]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/compress.c
f2fs: compress: add compress_inode to cache compressed blocks
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / compress.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * f2fs compress support
4 *
5 * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6 */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/writeback.h>
11 #include <linux/backing-dev.h>
12 #include <linux/lzo.h>
13 #include <linux/lz4.h>
14 #include <linux/zstd.h>
15 #include <linux/pagevec.h>
16
17 #include "f2fs.h"
18 #include "node.h"
19 #include "segment.h"
20 #include <trace/events/f2fs.h>
21
22 static struct kmem_cache *cic_entry_slab;
23 static struct kmem_cache *dic_entry_slab;
24
25 static void *page_array_alloc(struct inode *inode, int nr)
26 {
27 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
28 unsigned int size = sizeof(struct page *) * nr;
29
30 if (likely(size <= sbi->page_array_slab_size))
31 return kmem_cache_zalloc(sbi->page_array_slab, GFP_NOFS);
32 return f2fs_kzalloc(sbi, size, GFP_NOFS);
33 }
34
35 static void page_array_free(struct inode *inode, void *pages, int nr)
36 {
37 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
38 unsigned int size = sizeof(struct page *) * nr;
39
40 if (!pages)
41 return;
42
43 if (likely(size <= sbi->page_array_slab_size))
44 kmem_cache_free(sbi->page_array_slab, pages);
45 else
46 kfree(pages);
47 }
48
49 struct f2fs_compress_ops {
50 int (*init_compress_ctx)(struct compress_ctx *cc);
51 void (*destroy_compress_ctx)(struct compress_ctx *cc);
52 int (*compress_pages)(struct compress_ctx *cc);
53 int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
54 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
55 int (*decompress_pages)(struct decompress_io_ctx *dic);
56 };
57
58 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
59 {
60 return index & (cc->cluster_size - 1);
61 }
62
63 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
64 {
65 return index >> cc->log_cluster_size;
66 }
67
68 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
69 {
70 return cc->cluster_idx << cc->log_cluster_size;
71 }
72
73 bool f2fs_is_compressed_page(struct page *page)
74 {
75 if (!PagePrivate(page))
76 return false;
77 if (!page_private(page))
78 return false;
79 if (page_private_nonpointer(page))
80 return false;
81
82 f2fs_bug_on(F2FS_M_SB(page->mapping),
83 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
84 return true;
85 }
86
87 static void f2fs_set_compressed_page(struct page *page,
88 struct inode *inode, pgoff_t index, void *data)
89 {
90 attach_page_private(page, (void *)data);
91
92 /* i_crypto_info and iv index */
93 page->index = index;
94 page->mapping = inode->i_mapping;
95 }
96
97 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
98 {
99 int i;
100
101 for (i = 0; i < len; i++) {
102 if (!cc->rpages[i])
103 continue;
104 if (unlock)
105 unlock_page(cc->rpages[i]);
106 else
107 put_page(cc->rpages[i]);
108 }
109 }
110
111 static void f2fs_put_rpages(struct compress_ctx *cc)
112 {
113 f2fs_drop_rpages(cc, cc->cluster_size, false);
114 }
115
116 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
117 {
118 f2fs_drop_rpages(cc, len, true);
119 }
120
121 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
122 struct writeback_control *wbc, bool redirty, int unlock)
123 {
124 unsigned int i;
125
126 for (i = 0; i < cc->cluster_size; i++) {
127 if (!cc->rpages[i])
128 continue;
129 if (redirty)
130 redirty_page_for_writepage(wbc, cc->rpages[i]);
131 f2fs_put_page(cc->rpages[i], unlock);
132 }
133 }
134
135 struct page *f2fs_compress_control_page(struct page *page)
136 {
137 return ((struct compress_io_ctx *)page_private(page))->rpages[0];
138 }
139
140 int f2fs_init_compress_ctx(struct compress_ctx *cc)
141 {
142 if (cc->rpages)
143 return 0;
144
145 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
146 return cc->rpages ? 0 : -ENOMEM;
147 }
148
149 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
150 {
151 page_array_free(cc->inode, cc->rpages, cc->cluster_size);
152 cc->rpages = NULL;
153 cc->nr_rpages = 0;
154 cc->nr_cpages = 0;
155 if (!reuse)
156 cc->cluster_idx = NULL_CLUSTER;
157 }
158
159 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
160 {
161 unsigned int cluster_ofs;
162
163 if (!f2fs_cluster_can_merge_page(cc, page->index))
164 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
165
166 cluster_ofs = offset_in_cluster(cc, page->index);
167 cc->rpages[cluster_ofs] = page;
168 cc->nr_rpages++;
169 cc->cluster_idx = cluster_idx(cc, page->index);
170 }
171
172 #ifdef CONFIG_F2FS_FS_LZO
173 static int lzo_init_compress_ctx(struct compress_ctx *cc)
174 {
175 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
176 LZO1X_MEM_COMPRESS, GFP_NOFS);
177 if (!cc->private)
178 return -ENOMEM;
179
180 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
181 return 0;
182 }
183
184 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
185 {
186 kvfree(cc->private);
187 cc->private = NULL;
188 }
189
190 static int lzo_compress_pages(struct compress_ctx *cc)
191 {
192 int ret;
193
194 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
195 &cc->clen, cc->private);
196 if (ret != LZO_E_OK) {
197 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
198 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
199 return -EIO;
200 }
201 return 0;
202 }
203
204 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
205 {
206 int ret;
207
208 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
209 dic->rbuf, &dic->rlen);
210 if (ret != LZO_E_OK) {
211 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
212 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
213 return -EIO;
214 }
215
216 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
217 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
218 "expected:%lu\n", KERN_ERR,
219 F2FS_I_SB(dic->inode)->sb->s_id,
220 dic->rlen,
221 PAGE_SIZE << dic->log_cluster_size);
222 return -EIO;
223 }
224 return 0;
225 }
226
227 static const struct f2fs_compress_ops f2fs_lzo_ops = {
228 .init_compress_ctx = lzo_init_compress_ctx,
229 .destroy_compress_ctx = lzo_destroy_compress_ctx,
230 .compress_pages = lzo_compress_pages,
231 .decompress_pages = lzo_decompress_pages,
232 };
233 #endif
234
235 #ifdef CONFIG_F2FS_FS_LZ4
236 static int lz4_init_compress_ctx(struct compress_ctx *cc)
237 {
238 unsigned int size = LZ4_MEM_COMPRESS;
239
240 #ifdef CONFIG_F2FS_FS_LZ4HC
241 if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
242 size = LZ4HC_MEM_COMPRESS;
243 #endif
244
245 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
246 if (!cc->private)
247 return -ENOMEM;
248
249 /*
250 * we do not change cc->clen to LZ4_compressBound(inputsize) to
251 * adapt worst compress case, because lz4 compressor can handle
252 * output budget properly.
