;
311 struct writeback_control wbc = {
312 .for_reclaim = 0,
313 };
314 struct blk_plug plug;
315
316 pagevec_init(&pvec);
317
318 blk_start_plug(&plug);
319
320 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
321 PAGECACHE_TAG_DIRTY))) {
322 int i;
323
324 for (i = 0; i < nr_pages; i++) {
325 struct page *page = pvec.pages[i];
326
327 if (prev == ULONG_MAX)
328 prev = page->index - 1;
329 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
330 pagevec_release(&pvec);
331 goto stop;
332 }
333
334 lock_page(page);
335
336 if (unlikely(page->mapping != mapping)) {
337 continue_unlock:
338 unlock_page(page);
339 continue;
340 }
341 if (!PageDirty(page)) {
342 /* someone wrote it for us */
343 goto continue_unlock;
344 }
345
346 f2fs_wait_on_page_writeback(page, META, true);
347
348 BUG_ON(PageWriteback(page));
349 if (!clear_page_dirty_for_io(page))
350 goto continue_unlock;
351
352 if (__f2fs_write_meta_page(page, &wbc, io_type)) {
353 unlock_page(page);
354 break;
355 }
356 nwritten++;
357 prev = page->index;
358 if (unlikely(nwritten >= nr_to_write))
359 break;
360 }
361 pagevec_release(&pvec);
362 cond_resched();
363 }
364 stop:
365 if (nwritten)
366 f2fs_submit_merged_write(sbi, type);
367
368 blk_finish_plug(&plug);
369
370 return nwritten;
371 }
372
373 static int f2fs_set_meta_page_dirty(struct page *page)
374 {
375 trace_f2fs_set_page_dirty(page, META);
376
377 if (!PageUptodate(page))
378 SetPageUptodate(page);
379 if (!PageDirty(page)) {
380 f2fs_set_page_dirty_nobuffers(page);
381 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
382 SetPagePrivate(page);
383 f2fs_trace_pid(page);
384 return 1;
385 }
386 return 0;
387 }
388
389 const struct address_space_operations f2fs_meta_aops = {
390 .writepage = f2fs_write_meta_page,
391 .writepages = f2fs_write_meta_pages,
392 .set_page_dirty = f2fs_set_meta_page_dirty,
393 .invalidatepage = f2fs_invalidate_page,
394 .releasepage = f2fs_release_page,
395 #ifdef CONFIG_MIGRATION
396 .migratepage = f2fs_migrate_page,
397 #endif
398 };
399
400 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
401 unsigned int devidx, int type)
402 {
403 struct inode_management *im = &sbi->im[type];
404 struct ino_entry *e, *tmp;
405
406 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
407
408 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
409
410 spin_lock(&im->ino_lock);
411 e = radix_tree_lookup(&im->ino_root, ino);
412 if (!e) {
413 e = tmp;
414 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
415 f2fs_bug_on(sbi, 1);
416
417 memset(e, 0, sizeof(struct ino_entry));
418 e->ino = ino;
419
420 list_add_tail(&e->list, &im->ino_list);
421 if (type != ORPHAN_INO)
422 im->ino_num++;
423 }
424
425 if (type == FLUSH_INO)
426 f2fs_set_bit(devidx, (char *)&e->dirty_device);
427
428 spin_unlock(&im->ino_lock);
429 radix_tree_preload_end();
430
431 if (e != tmp)
432 kmem_cache_free(ino_entry_slab, tmp);
433 }
434
435 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
436 {
437 struct inode_management *im = &sbi->im[type];
438 struct ino_entry *e;
439
440 spin_lock(&im->ino_lock);
441 e = radix_tree_lookup(&im->ino_root, ino);
442 if (e) {
443 list_del(&e->list);
444 radix_tree_delete(&im->ino_root, ino);
445 im->ino_num--;
446 spin_unlock(&im->ino_lock);
447 kmem_cache_free(ino_entry_slab, e);
448 return;
449 }
450 spin_unlock(&im->ino_lock);
451 }
452
