]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/data.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "trace.h"
30 #include <trace/events/f2fs.h>
31
32 static bool __is_cp_guaranteed(struct page *page)
33 {
34 struct address_space *mapping = page->mapping;
35 struct inode *inode;
36 struct f2fs_sb_info *sbi;
37
38 if (!mapping)
39 return false;
40
41 inode = mapping->host;
42 sbi = F2FS_I_SB(inode);
43
44 if (inode->i_ino == F2FS_META_INO(sbi) ||
45 inode->i_ino == F2FS_NODE_INO(sbi) ||
46 S_ISDIR(inode->i_mode) ||
47 is_cold_data(page))
48 return true;
49 return false;
50 }
51
52 static void f2fs_read_end_io(struct bio *bio)
53 {
54 struct bio_vec *bvec;
55 int i;
56
57 #ifdef CONFIG_F2FS_FAULT_INJECTION
58 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) {
59 f2fs_show_injection_info(FAULT_IO);
60 bio->bi_error = -EIO;
61 }
62 #endif
63
64 if (f2fs_bio_encrypted(bio)) {
65 if (bio->bi_error) {
66 fscrypt_release_ctx(bio->bi_private);
67 } else {
68 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
69 return;
70 }
71 }
72
73 bio_for_each_segment_all(bvec, bio, i) {
74 struct page *page = bvec->bv_page;
75
76 if (!bio->bi_error) {
77 if (!PageUptodate(page))
78 SetPageUptodate(page);
79 } else {
80 ClearPageUptodate(page);
81 SetPageError(page);
82 }
83 unlock_page(page);
84 }
85 bio_put(bio);
86 }
87
88 static void f2fs_write_end_io(struct bio *bio)
89 {
90 struct f2fs_sb_info *sbi = bio->bi_private;
91 struct bio_vec *bvec;
92 int i;
93
94 bio_for_each_segment_all(bvec, bio, i) {
95 struct page *page = bvec->bv_page;
96 enum count_type type = WB_DATA_TYPE(page);
97
98 if (IS_DUMMY_WRITTEN_PAGE(page)) {
99 set_page_private(page, (unsigned long)NULL);
100 ClearPagePrivate(page);
101 unlock_page(page);
102 mempool_free(page, sbi->write_io_dummy);
103
104 if (unlikely(bio->bi_error))
105 f2fs_stop_checkpoint(sbi, true);
106 continue;
107 }
108
109 fscrypt_pullback_bio_page(&page, true);
110
111 if (unlikely(bio->bi_error)) {
112 mapping_set_error(page->mapping, -EIO);
113 f2fs_stop_checkpoint(sbi, true);
114 }
115 dec_page_count(sbi, type);
116 clear_cold_data(page);
117 end_page_writeback(page);
118 }
119 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
120 wq_has_sleeper(&sbi->cp_wait))
121 wake_up(&sbi->cp_wait);
122
123 bio_put(bio);
124 }
125
126 /*
127 * Return true, if pre_bio's bdev is same as its target device.
128 */
129 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
130 block_t blk_addr, struct bio *bio)
131 {
132 struct block_device *bdev = sbi->sb->s_bdev;
133 int i;
134
135 for (i = 0; i < sbi->s_ndevs; i++) {
136 if (FDEV(i).start_blk <= blk_addr &&
137 FDEV(i).end_blk >= blk_addr) {
138 blk_addr -= FDEV(i).start_blk;
139 bdev = FDEV(i).bdev;
140 break;
141 }
142 }
143 if (bio) {
144 bio->bi_bdev = bdev;
145 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
146 }
147 return bdev;
148 }
149
150 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
151 {
152 int i;
153
154 for (i = 0; i < sbi->s_ndevs; i++)
155 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
156 return i;
157 return 0;
158 }
159
160 static bool __same_bdev(struct f2fs_sb_info *sbi,
161 block_t blk_addr, struct bio *bio)
162 {
163 return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev;
164 }
165
166 /*
167 * Low-level block read/write IO operations.
