]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/compress.c
Merge tag '9p-for-5.15-rc1' of git://github.com/martinetd/linux
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / compress.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * f2fs compress support
4 *
5 * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6 */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/writeback.h>
11 #include <linux/backing-dev.h>
12 #include <linux/lzo.h>
13 #include <linux/lz4.h>
14 #include <linux/zstd.h>
15 #include <linux/pagevec.h>
16
17 #include "f2fs.h"
18 #include "node.h"
19 #include "segment.h"
20 #include <trace/events/f2fs.h>
21
22 static struct kmem_cache *cic_entry_slab;
23 static struct kmem_cache *dic_entry_slab;
24
25 static void *page_array_alloc(struct inode *inode, int nr)
26 {
27 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
28 unsigned int size = sizeof(struct page *) * nr;
29
30 if (likely(size <= sbi->page_array_slab_size))
31 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
32 GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
33 return f2fs_kzalloc(sbi, size, GFP_NOFS);
34 }
35
36 static void page_array_free(struct inode *inode, void *pages, int nr)
37 {
38 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
39 unsigned int size = sizeof(struct page *) * nr;
40
41 if (!pages)
42 return;
43
44 if (likely(size <= sbi->page_array_slab_size))
45 kmem_cache_free(sbi->page_array_slab, pages);
46 else
47 kfree(pages);
48 }
49
50 struct f2fs_compress_ops {
51 int (*init_compress_ctx)(struct compress_ctx *cc);
52 void (*destroy_compress_ctx)(struct compress_ctx *cc);
53 int (*compress_pages)(struct compress_ctx *cc);
54 int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
55 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
56 int (*decompress_pages)(struct decompress_io_ctx *dic);
57 };
58
59 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
60 {
61 return index & (cc->cluster_size - 1);
62 }
63
64 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
65 {
66 return index >> cc->log_cluster_size;
67 }
68
69 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
70 {
71 return cc->cluster_idx << cc->log_cluster_size;
72 }
73
74 bool f2fs_is_compressed_page(struct page *page)
75 {
76 if (!PagePrivate(page))
77 return false;
78 if (!page_private(page))
79 return false;
80 if (page_private_nonpointer(page))
81 return false;
82
83 f2fs_bug_on(F2FS_M_SB(page->mapping),
84 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
85 return true;
86 }
87
88 static void f2fs_set_compressed_page(struct page *page,
89 struct inode *inode, pgoff_t index, void *data)
90 {
91 attach_page_private(page, (void *)data);
92
93 /* i_crypto_info and iv index */
94 page->index = index;
95 page->mapping = inode->i_mapping;
96 }
97
98 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
99 {
100 int i;
101
102 for (i = 0; i < len; i++) {
103 if (!cc->rpages[i])
104 continue;
105 if (unlock)
106 unlock_page(cc->rpages[i]);
107 else
108 put_page(cc->rpages[i]);
109 }
110 }
111
112 static void f2fs_put_rpages(struct compress_ctx *cc)
113 {
114 f2fs_drop_rpages(cc, cc->cluster_size, false);
115 }
116
117 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
118 {
119 f2fs_drop_rpages(cc, len, true);
120 }
121
122 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
123 struct writeback_control *wbc, bool redirty, int unlock)
124 {
125 unsigned int i;
126
127 for (i = 0; i < cc->cluster_size; i++) {
128 if (!cc->rpages[i])
129 continue;
130 if (redirty)
131 redirty_page_for_writepage(wbc, cc->rpages[i]);
132 f2fs_put_page(cc->rpages[i], unlock);
133 }
134 }
135
136 struct page *f2fs_compress_control_page(struct page *page)
137 {
138 return ((struct compress_io_ctx *)page_private(page))->rpages[0];
139 }
140
141 int f2fs_init_compress_ctx(struct compress_ctx *cc)
142 {
143 if (cc->rpages)
144 return 0;
145
146 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
147 return cc->rpages ? 0 : -ENOMEM;
148 }
149
150 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
151 {
152 page_array_free(cc->inode, cc->rpages, cc->cluster_size);
153 cc->rpages = NULL;
154 cc->nr_rpages = 0;
155 cc->nr_cpages = 0;
156 if (!reuse)
157 cc->cluster_idx = NULL_CLUSTER;
158 }
159
160 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
161 {
162 unsigned int cluster_ofs;
163
164 if (!f2fs_cluster_can_merge_page(cc, page->index))
165 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
166
167 cluster_ofs = offset_in_cluster(cc, page->index);
168 cc->rpages[cluster_ofs] = page;
169 cc->nr_rpages++;
170 cc->cluster_idx = cluster_idx(cc, page->index);
171 }
172
173 #ifdef CONFIG_F2FS_FS_LZO
174 static int lzo_init_compress_ctx(struct compress_ctx *cc)
175 {
176 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
177 LZO1X_MEM_COMPRESS, GFP_NOFS);
178 if (!cc->private)
179 return -ENOMEM;
180
181 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
182 return 0;
183 }
184
185 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
186 {
187 kvfree(cc->private);
188 cc->private = NULL;
189 }
190
191 static int lzo_compress_pages(struct compress_ctx *cc)
192 {
193 int ret;
194
195 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
196 &cc->clen, cc->private);
197 if (ret != LZO_E_OK) {
198 printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n",
199 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
200 return -EIO;
201 }
202 return 0;
203 }
204
205 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
206 {
207 int ret;
208
209 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
210 dic->rbuf, &dic->rlen);
211 if (ret != LZO_E_OK) {
212 printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n",
213 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
214 return -EIO;
215 }
216
217 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
218 printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, "
219 "expected:%lu\n", KERN_ERR,
220 F2FS_I_SB(dic->inode)->sb->s_id,
221 dic->rlen,
222 PAGE_SIZE << dic->log_cluster_size);
223 return -EIO;
224 }
225 return 0;
226 }
227
228 static const struct f2fs_compress_ops f2fs_lzo_ops = {
229 .init_compress_ctx = lzo_init_compress_ctx,
230 .destroy_compress_ctx = lzo_destroy_compress_ctx,
231 .compress_pages = lzo_compress_pages,
232 .decompress_pages = lzo_decompress_pages,
233 };
234 #endif
235
236 #ifdef CONFIG_F2FS_FS_LZ4
237 static int lz4_init_compress_ctx(struct compress_ctx *cc)
238 {
239 unsigned int size = LZ4_MEM_COMPRESS;
240
241 #ifdef CONFIG_F2FS_FS_LZ4HC
242 if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET)
243 size = LZ4HC_MEM_COMPRESS;
244 #endif
245
246 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
247 if (!cc->private)
248 return -ENOMEM;
249
250 /*
251 * we do not change cc->clen to LZ4_compressBound(inputsize) to
252 * adapt worst compress case, because lz4 compressor can handle
253 * output budget properly.
