]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/f2fs/checkpoint.c
Merge remote-tracking branch 'regmap/topic/core' into regmap-next
[mirror_ubuntu-zesty-kernel.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *ino_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29 * We guarantee no failure on the returned page.
30 */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33 struct address_space *mapping = META_MAPPING(sbi);
34 struct page *page = NULL;
35 repeat:
36 page = grab_cache_page(mapping, index);
37 if (!page) {
38 cond_resched();
39 goto repeat;
40 }
41 f2fs_wait_on_page_writeback(page, META);
42 SetPageUptodate(page);
43 return page;
44 }
45
46 /*
47 * We guarantee no failure on the returned page.
48 */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51 struct address_space *mapping = META_MAPPING(sbi);
52 struct page *page;
53 repeat:
54 page = grab_cache_page(mapping, index);
55 if (!page) {
56 cond_resched();
57 goto repeat;
58 }
59 if (PageUptodate(page))
60 goto out;
61
62 if (f2fs_submit_page_bio(sbi, page, index,
63 READ_SYNC | REQ_META | REQ_PRIO))
64 goto repeat;
65
66 lock_page(page);
67 if (unlikely(page->mapping != mapping)) {
68 f2fs_put_page(page, 1);
69 goto repeat;
70 }
71 out:
72 return page;
73 }
74
75 static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi,
76 block_t blkaddr, int type)
77 {
78 switch (type) {
79 case META_NAT:
80 break;
81 case META_SIT:
82 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
83 return false;
84 break;
85 case META_SSA:
86 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
87 blkaddr < SM_I(sbi)->ssa_blkaddr))
88 return false;
89 break;
90 case META_CP:
91 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
92 blkaddr < __start_cp_addr(sbi)))
93 return false;
94 break;
95 case META_POR:
96 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
97 blkaddr < MAIN_BLKADDR(sbi)))
98 return false;
99 break;
100 default:
101 BUG();
102 }
103
104 return true;
105 }
106
107 /*
108 * Readahead CP/NAT/SIT/SSA pages
109 */
110 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
111 {
112 block_t prev_blk_addr = 0;
113 struct page *page;
114 block_t blkno = start;
115
116 struct f2fs_io_info fio = {
117 .type = META,
118 .rw = READ_SYNC | REQ_META | REQ_PRIO
119 };
120
121 for (; nrpages-- > 0; blkno++) {
122 block_t blk_addr;
123
124 if (!is_valid_blkaddr(sbi, blkno, type))
125 goto out;
126
127 switch (type) {
128 case META_NAT:
129 if (unlikely(blkno >=
130 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
131 blkno = 0;
132 /* get nat block addr */
133 blk_addr = current_nat_addr(sbi,
134 blkno * NAT_ENTRY_PER_BLOCK);
135 break;
136 case META_SIT:
137 /* get sit block addr */
138 blk_addr = current_sit_addr(sbi,
139 blkno * SIT_ENTRY_PER_BLOCK);
140 if (blkno != start && prev_blk_addr + 1 != blk_addr)
141 goto out;
142 prev_blk_addr = blk_addr;
143 break;
144 case META_SSA:
145 case META_CP:
146 case META_POR:
147 blk_addr = blkno;
148 break;
149 default:
150 BUG();
151 }
152
153 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
154 if (!page)
155 continue;
156 if (PageUptodate(page)) {
157 f2fs_put_page(page, 1);
158 continue;
159 }
160
161 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
162 f2fs_put_page(page, 0);
163 }
164 out:
165 f2fs_submit_merged_bio(sbi, META, READ);
166 return blkno - start;
167 }
168
169 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
170 {
171 struct page *page;
172 bool readahead = false;
173
174 page = find_get_page(META_MAPPING(sbi), index);
175 if (!page || (page && !PageUptodate(page)))
176 readahead = true;
177 f2fs_put_page(page, 0);
178
179 if (readahead)
180 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
181 }
182
183 static int f2fs_write_meta_page(struct page *page,
184 struct writeback_control *wbc)
185 {
186 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
187
188 trace_f2fs_writepage(page, META);
189
190 if (unlikely(sbi->por_doing))
191 goto redirty_out;
192 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
193 goto redirty_out;