168 */
169 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
170 int npages, bool is_read)
171 {
172 struct bio *bio;
173
174 bio = f2fs_bio_alloc(npages);
175
176 f2fs_target_device(sbi, blk_addr, bio);
177 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
178 bio->bi_private = is_read ? NULL : sbi;
179
180 return bio;
181 }
182
183 static inline void __submit_bio(struct f2fs_sb_info *sbi,
184 struct bio *bio, enum page_type type)
185 {
186 if (!is_read_io(bio_op(bio))) {
187 unsigned int start;
188
189 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
190 current->plug && (type == DATA || type == NODE))
191 blk_finish_plug(current->plug);
192
193 if (type != DATA && type != NODE)
194 goto submit_io;
195
196 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
197 start %= F2FS_IO_SIZE(sbi);
198
199 if (start == 0)
200 goto submit_io;
201
202 /* fill dummy pages */
203 for (; start < F2FS_IO_SIZE(sbi); start++) {
204 struct page *page =
205 mempool_alloc(sbi->write_io_dummy,
206 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
207 f2fs_bug_on(sbi, !page);
208
209 SetPagePrivate(page);
210 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
211 lock_page(page);
212 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
213 f2fs_bug_on(sbi, 1);
214 }
215 /*
216 * In the NODE case, we lose next block address chain. So, we
217 * need to do checkpoint in f2fs_sync_file.
218 */
219 if (type == NODE)
220 set_sbi_flag(sbi, SBI_NEED_CP);
221 }
222 submit_io:
223 if (is_read_io(bio_op(bio)))
224 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
225 else
226 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
227 submit_bio(bio);
228 }
229
230 static void __submit_merged_bio(struct f2fs_bio_info *io)
231 {
232 struct f2fs_io_info *fio = &io->fio;
233
234 if (!io->bio)
235 return;
236
237 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
238
239 if (is_read_io(fio->op))
240 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
241 else
242 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
243
244 __submit_bio(io->sbi, io->bio, fio->type);
245 io->bio = NULL;
246 }
247
248 static bool __has_merged_page(struct f2fs_bio_info *io,
249 struct inode *inode, nid_t ino, pgoff_t idx)
250 {
251 struct bio_vec *bvec;
252 struct page *target;
253 int i;
254
255 if (!io->bio)
256 return false;
257
258 if (!inode && !ino)
259 return true;
260
261 bio_for_each_segment_all(bvec, io->bio, i) {
262
263 if (bvec->bv_page->mapping)
264 target = bvec->bv_page;
265 else
266 target = fscrypt_control_page(bvec->bv_page);
267
268 if (idx != target->index)
269 continue;
270
271 if (inode && inode == target->mapping->host)
272 return true;
273 if (ino && ino == ino_of_node(target))
274 return true;
275 }
276
277 return false;
278 }
279
280 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
281 nid_t ino, pgoff_t idx, enum page_type type)
282 {
283 enum page_type btype = PAGE_TYPE_OF_BIO(type);
284 struct f2fs_bio_info *io = &sbi->write_io[btype];
285 bool ret;
286
287 down_read(&io->io_rwsem);
288 ret = __has_merged_page(io, inode, ino, idx);
289 up_read(&io->io_rwsem);
290 return ret;
291 }
292
293 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
294 struct inode *inode, nid_t ino, pgoff_t idx,
295 enum page_type type, int rw)
296 {
297 enum page_type btype = PAGE_TYPE_OF_BIO(type);
298 struct f2fs_bio_info *io;
299
300 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
301
302 down_write(&io->io_rwsem);
303
304 if (!__has_merged_page(io, inode, ino, idx))
305 goto out;
306
307 /* change META to META_FLUSH in the checkpoint procedure */
308 if (type >= META_FLUSH) {
309 io->fio.type = META_FLUSH;
310 io->fio.op = REQ_OP_WRITE;
311 io->fio.op_flags = REQ_META | REQ_PRIO;
312 if (!test_opt(sbi, NOBARRIER))
313 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
314 }
315 __submit_merged_bio(io);
316 out:
317 up_write(&io->io_rwsem);
318 }
319
320 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
321 int rw)
322 {
323 __f2fs_submit_merged_bio(sbi, NULL, 0, 0, type, rw);
324 }
325
326 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
327 struct inode *inode, nid_t ino, pgoff_t idx,
328 enum page_type type, int rw)
329 {
330 if (has_merged_page(sbi, inode, ino, idx, type))
331 __f2fs_submit_merged_bio(sbi, inode, ino, idx, type, rw);
332 }
333
334 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
335 {
336 f2fs_submit_merged_bio(sbi, DATA, WRITE);
337 f2fs_submit_merged_bio(sbi, NODE, WRITE);
338 f2fs_submit_merged_bio(sbi, META, WRITE);
339 }
340
341 /*
342 * Fill the locked page with data located in the block address.
343 * Return unlocked page.
