]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/checkpoint.c
Merge branch 'drm-next-4.12' of git://people.freedesktop.org/~agd5f/linux into drm...
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 sbi->sb->s_flags |= MS_RDONLY;
33 if (!end_io)
34 f2fs_flush_merged_bios(sbi);
35 }
36
37 /*
38 * We guarantee no failure on the returned page.
39 */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 struct address_space *mapping = META_MAPPING(sbi);
43 struct page *page = NULL;
44 repeat:
45 page = f2fs_grab_cache_page(mapping, index, false);
46 if (!page) {
47 cond_resched();
48 goto repeat;
49 }
50 f2fs_wait_on_page_writeback(page, META, true);
51 if (!PageUptodate(page))
52 SetPageUptodate(page);
53 return page;
54 }
55
56 /*
57 * We guarantee no failure on the returned page.
58 */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 bool is_meta)
61 {
62 struct address_space *mapping = META_MAPPING(sbi);
63 struct page *page;
64 struct f2fs_io_info fio = {
65 .sbi = sbi,
66 .type = META,
67 .op = REQ_OP_READ,
68 .op_flags = REQ_META | REQ_PRIO,
69 .old_blkaddr = index,
70 .new_blkaddr = index,
71 .encrypted_page = NULL,
72 };
73
74 if (unlikely(!is_meta))
75 fio.op_flags &= ~REQ_META;
76 repeat:
77 page = f2fs_grab_cache_page(mapping, index, false);
78 if (!page) {
79 cond_resched();
80 goto repeat;
81 }
82 if (PageUptodate(page))
83 goto out;
84
85 fio.page = page;
86
87 if (f2fs_submit_page_bio(&fio)) {
88 f2fs_put_page(page, 1);
89 goto repeat;
90 }
91
92 lock_page(page);
93 if (unlikely(page->mapping != mapping)) {
94 f2fs_put_page(page, 1);
95 goto repeat;
96 }
97
98 /*
99 * if there is any IO error when accessing device, make our filesystem
100 * readonly and make sure do not write checkpoint with non-uptodate
101 * meta page.
102 */
103 if (unlikely(!PageUptodate(page)))
104 f2fs_stop_checkpoint(sbi, false);
105 out:
106 return page;
107 }
108
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 return __get_meta_page(sbi, index, true);
112 }
113
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117 return __get_meta_page(sbi, index, false);
118 }
119
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122 switch (type) {
123 case META_NAT:
124 break;
125 case META_SIT:
126 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127 return false;
128 break;
129 case META_SSA:
130 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131 blkaddr < SM_I(sbi)->ssa_blkaddr))
132 return false;
133 break;
134 case META_CP:
135 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136 blkaddr < __start_cp_addr(sbi)))
137 return false;
138 break;
139 case META_POR:
140 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141 blkaddr < MAIN_BLKADDR(sbi)))
142 return false;
143 break;
144 default:
145 BUG();
146 }
147
148 return true;
149 }
150
151 /*
152 * Readahead CP/NAT/SIT/SSA pages
153 */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155 int type, bool sync)
156 {
157 struct page *page;
158 block_t blkno = start;
159 struct f2fs_io_info fio = {
160 .sbi = sbi,
161 .type = META,
162 .op = REQ_OP_READ,
163 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164 .encrypted_page = NULL,
165 };
166 struct blk_plug plug;
167
168 if (unlikely(type == META_POR))
169 fio.op_flags &= ~REQ_META;
170
171 blk_start_plug(&plug);
172 for (; nrpages-- > 0; blkno++) {
173
174 if (!is_valid_blkaddr(sbi, blkno, type))
175 goto out;
176
177 switch (type) {
178 case META_NAT:
179 if (unlikely(blkno >=
180 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181 blkno = 0;
182 /* get nat block addr */
183 fio.new_blkaddr = current_nat_addr(sbi,
184 blkno * NAT_ENTRY_PER_BLOCK);
185 break;
186 case META_SIT:
187 /* get sit block addr */
188 fio.new_blkaddr = current_sit_addr(sbi,
189 blkno * SIT_ENTRY_PER_BLOCK);
190 break;
191 case META_SSA:
192 case META_CP:
193 case META_POR:
194 fio.new_blkaddr = blkno;
195 break;
196 default:
197 BUG();
198 }
199
200 page = f2fs_grab_cache_page(META_MAPPING(sbi),
201 fio.new_blkaddr, false);
202 if (!page)
203 continue;
204 if (PageUptodate(page)) {
205 f2fs_put_page(page, 1);
206 continue;
207 }
208
209 fio.page = page;
210 fio.old_blkaddr = fio.new_blkaddr;
211 f2fs_submit_page_mbio(&fio);
212 f2fs_put_page(page, 0);
213 }
214 out:
215 f2fs_submit_merged_bio(sbi, META, READ);
216 blk_finish_plug(&plug);