194 if (unlikely(f2fs_cp_error(sbi)))
195 goto redirty_out;
196
197 f2fs_wait_on_page_writeback(page, META);
198 write_meta_page(sbi, page);
199 dec_page_count(sbi, F2FS_DIRTY_META);
200 unlock_page(page);
201
202 if (wbc->for_reclaim)
203 f2fs_submit_merged_bio(sbi, META, WRITE);
204 return 0;
205
206 redirty_out:
207 redirty_page_for_writepage(wbc, page);
208 return AOP_WRITEPAGE_ACTIVATE;
209 }
210
211 static int f2fs_write_meta_pages(struct address_space *mapping,
212 struct writeback_control *wbc)
213 {
214 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
215 long diff, written;
216
217 trace_f2fs_writepages(mapping->host, wbc, META);
218
219 /* collect a number of dirty meta pages and write together */
220 if (wbc->for_kupdate ||
221 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
222 goto skip_write;
223
224 /* if mounting is failed, skip writing node pages */
225 mutex_lock(&sbi->cp_mutex);
226 diff = nr_pages_to_write(sbi, META, wbc);
227 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
228 mutex_unlock(&sbi->cp_mutex);
229 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
230 return 0;
231
232 skip_write:
233 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
234 return 0;
235 }
236
237 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
238 long nr_to_write)
239 {
240 struct address_space *mapping = META_MAPPING(sbi);
241 pgoff_t index = 0, end = LONG_MAX;
242 struct pagevec pvec;
243 long nwritten = 0;
244 struct writeback_control wbc = {
245 .for_reclaim = 0,
246 };
247
248 pagevec_init(&pvec, 0);
249
250 while (index <= end) {
251 int i, nr_pages;
252 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
253 PAGECACHE_TAG_DIRTY,
254 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
255 if (unlikely(nr_pages == 0))
256 break;
257
258 for (i = 0; i < nr_pages; i++) {
259 struct page *page = pvec.pages[i];
260
261 lock_page(page);
262
263 if (unlikely(page->mapping != mapping)) {
264 continue_unlock:
265 unlock_page(page);
266 continue;
267 }
268 if (!PageDirty(page)) {
269 /* someone wrote it for us */
270 goto continue_unlock;
271 }
272
273 if (!clear_page_dirty_for_io(page))
274 goto continue_unlock;
275
276 if (f2fs_write_meta_page(page, &wbc)) {
277 unlock_page(page);
278 break;
279 }
280 nwritten++;
281 if (unlikely(nwritten >= nr_to_write))
282 break;
283 }
284 pagevec_release(&pvec);
285 cond_resched();
286 }
287
288 if (nwritten)
289 f2fs_submit_merged_bio(sbi, type, WRITE);
290
291 return nwritten;
292 }
293
294 static int f2fs_set_meta_page_dirty(struct page *page)
295 {
296 trace_f2fs_set_page_dirty(page, META);
297
298 SetPageUptodate(page);
299 if (!PageDirty(page)) {
300 __set_page_dirty_nobuffers(page);
301 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
302 return 1;
303 }
304 return 0;
305 }
306
307 const struct address_space_operations f2fs_meta_aops = {
308 .writepage = f2fs_write_meta_page,
309 .writepages = f2fs_write_meta_pages,
310 .set_page_dirty = f2fs_set_meta_page_dirty,
311 };
312
313 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
314 {
315 struct inode_management *im = &sbi->im[type];
316 struct ino_entry *e;
317 retry:
318 if (radix_tree_preload(GFP_NOFS)) {
319 cond_resched();
320 goto retry;
321 }
322
323 spin_lock(&im->ino_lock);
324
325 e = radix_tree_lookup(&im->ino_root, ino);
326 if (!e) {
327 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
328 if (!e) {
329 spin_unlock(&im->ino_lock);
330 radix_tree_preload_end();
331 goto retry;
332 }
333 if (radix_tree_insert(&im->ino_root, ino, e)) {
334 spin_unlock(&im->ino_lock);
335 kmem_cache_free(ino_entry_slab, e);
336 radix_tree_preload_end();
337 goto retry;
338 }
339 memset(e, 0, sizeof(struct ino_entry));
340 e->ino = ino;
341
342 list_add_tail(&e->list, &im->ino_list);
343 if (type != ORPHAN_INO)
344 im->ino_num++;
345 }
346 spin_unlock(&im->ino_lock);
347 radix_tree_preload_end();
348 }
349
350 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
351 {
352 struct inode_management *im = &sbi->im[type];
353 struct ino_entry *e;
354
355 spin_lock(&im->ino_lock);