344 */
345 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
346 {
347 struct bio *bio;
348 struct page *page = fio->encrypted_page ?
349 fio->encrypted_page : fio->page;
350
351 trace_f2fs_submit_page_bio(page, fio);
352 f2fs_trace_ios(fio, 0);
353
354 /* Allocate a new bio */
355 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
356
357 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
358 bio_put(bio);
359 return -EFAULT;
360 }
361 bio_set_op_attrs(bio, fio->op, fio->op_flags);
362
363 __submit_bio(fio->sbi, bio, fio->type);
364 return 0;
365 }
366
367 int f2fs_submit_page_mbio(struct f2fs_io_info *fio)
368 {
369 struct f2fs_sb_info *sbi = fio->sbi;
370 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
371 struct f2fs_bio_info *io;
372 bool is_read = is_read_io(fio->op);
373 struct page *bio_page;
374 int err = 0;
375
376 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
377
378 if (fio->old_blkaddr != NEW_ADDR)
379 verify_block_addr(sbi, fio->old_blkaddr);
380 verify_block_addr(sbi, fio->new_blkaddr);
381
382 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
383
384 /* set submitted = 1 as a return value */
385 fio->submitted = 1;
386
387 if (!is_read)
388 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
389
390 down_write(&io->io_rwsem);
391
392 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
393 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
394 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
395 __submit_merged_bio(io);
396 alloc_new:
397 if (io->bio == NULL) {
398 if ((fio->type == DATA || fio->type == NODE) &&
399 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
400 err = -EAGAIN;
401 if (!is_read)
402 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
403 goto out_fail;
404 }
405 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
406 BIO_MAX_PAGES, is_read);
407 io->fio = *fio;
408 }
409
410 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
411 PAGE_SIZE) {
412 __submit_merged_bio(io);
413 goto alloc_new;
414 }
415
416 io->last_block_in_bio = fio->new_blkaddr;
417 f2fs_trace_ios(fio, 0);
418 out_fail:
419 up_write(&io->io_rwsem);
420 trace_f2fs_submit_page_mbio(fio->page, fio);
421 return err;
422 }
423
424 static void __set_data_blkaddr(struct dnode_of_data *dn)
425 {
426 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
427 __le32 *addr_array;
428
429 /* Get physical address of data block */
430 addr_array = blkaddr_in_node(rn);
431 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
432 }
433
434 /*
435 * Lock ordering for the change of data block address:
436 * ->data_page
437 * ->node_page
438 * update block addresses in the node page
439 */
440 void set_data_blkaddr(struct dnode_of_data *dn)
441 {
442 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
443 __set_data_blkaddr(dn);
444 if (set_page_dirty(dn->node_page))
445 dn->node_changed = true;
446 }
447
448 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
449 {
450 dn->data_blkaddr = blkaddr;
451 set_data_blkaddr(dn);
452 f2fs_update_extent_cache(dn);
453 }
454
455 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
456 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
457 {
458 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
459
460 if (!count)
461 return 0;
462
463 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
464 return -EPERM;
465 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
466 return -ENOSPC;
467
468 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
469 dn->ofs_in_node, count);
470
471 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
472
473 for (; count > 0; dn->ofs_in_node++) {
474 block_t blkaddr =
475 datablock_addr(dn->node_page, dn->ofs_in_node);
476 if (blkaddr == NULL_ADDR) {
477 dn->data_blkaddr = NEW_ADDR;
478 __set_data_blkaddr(dn);
479 count--;
480 }
481 }
482
483 if (set_page_dirty(dn->node_page))
484 dn->node_changed = true;
485 return 0;
486 }
487
488 /* Should keep dn->ofs_in_node unchanged */
489 int reserve_new_block(struct dnode_of_data *dn)
490 {
491 unsigned int ofs_in_node = dn->ofs_in_node;
492 int ret;
493
494 ret = reserve_new_blocks(dn, 1);
495 dn->ofs_in_node = ofs_in_node;
496 return ret;
497 }
498
499 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
500 {
501 bool need_put = dn->inode_page ? false : true;
502 int err;
503
504 err = get_dnode_of_data(dn, index, ALLOC_NODE);
505 if (err)
506 return err;
507