254 */
255 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
256 return 0;
257 }
258
259 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
260 {
261 kvfree(cc->private);
262 cc->private = NULL;
263 }
264
265 #ifdef CONFIG_F2FS_FS_LZ4HC
266 static int lz4hc_compress_pages(struct compress_ctx *cc)
267 {
268 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
269 COMPRESS_LEVEL_OFFSET;
270 int len;
271
272 if (level)
273 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
274 cc->clen, level, cc->private);
275 else
276 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
277 cc->clen, cc->private);
278 if (!len)
279 return -EAGAIN;
280
281 cc->clen = len;
282 return 0;
283 }
284 #endif
285
286 static int lz4_compress_pages(struct compress_ctx *cc)
287 {
288 int len;
289
290 #ifdef CONFIG_F2FS_FS_LZ4HC
291 return lz4hc_compress_pages(cc);
292 #endif
293 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
294 cc->clen, cc->private);
295 if (!len)
296 return -EAGAIN;
297
298 cc->clen = len;
299 return 0;
300 }
301
302 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
303 {
304 int ret;
305
306 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
307 dic->clen, dic->rlen);
308 if (ret < 0) {
309 printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n",
310 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret);
311 return -EIO;
312 }
313
314 if (ret != PAGE_SIZE << dic->log_cluster_size) {
315 printk_ratelimited("%sF2FS-fs (%s): lz4 invalid rlen:%zu, "
316 "expected:%lu\n", KERN_ERR,
317 F2FS_I_SB(dic->inode)->sb->s_id,
318 dic->rlen,
319 PAGE_SIZE << dic->log_cluster_size);
320 return -EIO;
321 }
322 return 0;
323 }
324
325 static const struct f2fs_compress_ops f2fs_lz4_ops = {
326 .init_compress_ctx = lz4_init_compress_ctx,
327 .destroy_compress_ctx = lz4_destroy_compress_ctx,
328 .compress_pages = lz4_compress_pages,
329 .decompress_pages = lz4_decompress_pages,
330 };
331 #endif
332
333 #ifdef CONFIG_F2FS_FS_ZSTD
334 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
335
336 static int zstd_init_compress_ctx(struct compress_ctx *cc)
337 {
338 ZSTD_parameters params;
339 ZSTD_CStream *stream;
340 void *workspace;
341 unsigned int workspace_size;
342 unsigned char level = F2FS_I(cc->inode)->i_compress_flag >>
343 COMPRESS_LEVEL_OFFSET;
344
345 if (!level)
346 level = F2FS_ZSTD_DEFAULT_CLEVEL;
347
348 params = ZSTD_getParams(level, cc->rlen, 0);
349 workspace_size = ZSTD_CStreamWorkspaceBound(params.cParams);
350
351 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
352 workspace_size, GFP_NOFS);
353 if (!workspace)
354 return -ENOMEM;
355
356 stream = ZSTD_initCStream(params, 0, workspace, workspace_size);
357 if (!stream) {
358 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initCStream failed\n",
359 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
360 __func__);
361 kvfree(workspace);
362 return -EIO;
363 }
364
365 cc->private = workspace;
366 cc->private2 = stream;
367
368 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
369 return 0;
370 }
371
372 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
373 {
374 kvfree(cc->private);
375 cc->private = NULL;
376 cc->private2 = NULL;
377 }
378
379 static int zstd_compress_pages(struct compress_ctx *cc)
380 {
381 ZSTD_CStream *stream = cc->private2;
382 ZSTD_inBuffer inbuf;
383 ZSTD_outBuffer outbuf;
384 int src_size = cc->rlen;
385 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
386 int ret;
387
388 inbuf.pos = 0;
389 inbuf.src = cc->rbuf;
390 inbuf.size = src_size;
391
392 outbuf.pos = 0;
393 outbuf.dst = cc->cbuf->cdata;
394 outbuf.size = dst_size;
395
396 ret = ZSTD_compressStream(stream, &outbuf, &inbuf);
397 if (ZSTD_isError(ret)) {
398 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
399 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
400 __func__, ZSTD_getErrorCode(ret));
401 return -EIO;
402 }
403
404 ret = ZSTD_endStream(stream, &outbuf);
405 if (ZSTD_isError(ret)) {
406 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_endStream returned %d\n",
407 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id,
408 __func__, ZSTD_getErrorCode(ret));
409 return -EIO;
410 }
411
412 /*
413 * there is compressed data remained in intermediate buffer due to
414 * no more space in cbuf.cdata
415 */
416 if (ret)
417 return -EAGAIN;
418
419 cc->clen = outbuf.pos;
420 return 0;
421 }
422
423 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
424 {
425 ZSTD_DStream *stream;
426 void *workspace;
427 unsigned int workspace_size;
428 unsigned int max_window_size =
429 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
430
431 workspace_size = ZSTD_DStreamWorkspaceBound(max_window_size);
432
433 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
434 workspace_size, GFP_NOFS);
435 if (!workspace)
436 return -ENOMEM;
437
438 stream = ZSTD_initDStream(max_window_size, workspace, workspace_size);
439 if (!stream) {
440 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initDStream failed\n",
441 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
442 __func__);
443 kvfree(workspace);
444 return -EIO;
445 }
446
447 dic->private = workspace;
448 dic->private2 = stream;
449
450 return 0;
451 }
452
453 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
454 {
455 kvfree(dic->private);
456 dic->private = NULL;
457 dic->private2 = NULL;
458 }
459
460 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
461 {
462 ZSTD_DStream *stream = dic->private2;
463 ZSTD_inBuffer inbuf;
464 ZSTD_outBuffer outbuf;
465 int ret;
466
467 inbuf.pos = 0;
468 inbuf.src = dic->cbuf->cdata;
469 inbuf.size = dic->clen;
470
471 outbuf.pos = 0;
472 outbuf.dst = dic->rbuf;
473 outbuf.size = dic->rlen;
474
475 ret = ZSTD_decompressStream(stream, &outbuf, &inbuf);
476 if (ZSTD_isError(ret)) {
477 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n",
478 KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id,
479 __func__, ZSTD_getErrorCode(ret));
480 return -EIO;
481 }
482
483 if (dic->rlen != outbuf.pos) {
484 printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, "
485 "expected:%lu\n", KERN_ERR,
486 F2FS_I_SB(dic->inode)->sb->s_id,
487 __func__, dic->rlen,
488 PAGE_SIZE << dic->log_cluster_size);
489 return -EIO;
490 }
491
492 return 0;
493 }
494
495 static const struct f2fs_compress_ops f2fs_zstd_ops = {
496 .init_compress_ctx = zstd_init_compress_ctx,
497 .destroy_compress_ctx = zstd_destroy_compress_ctx,
498 .compress_pages = zstd_compress_pages,
499 .init_decompress_ctx = zstd_init_decompress_ctx,
500 .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
501 .decompress_pages = zstd_decompress_pages,
502 };
503 #endif
504
505 #ifdef CONFIG_F2FS_FS_LZO
506 #ifdef CONFIG_F2FS_FS_LZORLE
507 static int lzorle_compress_pages(struct compress_ctx *cc)
508 {
509 int ret;
510
511 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
512 &cc->clen, cc->private);
513 if (ret != LZO_E_OK) {
514 printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n",
515 KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret);
516 return -EIO;
517 }
518 return 0;
519 }
520
521 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
522 .init_compress_ctx = lzo_init_compress_ctx,
523 .destroy_compress_ctx = lzo_destroy_compress_ctx,
524 .compress_pages = lzorle_compress_pages,
525 .decompress_pages = lzo_decompress_pages,
526 };
527 #endif
528 #endif
529
530 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
531 #ifdef CONFIG_F2FS_FS_LZO
532 &f2fs_lzo_ops,
533 #else
534 NULL,
535 #endif
536 #ifdef CONFIG_F2FS_FS_LZ4
537 &f2fs_lz4_ops,
538 #else
539 NULL,
540 #endif
541 #ifdef CONFIG_F2FS_FS_ZSTD
542 &f2fs_zstd_ops,
543 #else
544 NULL,
545 #endif
546 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
547 &f2fs_lzorle_ops,