356 e = radix_tree_lookup(&im->ino_root, ino);
357 if (e) {
358 list_del(&e->list);
359 radix_tree_delete(&im->ino_root, ino);
360 im->ino_num--;
361 spin_unlock(&im->ino_lock);
362 kmem_cache_free(ino_entry_slab, e);
363 return;
364 }
365 spin_unlock(&im->ino_lock);
366 }
367
368 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
369 {
370 /* add new dirty ino entry into list */
371 __add_ino_entry(sbi, ino, type);
372 }
373
374 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
375 {
376 /* remove dirty ino entry from list */
377 __remove_ino_entry(sbi, ino, type);
378 }
379
380 /* mode should be APPEND_INO or UPDATE_INO */
381 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
382 {
383 struct inode_management *im = &sbi->im[mode];
384 struct ino_entry *e;
385
386 spin_lock(&im->ino_lock);
387 e = radix_tree_lookup(&im->ino_root, ino);
388 spin_unlock(&im->ino_lock);
389 return e ? true : false;
390 }
391
392 void release_dirty_inode(struct f2fs_sb_info *sbi)
393 {
394 struct ino_entry *e, *tmp;
395 int i;
396
397 for (i = APPEND_INO; i <= UPDATE_INO; i++) {
398 struct inode_management *im = &sbi->im[i];
399
400 spin_lock(&im->ino_lock);
401 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
402 list_del(&e->list);
403 radix_tree_delete(&im->ino_root, e->ino);
404 kmem_cache_free(ino_entry_slab, e);
405 im->ino_num--;
406 }
407 spin_unlock(&im->ino_lock);
408 }
409 }
410
411 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
412 {
413 struct inode_management *im = &sbi->im[ORPHAN_INO];
414 int err = 0;
415
416 spin_lock(&im->ino_lock);
417 if (unlikely(im->ino_num >= sbi->max_orphans))
418 err = -ENOSPC;
419 else
420 im->ino_num++;
421 spin_unlock(&im->ino_lock);
422
423 return err;
424 }
425
426 void release_orphan_inode(struct f2fs_sb_info *sbi)
427 {
428 struct inode_management *im = &sbi->im[ORPHAN_INO];
429
430 spin_lock(&im->ino_lock);
431 f2fs_bug_on(sbi, im->ino_num == 0);
432 im->ino_num--;
433 spin_unlock(&im->ino_lock);
434 }
435
436 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
437 {
438 /* add new orphan ino entry into list */
439 __add_ino_entry(sbi, ino, ORPHAN_INO);
440 }
441
442 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
443 {
444 /* remove orphan entry from orphan list */
445 __remove_ino_entry(sbi, ino, ORPHAN_INO);
446 }
447
448 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
449 {
450 struct inode *inode = f2fs_iget(sbi->sb, ino);
451 f2fs_bug_on(sbi, IS_ERR(inode));
452 clear_nlink(inode);
453
454 /* truncate all the data during iput */
455 iput(inode);
456 }
457
458 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
459 {
460 block_t start_blk, orphan_blkaddr, i, j;
461
462 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
463 return;
464
465 sbi->por_doing = true;
466
467 start_blk = __start_cp_addr(sbi) + 1 +
468 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
469 orphan_blkaddr = __start_sum_addr(sbi) - 1;
470
471 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
472
473 for (i = 0; i < orphan_blkaddr; i++) {
474 struct page *page = get_meta_page(sbi, start_blk + i);
475 struct f2fs_orphan_block *orphan_blk;
476
477 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
478 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
479 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
480 recover_orphan_inode(sbi, ino);
481 }
482 f2fs_put_page(page, 1);
483 }
484 /* clear Orphan Flag */
485 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
486 sbi->por_doing = false;
487 return;
488 }
489
490 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
491 {
492 struct list_head *head;
493 struct f2fs_orphan_block *orphan_blk = NULL;
494 unsigned int nentries = 0;
495 unsigned short index;
496 unsigned short orphan_blocks;
497 struct page *page = NULL;
498 struct ino_entry *orphan = NULL;
499 struct inode_management *im = &sbi->im[ORPHAN_INO];
500
501 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
502
503 for (index = 0; index < orphan_blocks; index++)
504 grab_meta_page(sbi, start_blk + index);
505
506 index = 1;
507 spin_lock(&im->ino_lock);