453 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
454 {
455 /* add new dirty ino entry into list */
456 __add_ino_entry(sbi, ino, 0, type);
457 }
458
459 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
460 {
461 /* remove dirty ino entry from list */
462 __remove_ino_entry(sbi, ino, type);
463 }
464
465 /* mode should be APPEND_INO or UPDATE_INO */
466 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
467 {
468 struct inode_management *im = &sbi->im[mode];
469 struct ino_entry *e;
470
471 spin_lock(&im->ino_lock);
472 e = radix_tree_lookup(&im->ino_root, ino);
473 spin_unlock(&im->ino_lock);
474 return e ? true : false;
475 }
476
477 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
478 {
479 struct ino_entry *e, *tmp;
480 int i;
481
482 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
483 struct inode_management *im = &sbi->im[i];
484
485 spin_lock(&im->ino_lock);
486 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
487 list_del(&e->list);
488 radix_tree_delete(&im->ino_root, e->ino);
489 kmem_cache_free(ino_entry_slab, e);
490 im->ino_num--;
491 }
492 spin_unlock(&im->ino_lock);
493 }
494 }
495
496 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
497 unsigned int devidx, int type)
498 {
499 __add_ino_entry(sbi, ino, devidx, type);
500 }
501
502 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
503 unsigned int devidx, int type)
504 {
505 struct inode_management *im = &sbi->im[type];
506 struct ino_entry *e;
507 bool is_dirty = false;
508
509 spin_lock(&im->ino_lock);
510 e = radix_tree_lookup(&im->ino_root, ino);
511 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
512 is_dirty = true;
513 spin_unlock(&im->ino_lock);
514 return is_dirty;
515 }
516
517 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
518 {
519 struct inode_management *im = &sbi->im[ORPHAN_INO];
520 int err = 0;
521
522 spin_lock(&im->ino_lock);
523
524 #ifdef CONFIG_F2FS_FAULT_INJECTION
525 if (time_to_inject(sbi, FAULT_ORPHAN)) {
526 spin_unlock(&im->ino_lock);
527 f2fs_show_injection_info(FAULT_ORPHAN);
528 return -ENOSPC;
529 }
530 #endif
531 if (unlikely(im->ino_num >= sbi->max_orphans))
532 err = -ENOSPC;
533 else
534 im->ino_num++;
535 spin_unlock(&im->ino_lock);
536
537 return err;
538 }
539
540 void release_orphan_inode(struct f2fs_sb_info *sbi)
541 {
542 struct inode_management *im = &sbi->im[ORPHAN_INO];
543
544 spin_lock(&im->ino_lock);
545 f2fs_bug_on(sbi, im->ino_num == 0);
546 im->ino_num--;
547 spin_unlock(&im->ino_lock);
548 }
549
550 void add_orphan_inode(struct inode *inode)
551 {
552 /* add new orphan ino entry into list */
553 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
554 update_inode_page(inode);
555 }
556
557 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
558 {
559 /* remove orphan entry from orphan list */
560 __remove_ino_entry(sbi, ino, ORPHAN_INO);
561 }
562
563 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
564 {
565 struct inode *inode;
566 struct node_info ni;
567 int err = acquire_orphan_inode(sbi);
568
569 if (err) {
570 set_sbi_flag(sbi, SBI_NEED_FSCK);
571 f2fs_msg(sbi->sb, KERN_WARNING,
572 "%s: orphan failed (ino=%x), run fsck to fix.",
573 __func__, ino);
574 return err;
575 }
576
577 __add_ino_entry(sbi, ino, 0, ORPHAN_INO);
578
579 inode = f2fs_iget_retry(sbi->sb, ino);
580 if (IS_ERR(inode)) {
581 /*
582 * there should be a bug that we can't find the entry
583 * to orphan inode.