217 return blkno - start;
218 }
219
220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 {
222 struct page *page;
223 bool readahead = false;
224
225 page = find_get_page(META_MAPPING(sbi), index);
226 if (!page || !PageUptodate(page))
227 readahead = true;
228 f2fs_put_page(page, 0);
229
230 if (readahead)
231 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
232 }
233
234 static int f2fs_write_meta_page(struct page *page,
235 struct writeback_control *wbc)
236 {
237 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238
239 trace_f2fs_writepage(page, META);
240
241 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242 goto redirty_out;
243 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244 goto redirty_out;
245 if (unlikely(f2fs_cp_error(sbi)))
246 goto redirty_out;
247
248 write_meta_page(sbi, page);
249 dec_page_count(sbi, F2FS_DIRTY_META);
250
251 if (wbc->for_reclaim)
252 f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
253 0, page->index, META, WRITE);
254
255 unlock_page(page);
256
257 if (unlikely(f2fs_cp_error(sbi)))
258 f2fs_submit_merged_bio(sbi, META, WRITE);
259
260 return 0;
261
262 redirty_out:
263 redirty_page_for_writepage(wbc, page);
264 return AOP_WRITEPAGE_ACTIVATE;
265 }
266
267 static int f2fs_write_meta_pages(struct address_space *mapping,
268 struct writeback_control *wbc)
269 {
270 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
271 long diff, written;
272
273 /* collect a number of dirty meta pages and write together */
274 if (wbc->for_kupdate ||
275 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
276 goto skip_write;
277
278 /* if locked failed, cp will flush dirty pages instead */
279 if (!mutex_trylock(&sbi->cp_mutex))
280 goto skip_write;
281
282 trace_f2fs_writepages(mapping->host, wbc, META);
283 diff = nr_pages_to_write(sbi, META, wbc);
284 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
285 mutex_unlock(&sbi->cp_mutex);
286 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
287 return 0;
288
289 skip_write:
290 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
291 trace_f2fs_writepages(mapping->host, wbc, META);
292 return 0;
293 }
294
295 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
296 long nr_to_write)
297 {
298 struct address_space *mapping = META_MAPPING(sbi);
299 pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
300 struct pagevec pvec;
301 long nwritten = 0;
302 struct writeback_control wbc = {
303 .for_reclaim = 0,
304 };
305 struct blk_plug plug;
306
307 pagevec_init(&pvec, 0);
308
309 blk_start_plug(&plug);
310
311 while (index <= end) {
312 int i, nr_pages;
313 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
314 PAGECACHE_TAG_DIRTY,
315 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
316 if (unlikely(nr_pages == 0))
317 break;
318
319 for (i = 0; i < nr_pages; i++) {
320 struct page *page = pvec.pages[i];
321
322 if (prev == ULONG_MAX)
323 prev = page->index - 1;
324 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
325 pagevec_release(&pvec);
326 goto stop;
327 }
328
329 lock_page(page);
330
331 if (unlikely(page->mapping != mapping)) {
332 continue_unlock:
333 unlock_page(page);
334 continue;
335 }
336 if (!PageDirty(page)) {
337 /* someone wrote it for us */
338 goto continue_unlock;
339 }
340
341 f2fs_wait_on_page_writeback(page, META, true);
342
343 BUG_ON(PageWriteback(page));
344 if (!clear_page_dirty_for_io(page))
345 goto continue_unlock;
346
347 if (mapping->a_ops->writepage(page, &wbc)) {
348 unlock_page(page);
349 break;
350 }
351 nwritten++;
352 prev = page->index;
353 if (unlikely(nwritten >= nr_to_write))
354 break;
355 }
356 pagevec_release(&pvec);
357 cond_resched();
358 }
359 stop:
360 if (nwritten)
361 f2fs_submit_merged_bio(sbi, type, WRITE);
362
363 blk_finish_plug(&plug);
364
365 return nwritten;
366 }
367
368 static int f2fs_set_meta_page_dirty(struct page *page)
369 {
370 trace_f2fs_set_page_dirty(page, META);
371
372 if (!PageUptodate(page))
373 SetPageUptodate(page);
374 if (!PageDirty(page)) {
375 f2fs_set_page_dirty_nobuffers(page);
376 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
377 SetPagePrivate(page);
378 f2fs_trace_pid(page);
379 return 1;
380 }
381 return 0;
382 }
383
384 const struct address_space_operations f2fs_meta_aops = {
385 .writepage = f2fs_write_meta_page,
386 .writepages = f2fs_write_meta_pages,