508 head = &im->ino_list;
509
510 /* loop for each orphan inode entry and write them in Jornal block */
511 list_for_each_entry(orphan, head, list) {
512 if (!page) {
513 page = find_get_page(META_MAPPING(sbi), start_blk++);
514 f2fs_bug_on(sbi, !page);
515 orphan_blk =
516 (struct f2fs_orphan_block *)page_address(page);
517 memset(orphan_blk, 0, sizeof(*orphan_blk));
518 f2fs_put_page(page, 0);
519 }
520
521 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
522
523 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
524 /*
525 * an orphan block is full of 1020 entries,
526 * then we need to flush current orphan blocks
527 * and bring another one in memory
528 */
529 orphan_blk->blk_addr = cpu_to_le16(index);
530 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
531 orphan_blk->entry_count = cpu_to_le32(nentries);
532 set_page_dirty(page);
533 f2fs_put_page(page, 1);
534 index++;
535 nentries = 0;
536 page = NULL;
537 }
538 }
539
540 if (page) {
541 orphan_blk->blk_addr = cpu_to_le16(index);
542 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
543 orphan_blk->entry_count = cpu_to_le32(nentries);
544 set_page_dirty(page);
545 f2fs_put_page(page, 1);
546 }
547
548 spin_unlock(&im->ino_lock);
549 }
550
551 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
552 block_t cp_addr, unsigned long long *version)
553 {
554 struct page *cp_page_1, *cp_page_2 = NULL;
555 unsigned long blk_size = sbi->blocksize;
556 struct f2fs_checkpoint *cp_block;
557 unsigned long long cur_version = 0, pre_version = 0;
558 size_t crc_offset;
559 __u32 crc = 0;
560
561 /* Read the 1st cp block in this CP pack */
562 cp_page_1 = get_meta_page(sbi, cp_addr);
563
564 /* get the version number */
565 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
566 crc_offset = le32_to_cpu(cp_block->checksum_offset);
567 if (crc_offset >= blk_size)
568 goto invalid_cp1;
569
570 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
571 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
572 goto invalid_cp1;
573
574 pre_version = cur_cp_version(cp_block);
575
576 /* Read the 2nd cp block in this CP pack */
577 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
578 cp_page_2 = get_meta_page(sbi, cp_addr);
579
580 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
581 crc_offset = le32_to_cpu(cp_block->checksum_offset);
582 if (crc_offset >= blk_size)
583 goto invalid_cp2;
584
585 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
586 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
587 goto invalid_cp2;
588
589 cur_version = cur_cp_version(cp_block);
590
591 if (cur_version == pre_version) {
592 *version = cur_version;
593 f2fs_put_page(cp_page_2, 1);
594 return cp_page_1;
595 }
596 invalid_cp2:
597 f2fs_put_page(cp_page_2, 1);
598 invalid_cp1:
599 f2fs_put_page(cp_page_1, 1);
600 return NULL;
601 }
602
603 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
604 {
605 struct f2fs_checkpoint *cp_block;
606 struct f2fs_super_block *fsb = sbi->raw_super;
607 struct page *cp1, *cp2, *cur_page;
608 unsigned long blk_size = sbi->blocksize;
609 unsigned long long cp1_version = 0, cp2_version = 0;
610 unsigned long long cp_start_blk_no;
611 unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
612 block_t cp_blk_no;
613 int i;
614
615 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
616 if (!sbi->ckpt)
617 return -ENOMEM;
618 /*
619 * Finding out valid cp block involves read both
620 * sets( cp pack1 and cp pack 2)
621 */
622 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
623 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
624
625 /* The second checkpoint pack should start at the next segment */
626 cp_start_blk_no += ((unsigned long long)1) <<
627 le32_to_cpu(fsb->log_blocks_per_seg);
628 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
629
630 if (cp1 && cp2) {
631 if (ver_after(cp2_version, cp1_version))
632 cur_page = cp2;
633 else
634 cur_page = cp1;
635 } else if (cp1) {
636 cur_page = cp1;
637 } else if (cp2) {
638 cur_page = cp2;
639 } else {
640 goto fail_no_cp;
641 }
642