548 #else
549 NULL,
550 #endif
551 };
552
553 bool f2fs_is_compress_backend_ready(struct inode *inode)
554 {
555 if (!f2fs_compressed_file(inode))
556 return true;
557 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
558 }
559
560 static mempool_t *compress_page_pool;
561 static int num_compress_pages = 512;
562 module_param(num_compress_pages, uint, 0444);
563 MODULE_PARM_DESC(num_compress_pages,
564 "Number of intermediate compress pages to preallocate");
565
566 int f2fs_init_compress_mempool(void)
567 {
568 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
569 if (!compress_page_pool)
570 return -ENOMEM;
571
572 return 0;
573 }
574
575 void f2fs_destroy_compress_mempool(void)
576 {
577 mempool_destroy(compress_page_pool);
578 }
579
580 static struct page *f2fs_compress_alloc_page(void)
581 {
582 struct page *page;
583
584 page = mempool_alloc(compress_page_pool, GFP_NOFS);
585 lock_page(page);
586
587 return page;
588 }
589
590 static void f2fs_compress_free_page(struct page *page)
591 {
592 if (!page)
593 return;
594 detach_page_private(page);
595 page->mapping = NULL;
596 unlock_page(page);
597 mempool_free(page, compress_page_pool);
598 }
599
600 #define MAX_VMAP_RETRIES 3
601
602 static void *f2fs_vmap(struct page **pages, unsigned int count)
603 {
604 int i;
605 void *buf = NULL;
606
607 for (i = 0; i < MAX_VMAP_RETRIES; i++) {
608 buf = vm_map_ram(pages, count, -1);
609 if (buf)
610 break;
611 vm_unmap_aliases();
612 }
613 return buf;
614 }
615
616 static int f2fs_compress_pages(struct compress_ctx *cc)
617 {
618 struct f2fs_inode_info *fi = F2FS_I(cc->inode);
619 const struct f2fs_compress_ops *cops =
620 f2fs_cops[fi->i_compress_algorithm];
621 unsigned int max_len, new_nr_cpages;
622 struct page **new_cpages;
623 u32 chksum = 0;
624 int i, ret;
625
626 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
627 cc->cluster_size, fi->i_compress_algorithm);
628
629 if (cops->init_compress_ctx) {
630 ret = cops->init_compress_ctx(cc);
631 if (ret)
632 goto out;
633 }
634
635 max_len = COMPRESS_HEADER_SIZE + cc->clen;
636 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
637
638 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
639 if (!cc->cpages) {
640 ret = -ENOMEM;
641 goto destroy_compress_ctx;
642 }
643
644 for (i = 0; i < cc->nr_cpages; i++) {
645 cc->cpages[i] = f2fs_compress_alloc_page();
646 if (!cc->cpages[i]) {
647 ret = -ENOMEM;
648 goto out_free_cpages;
649 }
650 }
651
652 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
653 if (!cc->rbuf) {
654 ret = -ENOMEM;
655 goto out_free_cpages;
656 }
657
658 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
659 if (!cc->cbuf) {
660 ret = -ENOMEM;
661 goto out_vunmap_rbuf;
662 }
663
664 ret = cops->compress_pages(cc);
665 if (ret)
666 goto out_vunmap_cbuf;
667
668 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
669
670 if (cc->clen > max_len) {
671 ret = -EAGAIN;
672 goto out_vunmap_cbuf;
673 }
674
675 cc->cbuf->clen = cpu_to_le32(cc->clen);
676
677 if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)
678 chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
679 cc->cbuf->cdata, cc->clen);
680 cc->cbuf->chksum = cpu_to_le32(chksum);
681
682 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
683 cc->cbuf->reserved[i] = cpu_to_le32(0);
684
685 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
686
687 /* Now we're going to cut unnecessary tail pages */
688 new_cpages = page_array_alloc(cc->inode, new_nr_cpages);
689 if (!new_cpages) {
690 ret = -ENOMEM;
691 goto out_vunmap_cbuf;
692 }
693
694 /* zero out any unused part of the last page */
695 memset(&cc->cbuf->cdata[cc->clen], 0,
696 (new_nr_cpages * PAGE_SIZE) -
697 (cc->clen + COMPRESS_HEADER_SIZE));
698
699 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
700 vm_unmap_ram(cc->rbuf, cc->cluster_size);
701
702 for (i = 0; i < cc->nr_cpages; i++) {
703 if (i < new_nr_cpages) {
704 new_cpages[i] = cc->cpages[i];
705 continue;
706 }
707 f2fs_compress_free_page(cc->cpages[i]);
708 cc->cpages[i] = NULL;
709 }
710
711 if (cops->destroy_compress_ctx)
712 cops->destroy_compress_ctx(cc);
713
714 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
715 cc->cpages = new_cpages;
716 cc->nr_cpages = new_nr_cpages;
717
718 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
719 cc->clen, ret);
720 return 0;
721
722 out_vunmap_cbuf:
723 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
724 out_vunmap_rbuf:
725 vm_unmap_ram(cc->rbuf, cc->cluster_size);
726 out_free_cpages:
727 for (i = 0; i < cc->nr_cpages; i++) {
728 if (cc->cpages[i])
729 f2fs_compress_free_page(cc->cpages[i]);
730 }
731 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
732 cc->cpages = NULL;
733 destroy_compress_ctx:
734 if (cops->destroy_compress_ctx)
735 cops->destroy_compress_ctx(cc);
736 out:
737 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
738 cc->clen, ret);
739 return ret;
740 }
741
742 void f2fs_decompress_cluster(struct decompress_io_ctx *dic)
743 {
744 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
745 struct f2fs_inode_info *fi = F2FS_I(dic->inode);
746 const struct f2fs_compress_ops *cops =
747 f2fs_cops[fi->i_compress_algorithm];
748 int ret;
749 int i;
750
751 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
752 dic->cluster_size, fi->i_compress_algorithm);
753
754 if (dic->failed) {
755 ret = -EIO;
756 goto out_end_io;
757 }
758
759 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
760 if (!dic->tpages) {
761 ret = -ENOMEM;
762 goto out_end_io;
763 }
764
765 for (i = 0; i < dic->cluster_size; i++) {
766 if (dic->rpages[i]) {
767 dic->tpages[i] = dic->rpages[i];
768 continue;
769 }
770
771 dic->tpages[i] = f2fs_compress_alloc_page();
772 if (!dic->tpages[i]) {
773 ret = -ENOMEM;
774 goto out_end_io;
775 }
776 }
777
778 if (cops->init_decompress_ctx) {
779 ret = cops->init_decompress_ctx(dic);
780 if (ret)
781 goto out_end_io;
782 }
783
784 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
785 if (!dic->rbuf) {
786 ret = -ENOMEM;
787 goto out_destroy_decompress_ctx;
788 }
789
790 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
791 if (!dic->cbuf) {
792 ret = -ENOMEM;
793 goto out_vunmap_rbuf;
794 }
795
796 dic->clen = le32_to_cpu(dic->cbuf->clen);
797 dic->rlen = PAGE_SIZE << dic->log_cluster_size;
798
799 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
800 ret = -EFSCORRUPTED;
801 goto out_vunmap_cbuf;
802 }
803
804 ret = cops->decompress_pages(dic);
805
806 if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) {
807 u32 provided = le32_to_cpu(dic->cbuf->chksum);
808 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
809
810 if (provided != calculated) {
811 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
812 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
813 printk_ratelimited(
814 "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x",
815 KERN_INFO, sbi->sb->s_id, dic->inode->i_ino,
816 provided, calculated);
817 }
818 set_sbi_flag(sbi, SBI_NEED_FSCK);
819 }
820 }
821
822 out_vunmap_cbuf:
823 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
824 out_vunmap_rbuf:
825 vm_unmap_ram(dic->rbuf, dic->cluster_size);
826 out_destroy_decompress_ctx:
827 if (cops->destroy_decompress_ctx)
828 cops->destroy_decompress_ctx(dic);
829 out_end_io:
830 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
831 dic->clen, ret);
832 f2fs_decompress_end_io(dic, ret);
833 }
834
835 /*
836 * This is called when a page of a compressed cluster has been read from disk
837 * (or failed to be read from disk). It checks whether this page was the last
838 * page being waited on in the cluster, and if so, it decompresses the cluster
839 * (or in the case of a failure, cleans up without actually decompressing).