584 */
585 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
586 return PTR_ERR(inode);
587 }
588
589 clear_nlink(inode);
590
591 /* truncate all the data during iput */
592 iput(inode);
593
594 get_node_info(sbi, ino, &ni);
595
596 /* ENOMEM was fully retried in f2fs_evict_inode. */
597 if (ni.blk_addr != NULL_ADDR) {
598 set_sbi_flag(sbi, SBI_NEED_FSCK);
599 f2fs_msg(sbi->sb, KERN_WARNING,
600 "%s: orphan failed (ino=%x) by kernel, retry mount.",
601 __func__, ino);
602 return -EIO;
603 }
604 __remove_ino_entry(sbi, ino, ORPHAN_INO);
605 return 0;
606 }
607
608 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
609 {
610 block_t start_blk, orphan_blocks, i, j;
611 unsigned int s_flags = sbi->sb->s_flags;
612 int err = 0;
613 #ifdef CONFIG_QUOTA
614 int quota_enabled;
615 #endif
616
617 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
618 return 0;
619
620 if (s_flags & MS_RDONLY) {
621 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
622 sbi->sb->s_flags &= ~MS_RDONLY;
623 }
624
625 #ifdef CONFIG_QUOTA
626 /* Needed for iput() to work correctly and not trash data */
627 sbi->sb->s_flags |= MS_ACTIVE;
628
629 /* Turn on quotas so that they are updated correctly */
630 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & MS_RDONLY);
631 #endif
632
633 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
634 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
635
636 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
637
638 for (i = 0; i < orphan_blocks; i++) {
639 struct page *page = get_meta_page(sbi, start_blk + i);
640 struct f2fs_orphan_block *orphan_blk;
641
642 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
643 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
644 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
645 err = recover_orphan_inode(sbi, ino);
646 if (err) {
647 f2fs_put_page(page, 1);
648 goto out;
649 }
650 }
651 f2fs_put_page(page, 1);
652 }
653 /* clear Orphan Flag */
654 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
655 out:
656 #ifdef CONFIG_QUOTA
657 /* Turn quotas off */
658 if (quota_enabled)
659 f2fs_quota_off_umount(sbi->sb);
660 #endif
661 sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */
662
663 return err;
664 }
665
666 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
667 {
668 struct list_head *head;
669 struct f2fs_orphan_block *orphan_blk = NULL;
670 unsigned int nentries = 0;
671 unsigned short index = 1;
672 unsigned short orphan_blocks;
673 struct page *page = NULL;
674 struct ino_entry *orphan = NULL;
675 struct inode_management *im = &sbi->im[ORPHAN_INO];
676
677 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
678
679 /*
680 * we don't need to do spin_lock(&im->ino_lock) here, since all the
681 * orphan inode operations are covered under f2fs_lock_op().
682 * And, spin_lock should be avoided due to page operations below.
683 */
684 head = &im->ino_list;
685
686 /* loop for each orphan inode entry and write them in Jornal block */
687 list_for_each_entry(orphan, head, list) {
688 if (!page) {
689 page = grab_meta_page(sbi, start_blk++);
690 orphan_blk =
691 (struct f2fs_orphan_block *)page_address(page);
692 memset(orphan_blk, 0, sizeof(*orphan_blk));
693 }
694
695 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
696
697 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
698 /*
699 * an orphan block is full of 1020 entries,
700 * then we need to flush current orphan blocks
701 * and bring another one in memory
702 */
703 orphan_blk->blk_addr = cpu_to_le16(index);
704 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
705 orphan_blk->entry_count = cpu_to_le32(nentries);
706 set_page_dirty(page);
707 f2fs_put_page(page, 1);
708 index++;
709 nentries = 0;
710 page = NULL;
711 }
712 }
713
714 if (page) {
715 orphan_blk->blk_addr = cpu_to_le16(index);
716 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
717 orphan_blk->entry_count = cpu_to_le32(nentries);
718 set_page_dirty(page);
719 f2fs_put_page(page, 1);
720 }
721 }
722
723 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
724 struct f2fs_checkpoint **cp_block, struct page **cp_page,
725 unsigned long long *version)
726 {
727 unsigned long blk_size = sbi->blocksize;
728 size_t crc_offset = 0;
729 __u32 crc = 0;
730
731 *cp_page = get_meta_page(sbi, cp_addr);
732 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
733
734 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
735 if (crc_offset > (blk_size - sizeof(__le32))) {
736 f2fs_msg(sbi->sb, KERN_WARNING,
737 "invalid crc_offset: %zu", crc_offset);
738 return -EINVAL;
739 }
740
741 crc = cur_cp_crc(*cp_block);
742 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
743 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
744 return -EINVAL;
745 }
746
747 *version = cur_cp_version(*cp_block);
748 return 0;
749 }
750
751 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
752 block_t cp_addr, unsigned long long *version)
753 {
754 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
755 struct f2fs_checkpoint *cp_block = NULL;