508 if (dn->data_blkaddr == NULL_ADDR)
509 err = reserve_new_block(dn);
510 if (err || need_put)
511 f2fs_put_dnode(dn);
512 return err;
513 }
514
515 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
516 {
517 struct extent_info ei = {0,0,0};
518 struct inode *inode = dn->inode;
519
520 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
521 dn->data_blkaddr = ei.blk + index - ei.fofs;
522 return 0;
523 }
524
525 return f2fs_reserve_block(dn, index);
526 }
527
528 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
529 int op_flags, bool for_write)
530 {
531 struct address_space *mapping = inode->i_mapping;
532 struct dnode_of_data dn;
533 struct page *page;
534 struct extent_info ei = {0,0,0};
535 int err;
536 struct f2fs_io_info fio = {
537 .sbi = F2FS_I_SB(inode),
538 .type = DATA,
539 .op = REQ_OP_READ,
540 .op_flags = op_flags,
541 .encrypted_page = NULL,
542 };
543
544 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
545 return read_mapping_page(mapping, index, NULL);
546
547 page = f2fs_grab_cache_page(mapping, index, for_write);
548 if (!page)
549 return ERR_PTR(-ENOMEM);
550
551 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
552 dn.data_blkaddr = ei.blk + index - ei.fofs;
553 goto got_it;
554 }
555
556 set_new_dnode(&dn, inode, NULL, NULL, 0);
557 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
558 if (err)
559 goto put_err;
560 f2fs_put_dnode(&dn);
561
562 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
563 err = -ENOENT;
564 goto put_err;
565 }
566 got_it:
567 if (PageUptodate(page)) {
568 unlock_page(page);
569 return page;
570 }
571
572 /*
573 * A new dentry page is allocated but not able to be written, since its
574 * new inode page couldn't be allocated due to -ENOSPC.
575 * In such the case, its blkaddr can be remained as NEW_ADDR.
576 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
577 */
578 if (dn.data_blkaddr == NEW_ADDR) {
579 zero_user_segment(page, 0, PAGE_SIZE);
580 if (!PageUptodate(page))
581 SetPageUptodate(page);
582 unlock_page(page);
583 return page;
584 }
585
586 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
587 fio.page = page;
588 err = f2fs_submit_page_bio(&fio);
589 if (err)
590 goto put_err;
591 return page;
592
593 put_err:
594 f2fs_put_page(page, 1);
595 return ERR_PTR(err);
596 }
597
598 struct page *find_data_page(struct inode *inode, pgoff_t index)
599 {
600 struct address_space *mapping = inode->i_mapping;
601 struct page *page;
602
603 page = find_get_page(mapping, index);
604 if (page && PageUptodate(page))
605 return page;
606 f2fs_put_page(page, 0);
607
608 page = get_read_data_page(inode, index, 0, false);
609 if (IS_ERR(page))
610 return page;
611
612 if (PageUptodate(page))
613 return page;
614
615 wait_on_page_locked(page);
616 if (unlikely(!PageUptodate(page))) {
617 f2fs_put_page(page, 0);
618 return ERR_PTR(-EIO);
619 }
620 return page;
621 }
622
623 /*
624 * If it tries to access a hole, return an error.
625 * Because, the callers, functions in dir.c and GC, should be able to know
626 * whether this page exists or not.
627 */
628 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
629 bool for_write)
630 {
631 struct address_space *mapping = inode->i_mapping;
632 struct page *page;
633 repeat:
634 page = get_read_data_page(inode, index, 0, for_write);
635 if (IS_ERR(page))
636 return page;
637
638 /* wait for read completion */
639 lock_page(page);
640 if (unlikely(page->mapping != mapping)) {
641 f2fs_put_page(page, 1);
642 goto repeat;
643 }
644 if (unlikely(!PageUptodate(page))) {
645 f2fs_put_page(page, 1);
646 return ERR_PTR(-EIO);
647 }
648 return page;
649 }
650
651 /*
652 * Caller ensures that this data page is never allocated.
653 * A new zero-filled data page is allocated in the page cache.
654 *
655 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
656 * f2fs_unlock_op().
657 * Note that, ipage is set only by make_empty_dir, and if any error occur,
658 * ipage should be released by this function.
659 */
660 struct page *get_new_data_page(struct inode *inode,
661 struct page *ipage, pgoff_t index, bool new_i_size)
662 {
663 struct address_space *mapping = inode->i_mapping;
664 struct page *page;
665 struct dnode_of_data dn;
666 int err;
667
668 page = f2fs_grab_cache_page(mapping, index, true);
669 if (!page) {
670 /*
671 * before exiting, we should make sure ipage will be released
672 * if any error occur.