840 */
841 void f2fs_end_read_compressed_page(struct page *page, bool failed,
842 block_t blkaddr)
843 {
844 struct decompress_io_ctx *dic =
845 (struct decompress_io_ctx *)page_private(page);
846 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
847
848 dec_page_count(sbi, F2FS_RD_DATA);
849
850 if (failed)
851 WRITE_ONCE(dic->failed, true);
852 else if (blkaddr)
853 f2fs_cache_compressed_page(sbi, page,
854 dic->inode->i_ino, blkaddr);
855
856 if (atomic_dec_and_test(&dic->remaining_pages))
857 f2fs_decompress_cluster(dic);
858 }
859
860 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
861 {
862 if (cc->cluster_idx == NULL_CLUSTER)
863 return true;
864 return cc->cluster_idx == cluster_idx(cc, index);
865 }
866
867 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
868 {
869 return cc->nr_rpages == 0;
870 }
871
872 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
873 {
874 return cc->cluster_size == cc->nr_rpages;
875 }
876
877 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
878 {
879 if (f2fs_cluster_is_empty(cc))
880 return true;
881 return is_page_in_cluster(cc, index);
882 }
883
884 static bool cluster_has_invalid_data(struct compress_ctx *cc)
885 {
886 loff_t i_size = i_size_read(cc->inode);
887 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
888 int i;
889
890 for (i = 0; i < cc->cluster_size; i++) {
891 struct page *page = cc->rpages[i];
892
893 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
894
895 /* beyond EOF */
896 if (page->index >= nr_pages)
897 return true;
898 }
899 return false;
900 }
901
902 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
903 {
904 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
905 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
906 bool compressed = dn->data_blkaddr == COMPRESS_ADDR;
907 int cluster_end = 0;
908 int i;
909 char *reason = "";
910
911 if (!compressed)
912 return false;
913
914 /* [..., COMPR_ADDR, ...] */
915 if (dn->ofs_in_node % cluster_size) {
916 reason = "[*|C|*|*]";
917 goto out;
918 }
919
920 for (i = 1; i < cluster_size; i++) {
921 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
922 dn->ofs_in_node + i);
923
924 /* [COMPR_ADDR, ..., COMPR_ADDR] */
925 if (blkaddr == COMPRESS_ADDR) {
926 reason = "[C|*|C|*]";
927 goto out;
928 }
929 if (compressed) {
930 if (!__is_valid_data_blkaddr(blkaddr)) {
931 if (!cluster_end)
932 cluster_end = i;
933 continue;
934 }
935 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
936 if (cluster_end) {
937 reason = "[C|N|N|V]";
938 goto out;
939 }
940 }
941 }
942 return false;
943 out:
944 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
945 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
946 set_sbi_flag(sbi, SBI_NEED_FSCK);
947 return true;
948 }
949
950 static int __f2fs_cluster_blocks(struct inode *inode,
951 unsigned int cluster_idx, bool compr)
952 {
953 struct dnode_of_data dn;
954 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
955 unsigned int start_idx = cluster_idx <<
956 F2FS_I(inode)->i_log_cluster_size;
957 int ret;
958
959 set_new_dnode(&dn, inode, NULL, NULL, 0);
960 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
961 if (ret) {
962 if (ret == -ENOENT)
963 ret = 0;
964 goto fail;
965 }
966
967 if (f2fs_sanity_check_cluster(&dn)) {
968 ret = -EFSCORRUPTED;
969 goto fail;
970 }
971
972 if (dn.data_blkaddr == COMPRESS_ADDR) {
973 int i;
974
975 ret = 1;
976 for (i = 1; i < cluster_size; i++) {
977 block_t blkaddr;
978
979 blkaddr = data_blkaddr(dn.inode,
980 dn.node_page, dn.ofs_in_node + i);
981 if (compr) {
982 if (__is_valid_data_blkaddr(blkaddr))
983 ret++;
984 } else {
985 if (blkaddr != NULL_ADDR)
986 ret++;
987 }
988 }
989
990 f2fs_bug_on(F2FS_I_SB(inode),
991 !compr && ret != cluster_size &&
992 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED));
993 }
994 fail:
995 f2fs_put_dnode(&dn);
996 return ret;
997 }
998
999 /* return # of compressed blocks in compressed cluster */
1000 static int f2fs_compressed_blocks(struct compress_ctx *cc)
1001 {
1002 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx, true);
1003 }
1004
1005 /* return # of valid blocks in compressed cluster */
1006 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1007 {
1008 return __f2fs_cluster_blocks(inode,
1009 index >> F2FS_I(inode)->i_log_cluster_size,
1010 false);
1011 }
1012
1013 static bool cluster_may_compress(struct compress_ctx *cc)
1014 {
1015 if (!f2fs_need_compress_data(cc->inode))
1016 return false;
1017 if (f2fs_is_atomic_file(cc->inode))
1018 return false;
1019 if (!f2fs_cluster_is_full(cc))
1020 return false;
1021 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1022 return false;
1023 return !cluster_has_invalid_data(cc);
1024 }
1025
1026 static void set_cluster_writeback(struct compress_ctx *cc)
1027 {
1028 int i;
1029
1030 for (i = 0; i < cc->cluster_size; i++) {
1031 if (cc->rpages[i])
1032 set_page_writeback(cc->rpages[i]);
1033 }
1034 }
1035
1036 static void set_cluster_dirty(struct compress_ctx *cc)
1037 {
1038 int i;
1039
1040 for (i = 0; i < cc->cluster_size; i++)
1041 if (cc->rpages[i])
1042 set_page_dirty(cc->rpages[i]);
1043 }
1044
1045 static int prepare_compress_overwrite(struct compress_ctx *cc,
1046 struct page **pagep, pgoff_t index, void **fsdata)
1047 {
1048 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1049 struct address_space *mapping = cc->inode->i_mapping;
1050 struct page *page;
1051 sector_t last_block_in_bio;
1052 unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1053 pgoff_t start_idx = start_idx_of_cluster(cc);