756 unsigned long long cur_version = 0, pre_version = 0;
757 int err;
758
759 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
760 &cp_page_1, version);
761 if (err)
762 goto invalid_cp1;
763 pre_version = *version;
764
765 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
766 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
767 &cp_page_2, version);
768 if (err)
769 goto invalid_cp2;
770 cur_version = *version;
771
772 if (cur_version == pre_version) {
773 *version = cur_version;
774 f2fs_put_page(cp_page_2, 1);
775 return cp_page_1;
776 }
777 invalid_cp2:
778 f2fs_put_page(cp_page_2, 1);
779 invalid_cp1:
780 f2fs_put_page(cp_page_1, 1);
781 return NULL;
782 }
783
784 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
785 {
786 struct f2fs_checkpoint *cp_block;
787 struct f2fs_super_block *fsb = sbi->raw_super;
788 struct page *cp1, *cp2, *cur_page;
789 unsigned long blk_size = sbi->blocksize;
790 unsigned long long cp1_version = 0, cp2_version = 0;
791 unsigned long long cp_start_blk_no;
792 unsigned int cp_blks = 1 + __cp_payload(sbi);
793 block_t cp_blk_no;
794 int i;
795
796 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
797 if (!sbi->ckpt)
798 return -ENOMEM;
799 /*
800 * Finding out valid cp block involves read both
801 * sets( cp pack1 and cp pack 2)
802 */
803 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
804 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
805
806 /* The second checkpoint pack should start at the next segment */
807 cp_start_blk_no += ((unsigned long long)1) <<
808 le32_to_cpu(fsb->log_blocks_per_seg);
809 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
810
811 if (cp1 && cp2) {
812 if (ver_after(cp2_version, cp1_version))
813 cur_page = cp2;
814 else
815 cur_page = cp1;
816 } else if (cp1) {
817 cur_page = cp1;
818 } else if (cp2) {
819 cur_page = cp2;
820 } else {
821 goto fail_no_cp;
822 }
823
824 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
825 memcpy(sbi->ckpt, cp_block, blk_size);
826
827 /* Sanity checking of checkpoint */
828 if (sanity_check_ckpt(sbi))
829 goto free_fail_no_cp;
830
831 if (cur_page == cp1)
832 sbi->cur_cp_pack = 1;
833 else
834 sbi->cur_cp_pack = 2;
835
836 if (cp_blks <= 1)
837 goto done;
838
839 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
840 if (cur_page == cp2)
841 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
842
843 for (i = 1; i < cp_blks; i++) {
844 void *sit_bitmap_ptr;
845 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
846
847 cur_page = get_meta_page(sbi, cp_blk_no + i);
848 sit_bitmap_ptr = page_address(cur_page);
849 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
850 f2fs_put_page(cur_page, 1);
851 }
852 done:
853 f2fs_put_page(cp1, 1);
854 f2fs_put_page(cp2, 1);
855 return 0;
856
857 free_fail_no_cp:
858 f2fs_put_page(cp1, 1);
859 f2fs_put_page(cp2, 1);
860 fail_no_cp:
861 kfree(sbi->ckpt);
862 return -EINVAL;
863 }
864
865 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
866 {
867 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
868 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
869
870 if (is_inode_flag_set(inode, flag))
871 return;
872
873 set_inode_flag(inode, flag);
874 if (!f2fs_is_volatile_file(inode))
875 list_add_tail(&F2FS_I(inode)->dirty_list,
876 &sbi->inode_list[type]);
877 stat_inc_dirty_inode(sbi, type);
878 }
879
880 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
881 {
882 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
883
884 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
885 return;
886
887 list_del_init(&F2FS_I(inode)->dirty_list);
888 clear_inode_flag(inode, flag);
889 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
890 }
891
892 void update_dirty_page(struct inode *inode, struct page *page)
893 {
894 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
895 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
896
897 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
898 !S_ISLNK(inode->i_mode))
899 return;
900
901 spin_lock(&sbi->inode_lock[type]);
902 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
903 __add_dirty_inode(inode, type);
904 inode_inc_dirty_pages(inode);
905 spin_unlock(&sbi->inode_lock[type]);
906
907 SetPagePrivate(page);
908 f2fs_trace_pid(page);
909 }
910
911 void remove_dirty_inode(struct inode *inode)
912 {
913 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
914 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
915
916 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
917 !S_ISLNK(inode->i_mode))
918 return;
919
920 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
921 return;
922
923 spin_lock(&sbi->inode_lock[type]);
924 __remove_dirty_inode(inode, type);
925 spin_unlock(&sbi->inode_lock[type]);
926 }
927
928 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
929 {
930 struct list_head *head;
931 struct inode *inode;
932 struct f2fs_inode_info *fi;
933 bool is_dir = (type == DIR_INODE);
934 unsigned long ino = 0;
935
936 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
937 get_pages(sbi, is_dir ?