673 */
674 f2fs_put_page(ipage, 1);
675 return ERR_PTR(-ENOMEM);
676 }
677
678 set_new_dnode(&dn, inode, ipage, NULL, 0);
679 err = f2fs_reserve_block(&dn, index);
680 if (err) {
681 f2fs_put_page(page, 1);
682 return ERR_PTR(err);
683 }
684 if (!ipage)
685 f2fs_put_dnode(&dn);
686
687 if (PageUptodate(page))
688 goto got_it;
689
690 if (dn.data_blkaddr == NEW_ADDR) {
691 zero_user_segment(page, 0, PAGE_SIZE);
692 if (!PageUptodate(page))
693 SetPageUptodate(page);
694 } else {
695 f2fs_put_page(page, 1);
696
697 /* if ipage exists, blkaddr should be NEW_ADDR */
698 f2fs_bug_on(F2FS_I_SB(inode), ipage);
699 page = get_lock_data_page(inode, index, true);
700 if (IS_ERR(page))
701 return page;
702 }
703 got_it:
704 if (new_i_size && i_size_read(inode) <
705 ((loff_t)(index + 1) << PAGE_SHIFT))
706 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
707 return page;
708 }
709
710 static int __allocate_data_block(struct dnode_of_data *dn)
711 {
712 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
713 struct f2fs_summary sum;
714 struct node_info ni;
715 pgoff_t fofs;
716 blkcnt_t count = 1;
717
718 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
719 return -EPERM;
720
721 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
722 if (dn->data_blkaddr == NEW_ADDR)
723 goto alloc;
724
725 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
726 return -ENOSPC;
727
728 alloc:
729 get_node_info(sbi, dn->nid, &ni);
730 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
731
732 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
733 &sum, CURSEG_WARM_DATA);
734 set_data_blkaddr(dn);
735
736 /* update i_size */
737 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
738 dn->ofs_in_node;
739 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
740 f2fs_i_size_write(dn->inode,
741 ((loff_t)(fofs + 1) << PAGE_SHIFT));
742 return 0;
743 }
744
745 static inline bool __force_buffered_io(struct inode *inode, int rw)
746 {
747 return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) ||
748 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
749 F2FS_I_SB(inode)->s_ndevs);
750 }
751
752 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
753 {
754 struct inode *inode = file_inode(iocb->ki_filp);
755 struct f2fs_map_blocks map;
756 int err = 0;
757
758 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
759 return 0;
760
761 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
762 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
763 if (map.m_len > map.m_lblk)
764 map.m_len -= map.m_lblk;
765 else
766 map.m_len = 0;
767
768 map.m_next_pgofs = NULL;
769
770 if (iocb->ki_flags & IOCB_DIRECT) {
771 err = f2fs_convert_inline_inode(inode);
772 if (err)
773 return err;
774 return f2fs_map_blocks(inode, &map, 1,
775 __force_buffered_io(inode, WRITE) ?
776 F2FS_GET_BLOCK_PRE_AIO :
777 F2FS_GET_BLOCK_PRE_DIO);
778 }
779 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
780 err = f2fs_convert_inline_inode(inode);
781 if (err)
782 return err;
783 }
784 if (!f2fs_has_inline_data(inode))
785 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
786 return err;
787 }
788
789 /*
790 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
791 * f2fs_map_blocks structure.
792 * If original data blocks are allocated, then give them to blockdev.