1054 int i, ret;
1055
1056 retry:
1057 ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1058 if (ret <= 0)
1059 return ret;
1060
1061 ret = f2fs_init_compress_ctx(cc);
1062 if (ret)
1063 return ret;
1064
1065 /* keep page reference to avoid page reclaim */
1066 for (i = 0; i < cc->cluster_size; i++) {
1067 page = f2fs_pagecache_get_page(mapping, start_idx + i,
1068 fgp_flag, GFP_NOFS);
1069 if (!page) {
1070 ret = -ENOMEM;
1071 goto unlock_pages;
1072 }
1073
1074 if (PageUptodate(page))
1075 f2fs_put_page(page, 1);
1076 else
1077 f2fs_compress_ctx_add_page(cc, page);
1078 }
1079
1080 if (!f2fs_cluster_is_empty(cc)) {
1081 struct bio *bio = NULL;
1082
1083 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1084 &last_block_in_bio, false, true);
1085 f2fs_put_rpages(cc);
1086 f2fs_destroy_compress_ctx(cc, true);
1087 if (ret)
1088 goto out;
1089 if (bio)
1090 f2fs_submit_bio(sbi, bio, DATA);
1091
1092 ret = f2fs_init_compress_ctx(cc);
1093 if (ret)
1094 goto out;
1095 }
1096
1097 for (i = 0; i < cc->cluster_size; i++) {
1098 f2fs_bug_on(sbi, cc->rpages[i]);
1099
1100 page = find_lock_page(mapping, start_idx + i);
1101 if (!page) {
1102 /* page can be truncated */
1103 goto release_and_retry;
1104 }
1105
1106 f2fs_wait_on_page_writeback(page, DATA, true, true);
1107 f2fs_compress_ctx_add_page(cc, page);
1108
1109 if (!PageUptodate(page)) {
1110 release_and_retry:
1111 f2fs_put_rpages(cc);
1112 f2fs_unlock_rpages(cc, i + 1);
1113 f2fs_destroy_compress_ctx(cc, true);
1114 goto retry;
1115 }
1116 }
1117
1118 if (likely(!ret)) {
1119 *fsdata = cc->rpages;
1120 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1121 return cc->cluster_size;
1122 }
1123
1124 unlock_pages:
1125 f2fs_put_rpages(cc);
1126 f2fs_unlock_rpages(cc, i);
1127 f2fs_destroy_compress_ctx(cc, true);
1128 out:
1129 return ret;
1130 }
1131
1132 int f2fs_prepare_compress_overwrite(struct inode *inode,
1133 struct page **pagep, pgoff_t index, void **fsdata)
1134 {
1135 struct compress_ctx cc = {
1136 .inode = inode,
1137 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1138 .cluster_size = F2FS_I(inode)->i_cluster_size,
1139 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1140 .rpages = NULL,
1141 .nr_rpages = 0,
1142 };
1143
1144 return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1145 }
1146
1147 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1148 pgoff_t index, unsigned copied)
1149
1150 {
1151 struct compress_ctx cc = {
1152 .inode = inode,
1153 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1154 .cluster_size = F2FS_I(inode)->i_cluster_size,
1155 .rpages = fsdata,
1156 };
1157 bool first_index = (index == cc.rpages[0]->index);
1158
1159 if (copied)
1160 set_cluster_dirty(&cc);
1161
1162 f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1163 f2fs_destroy_compress_ctx(&cc, false);
1164
1165 return first_index;
1166 }
1167
1168 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1169 {
1170 void *fsdata = NULL;
1171 struct page *pagep;
1172 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1173 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1174 log_cluster_size;
1175 int err;
1176
1177 err = f2fs_is_compressed_cluster(inode, start_idx);
1178 if (err < 0)
1179 return err;
1180
1181 /* truncate normal cluster */
1182 if (!err)
1183 return f2fs_do_truncate_blocks(inode, from, lock);
1184
1185 /* truncate compressed cluster */
1186 err = f2fs_prepare_compress_overwrite(inode, &pagep,
1187 start_idx, &fsdata);
1188
1189 /* should not be a normal cluster */
1190 f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1191
1192 if (err <= 0)
1193 return err;
1194
1195 if (err > 0) {
1196 struct page **rpages = fsdata;
1197 int cluster_size = F2FS_I(inode)->i_cluster_size;
1198 int i;
1199
1200 for (i = cluster_size - 1; i >= 0; i--) {
1201 loff_t start = rpages[i]->index << PAGE_SHIFT;
1202
1203 if (from <= start) {
1204 zero_user_segment(rpages[i], 0, PAGE_SIZE);
1205 } else {
1206 zero_user_segment(rpages[i], from - start,
1207 PAGE_SIZE);
1208 break;
1209 }
1210 }
1211
1212 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1213 }
1214 return 0;
1215 }
1216
1217 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1218 int *submitted,
1219 struct writeback_control *wbc,
1220 enum iostat_type io_type)
1221 {
1222 struct inode *inode = cc->inode;
1223 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1224 struct f2fs_inode_info *fi = F2FS_I(inode);
1225 struct f2fs_io_info fio = {
1226 .sbi = sbi,
1227 .ino = cc->inode->i_ino,
1228 .type = DATA,
1229 .op = REQ_OP_WRITE,
1230 .op_flags = wbc_to_write_flags(wbc),
1231 .old_blkaddr = NEW_ADDR,
1232 .page = NULL,
1233 .encrypted_page = NULL,
1234 .compressed_page = NULL,
1235 .submitted = false,
1236 .io_type = io_type,
1237 .io_wbc = wbc,
1238 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode),
1239 };
1240 struct dnode_of_data dn;
1241 struct node_info ni;
1242 struct compress_io_ctx *cic;
1243 pgoff_t start_idx = start_idx_of_cluster(cc);
1244 unsigned int last_index = cc->cluster_size - 1;
1245 loff_t psize;
1246 int i, err;
1247
1248 /* we should bypass data pages to proceed the kworkder jobs */
1249 if (unlikely(f2fs_cp_error(sbi))) {
1250 mapping_set_error(cc->rpages[0]->mapping, -EIO);
1251 goto out_free;
1252 }
1253
1254 if (IS_NOQUOTA(inode)) {
1255 /*
1256 * We need to wait for node_write to avoid block allocation during
1257 * checkpoint. This can only happen to quota writes which can cause
1258 * the below discard race condition.