253 */
254 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
255 return 0;
256 }
257
258 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
259 {
260 kvfree(cc->private);
261 cc->private = NULL;
262 }
263
264 #ifdef CONFIG_F2FS_FS_LZ4HC
265 static int lz4hc_compress_pages(struct compress_ctx *cc)
266 {
267 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
268 COMPRESS_LEVEL_OFFSET;
269 int len;
270
271 if (level)
272 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
273 cc->clen, level, cc->private);
274 else
275 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
276 cc->clen, cc->private);
277 if (!len)
278 return -EAGAIN;
279
280 cc->clen = len;
281 return 0;
282 }
283 #endif
284
285 static int lz4_compress_pages(struct compress_ctx *cc)
286 {
287 int len;
288
289 #ifdef CONFIG_F2FS_FS_LZ4HC
290 return lz4hc_compress_pages(cc);
291 #endif
292 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
293 cc->clen, cc->private);
294 if (!len)
295 return -EAGAIN;
296
297 cc->clen = len;
298 return 0;
299 }
300
301 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
302 {
303 int ret;
304
305 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
306 dic->clen, dic->rlen);
307 if (ret < 0) {
308 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
309 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
310 return -EIO;
311 }
312
313 if (ret != PAGE_SIZE << dic->log_cluster_size) {
314 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid rlen:%zu, "
315 "expected:%lu\n", KERN_ERR,
316 F2FS_I_SB(dic->inode)->sb->s_id,
317 dic->rlen,
318 PAGE_SIZE << dic->log_cluster_size);
319 return -EIO;
320 }
321 return 0;
322 }
323
324 static const struct f2fs_compress_ops f2fs_lz4_ops = {
325 .init_compress_ctx = lz4_init_compress_ctx,
326 .destroy_compress_ctx = lz4_destroy_compress_ctx,
327 .compress_pages = lz4_compress_pages,
328 .decompress_pages = lz4_decompress_pages,
329 };
330 #endif
331
332 #ifdef CONFIG_F2FS_FS_ZSTD
333 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
334
335 static int zstd_init_compress_ctx(struct compress_ctx *cc)
336 {
337 ZSTD_parameters params;
338 ZSTD_CStream *stream;
339 void *workspace;
340 unsigned int workspace_size;
341 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
342 COMPRESS_LEVEL_OFFSET;
343
344 if (!level)
345 level = F2FS_ZSTD_DEFAULT_CLEVEL;
346
347 params = ZSTD_getParams(level, cc->rlen, 0);
348 workspace_size = ZSTD_CStreamWorkspaceBound(params.cParams);
349
350 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
351 workspace_size, GFP_NOFS);
352 if (!workspace)
353 return -ENOMEM;
354
355 stream = ZSTD_initCStream(params, 0, workspace, workspace_size);
356 if (!stream) {
357 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initCStream failed\n",
358 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
359 __func__);
360 kvfree(workspace);
361 return -EIO;
362 }
363
364 cc->private = workspace;
365 cc->private2 = stream;
366
367 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
368 return 0;
369 }
370
371 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
372 {
373 kvfree(cc->private);
374 cc->private = NULL;
375 cc->private2 = NULL;
376 }
377
378 static int zstd_compress_pages(struct compress_ctx *cc)
379 {
380 ZSTD_CStream *stream = cc->private2;
381 ZSTD_inBuffer inbuf;
382 ZSTD_outBuffer outbuf;
383 int src_size = cc->rlen;
384 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
385 int ret;
386
387 inbuf.pos = 0;
388 inbuf.src = cc->rbuf;
389 inbuf.size = src_size;
390
391 outbuf.pos = 0;
392 outbuf.dst = cc->cbuf->cdata;
393 outbuf.size = dst_size;
394
395 ret = ZSTD_compressStream(stream, &outbuf, &inbuf);
396 if (ZSTD_isError(ret)) {
397 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
398 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
399 __func__, ZSTD_getErrorCode(ret));
400 return -EIO;
401 }
402
403 ret = ZSTD_endStream(stream, &outbuf);
404 if (ZSTD_isError(ret)) {
405 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_endStream returned %d\n",
406 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
407 __func__, ZSTD_getErrorCode(ret));
408 return -EIO;
409 }
410
411 /*
412 * there is compressed data remained in intermediate buffer due to
413 * no more space in cbuf.cdata
414 */
415 if (ret)
416 return -EAGAIN;
417
418 cc->clen = outbuf.pos;
419 return 0;
420 }
421
422 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
423 {
424 ZSTD_DStream *stream;
425 void *workspace;
426 unsigned int workspace_size;
427 unsigned int max_window_size =
428 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
429
430 workspace_size = ZSTD_DStreamWorkspaceBound(max_window_size);
431
432 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
433 workspace_size, GFP_NOFS);
434 if (!workspace)
435 return -ENOMEM;
436
437 stream = ZSTD_initDStream(max_window_size, workspace, workspace_size);
438 if (!stream) {
439 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initDStream failed\n",
440 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
441 __func__);
442 kvfree(workspace);
443 return -EIO;
444 }
445
446 dic->private = workspace;
447 dic->private2 = stream;
448
449 return 0;
450 }
451
452 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
453 {
454 kvfree(dic->private);
455 dic->private = NULL;
456 dic->private2 = NULL;
457 }
458
459 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
460 {
461 ZSTD_DStream *stream = dic->private2;
462 ZSTD_inBuffer inbuf;
463 ZSTD_outBuffer outbuf;
464 int ret;
465
466 inbuf.pos = 0;
467 inbuf.src = dic->cbuf->cdata;
468 inbuf.size = dic->clen;
469
470 outbuf.pos = 0;
471 outbuf.dst = dic->rbuf;
472 outbuf.size = dic->rlen;
473
474 ret = ZSTD_decompressStream(stream, &outbuf, &inbuf);
475 if (ZSTD_isError(ret)) {
476 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
477 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
478 __func__, ZSTD_getErrorCode(ret));
479 return -EIO;
480 }
481
482 if (dic->rlen != outbuf.pos) {
483 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
484 "expected:%lu\n", KERN_ERR,
485 F2FS_I_SB(dic->inode)->sb->s_id,
486 __func__, dic->rlen,
487 PAGE_SIZE << dic->log_cluster_size);
488 return -EIO;
489 }
490
491 return 0;
492 }
493
494 static const struct f2fs_compress_ops f2fs_zstd_ops = {