793 * Otherwise,
794 * a. preallocate requested block addresses
795 * b. do not use extent cache for better performance
796 * c. give the block addresses to blockdev
797 */
798 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
799 int create, int flag)
800 {
801 unsigned int maxblocks = map->m_len;
802 struct dnode_of_data dn;
803 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
804 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
805 pgoff_t pgofs, end_offset, end;
806 int err = 0, ofs = 1;
807 unsigned int ofs_in_node, last_ofs_in_node;
808 blkcnt_t prealloc;
809 struct extent_info ei = {0,0,0};
810 block_t blkaddr;
811
812 if (!maxblocks)
813 return 0;
814
815 map->m_len = 0;
816 map->m_flags = 0;
817
818 /* it only supports block size == page size */
819 pgofs = (pgoff_t)map->m_lblk;
820 end = pgofs + maxblocks;
821
822 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
823 map->m_pblk = ei.blk + pgofs - ei.fofs;
824 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
825 map->m_flags = F2FS_MAP_MAPPED;
826 goto out;
827 }
828
829 next_dnode:
830 if (create)
831 f2fs_lock_op(sbi);
832
833 /* When reading holes, we need its node page */
834 set_new_dnode(&dn, inode, NULL, NULL, 0);
835 err = get_dnode_of_data(&dn, pgofs, mode);
836 if (err) {
837 if (flag == F2FS_GET_BLOCK_BMAP)
838 map->m_pblk = 0;
839 if (err == -ENOENT) {
840 err = 0;
841 if (map->m_next_pgofs)
842 *map->m_next_pgofs =
843 get_next_page_offset(&dn, pgofs);
844 }
845 goto unlock_out;
846 }
847
848 prealloc = 0;
849 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
850 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
851
852 next_block:
853 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
854
855 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
856 if (create) {
857 if (unlikely(f2fs_cp_error(sbi))) {
858 err = -EIO;
859 goto sync_out;
860 }
861 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
862 if (blkaddr == NULL_ADDR) {
863 prealloc++;
864 last_ofs_in_node = dn.ofs_in_node;
865 }
866 } else {
867 err = __allocate_data_block(&dn);
868 if (!err)
869 set_inode_flag(inode, FI_APPEND_WRITE);
870 }
871 if (err)
872 goto sync_out;
873 map->m_flags |= F2FS_MAP_NEW;
874 blkaddr = dn.data_blkaddr;
875 } else {
876 if (flag == F2FS_GET_BLOCK_BMAP) {
877 map->m_pblk = 0;
878 goto sync_out;
879 }
880 if (flag == F2FS_GET_BLOCK_FIEMAP &&
881 blkaddr == NULL_ADDR) {
882 if (map->m_next_pgofs)
883 *map->m_next_pgofs = pgofs + 1;
884 }
885 if (flag != F2FS_GET_BLOCK_FIEMAP ||
886 blkaddr != NEW_ADDR)
887 goto sync_out;
888 }
889 }
890
891 if (flag == F2FS_GET_BLOCK_PRE_AIO)
892 goto skip;
893
894 if (map->m_len == 0) {
895 /* preallocated unwritten block should be mapped for fiemap. */
896 if (blkaddr == NEW_ADDR)
897 map->m_flags |= F2FS_MAP_UNWRITTEN;
898 map->m_flags |= F2FS_MAP_MAPPED;
899
900 map->m_pblk = blkaddr;
901 map->m_len = 1;
902 } else if ((map->m_pblk != NEW_ADDR &&
903 blkaddr == (map->m_pblk + ofs)) ||
904 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
905 flag == F2FS_GET_BLOCK_PRE_DIO) {
906 ofs++;
907 map->m_len++;
908 } else {
909 goto sync_out;
910 }
911
912 skip:
913 dn.ofs_in_node++;
914 pgofs++;
915
916 /* preallocate blocks in batch for one dnode page */
917 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
918 (pgofs == end || dn.ofs_in_node == end_offset)) {
919
920 dn.ofs_in_node = ofs_in_node;
921 err = reserve_new_blocks(&dn, prealloc);
922 if (err)
923 goto sync_out;
924
925 map->m_len += dn.ofs_in_node - ofs_in_node;
926 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
927 err = -ENOSPC;
928 goto sync_out;
929 }
930 dn.ofs_in_node = end_offset;
931 }
932
933 if (pgofs >= end)
934 goto sync_out;
935 else if (dn.ofs_in_node < end_offset)
936 goto next_block;
937
938 f2fs_put_dnode(&dn);
939
940 if (create) {
941 f2fs_unlock_op(sbi);
942 f2fs_balance_fs(sbi, dn.node_changed);
943 }
944 goto next_dnode;
945
946 sync_out:
947 f2fs_put_dnode(&dn);
948 unlock_out:
949 if (create) {
950 f2fs_unlock_op(sbi);
951 f2fs_balance_fs(sbi, dn.node_changed);
952 }
953 out:
954 trace_f2fs_map_blocks(inode, map, err);
955 return err;
956 }
957
958 static int __get_data_block(struct inode *inode, sector_t iblock,
959 struct buffer_head *bh, int create, int flag,
960 pgoff_t *next_pgofs)
961 {
962 struct f2fs_map_blocks map;
963 int err;
964