1259 */
1260 down_read(&sbi->node_write);
1261 } else if (!f2fs_trylock_op(sbi)) {
1262 goto out_free;
1263 }
1264
1265 set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1266
1267 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1268 if (err)
1269 goto out_unlock_op;
1270
1271 for (i = 0; i < cc->cluster_size; i++) {
1272 if (data_blkaddr(dn.inode, dn.node_page,
1273 dn.ofs_in_node + i) == NULL_ADDR)
1274 goto out_put_dnode;
1275 }
1276
1277 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1278
1279 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni);
1280 if (err)
1281 goto out_put_dnode;
1282
1283 fio.version = ni.version;
1284
1285 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1286 if (!cic)
1287 goto out_put_dnode;
1288
1289 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1290 cic->inode = inode;
1291 atomic_set(&cic->pending_pages, cc->nr_cpages);
1292 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1293 if (!cic->rpages)
1294 goto out_put_cic;
1295
1296 cic->nr_rpages = cc->cluster_size;
1297
1298 for (i = 0; i < cc->nr_cpages; i++) {
1299 f2fs_set_compressed_page(cc->cpages[i], inode,
1300 cc->rpages[i + 1]->index, cic);
1301 fio.compressed_page = cc->cpages[i];
1302
1303 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1304 dn.ofs_in_node + i + 1);
1305
1306 /* wait for GCed page writeback via META_MAPPING */
1307 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1308
1309 if (fio.encrypted) {
1310 fio.page = cc->rpages[i + 1];
1311 err = f2fs_encrypt_one_page(&fio);
1312 if (err)
1313 goto out_destroy_crypt;
1314 cc->cpages[i] = fio.encrypted_page;
1315 }
1316 }
1317
1318 set_cluster_writeback(cc);
1319
1320 for (i = 0; i < cc->cluster_size; i++)
1321 cic->rpages[i] = cc->rpages[i];
1322
1323 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1324 block_t blkaddr;
1325
1326 blkaddr = f2fs_data_blkaddr(&dn);
1327 fio.page = cc->rpages[i];
1328 fio.old_blkaddr = blkaddr;
1329
1330 /* cluster header */
1331 if (i == 0) {
1332 if (blkaddr == COMPRESS_ADDR)
1333 fio.compr_blocks++;
1334 if (__is_valid_data_blkaddr(blkaddr))
1335 f2fs_invalidate_blocks(sbi, blkaddr);
1336 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1337 goto unlock_continue;
1338 }
1339
1340 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1341 fio.compr_blocks++;
1342
1343 if (i > cc->nr_cpages) {
1344 if (__is_valid_data_blkaddr(blkaddr)) {
1345 f2fs_invalidate_blocks(sbi, blkaddr);
1346 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1347 }
1348 goto unlock_continue;
1349 }
1350
1351 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1352
1353 if (fio.encrypted)
1354 fio.encrypted_page = cc->cpages[i - 1];
1355 else
1356 fio.compressed_page = cc->cpages[i - 1];
1357
1358 cc->cpages[i - 1] = NULL;
1359 f2fs_outplace_write_data(&dn, &fio);
1360 (*submitted)++;
1361 unlock_continue:
1362 inode_dec_dirty_pages(cc->inode);
1363 unlock_page(fio.page);
1364 }
1365
1366 if (fio.compr_blocks)
1367 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1368 f2fs_i_compr_blocks_update(inode, cc->nr_cpages, true);
1369 add_compr_block_stat(inode, cc->nr_cpages);
1370
1371 set_inode_flag(cc->inode, FI_APPEND_WRITE);
1372 if (cc->cluster_idx == 0)
1373 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1374
1375 f2fs_put_dnode(&dn);
1376 if (IS_NOQUOTA(inode))
1377 up_read(&sbi->node_write);
1378 else
1379 f2fs_unlock_op(sbi);
1380
1381 spin_lock(&fi->i_size_lock);
1382 if (fi->last_disk_size < psize)
1383 fi->last_disk_size = psize;
1384 spin_unlock(&fi->i_size_lock);
1385
1386 f2fs_put_rpages(cc);
1387 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1388 cc->cpages = NULL;
1389 f2fs_destroy_compress_ctx(cc, false);
1390 return 0;
1391
1392 out_destroy_crypt:
1393 page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1394
1395 for (--i; i >= 0; i--)
1396 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1397 out_put_cic:
1398 kmem_cache_free(cic_entry_slab, cic);
1399 out_put_dnode:
1400 f2fs_put_dnode(&dn);
1401 out_unlock_op:
1402 if (IS_NOQUOTA(inode))
1403 up_read(&sbi->node_write);
1404 else
1405 f2fs_unlock_op(sbi);
1406 out_free:
1407 for (i = 0; i < cc->nr_cpages; i++) {
1408 if (!cc->cpages[i])
1409 continue;
1410 f2fs_compress_free_page(cc->cpages[i]);
1411 cc->cpages[i] = NULL;
1412 }
1413 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1414 cc->cpages = NULL;
1415 return -EAGAIN;
1416 }
1417
1418 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1419 {
1420 struct f2fs_sb_info *sbi = bio->bi_private;
1421 struct compress_io_ctx *cic =
1422 (struct compress_io_ctx *)page_private(page);
1423 int i;
1424
1425 if (unlikely(bio->bi_status))
1426 mapping_set_error(cic->inode->i_mapping, -EIO);
1427
1428 f2fs_compress_free_page(page);
1429
1430 dec_page_count(sbi, F2FS_WB_DATA);
1431
1432 if (atomic_dec_return(&cic->pending_pages))
1433 return;
1434
1435 for (i = 0; i < cic->nr_rpages; i++) {
1436 WARN_ON(!cic->rpages[i]);
1437 clear_page_private_gcing(cic->rpages[i]);
1438 end_page_writeback(cic->rpages[i]);
1439 }
1440
1441 page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1442 kmem_cache_free(cic_entry_slab, cic);
1443 }
1444
1445 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1446 int *submitted,
1447 struct writeback_control *wbc,
1448 enum iostat_type io_type)
1449 {
1450 struct address_space *mapping = cc->inode->i_mapping;
1451 int _submitted, compr_blocks, ret;
1452 int i = -1, err = 0;
1453
1454 compr_blocks = f2fs_compressed_blocks(cc);
1455 if (compr_blocks < 0) {
1456 err = compr_blocks;
1457 goto out_err;
1458 }
1459
1460 for (i = 0; i < cc->cluster_size; i++) {
1461 if (!cc->rpages[i])
1462 continue;
1463 retry_write:
1464 if (cc->rpages[i]->mapping != mapping) {
1465 unlock_page(cc->rpages[i]);
1466 continue;
1467 }
1468
1469 BUG_ON(!PageLocked(cc->rpages[i]));
1470
1471 ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted,
1472 NULL, NULL, wbc, io_type,
1473 compr_blocks, false);
1474 if (ret) {
1475 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1476 unlock_page(cc->rpages[i]);
1477 ret = 0;
1478 } else if (ret == -EAGAIN) {
1479 /*
1480 * for quota file, just redirty left pages to
1481 * avoid deadlock caused by cluster update race
1482 * from foreground operation.