495 .init_compress_ctx = zstd_init_compress_ctx,
496 .destroy_compress_ctx = zstd_destroy_compress_ctx,
497 .compress_pages = zstd_compress_pages,
498 .init_decompress_ctx = zstd_init_decompress_ctx,
499 .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
500 .decompress_pages = zstd_decompress_pages,
501 };
502 #endif
503
504 #ifdef CONFIG_F2FS_FS_LZO
505 #ifdef CONFIG_F2FS_FS_LZORLE
506 static int lzorle_compress_pages(struct compress_ctx *cc)
507 {
508 int ret;
509
510 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
511 &cc->clen, cc->private);
512 if (ret != LZO_E_OK) {
513 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
514 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
515 return -EIO;
516 }
517 return 0;
518 }
519
520 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
521 .init_compress_ctx = lzo_init_compress_ctx,
522 .destroy_compress_ctx = lzo_destroy_compress_ctx,
523 .compress_pages = lzorle_compress_pages,
524 .decompress_pages = lzo_decompress_pages,
525 };
526 #endif
527 #endif
528
529 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
530 #ifdef CONFIG_F2FS_FS_LZO
531 &f2fs_lzo_ops,
532 #else
533 NULL,
534 #endif
535 #ifdef CONFIG_F2FS_FS_LZ4
536 &f2fs_lz4_ops,
537 #else
538 NULL,
539 #endif
540 #ifdef CONFIG_F2FS_FS_ZSTD
541 &f2fs_zstd_ops,
542 #else
543 NULL,
544 #endif
545 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
546 &f2fs_lzorle_ops,
547 #else
548 NULL,
549 #endif
550 };
551
552 bool f2fs_is_compress_backend_ready(struct inode *inode)
553 {
554 if (!f2fs_compressed_file(inode))
555 return true;
556 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
557 }
558
559 static mempool_t *compress_page_pool;
560 static int num_compress_pages = 512;
561 module_param(num_compress_pages, uint, 0444);
562 MODULE_PARM_DESC(num_compress_pages,
563 "Number of intermediate compress pages to preallocate");
564
565 int f2fs_init_compress_mempool(void)
566 {
567 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
568 if (!compress_page_pool)
569 return -ENOMEM;
570
571 return 0;
572 }
573
574 void f2fs_destroy_compress_mempool(void)
575 {
576 mempool_destroy(compress_page_pool);
577 }
578
579 static struct page *f2fs_compress_alloc_page(void)
580 {
581 struct page *page;
582
583 page = mempool_alloc(compress_page_pool, GFP_NOFS);
584 lock_page(page);
585
586 return page;
587 }
588
589 static void f2fs_compress_free_page(struct page *page)
590 {
591 if (!page)
592 return;
593 detach_page_private(page);
594 page->mapping = NULL;
595 unlock_page(page);
596 mempool_free(page, compress_page_pool);
597 }
598
599 #define MAX_VMAP_RETRIES 3
600
601 static void *f2fs_vmap(struct page **pages, unsigned int count)
602 {
603 int i;
604 void *buf = NULL;
605
606 for (i = 0; i < MAX_VMAP_RETRIES; i++) {
607 buf = vm_map_ram(pages, count, -1);
608 if (buf)
609 break;
610 vm_unmap_aliases();
611 }
612 return buf;
613 }
614
615 static int f2fs_compress_pages(struct compress_ctx *cc)
616 {
617 struct f2fs_inode_info *fi = F2FS_I(cc->inode);
618 const struct f2fs_compress_ops *cops =
619 f2fs_cops[fi->i_compress_algorithm];
620 unsigned int max_len, new_nr_cpages;
621 struct page **new_cpages;
622 u32 chksum = 0;
623 int i, ret;
624
625 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
626 cc->cluster_size, fi->i_compress_algorithm);
627
628 if (cops->init_compress_ctx) {
629 ret = cops->init_compress_ctx(cc);
630 if (ret)
631 goto out;
632 }
633
634 max_len = COMPRESS_HEADER_SIZE + cc->clen;
635 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
636
637 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
638 if (!cc->cpages) {
639 ret = -ENOMEM;
640 goto destroy_compress_ctx;
641 }
642
643 for (i = 0; i < cc->nr_cpages; i++) {
644 cc->cpages[i] = f2fs_compress_alloc_page();
645 if (!cc->cpages[i]) {
646 ret = -ENOMEM;
647 goto out_free_cpages;
648 }
649 }
650
651 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
652 if (!cc->rbuf) {
653 ret = -ENOMEM;
654 goto out_free_cpages;
655 }
656
657 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
658 if (!cc->cbuf) {
659 ret = -ENOMEM;
660 goto out_vunmap_rbuf;
661 }
662
663 ret = cops->compress_pages(cc);
664 if (ret)
665 goto out_vunmap_cbuf;
666
667 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
668
669 if (cc->clen > max_len) {
670 ret = -EAGAIN;
671 goto out_vunmap_cbuf;
672 }
673
674 cc->cbuf->clen = cpu_to_le32(cc->clen);
675
676 if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
677 chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
678 cc->cbuf->cdata, cc->clen);
679 cc->cbuf->chksum = cpu_to_le32(chksum);
680
681 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
682 cc->cbuf->reserved[i] = cpu_to_le32(0);
683
684 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
685
686 /* Now we're going to cut unnecessary tail pages */
687 new_cpages = page_array_alloc(cc->inode, new_nr_cpages);
688 if (!new_cpages) {
689 ret = -ENOMEM;
690 goto out_vunmap_cbuf;
691 }
692
693 /* zero out any unused part of the last page */
694 memset(&cc->cbuf->cdata[cc->clen], 0,
695 (new_nr_cpages * PAGE_SIZE) -
696 (cc->clen + COMPRESS_HEADER_SIZE));
697
698 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
699 vm_unmap_ram(cc->rbuf, cc->cluster_size);
700
701 for (i = 0; i < cc->nr_cpages; i++) {
702 if (i < new_nr_cpages) {
703 new_cpages[i] = cc->cpages[i];
704 continue;
705 }
706 f2fs_compress_free_page(cc->cpages[i]);
707 cc->cpages[i] = NULL;
708 }
709
710 if (cops->destroy_compress_ctx)
711 cops->destroy_compress_ctx(cc);
712
713 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
714 cc->cpages = new_cpages;
715 cc->nr_cpages = new_nr_cpages;
716
717 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
718 cc->clen, ret);
719 return 0;
720
721 out_vunmap_cbuf:
722 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
723 out_vunmap_rbuf:
724 vm_unmap_ram(cc->rbuf, cc->cluster_size);
725 out_free_cpages:
726 for (i = 0; i < cc->nr_cpages; i++) {
727 if (cc->cpages[i])
728 f2fs_compress_free_page(cc->cpages[i]);
729 }
730 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
731 cc->cpages = NULL;
732 destroy_compress_ctx:
733 if (cops->destroy_compress_ctx)
734 cops->destroy_compress_ctx(cc);
735 out:
736 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