965 map.m_lblk = iblock;
966 map.m_len = bh->b_size >> inode->i_blkbits;
967 map.m_next_pgofs = next_pgofs;
968
969 err = f2fs_map_blocks(inode, &map, create, flag);
970 if (!err) {
971 map_bh(bh, inode->i_sb, map.m_pblk);
972 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
973 bh->b_size = (u64)map.m_len << inode->i_blkbits;
974 }
975 return err;
976 }
977
978 static int get_data_block(struct inode *inode, sector_t iblock,
979 struct buffer_head *bh_result, int create, int flag,
980 pgoff_t *next_pgofs)
981 {
982 return __get_data_block(inode, iblock, bh_result, create,
983 flag, next_pgofs);
984 }
985
986 static int get_data_block_dio(struct inode *inode, sector_t iblock,
987 struct buffer_head *bh_result, int create)
988 {
989 return __get_data_block(inode, iblock, bh_result, create,
990 F2FS_GET_BLOCK_DIO, NULL);
991 }
992
993 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
994 struct buffer_head *bh_result, int create)
995 {
996 /* Block number less than F2FS MAX BLOCKS */
997 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
998 return -EFBIG;
999
1000 return __get_data_block(inode, iblock, bh_result, create,
1001 F2FS_GET_BLOCK_BMAP, NULL);
1002 }
1003
1004 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1005 {
1006 return (offset >> inode->i_blkbits);
1007 }
1008
1009 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1010 {
1011 return (blk << inode->i_blkbits);
1012 }
1013
1014 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1015 u64 start, u64 len)
1016 {
1017 struct buffer_head map_bh;
1018 sector_t start_blk, last_blk;
1019 pgoff_t next_pgofs;
1020 u64 logical = 0, phys = 0, size = 0;
1021 u32 flags = 0;
1022 int ret = 0;
1023
1024 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1025 if (ret)
1026 return ret;
1027
1028 if (f2fs_has_inline_data(inode)) {
1029 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1030 if (ret != -EAGAIN)
1031 return ret;
1032 }
1033
1034 inode_lock(inode);
1035
1036 if (logical_to_blk(inode, len) == 0)
1037 len = blk_to_logical(inode, 1);
1038
1039 start_blk = logical_to_blk(inode, start);
1040 last_blk = logical_to_blk(inode, start + len - 1);
1041
1042 next:
1043 memset(&map_bh, 0, sizeof(struct buffer_head));
1044 map_bh.b_size = len;
1045
1046 ret = get_data_block(inode, start_blk, &map_bh, 0,
1047 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1048 if (ret)
1049 goto out;
1050
1051 /* HOLE */
1052 if (!buffer_mapped(&map_bh)) {
1053 start_blk = next_pgofs;
1054
1055 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1056 F2FS_I_SB(inode)->max_file_blocks))
1057 goto prep_next;
1058
1059 flags |= FIEMAP_EXTENT_LAST;
1060 }
1061
1062 if (size) {
1063 if (f2fs_encrypted_inode(inode))
1064 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1065
1066 ret = fiemap_fill_next_extent(fieinfo, logical,
1067 phys, size, flags);
1068 }
1069
1070 if (start_blk > last_blk || ret)
1071 goto out;
1072
1073 logical = blk_to_logical(inode, start_blk);
1074 phys = blk_to_logical(inode, map_bh.b_blocknr);
1075 size = map_bh.b_size;
1076 flags = 0;
1077 if (buffer_unwritten(&map_bh))
1078 flags = FIEMAP_EXTENT_UNWRITTEN;
1079
1080 start_blk += logical_to_blk(inode, size);
1081
1082 prep_next:
1083 cond_resched();
1084 if (fatal_signal_pending(current))
1085 ret = -EINTR;
1086 else
1087 goto next;
1088 out:
1089 if (ret == 1)
1090 ret = 0;
1091
1092 inode_unlock(inode);
1093 return ret;
1094 }
1095
1096 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
1097 unsigned nr_pages)
1098 {
1099 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1100 struct fscrypt_ctx *ctx = NULL;
1101 struct bio *bio;
1102
1103 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1104 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1105 if (IS_ERR(ctx))
1106 return ERR_CAST(ctx);
1107
1108 /* wait the page to be moved by cleaning */
1109 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1110 }
1111
1112 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1113 if (!bio) {
1114 if (ctx)
1115 fscrypt_release_ctx(ctx);
1116 return ERR_PTR(-ENOMEM);
1117 }
1118 f2fs_target_device(sbi, blkaddr, bio);
1119 bio->bi_end_io = f2fs_read_end_io;
1120 bio->bi_private = ctx;
1121
1122 return bio;
1123 }
1124
1125 /*
1126 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1127 * Major change was from block_size == page_size in f2fs by default.