938 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
939 retry:
940 if (unlikely(f2fs_cp_error(sbi)))
941 return -EIO;
942
943 spin_lock(&sbi->inode_lock[type]);
944
945 head = &sbi->inode_list[type];
946 if (list_empty(head)) {
947 spin_unlock(&sbi->inode_lock[type]);
948 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
949 get_pages(sbi, is_dir ?
950 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
951 return 0;
952 }
953 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
954 inode = igrab(&fi->vfs_inode);
955 spin_unlock(&sbi->inode_lock[type]);
956 if (inode) {
957 unsigned long cur_ino = inode->i_ino;
958
959 if (is_dir)
960 F2FS_I(inode)->cp_task = current;
961
962 filemap_fdatawrite(inode->i_mapping);
963
964 if (is_dir)
965 F2FS_I(inode)->cp_task = NULL;
966
967 iput(inode);
968 /* We need to give cpu to another writers. */
969 if (ino == cur_ino) {
970 congestion_wait(BLK_RW_ASYNC, HZ/50);
971 cond_resched();
972 } else {
973 ino = cur_ino;
974 }
975 } else {
976 /*
977 * We should submit bio, since it exists several
978 * wribacking dentry pages in the freeing inode.
979 */
980 f2fs_submit_merged_write(sbi, DATA);
981 cond_resched();
982 }
983 goto retry;
984 }
985
986 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
987 {
988 struct list_head *head = &sbi->inode_list[DIRTY_META];
989 struct inode *inode;
990 struct f2fs_inode_info *fi;
991 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
992
993 while (total--) {
994 if (unlikely(f2fs_cp_error(sbi)))
995 return -EIO;
996
997 spin_lock(&sbi->inode_lock[DIRTY_META]);
998 if (list_empty(head)) {
999 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1000 return 0;
1001 }
1002 fi = list_first_entry(head, struct f2fs_inode_info,
1003 gdirty_list);
1004 inode = igrab(&fi->vfs_inode);
1005 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1006 if (inode) {
1007 sync_inode_metadata(inode, 0);
1008
1009 /* it's on eviction */
1010 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1011 update_inode_page(inode);
1012 iput(inode);
1013 }
1014 }
1015 return 0;
1016 }
1017
1018 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1019 {
1020 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1021 struct f2fs_nm_info *nm_i = NM_I(sbi);
1022 nid_t last_nid = nm_i->next_scan_nid;
1023
1024 next_free_nid(sbi, &last_nid);
1025 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1026 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1027 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1028 ckpt->next_free_nid = cpu_to_le32(last_nid);
1029 }
1030
1031 /*
1032 * Freeze all the FS-operations for checkpoint.