387 .set_page_dirty = f2fs_set_meta_page_dirty,
388 .invalidatepage = f2fs_invalidate_page,
389 .releasepage = f2fs_release_page,
390 #ifdef CONFIG_MIGRATION
391 .migratepage = f2fs_migrate_page,
392 #endif
393 };
394
395 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
396 {
397 struct inode_management *im = &sbi->im[type];
398 struct ino_entry *e, *tmp;
399
400 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
401 retry:
402 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
403
404 spin_lock(&im->ino_lock);
405 e = radix_tree_lookup(&im->ino_root, ino);
406 if (!e) {
407 e = tmp;
408 if (radix_tree_insert(&im->ino_root, ino, e)) {
409 spin_unlock(&im->ino_lock);
410 radix_tree_preload_end();
411 goto retry;
412 }
413 memset(e, 0, sizeof(struct ino_entry));
414 e->ino = ino;
415
416 list_add_tail(&e->list, &im->ino_list);
417 if (type != ORPHAN_INO)
418 im->ino_num++;
419 }
420 spin_unlock(&im->ino_lock);
421 radix_tree_preload_end();
422
423 if (e != tmp)
424 kmem_cache_free(ino_entry_slab, tmp);
425 }
426
427 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
428 {
429 struct inode_management *im = &sbi->im[type];
430 struct ino_entry *e;
431
432 spin_lock(&im->ino_lock);
433 e = radix_tree_lookup(&im->ino_root, ino);
434 if (e) {
435 list_del(&e->list);
436 radix_tree_delete(&im->ino_root, ino);
437 im->ino_num--;
438 spin_unlock(&im->ino_lock);
439 kmem_cache_free(ino_entry_slab, e);
440 return;
441 }
442 spin_unlock(&im->ino_lock);
443 }
444
445 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
446 {
447 /* add new dirty ino entry into list */
448 __add_ino_entry(sbi, ino, type);
449 }
450
451 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
452 {
453 /* remove dirty ino entry from list */
454 __remove_ino_entry(sbi, ino, type);
455 }
456
457 /* mode should be APPEND_INO or UPDATE_INO */
458 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
459 {
460 struct inode_management *im = &sbi->im[mode];
461 struct ino_entry *e;
462
463 spin_lock(&im->ino_lock);
464 e = radix_tree_lookup(&im->ino_root, ino);
465 spin_unlock(&im->ino_lock);
466 return e ? true : false;
467 }
468
469 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
470 {
471 struct ino_entry *e, *tmp;
472 int i;
473
474 for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
475 struct inode_management *im = &sbi->im[i];
476
477 spin_lock(&im->ino_lock);
478 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
479 list_del(&e->list);
480 radix_tree_delete(&im->ino_root, e->ino);
481 kmem_cache_free(ino_entry_slab, e);
482 im->ino_num--;
483 }
484 spin_unlock(&im->ino_lock);
485 }
486 }
487
488 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
489 {
490 struct inode_management *im = &sbi->im[ORPHAN_INO];
491 int err = 0;
492
493 spin_lock(&im->ino_lock);
494
495 #ifdef CONFIG_F2FS_FAULT_INJECTION
496 if (time_to_inject(sbi, FAULT_ORPHAN)) {
497 spin_unlock(&im->ino_lock);
498 f2fs_show_injection_info(FAULT_ORPHAN);
499 return -ENOSPC;
500 }
501 #endif
502 if (unlikely(im->ino_num >= sbi->max_orphans))
503 err = -ENOSPC;
504 else
505 im->ino_num++;
506 spin_unlock(&im->ino_lock);
507
508 return err;
509 }
510
511 void release_orphan_inode(struct f2fs_sb_info *sbi)
512 {
513 struct inode_management *im = &sbi->im[ORPHAN_INO];
514
515 spin_lock(&im->ino_lock);
516 f2fs_bug_on(sbi, im->ino_num == 0);
517 im->ino_num--;
518 spin_unlock(&im->ino_lock);
519 }
520
521 void add_orphan_inode(struct inode *inode)
522 {
523 /* add new orphan ino entry into list */
524 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
525 update_inode_page(inode);
526 }
527
528 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
529 {
530 /* remove orphan entry from orphan list */
531 __remove_ino_entry(sbi, ino, ORPHAN_INO);
532 }
533
534 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
535 {
536 struct inode *inode;
537 struct node_info ni;
538 int err = acquire_orphan_inode(sbi);
539
540 if (err) {
541 set_sbi_flag(sbi, SBI_NEED_FSCK);
542 f2fs_msg(sbi->sb, KERN_WARNING,
543 "%s: orphan failed (ino=%x), run fsck to fix.",
544 __func__, ino);
545 return err;
546 }
547
548 __add_ino_entry(sbi, ino, ORPHAN_INO);
549
550 inode = f2fs_iget_retry(sbi->sb, ino);
551 if (IS_ERR(inode)) {
552 /*
553 * there should be a bug that we can't find the entry
554 * to orphan inode.