1483 */
1484 if (IS_NOQUOTA(cc->inode)) {
1485 err = 0;
1486 goto out_err;
1487 }
1488 ret = 0;
1489 cond_resched();
1490 congestion_wait(BLK_RW_ASYNC,
1491 DEFAULT_IO_TIMEOUT);
1492 lock_page(cc->rpages[i]);
1493
1494 if (!PageDirty(cc->rpages[i])) {
1495 unlock_page(cc->rpages[i]);
1496 continue;
1497 }
1498
1499 clear_page_dirty_for_io(cc->rpages[i]);
1500 goto retry_write;
1501 }
1502 err = ret;
1503 goto out_err;
1504 }
1505
1506 *submitted += _submitted;
1507 }
1508
1509 f2fs_balance_fs(F2FS_M_SB(mapping), true);
1510
1511 return 0;
1512 out_err:
1513 for (++i; i < cc->cluster_size; i++) {
1514 if (!cc->rpages[i])
1515 continue;
1516 redirty_page_for_writepage(wbc, cc->rpages[i]);
1517 unlock_page(cc->rpages[i]);
1518 }
1519 return err;
1520 }
1521
1522 int f2fs_write_multi_pages(struct compress_ctx *cc,
1523 int *submitted,
1524 struct writeback_control *wbc,
1525 enum iostat_type io_type)
1526 {
1527 int err;
1528
1529 *submitted = 0;
1530 if (cluster_may_compress(cc)) {
1531 err = f2fs_compress_pages(cc);
1532 if (err == -EAGAIN) {
1533 goto write;
1534 } else if (err) {
1535 f2fs_put_rpages_wbc(cc, wbc, true, 1);
1536 goto destroy_out;
1537 }
1538
1539 err = f2fs_write_compressed_pages(cc, submitted,
1540 wbc, io_type);
1541 if (!err)
1542 return 0;
1543 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1544 }
1545 write:
1546 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1547
1548 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1549 f2fs_put_rpages_wbc(cc, wbc, false, 0);
1550 destroy_out:
1551 f2fs_destroy_compress_ctx(cc, false);
1552 return err;
1553 }
1554
1555 static void f2fs_free_dic(struct decompress_io_ctx *dic);
1556
1557 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1558 {
1559 struct decompress_io_ctx *dic;
1560 pgoff_t start_idx = start_idx_of_cluster(cc);
1561 int i;
1562
1563 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO,
1564 false, F2FS_I_SB(cc->inode));
1565 if (!dic)
1566 return ERR_PTR(-ENOMEM);
1567
1568 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1569 if (!dic->rpages) {
1570 kmem_cache_free(dic_entry_slab, dic);
1571 return ERR_PTR(-ENOMEM);
1572 }
1573
1574 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1575 dic->inode = cc->inode;
1576 atomic_set(&dic->remaining_pages, cc->nr_cpages);
1577 dic->cluster_idx = cc->cluster_idx;
1578 dic->cluster_size = cc->cluster_size;
1579 dic->log_cluster_size = cc->log_cluster_size;
1580 dic->nr_cpages = cc->nr_cpages;
1581 refcount_set(&dic->refcnt, 1);
1582 dic->failed = false;
1583 dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1584
1585 for (i = 0; i < dic->cluster_size; i++)
1586 dic->rpages[i] = cc->rpages[i];
1587 dic->nr_rpages = cc->cluster_size;
1588
1589 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1590 if (!dic->cpages)
1591 goto out_free;
1592
1593 for (i = 0; i < dic->nr_cpages; i++) {
1594 struct page *page;
1595
1596 page = f2fs_compress_alloc_page();
1597 if (!page)
1598 goto out_free;
1599
1600 f2fs_set_compressed_page(page, cc->inode,
1601 start_idx + i + 1, dic);
1602 dic->cpages[i] = page;
1603 }
1604
1605 return dic;
1606
1607 out_free:
1608 f2fs_free_dic(dic);
1609 return ERR_PTR(-ENOMEM);
1610 }
1611
1612 static void f2fs_free_dic(struct decompress_io_ctx *dic)
1613 {
1614 int i;
1615
1616 if (dic->tpages) {
1617 for (i = 0; i < dic->cluster_size; i++) {
1618 if (dic->rpages[i])
1619 continue;
1620 if (!dic->tpages[i])
1621 continue;
1622 f2fs_compress_free_page(dic->tpages[i]);
1623 }
1624 page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1625 }
1626
1627 if (dic->cpages) {
1628 for (i = 0; i < dic->nr_cpages; i++) {
1629 if (!dic->cpages[i])
1630 continue;
1631 f2fs_compress_free_page(dic->cpages[i]);
1632 }
1633 page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1634 }
1635
1636 page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1637 kmem_cache_free(dic_entry_slab, dic);
1638 }
1639
1640 static void f2fs_put_dic(struct decompress_io_ctx *dic)
1641 {
1642 if (refcount_dec_and_test(&dic->refcnt))
1643 f2fs_free_dic(dic);
1644 }
1645
1646 /*
1647 * Update and unlock the cluster's pagecache pages, and release the reference to
1648 * the decompress_io_ctx that was being held for I/O completion.
1649 */
1650 static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed)
1651 {
1652 int i;
1653
1654 for (i = 0; i < dic->cluster_size; i++) {
1655 struct page *rpage = dic->rpages[i];
1656
1657 if (!rpage)
1658 continue;
1659
1660 /* PG_error was set if verity failed. */
1661 if (failed || PageError(rpage)) {
1662 ClearPageUptodate(rpage);
1663 /* will re-read again later */
1664 ClearPageError(rpage);
1665 } else {
1666 SetPageUptodate(rpage);
1667 }
1668 unlock_page(rpage);
1669 }
1670
1671 f2fs_put_dic(dic);
1672 }
1673
1674 static void f2fs_verify_cluster(struct work_struct *work)
1675 {
1676 struct decompress_io_ctx *dic =
1677 container_of(work, struct decompress_io_ctx, verity_work);
1678 int i;
1679
1680 /* Verify the cluster's decompressed pages with fs-verity. */
1681 for (i = 0; i < dic->cluster_size; i++) {
1682 struct page *rpage = dic->rpages[i];
1683
1684 if (rpage && !fsverity_verify_page(rpage))
1685 SetPageError(rpage);
1686 }
1687
1688 __f2fs_decompress_end_io(dic, false);
1689 }
1690
1691 /*
1692 * This is called when a compressed cluster has been decompressed
1693 * (or failed to be read and/or decompressed).
1694 */
1695 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed)
1696 {
1697 if (!failed && dic->need_verity) {
1698 /*
1699 * Note that to avoid deadlocks, the verity work can't be done
1700 * on the decompression workqueue. This is because verifying
1701 * the data pages can involve reading metadata pages from the
1702 * file, and these metadata pages may be compressed.