1033 */
1034 static int block_operations(struct f2fs_sb_info *sbi)
1035 {
1036 struct writeback_control wbc = {
1037 .sync_mode = WB_SYNC_ALL,
1038 .nr_to_write = LONG_MAX,
1039 .for_reclaim = 0,
1040 };
1041 struct blk_plug plug;
1042 int err = 0;
1043
1044 blk_start_plug(&plug);
1045
1046 retry_flush_dents:
1047 f2fs_lock_all(sbi);
1048 /* write all the dirty dentry pages */
1049 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1050 f2fs_unlock_all(sbi);
1051 err = sync_dirty_inodes(sbi, DIR_INODE);
1052 if (err)
1053 goto out;
1054 cond_resched();
1055 goto retry_flush_dents;
1056 }
1057
1058 /*
1059 * POR: we should ensure that there are no dirty node pages
1060 * until finishing nat/sit flush. inode->i_blocks can be updated.
1061 */
1062 down_write(&sbi->node_change);
1063
1064 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1065 up_write(&sbi->node_change);
1066 f2fs_unlock_all(sbi);
1067 err = f2fs_sync_inode_meta(sbi);
1068 if (err)
1069 goto out;
1070 cond_resched();
1071 goto retry_flush_dents;
1072 }
1073
1074 retry_flush_nodes:
1075 down_write(&sbi->node_write);
1076
1077 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1078 up_write(&sbi->node_write);
1079 err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1080 if (err) {
1081 up_write(&sbi->node_change);
1082 f2fs_unlock_all(sbi);
1083 goto out;
1084 }
1085 cond_resched();
1086 goto retry_flush_nodes;
1087 }
1088
1089 /*
1090 * sbi->node_change is used only for AIO write_begin path which produces
1091 * dirty node blocks and some checkpoint values by block allocation.
1092 */
1093 __prepare_cp_block(sbi);
1094 up_write(&sbi->node_change);
1095 out:
1096 blk_finish_plug(&plug);
1097 return err;
1098 }
1099
1100 static void unblock_operations(struct f2fs_sb_info *sbi)
1101 {
1102 up_write(&sbi->node_write);
1103 f2fs_unlock_all(sbi);
1104 }
1105
1106 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1107 {
1108 DEFINE_WAIT(wait);
1109
1110 for (;;) {
1111 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1112
1113 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1114 break;
1115
1116 io_schedule_timeout(5*HZ);
1117 }
1118 finish_wait(&sbi->cp_wait, &wait);
1119 }
1120
1121 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1122 {
1123 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1124 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1125 unsigned long flags;
1126
1127 spin_lock_irqsave(&sbi->cp_lock, flags);
1128
1129 if ((cpc->reason & CP_UMOUNT) &&
1130 le32_to_cpu(ckpt->cp_pack_total_block_count) >
1131 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1132 disable_nat_bits(sbi, false);
1133
1134 if (cpc->reason & CP_TRIMMED)
1135 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1136
1137 if (cpc->reason & CP_UMOUNT)
1138 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1139 else
1140 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1141
1142 if (cpc->reason & CP_FASTBOOT)
1143 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1144 else
1145 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1146
1147 if (orphan_num)
1148 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1149 else
1150 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1151
1152 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1153 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1154
1155 /* set this flag to activate crc|cp_ver for recovery */
1156 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1157
1158 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1159 }
1160
1161 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1162 {
1163 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1164 struct f2fs_nm_info *nm_i = NM_I(sbi);
1165 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1166 block_t start_blk;
1167 unsigned int data_sum_blocks, orphan_blocks;
1168 __u32 crc32 = 0;
1169 int i;
1170 int cp_payload_blks = __cp_payload(sbi);
1171 struct super_block *sb = sbi->sb;
1172 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1173 u64 kbytes_written;
1174 int err;
1175
1176 /* Flush all the NAT/SIT pages */
1177 while (get_pages(sbi, F2FS_DIRTY_META)) {
1178 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1179 if (unlikely(f2fs_cp_error(sbi)))
1180 return -EIO;
1181 }
1182
1183 /*
1184 * modify checkpoint
1185 * version number is already updated
1186 */
1187 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1188 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1189 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1190 ckpt->cur_node_segno[i] =
1191 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1192 ckpt->cur_node_blkoff[i] =