555 */
556 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
557 return PTR_ERR(inode);
558 }
559
560 clear_nlink(inode);
561
562 /* truncate all the data during iput */
563 iput(inode);
564
565 get_node_info(sbi, ino, &ni);
566
567 /* ENOMEM was fully retried in f2fs_evict_inode. */
568 if (ni.blk_addr != NULL_ADDR) {
569 set_sbi_flag(sbi, SBI_NEED_FSCK);
570 f2fs_msg(sbi->sb, KERN_WARNING,
571 "%s: orphan failed (ino=%x) by kernel, retry mount.",
572 __func__, ino);
573 return -EIO;
574 }
575 __remove_ino_entry(sbi, ino, ORPHAN_INO);
576 return 0;
577 }
578
579 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
580 {
581 block_t start_blk, orphan_blocks, i, j;
582 int err;
583
584 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
585 return 0;
586
587 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
588 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
589
590 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
591
592 for (i = 0; i < orphan_blocks; i++) {
593 struct page *page = get_meta_page(sbi, start_blk + i);
594 struct f2fs_orphan_block *orphan_blk;
595
596 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
597 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
598 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
599 err = recover_orphan_inode(sbi, ino);
600 if (err) {
601 f2fs_put_page(page, 1);
602 return err;
603 }
604 }
605 f2fs_put_page(page, 1);
606 }
607 /* clear Orphan Flag */
608 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
609 return 0;
610 }
611
612 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
613 {
614 struct list_head *head;
615 struct f2fs_orphan_block *orphan_blk = NULL;
616 unsigned int nentries = 0;
617 unsigned short index = 1;
618 unsigned short orphan_blocks;
619 struct page *page = NULL;
620 struct ino_entry *orphan = NULL;
621 struct inode_management *im = &sbi->im[ORPHAN_INO];
622
623 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
624
625 /*
626 * we don't need to do spin_lock(&im->ino_lock) here, since all the
627 * orphan inode operations are covered under f2fs_lock_op().
628 * And, spin_lock should be avoided due to page operations below.
629 */
630 head = &im->ino_list;
631
632 /* loop for each orphan inode entry and write them in Jornal block */
633 list_for_each_entry(orphan, head, list) {
634 if (!page) {
635 page = grab_meta_page(sbi, start_blk++);
636 orphan_blk =
637 (struct f2fs_orphan_block *)page_address(page);
638 memset(orphan_blk, 0, sizeof(*orphan_blk));
639 }
640
641 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
642
643 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
644 /*
645 * an orphan block is full of 1020 entries,
646 * then we need to flush current orphan blocks
647 * and bring another one in memory
648 */
649 orphan_blk->blk_addr = cpu_to_le16(index);
650 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
651 orphan_blk->entry_count = cpu_to_le32(nentries);
652 set_page_dirty(page);
653 f2fs_put_page(page, 1);
654 index++;
655 nentries = 0;
656 page = NULL;
657 }
658 }
659
660 if (page) {
661 orphan_blk->blk_addr = cpu_to_le16(index);
662 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
663 orphan_blk->entry_count = cpu_to_le32(nentries);
664 set_page_dirty(page);
665 f2fs_put_page(page, 1);
666 }
667 }
668
669 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
670 struct f2fs_checkpoint **cp_block, struct page **cp_page,
671 unsigned long long *version)
672 {
673 unsigned long blk_size = sbi->blocksize;
674 size_t crc_offset = 0;
675 __u32 crc = 0;
676
677 *cp_page = get_meta_page(sbi, cp_addr);
678 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
679
680 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
681 if (crc_offset > (blk_size - sizeof(__le32))) {
682 f2fs_msg(sbi->sb, KERN_WARNING,
683 "invalid crc_offset: %zu", crc_offset);
684 return -EINVAL;
685 }
686
687 crc = cur_cp_crc(*cp_block);
688 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
689 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
690 return -EINVAL;
691 }
692
693 *version = cur_cp_version(*cp_block);
694 return 0;
695 }
696
697 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
698 block_t cp_addr, unsigned long long *version)
699 {
700 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
701 struct f2fs_checkpoint *cp_block = NULL;
702 unsigned long long cur_version = 0, pre_version = 0;
703 int err;
704
705 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
706 &cp_page_1, version);
707 if (err)
708 goto invalid_cp1;
709 pre_version = *version;
710
711 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
712 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
713 &cp_page_2, version);
714 if (err)
715 goto invalid_cp2;
716 cur_version = *version;
717
718 if (cur_version == pre_version) {
719 *version = cur_version;
720 f2fs_put_page(cp_page_2, 1);