1703 */
1704 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1705 fsverity_enqueue_verify_work(&dic->verity_work);
1706 } else {
1707 __f2fs_decompress_end_io(dic, failed);
1708 }
1709 }
1710
1711 /*
1712 * Put a reference to a compressed page's decompress_io_ctx.
1713 *
1714 * This is called when the page is no longer needed and can be freed.
1715 */
1716 void f2fs_put_page_dic(struct page *page)
1717 {
1718 struct decompress_io_ctx *dic =
1719 (struct decompress_io_ctx *)page_private(page);
1720
1721 f2fs_put_dic(dic);
1722 }
1723
1724 /*
1725 * check whether cluster blocks are contiguous, and add extent cache entry
1726 * only if cluster blocks are logically and physically contiguous.
1727 */
1728 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn)
1729 {
1730 bool compressed = f2fs_data_blkaddr(dn) == COMPRESS_ADDR;
1731 int i = compressed ? 1 : 0;
1732 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1733 dn->ofs_in_node + i);
1734
1735 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1736 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1737 dn->ofs_in_node + i);
1738
1739 if (!__is_valid_data_blkaddr(blkaddr))
1740 break;
1741 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1742 return 0;
1743 }
1744
1745 return compressed ? i - 1 : i;
1746 }
1747
1748 const struct address_space_operations f2fs_compress_aops = {
1749 .releasepage = f2fs_release_page,
1750 .invalidatepage = f2fs_invalidate_page,
1751 };
1752
1753 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1754 {
1755 return sbi->compress_inode->i_mapping;
1756 }
1757
1758 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1759 {
1760 if (!sbi->compress_inode)
1761 return;
1762 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1763 }
1764
1765 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1766 nid_t ino, block_t blkaddr)
1767 {
1768 struct page *cpage;
1769 int ret;
1770
1771 if (!test_opt(sbi, COMPRESS_CACHE))
1772 return;
1773
1774 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1775 return;
1776
1777 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1778 return;
1779
1780 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1781 if (cpage) {
1782 f2fs_put_page(cpage, 0);
1783 return;
1784 }
1785
1786 cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1787 if (!cpage)
1788 return;
1789
1790 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1791 blkaddr, GFP_NOFS);
1792 if (ret) {
1793 f2fs_put_page(cpage, 0);
1794 return;
1795 }
1796
1797 set_page_private_data(cpage, ino);
1798
1799 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1800 goto out;
1801
1802 memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1803 SetPageUptodate(cpage);
1804 out:
1805 f2fs_put_page(cpage, 1);
1806 }
1807
1808 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1809 block_t blkaddr)
1810 {
1811 struct page *cpage;
1812 bool hitted = false;
1813
1814 if (!test_opt(sbi, COMPRESS_CACHE))
1815 return false;
1816
1817 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1818 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1819 if (cpage) {
1820 if (PageUptodate(cpage)) {
1821 atomic_inc(&sbi->compress_page_hit);
1822 memcpy(page_address(page),
1823 page_address(cpage), PAGE_SIZE);
1824 hitted = true;
1825 }
1826 f2fs_put_page(cpage, 1);
1827 }
1828
1829 return hitted;
1830 }
1831
1832 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1833 {
1834 struct address_space *mapping = sbi->compress_inode->i_mapping;
1835 struct pagevec pvec;
1836 pgoff_t index = 0;
1837 pgoff_t end = MAX_BLKADDR(sbi);
1838
1839 if (!mapping->nrpages)
1840 return;
1841
1842 pagevec_init(&pvec);
1843
1844 do {
1845 unsigned int nr_pages;
1846 int i;
1847
1848 nr_pages = pagevec_lookup_range(&pvec, mapping,
1849 &index, end - 1);
1850 if (!nr_pages)
1851 break;
1852
1853 for (i = 0; i < nr_pages; i++) {
1854 struct page *page = pvec.pages[i];
1855
1856 if (page->index > end)
1857 break;
1858
1859 lock_page(page);
1860 if (page->mapping != mapping) {
1861 unlock_page(page);
1862 continue;
1863 }
1864
1865 if (ino != get_page_private_data(page)) {
1866 unlock_page(page);
1867 continue;
1868 }
1869
1870 generic_error_remove_page(mapping, page);
1871 unlock_page(page);
1872 }
1873 pagevec_release(&pvec);
1874 cond_resched();
1875 } while (index < end);
1876 }
1877
1878 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1879 {
1880 struct inode *inode;
1881
1882 if (!test_opt(sbi, COMPRESS_CACHE))
1883 return 0;
1884
1885 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1886 if (IS_ERR(inode))
1887 return PTR_ERR(inode);
1888 sbi->compress_inode = inode;
1889
1890 sbi->compress_percent = COMPRESS_PERCENT;
1891 sbi->compress_watermark = COMPRESS_WATERMARK;
1892
1893 atomic_set(&sbi->compress_page_hit, 0);
1894
1895 return 0;
1896 }
1897
1898 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
1899 {
1900 if (!sbi->compress_inode)
1901 return;
1902 iput(sbi->compress_inode);
1903 sbi->compress_inode = NULL;
1904 }
1905
1906 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
1907 {
1908 dev_t dev = sbi->sb->s_bdev->bd_dev;
1909 char slab_name[32];
1910
1911 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
1912
1913 sbi->page_array_slab_size = sizeof(struct page *) <<
1914 F2FS_OPTION(sbi).compress_log_size;
1915
1916 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
1917 sbi->page_array_slab_size);
1918 if (!sbi->page_array_slab)
1919 return -ENOMEM;
1920 return 0;
1921 }
1922
1923 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
1924 {
1925 kmem_cache_destroy(sbi->page_array_slab);
1926 }
1927
1928 static int __init f2fs_init_cic_cache(void)
1929 {
1930 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
1931 sizeof(struct compress_io_ctx));
1932 if (!cic_entry_slab)
1933 return -ENOMEM;
1934 return 0;
1935 }
1936
1937 static void f2fs_destroy_cic_cache(void)
1938 {
1939 kmem_cache_destroy(cic_entry_slab);
1940 }
1941
1942 static int __init f2fs_init_dic_cache(void)
1943 {
1944 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
1945 sizeof(struct decompress_io_ctx));
1946 if (!dic_entry_slab)
1947 return -ENOMEM;
1948 return 0;
1949 }
1950
1951 static void f2fs_destroy_dic_cache(void)
1952 {
1953 kmem_cache_destroy(dic_entry_slab);
1954 }
1955
1956 int __init f2fs_init_compress_cache(void)
1957 {
1958 int err;
1959
1960 err = f2fs_init_cic_cache();
1961 if (err)
1962 goto out;
1963 err = f2fs_init_dic_cache();
1964 if (err)
1965 goto free_cic;
1966 return 0;
1967 free_cic:
1968 f2fs_destroy_cic_cache();
1969 out:
1970 return -ENOMEM;
1971 }
1972
1973 void f2fs_destroy_compress_cache(void)
1974 {
1975 f2fs_destroy_dic_cache();
1976 f2fs_destroy_cic_cache();
1977 }