643 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
644 memcpy(sbi->ckpt, cp_block, blk_size);
645
646 if (cp_blks <= 1)
647 goto done;
648
649 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
650 if (cur_page == cp2)
651 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
652
653 for (i = 1; i < cp_blks; i++) {
654 void *sit_bitmap_ptr;
655 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
656
657 cur_page = get_meta_page(sbi, cp_blk_no + i);
658 sit_bitmap_ptr = page_address(cur_page);
659 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
660 f2fs_put_page(cur_page, 1);
661 }
662 done:
663 f2fs_put_page(cp1, 1);
664 f2fs_put_page(cp2, 1);
665 return 0;
666
667 fail_no_cp:
668 kfree(sbi->ckpt);
669 return -EINVAL;
670 }
671
672 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
673 {
674 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
675
676 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
677 return -EEXIST;
678
679 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
680 F2FS_I(inode)->dirty_dir = new;
681 list_add_tail(&new->list, &sbi->dir_inode_list);
682 stat_inc_dirty_dir(sbi);
683 return 0;
684 }
685
686 void update_dirty_page(struct inode *inode, struct page *page)
687 {
688 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
689 struct dir_inode_entry *new;
690 int ret = 0;
691
692 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
693 return;
694
695 if (!S_ISDIR(inode->i_mode)) {
696 inode_inc_dirty_pages(inode);
697 goto out;
698 }
699
700 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
701 new->inode = inode;
702 INIT_LIST_HEAD(&new->list);
703
704 spin_lock(&sbi->dir_inode_lock);
705 ret = __add_dirty_inode(inode, new);
706 inode_inc_dirty_pages(inode);
707 spin_unlock(&sbi->dir_inode_lock);
708
709 if (ret)
710 kmem_cache_free(inode_entry_slab, new);
711 out:
712 SetPagePrivate(page);
713 }
714
715 void add_dirty_dir_inode(struct inode *inode)
716 {
717 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
718 struct dir_inode_entry *new =
719 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
720 int ret = 0;
721
722 new->inode = inode;
723 INIT_LIST_HEAD(&new->list);
724
725 spin_lock(&sbi->dir_inode_lock);
726 ret = __add_dirty_inode(inode, new);
727 spin_unlock(&sbi->dir_inode_lock);
728
729 if (ret)
730 kmem_cache_free(inode_entry_slab, new);
731 }
732
733 void remove_dirty_dir_inode(struct inode *inode)
734 {
735 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
736 struct dir_inode_entry *entry;
737
738 if (!S_ISDIR(inode->i_mode))
739 return;
740
741 spin_lock(&sbi->dir_inode_lock);
742 if (get_dirty_pages(inode) ||
743 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
744 spin_unlock(&sbi->dir_inode_lock);
745 return;
746 }
747
748 entry = F2FS_I(inode)->dirty_dir;
749 list_del(&entry->list);
750 F2FS_I(inode)->dirty_dir = NULL;
751 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
752 stat_dec_dirty_dir(sbi);
753 spin_unlock(&sbi->dir_inode_lock);
754 kmem_cache_free(inode_entry_slab, entry);
755
756 /* Only from the recovery routine */
757 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
758 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
759 iput(inode);
760 }
761 }
762
763 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
764 {
765 struct list_head *head;
766 struct dir_inode_entry *entry;
767 struct inode *inode;
768 retry:
769 if (unlikely(f2fs_cp_error(sbi)))
770 return;
771
772 spin_lock(&sbi->dir_inode_lock);
773
774 head = &sbi->dir_inode_list;
775 if (list_empty(head)) {
776 spin_unlock(&sbi->dir_inode_lock);
777 return;
778 }
779 entry = list_entry(head->next, struct dir_inode_entry, list);
780 inode = igrab(entry->inode);
781 spin_unlock(&sbi->dir_inode_lock);
782 if (inode) {
783 filemap_fdatawrite(inode->i_mapping);
784 iput(inode);
785 } else {
786 /*
787 * We should submit bio, since it exists several
788 * wribacking dentry pages in the freeing inode.
789 */
790 f2fs_submit_merged_bio(sbi, DATA, WRITE);
791 }
792 goto retry;
793 }
794
795 /*
796 * Freeze all the FS-operations for checkpoint.