737 cc->clen, ret);
738 return ret;
739 }
740
741 void f2fs_decompress_cluster(struct decompress_io_ctx *dic)
742 {
743 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
744 struct f2fs_inode_info *fi = F2FS_I(dic->inode);
745 const struct f2fs_compress_ops *cops =
746 f2fs_cops[fi->i_compress_algorithm];
747 int ret;
748 int i;
749
750 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
751 dic->cluster_size, fi->i_compress_algorithm);
752
753 if (dic->failed) {
754 ret = -EIO;
755 goto out_end_io;
756 }
757
758 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
759 if (!dic->tpages) {
760 ret = -ENOMEM;
761 goto out_end_io;
762 }
763
764 for (i = 0; i < dic->cluster_size; i++) {
765 if (dic->rpages[i]) {
766 dic->tpages[i] = dic->rpages[i];
767 continue;
768 }
769
770 dic->tpages[i] = f2fs_compress_alloc_page();
771 if (!dic->tpages[i]) {
772 ret = -ENOMEM;
773 goto out_end_io;
774 }
775 }
776
777 if (cops->init_decompress_ctx) {
778 ret = cops->init_decompress_ctx(dic);
779 if (ret)
780 goto out_end_io;
781 }
782
783 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
784 if (!dic->rbuf) {
785 ret = -ENOMEM;
786 goto out_destroy_decompress_ctx;
787 }
788
789 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
790 if (!dic->cbuf) {
791 ret = -ENOMEM;
792 goto out_vunmap_rbuf;
793 }
794
795 dic->clen = le32_to_cpu(dic->cbuf->clen);
796 dic->rlen = PAGE_SIZE << dic->log_cluster_size;
797
798 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
799 ret = -EFSCORRUPTED;
800 goto out_vunmap_cbuf;
801 }
802
803 ret = cops->decompress_pages(dic);
804
805 if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
806 u32 provided = le32_to_cpu(dic->cbuf->chksum);
807 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
808
809 if (provided != calculated) {
810 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
811 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
812 printk_ratelimited(
813 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
814 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
815 provided, calculated);
816 }
817 set_sbi_flag(sbi, SBI_NEED_FSCK);
818 }
819 }
820
821 out_vunmap_cbuf:
822 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
823 out_vunmap_rbuf:
824 vm_unmap_ram(dic->rbuf, dic->cluster_size);
825 out_destroy_decompress_ctx:
826 if (cops->destroy_decompress_ctx)
827 cops->destroy_decompress_ctx(dic);
828 out_end_io:
829 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
830 dic->clen, ret);
831 f2fs_decompress_end_io(dic, ret);
832 }
833
834 /*
835 * This is called when a page of a compressed cluster has been read from disk
836 * (or failed to be read from disk). It checks whether this page was the last
837 * page being waited on in the cluster, and if so, it decompresses the cluster
838 * (or in the case of a failure, cleans up without actually decompressing).
839 */
840 void f2fs_end_read_compressed_page(struct page *page, bool failed,
841 block_t blkaddr)
842 {
843 struct decompress_io_ctx *dic =
844 (struct decompress_io_ctx *)page_private(page);
845 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
846
847 dec_page_count(sbi, F2FS_RD_DATA);
848
849 if (failed)
850 WRITE_ONCE(dic->failed, true);
851 else if (blkaddr)
852 f2fs_cache_compressed_page(sbi, page,
853 dic->inode->i_ino, blkaddr);
854
855 if (atomic_dec_and_test(&dic->remaining_pages))
856 f2fs_decompress_cluster(dic);
857 }
858
859 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
860 {
861 if (cc->cluster_idx == NULL_CLUSTER)
862 return true;
863 return cc->cluster_idx == cluster_idx(cc, index);
864 }
865
866 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
867 {
868 return cc->nr_rpages == 0;
869 }
870
871 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
872 {
873 return cc->cluster_size == cc->nr_rpages;
874 }
875
876 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
877 {
878 if (f2fs_cluster_is_empty(cc))
879 return true;
880 return is_page_in_cluster(cc, index);
881 }
882
883 static bool cluster_has_invalid_data(struct compress_ctx *cc)
884 {
885 loff_t i_size = i_size_read(cc->inode);
886 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
887 int i;
888
889 for (i = 0; i < cc->cluster_size; i++) {
890 struct page *page = cc->rpages[i];
891
892 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
893
894 /* beyond EOF */
895 if (page->index >= nr_pages)
896 return true;
897 }
898 return false;
899 }
900
901 static int __f2fs_cluster_blocks(struct inode *inode,
902 unsigned int cluster_idx, bool compr)
903 {
904 struct dnode_of_data dn;
905 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
906 unsigned int start_idx = cluster_idx <<
907 F2FS_I(inode)->i_log_cluster_size;
908 int ret;
909
910 set_new_dnode(&dn, inode, NULL, NULL, 0);
911 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
912 if (ret) {
913 if (ret == -ENOENT)
914 ret = 0;
915 goto fail;
916 }
917
918 if (dn.data_blkaddr == COMPRESS_ADDR) {
919 int i;
920
921 ret = 1;
922 for (i = 1; i < cluster_size; i++) {
923 block_t blkaddr;
924
925 blkaddr = data_blkaddr(dn.inode,
926 dn.node_page, dn.ofs_in_node + i);
927 if (compr) {
928 if (__is_valid_data_blkaddr(blkaddr))
929 ret++;
930 } else {
931 if (blkaddr != NULL_ADDR)
932 ret++;
933 }
934 }
935
936 f2fs_bug_on(F2FS_I_SB(inode),
937 !compr && ret != cluster_size &&
938 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
939 }
940 fail:
941 f2fs_put_dnode(&dn);
942 return ret;
943 }
944
945 /* return # of compressed blocks in compressed cluster */
946 static int f2fs_compressed_blocks(struct compress_ctx *cc)
947 {
948 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
949 }
950
951 /* return # of valid blocks in compressed cluster */
952 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
953 {
954 return __f2fs_cluster_blocks(inode,
955 index >> F2FS_I(inode)->i_log_cluster_size,
956 false);
957 }
958
959 static bool cluster_may_compress(struct compress_ctx *cc)
960 {
961 if (!f2fs_need_compress_data(cc->inode))
962 return false;
963 if (f2fs_is_atomic_file(cc->inode))
964 return false;
965 if (!f2fs_cluster_is_full(cc))
966 return false;
967 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
968 return false;
969 return !cluster_has_invalid_data(cc);
970 }
971