721 return cp_page_1;
722 }
723 invalid_cp2:
724 f2fs_put_page(cp_page_2, 1);
725 invalid_cp1:
726 f2fs_put_page(cp_page_1, 1);
727 return NULL;
728 }
729
730 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
731 {
732 struct f2fs_checkpoint *cp_block;
733 struct f2fs_super_block *fsb = sbi->raw_super;
734 struct page *cp1, *cp2, *cur_page;
735 unsigned long blk_size = sbi->blocksize;
736 unsigned long long cp1_version = 0, cp2_version = 0;
737 unsigned long long cp_start_blk_no;
738 unsigned int cp_blks = 1 + __cp_payload(sbi);
739 block_t cp_blk_no;
740 int i;
741
742 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
743 if (!sbi->ckpt)
744 return -ENOMEM;
745 /*
746 * Finding out valid cp block involves read both
747 * sets( cp pack1 and cp pack 2)
748 */
749 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
750 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
751
752 /* The second checkpoint pack should start at the next segment */
753 cp_start_blk_no += ((unsigned long long)1) <<
754 le32_to_cpu(fsb->log_blocks_per_seg);
755 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
756
757 if (cp1 && cp2) {
758 if (ver_after(cp2_version, cp1_version))
759 cur_page = cp2;
760 else
761 cur_page = cp1;
762 } else if (cp1) {
763 cur_page = cp1;
764 } else if (cp2) {
765 cur_page = cp2;
766 } else {
767 goto fail_no_cp;
768 }
769
770 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
771 memcpy(sbi->ckpt, cp_block, blk_size);
772
773 /* Sanity checking of checkpoint */
774 if (sanity_check_ckpt(sbi))
775 goto free_fail_no_cp;
776
777 if (cur_page == cp1)
778 sbi->cur_cp_pack = 1;
779 else
780 sbi->cur_cp_pack = 2;
781
782 if (cp_blks <= 1)
783 goto done;
784
785 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
786 if (cur_page == cp2)
787 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
788
789 for (i = 1; i < cp_blks; i++) {
790 void *sit_bitmap_ptr;
791 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
792
793 cur_page = get_meta_page(sbi, cp_blk_no + i);
794 sit_bitmap_ptr = page_address(cur_page);
795 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
796 f2fs_put_page(cur_page, 1);
797 }
798 done:
799 f2fs_put_page(cp1, 1);
800 f2fs_put_page(cp2, 1);
801 return 0;
802
803 free_fail_no_cp:
804 f2fs_put_page(cp1, 1);
805 f2fs_put_page(cp2, 1);
806 fail_no_cp:
807 kfree(sbi->ckpt);
808 return -EINVAL;
809 }
810
811 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
812 {
813 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
814 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
815
816 if (is_inode_flag_set(inode, flag))
817 return;
818
819 set_inode_flag(inode, flag);
820 if (!f2fs_is_volatile_file(inode))
821 list_add_tail(&F2FS_I(inode)->dirty_list,
822 &sbi->inode_list[type]);
823 stat_inc_dirty_inode(sbi, type);
824 }
825
826 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
827 {
828 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
829
830 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
831 return;
832
833 list_del_init(&F2FS_I(inode)->dirty_list);
834 clear_inode_flag(inode, flag);
835 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
836 }
837
838 void update_dirty_page(struct inode *inode, struct page *page)
839 {
840 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
841 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
842
843 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
844 !S_ISLNK(inode->i_mode))
845 return;
846
847 spin_lock(&sbi->inode_lock[type]);
848 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
849 __add_dirty_inode(inode, type);
850 inode_inc_dirty_pages(inode);
851 spin_unlock(&sbi->inode_lock[type]);
852
853 SetPagePrivate(page);
854 f2fs_trace_pid(page);
855 }
856
857 void remove_dirty_inode(struct inode *inode)
858 {
859 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
860 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
861
862 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
863 !S_ISLNK(inode->i_mode))
864 return;
865
866 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
867 return;
868
869 spin_lock(&sbi->inode_lock[type]);
870 __remove_dirty_inode(inode, type);
871 spin_unlock(&sbi->inode_lock[type]);
872 }
873
874 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
875 {
876 struct list_head *head;
877 struct inode *inode;
878 struct f2fs_inode_info *fi;
879 bool is_dir = (type == DIR_INODE);
880
881 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
882 get_pages(sbi, is_dir ?
883 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
884 retry:
885 if (unlikely(f2fs_cp_error(sbi)))
886 return -EIO;
887
888 spin_lock(&sbi->inode_lock[type]);
889
890 head = &sbi->inode_list[type];
891 if (list_empty(head)) {
892 spin_unlock(&sbi->inode_lock[type]);
893 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
894 get_pages(sbi, is_dir ?