1193 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1194 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1195 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1196 }
1197 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1198 ckpt->cur_data_segno[i] =
1199 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1200 ckpt->cur_data_blkoff[i] =
1201 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1202 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1203 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1204 }
1205
1206 /* 2 cp + n data seg summary + orphan inode blocks */
1207 data_sum_blocks = npages_for_summary_flush(sbi, false);
1208 spin_lock_irqsave(&sbi->cp_lock, flags);
1209 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1210 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1211 else
1212 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1213 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1214
1215 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1216 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1217 orphan_blocks);
1218
1219 if (__remain_node_summaries(cpc->reason))
1220 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1221 cp_payload_blks + data_sum_blocks +
1222 orphan_blocks + NR_CURSEG_NODE_TYPE);
1223 else
1224 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1225 cp_payload_blks + data_sum_blocks +
1226 orphan_blocks);
1227
1228 /* update ckpt flag for checkpoint */
1229 update_ckpt_flags(sbi, cpc);
1230
1231 /* update SIT/NAT bitmap */
1232 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1233 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1234
1235 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1236 *((__le32 *)((unsigned char *)ckpt +
1237 le32_to_cpu(ckpt->checksum_offset)))
1238 = cpu_to_le32(crc32);
1239
1240 start_blk = __start_cp_next_addr(sbi);
1241
1242 /* write nat bits */
1243 if (enabled_nat_bits(sbi, cpc)) {
1244 __u64 cp_ver = cur_cp_version(ckpt);
1245 block_t blk;
1246
1247 cp_ver |= ((__u64)crc32 << 32);
1248 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1249
1250 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1251 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1252 update_meta_page(sbi, nm_i->nat_bits +
1253 (i << F2FS_BLKSIZE_BITS), blk + i);
1254
1255 /* Flush all the NAT BITS pages */
1256 while (get_pages(sbi, F2FS_DIRTY_META)) {
1257 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1258 if (unlikely(f2fs_cp_error(sbi)))
1259 return -EIO;
1260 }
1261 }
1262
1263 /* need to wait for end_io results */
1264 wait_on_all_pages_writeback(sbi);
1265 if (unlikely(f2fs_cp_error(sbi)))
1266 return -EIO;
1267
1268 /* flush all device cache */
1269 err = f2fs_flush_device_cache(sbi);
1270 if (err)
1271 return err;
1272
1273 /* write out checkpoint buffer at block 0 */
1274 update_meta_page(sbi, ckpt, start_blk++);
1275
1276 for (i = 1; i < 1 + cp_payload_blks; i++)
1277 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1278 start_blk++);
1279
1280 if (orphan_num) {
1281 write_orphan_inodes(sbi, start_blk);
1282 start_blk += orphan_blocks;
1283 }
1284
1285 write_data_summaries(sbi, start_blk);
1286 start_blk += data_sum_blocks;
1287
1288 /* Record write statistics in the hot node summary */
1289 kbytes_written = sbi->kbytes_written;
1290 if (sb->s_bdev->bd_part)
1291 kbytes_written += BD_PART_WRITTEN(sbi);
1292
1293 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1294
1295 if (__remain_node_summaries(cpc->reason)) {
1296 write_node_summaries(sbi, start_blk);
1297 start_blk += NR_CURSEG_NODE_TYPE;
1298 }
1299
1300 /* writeout checkpoint block */
1301 update_meta_page(sbi, ckpt, start_blk);
1302
1303 /* wait for previous submitted node/meta pages writeback */
1304 wait_on_all_pages_writeback(sbi);
1305
1306 if (unlikely(f2fs_cp_error(sbi)))
1307 return -EIO;
1308
1309 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1310 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1311
1312 /* update user_block_counts */
1313 sbi->last_valid_block_count = sbi->total_valid_block_count;
1314 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1315
1316 /* Here, we only have one bio having CP pack */
1317 sync_meta_pages(sbi, META_FLUSH, LONG_MAX, FS_CP_META_IO);
1318
1319 /* wait for previous submitted meta pages writeback */
1320 wait_on_all_pages_writeback(sbi);
1321
1322 release_ino_entry(sbi, false);
1323
1324 if (unlikely(f2fs_cp_error(sbi)))
1325 return -EIO;
1326
1327 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1328 clear_sbi_flag(sbi, SBI_NEED_CP);
1329 __set_cp_next_pack(sbi);
1330
1331 /*
1332 * redirty superblock if metadata like node page or inode cache is
1333 * updated during writing checkpoint.