972 static void set_cluster_writeback(struct compress_ctx *cc)
973 {
974 int i;
975
976 for (i = 0; i < cc->cluster_size; i++) {
977 if (cc->rpages[i])
978 set_page_writeback(cc->rpages[i]);
979 }
980 }
981
982 static void set_cluster_dirty(struct compress_ctx *cc)
983 {
984 int i;
985
986 for (i = 0; i < cc->cluster_size; i++)
987 if (cc->rpages[i])
988 set_page_dirty(cc->rpages[i]);
989 }
990
991 static int prepare_compress_overwrite(struct compress_ctx *cc,
992 struct page **pagep, pgoff_t index, void **fsdata)
993 {
994 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
995 struct address_space *mapping = cc->inode->i_mapping;
996 struct page *page;
997 sector_t last_block_in_bio;
998 unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
999 pgoff_t start_idx = start_idx_of_cluster(cc);
1000 int i, ret;
1001
1002 retry:
1003 ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1004 if (ret <= 0)
1005 return ret;
1006
1007 ret = f2fs_init_compress_ctx(cc);
1008 if (ret)
1009 return ret;
1010
1011 /* keep page reference to avoid page reclaim */
1012 for (i = 0; i < cc->cluster_size; i++) {
1013 page = f2fs_pagecache_get_page(mapping, start_idx + i,
1014 fgp_flag, GFP_NOFS);
1015 if (!page) {
1016 ret = -ENOMEM;
1017 goto unlock_pages;
1018 }
1019
1020 if (PageUptodate(page))
1021 f2fs_put_page(page, 1);
1022 else
1023 f2fs_compress_ctx_add_page(cc, page);
1024 }
1025
1026 if (!f2fs_cluster_is_empty(cc)) {
1027 struct bio *bio = NULL;
1028
1029 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1030 &last_block_in_bio, false, true);
1031 f2fs_put_rpages(cc);
1032 f2fs_destroy_compress_ctx(cc, true);
1033 if (ret)
1034 goto out;
1035 if (bio)
1036 f2fs_submit_bio(sbi, bio, DATA);
1037
1038 ret = f2fs_init_compress_ctx(cc);
1039 if (ret)
1040 goto out;
1041 }
1042
1043 for (i = 0; i < cc->cluster_size; i++) {
1044 f2fs_bug_on(sbi, cc->rpages[i]);
1045
1046 page = find_lock_page(mapping, start_idx + i);
1047 if (!page) {
1048 /* page can be truncated */
1049 goto release_and_retry;
1050 }
1051
1052 f2fs_wait_on_page_writeback(page, DATA, true, true);
1053 f2fs_compress_ctx_add_page(cc, page);
1054
1055 if (!PageUptodate(page)) {
1056 release_and_retry:
1057 f2fs_put_rpages(cc);
1058 f2fs_unlock_rpages(cc, i + 1);
1059 f2fs_destroy_compress_ctx(cc, true);
1060 goto retry;
1061 }
1062 }
1063
1064 if (likely(!ret)) {
1065 *fsdata = cc->rpages;
1066 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1067 return cc->cluster_size;
1068 }
1069
1070 unlock_pages:
1071 f2fs_put_rpages(cc);
1072 f2fs_unlock_rpages(cc, i);
1073 f2fs_destroy_compress_ctx(cc, true);
1074 out:
1075 return ret;
1076 }
1077
1078 int f2fs_prepare_compress_overwrite(struct inode *inode,
1079 struct page **pagep, pgoff_t index, void **fsdata)
1080 {
1081 struct compress_ctx cc = {
1082 .inode = inode,
1083 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1084 .cluster_size = F2FS_I(inode)->i_cluster_size,
1085 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1086 .rpages = NULL,
1087 .nr_rpages = 0,
1088 };
1089
1090 return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1091 }
1092
1093 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1094 pgoff_t index, unsigned copied)
1095
1096 {
1097 struct compress_ctx cc = {
1098 .inode = inode,
1099 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1100 .cluster_size = F2FS_I(inode)->i_cluster_size,
1101 .rpages = fsdata,
1102 };
1103 bool first_index = (index == cc.rpages[0]->index);
1104
1105 if (copied)
1106 set_cluster_dirty(&cc);
1107
1108 f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1109 f2fs_destroy_compress_ctx(&cc, false);
1110
1111 return first_index;
1112 }
1113
1114 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1115 {
1116 void *fsdata = NULL;
1117 struct page *pagep;
1118 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1119 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1120 log_cluster_size;
1121 int err;
1122
1123 err = f2fs_is_compressed_cluster(inode, start_idx);
1124 if (err < 0)
1125 return err;
1126
1127 /* truncate normal cluster */
1128 if (!err)
1129 return f2fs_do_truncate_blocks(inode, from, lock);
1130
1131 /* truncate compressed cluster */
1132 err = f2fs_prepare_compress_overwrite(inode, &pagep,
1133 start_idx, &fsdata);
1134
1135 /* should not be a normal cluster */
1136 f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1137
1138 if (err <= 0)
1139 return err;
1140
1141 if (err > 0) {
1142 struct page **rpages = fsdata;
1143 int cluster_size = F2FS_I(inode)->i_cluster_size;
1144 int i;
1145
1146 for (i = cluster_size - 1; i >= 0; i--) {
1147 loff_t start = rpages[i]->index << PAGE_SHIFT;
1148
1149 if (from <= start) {
1150 zero_user_segment(rpages[i], 0, PAGE_SIZE);
1151 } else {
1152 zero_user_segment(rpages[i], from - start,
1153 PAGE_SIZE);
1154 break;
1155 }
1156 }
1157
1158 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1159 }
1160 return 0;
1161 }
1162
1163 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1164 int *submitted,
1165 struct writeback_control *wbc,
1166 enum iostat_type io_type)
1167 {
1168 struct inode *inode = cc->inode;
1169 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1170 struct f2fs_inode_info *fi = F2FS_I(inode);
1171 struct f2fs_io_info fio = {
1172 .sbi = sbi,
1173 .ino = cc->inode->i_ino,
1174 .type = DATA,
1175 .op = REQ_OP_WRITE,
1176 .op_flags = wbc_to_write_flags(wbc),
1177 .old_blkaddr = NEW_ADDR,
1178 .page = NULL,
1179 .encrypted_page = NULL,
1180 .compressed_page = NULL,
1181 .submitted = false,
1182 .io_type = io_type,
1183 .io_wbc = wbc,
1184 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1185 };
1186 struct dnode_of_data dn;
1187 struct node_info ni;
1188 struct compress_io_ctx *cic;
1189 pgoff_t start_idx = start_idx_of_cluster(cc);
1190 unsigned int last_index = cc->cluster_size - 1;
1191 loff_t psize;
1192 int i, err;
1193
1194 /* we should bypass data pages to proceed the kworkder jobs */
1195 if (unlikely(f2fs_cp_error(sbi))) {
1196 mapping_set_error(cc->rpages[0]->mapping, -EIO);
1197 goto out_free;
1198 }
1199
1200 if (IS_NOQUOTA(inode)) {
1201 /*
1202 * We need to wait for node_write to avoid block allocation during
1203 * checkpoint. This can only happen to quota writes which can cause
1204 * the below discard race condition.