895 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
896 return 0;
897 }
898 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
899 inode = igrab(&fi->vfs_inode);
900 spin_unlock(&sbi->inode_lock[type]);
901 if (inode) {
902 filemap_fdatawrite(inode->i_mapping);
903 iput(inode);
904 } else {
905 /*
906 * We should submit bio, since it exists several
907 * wribacking dentry pages in the freeing inode.
908 */
909 f2fs_submit_merged_bio(sbi, DATA, WRITE);
910 cond_resched();
911 }
912 goto retry;
913 }
914
915 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
916 {
917 struct list_head *head = &sbi->inode_list[DIRTY_META];
918 struct inode *inode;
919 struct f2fs_inode_info *fi;
920 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
921
922 while (total--) {
923 if (unlikely(f2fs_cp_error(sbi)))
924 return -EIO;
925
926 spin_lock(&sbi->inode_lock[DIRTY_META]);
927 if (list_empty(head)) {
928 spin_unlock(&sbi->inode_lock[DIRTY_META]);
929 return 0;
930 }
931 fi = list_first_entry(head, struct f2fs_inode_info,
932 gdirty_list);
933 inode = igrab(&fi->vfs_inode);
934 spin_unlock(&sbi->inode_lock[DIRTY_META]);
935 if (inode) {
936 sync_inode_metadata(inode, 0);
937
938 /* it's on eviction */
939 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
940 update_inode_page(inode);
941 iput(inode);
942 }
943 };
944 return 0;
945 }
946
947 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
948 {
949 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
950 struct f2fs_nm_info *nm_i = NM_I(sbi);
951 nid_t last_nid = nm_i->next_scan_nid;
952
953 next_free_nid(sbi, &last_nid);
954 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
955 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
956 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
957 ckpt->next_free_nid = cpu_to_le32(last_nid);
958 }
959
960 /*
961 * Freeze all the FS-operations for checkpoint.
962 */
963 static int block_operations(struct f2fs_sb_info *sbi)
964 {
965 struct writeback_control wbc = {
966 .sync_mode = WB_SYNC_ALL,
967 .nr_to_write = LONG_MAX,
968 .for_reclaim = 0,
969 };
970 struct blk_plug plug;
971 int err = 0;
972
973 blk_start_plug(&plug);
974
975 retry_flush_dents:
976 f2fs_lock_all(sbi);
977 /* write all the dirty dentry pages */
978 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
979 f2fs_unlock_all(sbi);
980 err = sync_dirty_inodes(sbi, DIR_INODE);
981 if (err)
982 goto out;
983 cond_resched();
984 goto retry_flush_dents;
985 }
986
987 /*
988 * POR: we should ensure that there are no dirty node pages
989 * until finishing nat/sit flush. inode->i_blocks can be updated.
990 */
991 down_write(&sbi->node_change);
992
993 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
994 up_write(&sbi->node_change);
995 f2fs_unlock_all(sbi);
996 err = f2fs_sync_inode_meta(sbi);
997 if (err)
998 goto out;
999 cond_resched();
1000 goto retry_flush_dents;
1001 }
1002
1003 retry_flush_nodes:
1004 down_write(&sbi->node_write);
1005
1006 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1007 up_write(&sbi->node_write);
1008 err = sync_node_pages(sbi, &wbc);
1009 if (err) {
1010 up_write(&sbi->node_change);
1011 f2fs_unlock_all(sbi);
1012 goto out;
1013 }
1014 cond_resched();
1015 goto retry_flush_nodes;
1016 }
1017
1018 /*
1019 * sbi->node_change is used only for AIO write_begin path which produces
1020 * dirty node blocks and some checkpoint values by block allocation.