797 */
798 static int block_operations(struct f2fs_sb_info *sbi)
799 {
800 struct writeback_control wbc = {
801 .sync_mode = WB_SYNC_ALL,
802 .nr_to_write = LONG_MAX,
803 .for_reclaim = 0,
804 };
805 struct blk_plug plug;
806 int err = 0;
807
808 blk_start_plug(&plug);
809
810 retry_flush_dents:
811 f2fs_lock_all(sbi);
812 /* write all the dirty dentry pages */
813 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
814 f2fs_unlock_all(sbi);
815 sync_dirty_dir_inodes(sbi);
816 if (unlikely(f2fs_cp_error(sbi))) {
817 err = -EIO;
818 goto out;
819 }
820 goto retry_flush_dents;
821 }
822
823 /*
824 * POR: we should ensure that there are no dirty node pages
825 * until finishing nat/sit flush.
826 */
827 retry_flush_nodes:
828 down_write(&sbi->node_write);
829
830 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
831 up_write(&sbi->node_write);
832 sync_node_pages(sbi, 0, &wbc);
833 if (unlikely(f2fs_cp_error(sbi))) {
834 f2fs_unlock_all(sbi);
835 err = -EIO;
836 goto out;
837 }
838 goto retry_flush_nodes;
839 }
840 out:
841 blk_finish_plug(&plug);
842 return err;
843 }
844
845 static void unblock_operations(struct f2fs_sb_info *sbi)
846 {
847 up_write(&sbi->node_write);
848 f2fs_unlock_all(sbi);
849 }
850
851 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
852 {
853 DEFINE_WAIT(wait);
854
855 for (;;) {
856 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
857
858 if (!get_pages(sbi, F2FS_WRITEBACK))
859 break;
860
861 io_schedule();
862 }
863 finish_wait(&sbi->cp_wait, &wait);
864 }
865
866 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
867 {
868 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
869 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
870 struct f2fs_nm_info *nm_i = NM_I(sbi);
871 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
872 nid_t last_nid = nm_i->next_scan_nid;
873 block_t start_blk;
874 struct page *cp_page;
875 unsigned int data_sum_blocks, orphan_blocks;
876 __u32 crc32 = 0;
877 void *kaddr;
878 int i;
879 int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
880
881 /*
882 * This avoids to conduct wrong roll-forward operations and uses
883 * metapages, so should be called prior to sync_meta_pages below.
884 */
885 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
886
887 /* Flush all the NAT/SIT pages */
888 while (get_pages(sbi, F2FS_DIRTY_META)) {
889 sync_meta_pages(sbi, META, LONG_MAX);
890 if (unlikely(f2fs_cp_error(sbi)))
891 return;
892 }
893
894 next_free_nid(sbi, &last_nid);
895
896 /*
897 * modify checkpoint
898 * version number is already updated
899 */
900 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
901 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
902 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
903 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
904 ckpt->cur_node_segno[i] =
905 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
906 ckpt->cur_node_blkoff[i] =
907 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
908 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
909 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
910 }
911 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
912 ckpt->cur_data_segno[i] =
913 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
914 ckpt->cur_data_blkoff[i] =
915 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
916 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
917 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
918 }
919
920 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
921 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
922 ckpt->next_free_nid = cpu_to_le32(last_nid);
923
924 /* 2 cp + n data seg summary + orphan inode blocks */
925 data_sum_blocks = npages_for_summary_flush(sbi);
926 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
927 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
928 else
929 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
930
931 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
932 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
933 orphan_blocks);
934
935 if (cpc->reason == CP_UMOUNT) {
936 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
937 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
938 cp_payload_blks + data_sum_blocks +
939 orphan_blocks + NR_CURSEG_NODE_TYPE);
940 } else {
941 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
942 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
943 cp_payload_blks + data_sum_blocks +
944 orphan_blocks);
945 }
946
947 if (orphan_num)
948 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
949 else
950 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
951
952 if (sbi->need_fsck)
953 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
954
955 /* update SIT/NAT bitmap */
956 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
957 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