1205 */
1206 down_read(&sbi->node_write);
1207 } else if (!f2fs_trylock_op(sbi)) {
1208 goto out_free;
1209 }
1210
1211 set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1212
1213 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1214 if (err)
1215 goto out_unlock_op;
1216
1217 for (i = 0; i < cc->cluster_size; i++) {
1218 if (data_blkaddr(dn.inode, dn.node_page,
1219 dn.ofs_in_node + i) == NULL_ADDR)
1220 goto out_put_dnode;
1221 }
1222
1223 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1224
1225 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni);
1226 if (err)
1227 goto out_put_dnode;
1228
1229 fio.version = ni.version;
1230
1231 cic = kmem_cache_zalloc(cic_entry_slab, GFP_NOFS);
1232 if (!cic)
1233 goto out_put_dnode;
1234
1235 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1236 cic->inode = inode;
1237 atomic_set(&cic->pending_pages, cc->nr_cpages);
1238 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1239 if (!cic->rpages)
1240 goto out_put_cic;
1241
1242 cic->nr_rpages = cc->cluster_size;
1243
1244 for (i = 0; i < cc->nr_cpages; i++) {
1245 f2fs_set_compressed_page(cc->cpages[i], inode,
1246 cc->rpages[i + 1]->index, cic);
1247 fio.compressed_page = cc->cpages[i];
1248
1249 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1250 dn.ofs_in_node + i + 1);
1251
1252 /* wait for GCed page writeback via META_MAPPING */
1253 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1254
1255 if (fio.encrypted) {
1256 fio.page = cc->rpages[i + 1];
1257 err = f2fs_encrypt_one_page(&fio);
1258 if (err)
1259 goto out_destroy_crypt;
1260 cc->cpages[i] = fio.encrypted_page;
1261 }
1262 }
1263
1264 set_cluster_writeback(cc);
1265
1266 for (i = 0; i < cc->cluster_size; i++)
1267 cic->rpages[i] = cc->rpages[i];
1268
1269 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1270 block_t blkaddr;
1271
1272 blkaddr = f2fs_data_blkaddr(&dn);
1273 fio.page = cc->rpages[i];
1274 fio.old_blkaddr = blkaddr;
1275
1276 /* cluster header */
1277 if (i == 0) {
1278 if (blkaddr == COMPRESS_ADDR)
1279 fio.compr_blocks++;
1280 if (__is_valid_data_blkaddr(blkaddr))
1281 f2fs_invalidate_blocks(sbi, blkaddr);
1282 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1283 goto unlock_continue;
1284 }
1285
1286 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1287 fio.compr_blocks++;
1288
1289 if (i > cc->nr_cpages) {
1290 if (__is_valid_data_blkaddr(blkaddr)) {
1291 f2fs_invalidate_blocks(sbi, blkaddr);
1292 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1293 }
1294 goto unlock_continue;
1295 }
1296
1297 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1298
1299 if (fio.encrypted)
1300 fio.encrypted_page = cc->cpages[i - 1];
1301 else
1302 fio.compressed_page = cc->cpages[i - 1];
1303
1304 cc->cpages[i - 1] = NULL;
1305 f2fs_outplace_write_data(&dn, &fio);
1306 (*submitted)++;
1307 unlock_continue:
1308 inode_dec_dirty_pages(cc->inode);
1309 unlock_page(fio.page);
1310 }
1311
1312 if (fio.compr_blocks)
1313 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1314 f2fs_i_compr_blocks_update(inode, cc->nr_cpages, true);
1315 add_compr_block_stat(inode, cc->nr_cpages);
1316
1317 set_inode_flag(cc->inode, FI_APPEND_WRITE);
1318 if (cc->cluster_idx == 0)
1319 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1320
1321 f2fs_put_dnode(&dn);
1322 if (IS_NOQUOTA(inode))
1323 up_read(&sbi->node_write);
1324 else
1325 f2fs_unlock_op(sbi);
1326
1327 spin_lock(&fi->i_size_lock);
1328 if (fi->last_disk_size < psize)
1329 fi->last_disk_size = psize;
1330 spin_unlock(&fi->i_size_lock);
1331
1332 f2fs_put_rpages(cc);
1333 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1334 cc->cpages = NULL;
1335 f2fs_destroy_compress_ctx(cc, false);
1336 return 0;
1337
1338 out_destroy_crypt:
1339 page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1340
1341 for (--i; i >= 0; i--)
1342 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1343 for (i = 0; i < cc->nr_cpages; i++) {
1344 if (!cc->cpages[i])
1345 continue;
1346 f2fs_compress_free_page(cc->cpages[i]);
1347 cc->cpages[i] = NULL;
1348 }
1349 out_put_cic:
1350 kmem_cache_free(cic_entry_slab, cic);
1351 out_put_dnode:
1352 f2fs_put_dnode(&dn);
1353 out_unlock_op:
1354 if (IS_NOQUOTA(inode))
1355 up_read(&sbi->node_write);
1356 else
1357 f2fs_unlock_op(sbi);
1358 out_free:
1359 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1360 cc->cpages = NULL;
1361 return -EAGAIN;
1362 }
1363
1364 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1365 {
1366 struct f2fs_sb_info *sbi = bio->bi_private;
1367 struct compress_io_ctx *cic =
1368 (struct compress_io_ctx *)page_private(page);
1369 int i;
1370
1371 if (unlikely(bio->bi_status))
1372 mapping_set_error(cic->inode->i_mapping, -EIO);
1373
1374 f2fs_compress_free_page(page);
1375
1376 dec_page_count(sbi, F2FS_WB_DATA);
1377
1378 if (atomic_dec_return(&cic->pending_pages))
1379 return;
1380
1381 for (i = 0; i < cic->nr_rpages; i++) {
1382 WARN_ON(!cic->rpages[i]);
1383 clear_page_private_gcing(cic->rpages[i]);
1384 end_page_writeback(cic->rpages[i]);
1385 }
1386
1387 page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1388 kmem_cache_free(cic_entry_slab, cic);
1389 }
1390
1391 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1392 int *submitted,
1393 struct writeback_control *wbc,
1394 enum iostat_type io_type)
1395 {
1396 struct address_space *mapping = cc->inode->i_mapping;
1397 int _submitted, compr_blocks, ret;
1398 int i = -1, err = 0;
1399
1400 compr_blocks = f2fs_compressed_blocks(cc);
1401 if (compr_blocks < 0) {
1402 err = compr_blocks;
1403 goto out_err;
1404 }
1405
1406 for (i = 0; i < cc->cluster_size; i++) {
1407 if (!cc->rpages[i])
1408 continue;
1409 retry_write:
1410 if (cc->rpages[i]->mapping != mapping) {
1411 unlock_page(cc->rpages[i]);
1412 continue;
1413 }
1414
1415 BUG_ON(!PageLocked(cc->rpages[i]));
1416
1417 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1418 NULL, NULL, wbc, io_type,
1419 compr_blocks, false);
1420 if (ret) {
1421 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1422 unlock_page(cc->rpages[i]);
1423 ret = 0;
1424 } else if (ret == -EAGAIN) {
1425 /*
1426 * for quota file, just redirty left pages to
1427 * avoid deadlock caused by cluster update race
1428 * from foreground operation.