1021 */
1022 __prepare_cp_block(sbi);
1023 up_write(&sbi->node_change);
1024 out:
1025 blk_finish_plug(&plug);
1026 return err;
1027 }
1028
1029 static void unblock_operations(struct f2fs_sb_info *sbi)
1030 {
1031 up_write(&sbi->node_write);
1032 f2fs_unlock_all(sbi);
1033 }
1034
1035 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1036 {
1037 DEFINE_WAIT(wait);
1038
1039 for (;;) {
1040 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1041
1042 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1043 break;
1044
1045 io_schedule_timeout(5*HZ);
1046 }
1047 finish_wait(&sbi->cp_wait, &wait);
1048 }
1049
1050 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1051 {
1052 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1053 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1054
1055 spin_lock(&sbi->cp_lock);
1056
1057 if ((cpc->reason & CP_UMOUNT) &&
1058 le32_to_cpu(ckpt->cp_pack_total_block_count) >
1059 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1060 disable_nat_bits(sbi, false);
1061
1062 if (cpc->reason & CP_TRIMMED)
1063 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1064
1065 if (cpc->reason & CP_UMOUNT)
1066 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1067 else
1068 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1069
1070 if (cpc->reason & CP_FASTBOOT)
1071 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1072 else
1073 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1074
1075 if (orphan_num)
1076 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1077 else
1078 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1079
1080 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1081 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1082
1083 /* set this flag to activate crc|cp_ver for recovery */
1084 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1085
1086 spin_unlock(&sbi->cp_lock);
1087 }
1088
1089 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1090 {
1091 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1092 struct f2fs_nm_info *nm_i = NM_I(sbi);
1093 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1094 block_t start_blk;
1095 unsigned int data_sum_blocks, orphan_blocks;
1096 __u32 crc32 = 0;
1097 int i;
1098 int cp_payload_blks = __cp_payload(sbi);
1099 struct super_block *sb = sbi->sb;
1100 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1101 u64 kbytes_written;
1102
1103 /* Flush all the NAT/SIT pages */
1104 while (get_pages(sbi, F2FS_DIRTY_META)) {
1105 sync_meta_pages(sbi, META, LONG_MAX);
1106 if (unlikely(f2fs_cp_error(sbi)))
1107 return -EIO;
1108 }
1109
1110 /*
1111 * modify checkpoint
1112 * version number is already updated
1113 */
1114 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1115 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1116 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1117 ckpt->cur_node_segno[i] =
1118 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1119 ckpt->cur_node_blkoff[i] =
1120 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1121 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1122 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1123 }
1124 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1125 ckpt->cur_data_segno[i] =
1126 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1127 ckpt->cur_data_blkoff[i] =
1128 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1129 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1130 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1131 }
1132
1133 /* 2 cp + n data seg summary + orphan inode blocks */
1134 data_sum_blocks = npages_for_summary_flush(sbi, false);
1135 spin_lock(&sbi->cp_lock);
1136 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1137 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1138 else
1139 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1140 spin_unlock(&sbi->cp_lock);
1141
1142 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1143 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1144 orphan_blocks);
1145
1146 if (__remain_node_summaries(cpc->reason))
1147 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1148 cp_payload_blks + data_sum_blocks +
1149 orphan_blocks + NR_CURSEG_NODE_TYPE);
1150 else
1151 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1152 cp_payload_blks + data_sum_blocks +
1153 orphan_blocks);
1154
1155 /* update ckpt flag for checkpoint */
1156 update_ckpt_flags(sbi, cpc);
1157
1158 /* update SIT/NAT bitmap */
1159 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1160 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1161
1162 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1163 *((__le32 *)((unsigned char *)ckpt +
1164 le32_to_cpu(ckpt->checksum_offset)))
1165 = cpu_to_le32(crc32);
1166
1167 start_blk = __start_cp_next_addr(sbi);
1168
1169 /* write nat bits */
1170 if (enabled_nat_bits(sbi, cpc)) {
1171 __u64 cp_ver = cur_cp_version(ckpt);
1172 block_t blk;
1173
1174 cp_ver |= ((__u64)crc32 << 32);
1175 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1176
1177 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1178 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1179 update_meta_page(sbi, nm_i->nat_bits +
1180 (i << F2FS_BLKSIZE_BITS), blk + i);
1181
1182 /* Flush all the NAT BITS pages */
1183 while (get_pages(sbi, F2FS_DIRTY_META)) {
1184 sync_meta_pages(sbi, META, LONG_MAX);
1185 if (unlikely(f2fs_cp_error(sbi)))
1186 return -EIO;
1187 }
1188 }
1189
1190 /* need to wait for end_io results */
1191 wait_on_all_pages_writeback(sbi);
1192 if (unlikely(f2fs_cp_error(sbi)))
1193 return -EIO;
1194
1195 /* write out checkpoint buffer at block 0 */
1196 update_meta_page(sbi, ckpt, start_blk++);
1197
1198 for (i = 1; i < 1 + cp_payload_blks; i++)
1199 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1200 start_blk++);
1201
1202 if (orphan_num) {
1203 write_orphan_inodes(sbi, start_blk);
1204 start_blk += orphan_blocks;
1205 }
1206
1207 write_data_summaries(sbi, start_blk);
1208 start_blk += data_sum_blocks;
1209
1210 /* Record write statistics in the hot node summary */
1211 kbytes_written = sbi->kbytes_written;
1212 if (sb->s_bdev->bd_part)
1213 kbytes_written += BD_PART_WRITTEN(sbi);
1214
1215 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1216
1217 if (__remain_node_summaries(cpc->reason)) {
1218 write_node_summaries(sbi, start_blk);
1219 start_blk += NR_CURSEG_NODE_TYPE;
1220 }
1221
1222 /* writeout checkpoint block */
1223 update_meta_page(sbi, ckpt, start_blk);
1224
1225 /* wait for previous submitted node/meta pages writeback */
1226 wait_on_all_pages_writeback(sbi);
1227
1228 if (unlikely(f2fs_cp_error(sbi)))
1229 return -EIO;
1230
1231 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1232 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1233
1234 /* update user_block_counts */
1235 sbi->last_valid_block_count = sbi->total_valid_block_count;
1236 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1237
1238 /* Here, we only have one bio having CP pack */
1239 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1240
1241 /* wait for previous submitted meta pages writeback */
1242 wait_on_all_pages_writeback(sbi);
1243
1244 release_ino_entry(sbi, false);
1245
1246 if (unlikely(f2fs_cp_error(sbi)))
1247 return -EIO;
1248
1249 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1250 clear_sbi_flag(sbi, SBI_NEED_CP);
1251 __set_cp_next_pack(sbi);
1252
1253 /*
1254 * redirty superblock if metadata like node page or inode cache is
1255 * updated during writing checkpoint.