1334 */
1335 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1336 get_pages(sbi, F2FS_DIRTY_IMETA))
1337 set_sbi_flag(sbi, SBI_IS_DIRTY);
1338
1339 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1340
1341 return 0;
1342 }
1343
1344 /*
1345 * We guarantee that this checkpoint procedure will not fail.
1346 */
1347 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1348 {
1349 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1350 unsigned long long ckpt_ver;
1351 int err = 0;
1352
1353 mutex_lock(&sbi->cp_mutex);
1354
1355 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1356 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1357 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1358 goto out;
1359 if (unlikely(f2fs_cp_error(sbi))) {
1360 err = -EIO;
1361 goto out;
1362 }
1363 if (f2fs_readonly(sbi->sb)) {
1364 err = -EROFS;
1365 goto out;
1366 }
1367
1368 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1369
1370 err = block_operations(sbi);
1371 if (err)
1372 goto out;
1373
1374 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1375
1376 f2fs_flush_merged_writes(sbi);
1377
1378 /* this is the case of multiple fstrims without any changes */
1379 if (cpc->reason & CP_DISCARD) {
1380 if (!exist_trim_candidates(sbi, cpc)) {
1381 unblock_operations(sbi);
1382 goto out;
1383 }
1384
1385 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1386 SIT_I(sbi)->dirty_sentries == 0 &&
1387 prefree_segments(sbi) == 0) {
1388 flush_sit_entries(sbi, cpc);
1389 clear_prefree_segments(sbi, cpc);
1390 unblock_operations(sbi);
1391 goto out;
1392 }
1393 }
1394
1395 /*
1396 * update checkpoint pack index
1397 * Increase the version number so that
1398 * SIT entries and seg summaries are written at correct place
1399 */
1400 ckpt_ver = cur_cp_version(ckpt);
1401 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1402
1403 /* write cached NAT/SIT entries to NAT/SIT area */
1404 flush_nat_entries(sbi, cpc);
1405 flush_sit_entries(sbi, cpc);
1406
1407 /* unlock all the fs_lock[] in do_checkpoint() */
1408 err = do_checkpoint(sbi, cpc);
1409 if (err)
1410 release_discard_addrs(sbi);
1411 else
1412 clear_prefree_segments(sbi, cpc);
1413
1414 unblock_operations(sbi);
1415 stat_inc_cp_count(sbi->stat_info);
1416
1417 if (cpc->reason & CP_RECOVERY)
1418 f2fs_msg(sbi->sb, KERN_NOTICE,
1419 "checkpoint: version = %llx", ckpt_ver);
1420
1421 /* do checkpoint periodically */
1422 f2fs_update_time(sbi, CP_TIME);
1423 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1424 out:
1425 mutex_unlock(&sbi->cp_mutex);
1426 return err;
1427 }
1428
1429 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1430 {
1431 int i;
1432
1433 for (i = 0; i < MAX_INO_ENTRY; i++) {
1434 struct inode_management *im = &sbi->im[i];
1435
1436 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1437 spin_lock_init(&im->ino_lock);
1438 INIT_LIST_HEAD(&im->ino_list);
1439 im->ino_num = 0;
1440 }
1441
1442 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1443 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1444 F2FS_ORPHANS_PER_BLOCK;
1445 }
1446
1447 int __init create_checkpoint_caches(void)
1448 {
1449 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1450 sizeof(struct ino_entry));
1451 if (!ino_entry_slab)
1452 return -ENOMEM;
1453 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1454 sizeof(struct inode_entry));
1455 if (!inode_entry_slab) {
1456 kmem_cache_destroy(ino_entry_slab);
1457 return -ENOMEM;
1458 }
1459 return 0;
1460 }
1461
1462 void destroy_checkpoint_caches(void)
1463 {
1464 kmem_cache_destroy(ino_entry_slab);
1465 kmem_cache_destroy(inode_entry_slab);
1466 }