1429 */
1430 if (IS_NOQUOTA(cc->inode)) {
1431 err = 0;
1432 goto out_err;
1433 }
1434 ret = 0;
1435 cond_resched();
1436 congestion_wait(BLK_RW_ASYNC,
1437 DEFAULT_IO_TIMEOUT);
1438 lock_page(cc->rpages[i]);
1439
1440 if (!PageDirty(cc->rpages[i])) {
1441 unlock_page(cc->rpages[i]);
1442 continue;
1443 }
1444
1445 clear_page_dirty_for_io(cc->rpages[i]);
1446 goto retry_write;
1447 }
1448 err = ret;
1449 goto out_err;
1450 }
1451
1452 *submitted += _submitted;
1453 }
1454
1455 f2fs_balance_fs(F2FS_M_SB(mapping), true);
1456
1457 return 0;
1458 out_err:
1459 for (++i; i < cc->cluster_size; i++) {
1460 if (!cc->rpages[i])
1461 continue;
1462 redirty_page_for_writepage(wbc, cc->rpages[i]);
1463 unlock_page(cc->rpages[i]);
1464 }
1465 return err;
1466 }
1467
1468 int f2fs_write_multi_pages(struct compress_ctx *cc,
1469 int *submitted,
1470 struct writeback_control *wbc,
1471 enum iostat_type io_type)
1472 {
1473 int err;
1474
1475 *submitted = 0;
1476 if (cluster_may_compress(cc)) {
1477 err = f2fs_compress_pages(cc);
1478 if (err == -EAGAIN) {
1479 goto write;
1480 } else if (err) {
1481 f2fs_put_rpages_wbc(cc, wbc, true, 1);
1482 goto destroy_out;
1483 }
1484
1485 err = f2fs_write_compressed_pages(cc, submitted,
1486 wbc, io_type);
1487 if (!err)
1488 return 0;
1489 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1490 }
1491 write:
1492 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1493
1494 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1495 f2fs_put_rpages_wbc(cc, wbc, false, 0);
1496 destroy_out:
1497 f2fs_destroy_compress_ctx(cc, false);
1498 return err;
1499 }
1500
1501 static void f2fs_free_dic(struct decompress_io_ctx *dic);
1502
1503 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1504 {
1505 struct decompress_io_ctx *dic;
1506 pgoff_t start_idx = start_idx_of_cluster(cc);
1507 int i;
1508
1509 dic = kmem_cache_zalloc(dic_entry_slab, GFP_NOFS);
1510 if (!dic)
1511 return ERR_PTR(-ENOMEM);
1512
1513 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1514 if (!dic->rpages) {
1515 kmem_cache_free(dic_entry_slab, dic);
1516 return ERR_PTR(-ENOMEM);
1517 }
1518
1519 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1520 dic->inode = cc->inode;
1521 atomic_set(&dic->remaining_pages, cc->nr_cpages);
1522 dic->cluster_idx = cc->cluster_idx;
1523 dic->cluster_size = cc->cluster_size;
1524 dic->log_cluster_size = cc->log_cluster_size;
1525 dic->nr_cpages = cc->nr_cpages;
1526 refcount_set(&dic->refcnt, 1);
1527 dic->failed = false;
1528 dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1529
1530 for (i = 0; i < dic->cluster_size; i++)
1531 dic->rpages[i] = cc->rpages[i];
1532 dic->nr_rpages = cc->cluster_size;
1533
1534 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1535 if (!dic->cpages)
1536 goto out_free;
1537
1538 for (i = 0; i < dic->nr_cpages; i++) {
1539 struct page *page;
1540
1541 page = f2fs_compress_alloc_page();
1542 if (!page)
1543 goto out_free;
1544
1545 f2fs_set_compressed_page(page, cc->inode,
1546 start_idx + i + 1, dic);
1547 dic->cpages[i] = page;
1548 }
1549
1550 return dic;
1551
1552 out_free:
1553 f2fs_free_dic(dic);
1554 return ERR_PTR(-ENOMEM);
1555 }
1556
1557 static void f2fs_free_dic(struct decompress_io_ctx *dic)
1558 {
1559 int i;
1560
1561 if (dic->tpages) {
1562 for (i = 0; i < dic->cluster_size; i++) {
1563 if (dic->rpages[i])
1564 continue;
1565 if (!dic->tpages[i])
1566 continue;
1567 f2fs_compress_free_page(dic->tpages[i]);
1568 }
1569 page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1570 }
1571
1572 if (dic->cpages) {
1573 for (i = 0; i < dic->nr_cpages; i++) {
1574 if (!dic->cpages[i])
1575 continue;
1576 f2fs_compress_free_page(dic->cpages[i]);
1577 }
1578 page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1579 }
1580
1581 page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1582 kmem_cache_free(dic_entry_slab, dic);
1583 }
1584
1585 static void f2fs_put_dic(struct decompress_io_ctx *dic)
1586 {
1587 if (refcount_dec_and_test(&dic->refcnt))
1588 f2fs_free_dic(dic);
1589 }
1590
1591 /*
1592 * Update and unlock the cluster's pagecache pages, and release the reference to
1593 * the decompress_io_ctx that was being held for I/O completion.
1594 */
1595 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed)
1596 {
1597 int i;
1598
1599 for (i = 0; i < dic->cluster_size; i++) {
1600 struct page *rpage = dic->rpages[i];
1601
1602 if (!rpage)
1603 continue;
1604
1605 /* PG_error was set if verity failed. */
1606 if (failed || PageError(rpage)) {
1607 ClearPageUptodate(rpage);
1608 /* will re-read again later */
1609 ClearPageError(rpage);
1610 } else {
1611 SetPageUptodate(rpage);
1612 }
1613 unlock_page(rpage);
1614 }
1615
1616 f2fs_put_dic(dic);
1617 }
1618
1619 static void f2fs_verify_cluster(struct work_struct *work)
1620 {
1621 struct decompress_io_ctx *dic =
1622 container_of(work, struct decompress_io_ctx, verity_work);
1623 int i;
1624
1625 /* Verify the cluster's decompressed pages with fs-verity. */
1626 for (i = 0; i < dic->cluster_size; i++) {
1627 struct page *rpage = dic->rpages[i];
1628
1629 if (rpage && !fsverity_verify_page(rpage))
1630 SetPageError(rpage);
1631 }
1632
1633 __f2fs_decompress_end_io(dic, false);
1634 }
1635
1636 /*
1637 * This is called when a compressed cluster has been decompressed
1638 * (or failed to be read and/or decompressed).