1256 */
1257 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1258 get_pages(sbi, F2FS_DIRTY_IMETA))
1259 set_sbi_flag(sbi, SBI_IS_DIRTY);
1260
1261 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1262
1263 return 0;
1264 }
1265
1266 /*
1267 * We guarantee that this checkpoint procedure will not fail.
1268 */
1269 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1270 {
1271 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1272 unsigned long long ckpt_ver;
1273 int err = 0;
1274
1275 mutex_lock(&sbi->cp_mutex);
1276
1277 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1278 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1279 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1280 goto out;
1281 if (unlikely(f2fs_cp_error(sbi))) {
1282 err = -EIO;
1283 goto out;
1284 }
1285 if (f2fs_readonly(sbi->sb)) {
1286 err = -EROFS;
1287 goto out;
1288 }
1289
1290 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1291
1292 err = block_operations(sbi);
1293 if (err)
1294 goto out;
1295
1296 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1297
1298 f2fs_flush_merged_bios(sbi);
1299
1300 /* this is the case of multiple fstrims without any changes */
1301 if (cpc->reason & CP_DISCARD) {
1302 if (!exist_trim_candidates(sbi, cpc)) {
1303 unblock_operations(sbi);
1304 goto out;
1305 }
1306
1307 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1308 SIT_I(sbi)->dirty_sentries == 0 &&
1309 prefree_segments(sbi) == 0) {
1310 flush_sit_entries(sbi, cpc);
1311 clear_prefree_segments(sbi, cpc);
1312 unblock_operations(sbi);
1313 goto out;
1314 }
1315 }
1316
1317 /*
1318 * update checkpoint pack index
1319 * Increase the version number so that
1320 * SIT entries and seg summaries are written at correct place
1321 */
1322 ckpt_ver = cur_cp_version(ckpt);
1323 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1324
1325 /* write cached NAT/SIT entries to NAT/SIT area */
1326 flush_nat_entries(sbi, cpc);
1327 flush_sit_entries(sbi, cpc);
1328
1329 /* unlock all the fs_lock[] in do_checkpoint() */
1330 err = do_checkpoint(sbi, cpc);
1331 if (err)
1332 release_discard_addrs(sbi);
1333 else
1334 clear_prefree_segments(sbi, cpc);
1335
1336 unblock_operations(sbi);
1337 stat_inc_cp_count(sbi->stat_info);
1338
1339 if (cpc->reason & CP_RECOVERY)
1340 f2fs_msg(sbi->sb, KERN_NOTICE,
1341 "checkpoint: version = %llx", ckpt_ver);
1342
1343 /* do checkpoint periodically */
1344 f2fs_update_time(sbi, CP_TIME);
1345 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1346 out:
1347 mutex_unlock(&sbi->cp_mutex);
1348 return err;
1349 }
1350
1351 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1352 {
1353 int i;
1354
1355 for (i = 0; i < MAX_INO_ENTRY; i++) {
1356 struct inode_management *im = &sbi->im[i];
1357
1358 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1359 spin_lock_init(&im->ino_lock);
1360 INIT_LIST_HEAD(&im->ino_list);
1361 im->ino_num = 0;
1362 }
1363
1364 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1365 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1366 F2FS_ORPHANS_PER_BLOCK;
1367 }
1368
1369 int __init create_checkpoint_caches(void)
1370 {
1371 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1372 sizeof(struct ino_entry));
1373 if (!ino_entry_slab)
1374 return -ENOMEM;
1375 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1376 sizeof(struct inode_entry));
1377 if (!inode_entry_slab) {
1378 kmem_cache_destroy(ino_entry_slab);
1379 return -ENOMEM;
1380 }
1381 return 0;
1382 }
1383
1384 void destroy_checkpoint_caches(void)
1385 {
1386 kmem_cache_destroy(ino_entry_slab);
1387 kmem_cache_destroy(inode_entry_slab);
1388 }