958
959 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
960 *((__le32 *)((unsigned char *)ckpt +
961 le32_to_cpu(ckpt->checksum_offset)))
962 = cpu_to_le32(crc32);
963
964 start_blk = __start_cp_addr(sbi);
965
966 /* write out checkpoint buffer at block 0 */
967 cp_page = grab_meta_page(sbi, start_blk++);
968 kaddr = page_address(cp_page);
969 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
970 set_page_dirty(cp_page);
971 f2fs_put_page(cp_page, 1);
972
973 for (i = 1; i < 1 + cp_payload_blks; i++) {
974 cp_page = grab_meta_page(sbi, start_blk++);
975 kaddr = page_address(cp_page);
976 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
977 (1 << sbi->log_blocksize));
978 set_page_dirty(cp_page);
979 f2fs_put_page(cp_page, 1);
980 }
981
982 if (orphan_num) {
983 write_orphan_inodes(sbi, start_blk);
984 start_blk += orphan_blocks;
985 }
986
987 write_data_summaries(sbi, start_blk);
988 start_blk += data_sum_blocks;
989 if (cpc->reason == CP_UMOUNT) {
990 write_node_summaries(sbi, start_blk);
991 start_blk += NR_CURSEG_NODE_TYPE;
992 }
993
994 /* writeout checkpoint block */
995 cp_page = grab_meta_page(sbi, start_blk);
996 kaddr = page_address(cp_page);
997 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
998 set_page_dirty(cp_page);
999 f2fs_put_page(cp_page, 1);
1000
1001 /* wait for previous submitted node/meta pages writeback */
1002 wait_on_all_pages_writeback(sbi);
1003
1004 if (unlikely(f2fs_cp_error(sbi)))
1005 return;
1006
1007 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1008 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1009
1010 /* update user_block_counts */
1011 sbi->last_valid_block_count = sbi->total_valid_block_count;
1012 sbi->alloc_valid_block_count = 0;
1013
1014 /* Here, we only have one bio having CP pack */
1015 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1016
1017 /* wait for previous submitted meta pages writeback */
1018 wait_on_all_pages_writeback(sbi);
1019
1020 release_dirty_inode(sbi);
1021
1022 if (unlikely(f2fs_cp_error(sbi)))
1023 return;
1024
1025 clear_prefree_segments(sbi);
1026 F2FS_RESET_SB_DIRT(sbi);
1027 }
1028
1029 /*
1030 * We guarantee that this checkpoint procedure will not fail.
1031 */
1032 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1033 {
1034 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1035 unsigned long long ckpt_ver;
1036
1037 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1038
1039 mutex_lock(&sbi->cp_mutex);
1040
1041 if (!sbi->s_dirty && cpc->reason != CP_DISCARD)
1042 goto out;
1043 if (unlikely(f2fs_cp_error(sbi)))
1044 goto out;
1045 if (block_operations(sbi))
1046 goto out;
1047
1048 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1049
1050 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1051 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1052 f2fs_submit_merged_bio(sbi, META, WRITE);
1053
1054 /*
1055 * update checkpoint pack index
1056 * Increase the version number so that
1057 * SIT entries and seg summaries are written at correct place
1058 */
1059 ckpt_ver = cur_cp_version(ckpt);
1060 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1061
1062 /* write cached NAT/SIT entries to NAT/SIT area */
1063 flush_nat_entries(sbi);
1064 flush_sit_entries(sbi, cpc);
1065
1066 /* unlock all the fs_lock[] in do_checkpoint() */
1067 do_checkpoint(sbi, cpc);
1068
1069 unblock_operations(sbi);
1070 stat_inc_cp_count(sbi->stat_info);
1071 out:
1072 mutex_unlock(&sbi->cp_mutex);
1073 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1074 }
1075
1076 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1077 {
1078 int i;
1079
1080 for (i = 0; i < MAX_INO_ENTRY; i++) {
1081 struct inode_management *im = &sbi->im[i];
1082
1083 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1084 spin_lock_init(&im->ino_lock);
1085 INIT_LIST_HEAD(&im->ino_list);
1086 im->ino_num = 0;
1087 }
1088
1089 /*
1090 * considering 512 blocks in a segment 8 blocks are needed for cp
1091 * and log segment summaries. Remaining blocks are used to keep
1092 * orphan entries with the limitation one reserved segment
1093 * for cp pack we can have max 1020*504 orphan entries
1094 */
1095 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1096 NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
1097 }
1098
1099 int __init create_checkpoint_caches(void)
1100 {
1101 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1102 sizeof(struct ino_entry));
1103 if (!ino_entry_slab)
1104 return -ENOMEM;
1105 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
1106 sizeof(struct dir_inode_entry));
1107 if (!inode_entry_slab) {
1108 kmem_cache_destroy(ino_entry_slab);
1109 return -ENOMEM;
1110 }
1111 return 0;
1112 }
1113
1114 void destroy_checkpoint_caches(void)
1115 {
1116 kmem_cache_destroy(ino_entry_slab);
1117 kmem_cache_destroy(inode_entry_slab);
1118 }