1639 */
1640 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed)
1641 {
1642 if (!failed && dic->need_verity) {
1643 /*
1644 * Note that to avoid deadlocks, the verity work can't be done
1645 * on the decompression workqueue. This is because verifying
1646 * the data pages can involve reading metadata pages from the
1647 * file, and these metadata pages may be compressed.
1648 */
1649 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1650 fsverity_enqueue_verify_work(&dic->verity_work);
1651 } else {
1652 __f2fs_decompress_end_io(dic, failed);
1653 }
1654 }
1655
1656 /*
1657 * Put a reference to a compressed page's decompress_io_ctx.
1658 *
1659 * This is called when the page is no longer needed and can be freed.
1660 */
1661 void f2fs_put_page_dic(struct page *page)
1662 {
1663 struct decompress_io_ctx *dic =
1664 (struct decompress_io_ctx *)page_private(page);
1665
1666 f2fs_put_dic(dic);
1667 }
1668
1669 const struct address_space_operations f2fs_compress_aops = {
1670 .releasepage = f2fs_release_page,
1671 .invalidatepage = f2fs_invalidate_page,
1672 };
1673
1674 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1675 {
1676 return sbi->compress_inode->i_mapping;
1677 }
1678
1679 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1680 {
1681 if (!sbi->compress_inode)
1682 return;
1683 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1684 }
1685
1686 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1687 nid_t ino, block_t blkaddr)
1688 {
1689 struct page *cpage;
1690 int ret;
1691
1692 if (!test_opt(sbi, COMPRESS_CACHE))
1693 return;
1694
1695 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1696 return;
1697
1698 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1699 return;
1700
1701 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1702 if (cpage) {
1703 f2fs_put_page(cpage, 0);
1704 return;
1705 }
1706
1707 cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1708 if (!cpage)
1709 return;
1710
1711 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1712 blkaddr, GFP_NOFS);
1713 if (ret) {
1714 f2fs_put_page(cpage, 0);
1715 return;
1716 }
1717
1718 set_page_private_data(cpage, ino);
1719
1720 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1721 goto out;
1722
1723 memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1724 SetPageUptodate(cpage);
1725 out:
1726 f2fs_put_page(cpage, 1);
1727 }
1728
1729 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1730 block_t blkaddr)
1731 {
1732 struct page *cpage;
1733 bool hitted = false;
1734
1735 if (!test_opt(sbi, COMPRESS_CACHE))
1736 return false;
1737
1738 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1739 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1740 if (cpage) {
1741 if (PageUptodate(cpage)) {
1742 atomic_inc(&sbi->compress_page_hit);
1743 memcpy(page_address(page),
1744 page_address(cpage), PAGE_SIZE);
1745 hitted = true;
1746 }
1747 f2fs_put_page(cpage, 1);
1748 }
1749
1750 return hitted;
1751 }
1752
1753 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1754 {
1755 struct address_space *mapping = sbi->compress_inode->i_mapping;
1756 struct pagevec pvec;
1757 pgoff_t index = 0;
1758 pgoff_t end = MAX_BLKADDR(sbi);
1759
1760 if (!mapping->nrpages)
1761 return;
1762
1763 pagevec_init(&pvec);
1764
1765 do {
1766 unsigned int nr_pages;
1767 int i;
1768
1769 nr_pages = pagevec_lookup_range(&pvec, mapping,
1770 &index, end - 1);
1771 if (!nr_pages)
1772 break;
1773
1774 for (i = 0; i < nr_pages; i++) {
1775 struct page *page = pvec.pages[i];
1776
1777 if (page->index > end)
1778 break;
1779
1780 lock_page(page);
1781 if (page->mapping != mapping) {
1782 unlock_page(page);
1783 continue;
1784 }
1785
1786 if (ino != get_page_private_data(page)) {
1787 unlock_page(page);
1788 continue;
1789 }
1790
1791 generic_error_remove_page(mapping, page);
1792 unlock_page(page);
1793 }
1794 pagevec_release(&pvec);
1795 cond_resched();
1796 } while (index < end);
1797 }
1798
1799 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1800 {
1801 struct inode *inode;
1802
1803 if (!test_opt(sbi, COMPRESS_CACHE))
1804 return 0;
1805
1806 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1807 if (IS_ERR(inode))
1808 return PTR_ERR(inode);
1809 sbi->compress_inode = inode;
1810
1811 sbi->compress_percent = COMPRESS_PERCENT;
1812 sbi->compress_watermark = COMPRESS_WATERMARK;
1813
1814 atomic_set(&sbi->compress_page_hit, 0);
1815
1816 return 0;
1817 }
1818
1819 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1820 {
1821 if (!sbi->compress_inode)
1822 return;
1823 iput(sbi->compress_inode);
1824 sbi->compress_inode = NULL;
1825 }
1826
1827 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1828 {
1829 dev_t dev = sbi->sb->s_bdev->bd_dev;
1830 char slab_name[32];
1831
1832 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1833
1834 sbi->page_array_slab_size = sizeof(struct page *) <<
1835 F2FS_OPTION(sbi).compress_log_size;
1836
1837 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1838 sbi->page_array_slab_size);
1839 if (!sbi->page_array_slab)
1840 return -ENOMEM;
1841 return 0;
1842 }
1843
1844 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1845 {
1846 kmem_cache_destroy(sbi->page_array_slab);
1847 }
1848
1849 static int __init f2fs_init_cic_cache(void)
1850 {
1851 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
1852 sizeof(struct compress_io_ctx));
1853 if (!cic_entry_slab)
1854 return -ENOMEM;
1855 return 0;
1856 }
1857
1858 static void f2fs_destroy_cic_cache(void)
1859 {
1860 kmem_cache_destroy(cic_entry_slab);
1861 }
1862
1863 static int __init f2fs_init_dic_cache(void)
1864 {
1865 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
1866 sizeof(struct decompress_io_ctx));
1867 if (!dic_entry_slab)
1868 return -ENOMEM;
1869 return 0;
1870 }
1871
1872 static void f2fs_destroy_dic_cache(void)
1873 {
1874 kmem_cache_destroy(dic_entry_slab);
1875 }
1876
1877 int __init f2fs_init_compress_cache(void)
1878 {
1879 int err;
1880
1881 err = f2fs_init_cic_cache();
1882 if (err)
1883 goto out;
1884 err = f2fs_init_dic_cache();
1885 if (err)
1886 goto free_cic;
1887 return 0;
1888 free_cic:
1889 f2fs_destroy_cic_cache();
1890 out:
1891 return -ENOMEM;
1892 }
1893
1894 void f2fs_destroy_compress_cache(void)
1895 {
1896 f2fs_destroy_dic_cache();
1897 f2fs_destroy_cic_cache();
1898 }