1128 */
1129 static int f2fs_mpage_readpages(struct address_space *mapping,
1130 struct list_head *pages, struct page *page,
1131 unsigned nr_pages)
1132 {
1133 struct bio *bio = NULL;
1134 unsigned page_idx;
1135 sector_t last_block_in_bio = 0;
1136 struct inode *inode = mapping->host;
1137 const unsigned blkbits = inode->i_blkbits;
1138 const unsigned blocksize = 1 << blkbits;
1139 sector_t block_in_file;
1140 sector_t last_block;
1141 sector_t last_block_in_file;
1142 sector_t block_nr;
1143 struct f2fs_map_blocks map;
1144
1145 map.m_pblk = 0;
1146 map.m_lblk = 0;
1147 map.m_len = 0;
1148 map.m_flags = 0;
1149 map.m_next_pgofs = NULL;
1150
1151 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1152
1153 prefetchw(&page->flags);
1154 if (pages) {
1155 page = list_last_entry(pages, struct page, lru);
1156 list_del(&page->lru);
1157 if (add_to_page_cache_lru(page, mapping,
1158 page->index,
1159 readahead_gfp_mask(mapping)))
1160 goto next_page;
1161 }
1162
1163 block_in_file = (sector_t)page->index;
1164 last_block = block_in_file + nr_pages;
1165 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1166 blkbits;
1167 if (last_block > last_block_in_file)
1168 last_block = last_block_in_file;
1169
1170 /*
1171 * Map blocks using the previous result first.
1172 */
1173 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1174 block_in_file > map.m_lblk &&
1175 block_in_file < (map.m_lblk + map.m_len))
1176 goto got_it;
1177
1178 /*
1179 * Then do more f2fs_map_blocks() calls until we are
1180 * done with this page.
1181 */
1182 map.m_flags = 0;
1183
1184 if (block_in_file < last_block) {
1185 map.m_lblk = block_in_file;
1186 map.m_len = last_block - block_in_file;
1187
1188 if (f2fs_map_blocks(inode, &map, 0,
1189 F2FS_GET_BLOCK_READ))
1190 goto set_error_page;
1191 }
1192 got_it:
1193 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1194 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1195 SetPageMappedToDisk(page);
1196
1197 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1198 SetPageUptodate(page);
1199 goto confused;
1200 }
1201 } else {
1202 zero_user_segment(page, 0, PAGE_SIZE);
1203 if (!PageUptodate(page))
1204 SetPageUptodate(page);
1205 unlock_page(page);
1206 goto next_page;
1207 }
1208
1209 /*
1210 * This page will go to BIO. Do we need to send this
1211 * BIO off first?
1212 */
1213 if (bio && (last_block_in_bio != block_nr - 1 ||
1214 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1215 submit_and_realloc:
1216 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1217 bio = NULL;
1218 }
1219 if (bio == NULL) {
1220 bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1221 if (IS_ERR(bio)) {
1222 bio = NULL;
1223 goto set_error_page;
1224 }
1225 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1226 }
1227
1228 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1229 goto submit_and_realloc;
1230
1231 last_block_in_bio = block_nr;
1232 goto next_page;
1233 set_error_page:
1234 SetPageError(page);
1235 zero_user_segment(page, 0, PAGE_SIZE);
1236 unlock_page(page);
1237 goto next_page;
1238 confused:
1239 if (bio) {
1240 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1241 bio = NULL;
1242 }
1243 unlock_page(page);
1244 next_page:
1245 if (pages)
1246 put_page(page);
1247 }
1248 BUG_ON(pages && !list_empty(pages));
1249 if (bio)
1250 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1251 return 0;
1252 }
1253
1254 static int f2fs_read_data_page(struct file *file, struct page *page)
1255 {
1256 struct inode *inode = page->mapping->host;
1257 int ret = -EAGAIN;
1258
1259 trace_f2fs_readpage(page, DATA);
1260
1261 /* If the file has inline data, try to read it directly */
1262 if (f2fs_has_inline_data(inode))
1263 ret = f2fs_read_inline_data(inode, page);
1264 if (ret == -EAGAIN)
1265 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1266 return ret;
1267 }
1268
1269 static int f2fs_read_data_pages(struct file *file,
1270 struct address_space *mapping,
1271 struct list_head *pages, unsigned nr_pages)
1272 {
1273 struct inode *inode = file->f_mapping->host;
1274 struct page *page = list_last_entry(pages, struct page, lru);
1275
1276 trace_f2fs_readpages(inode, page, nr_pages);
1277
1278 /* If the file has inline data, skip readpages */
1279 if (f2fs_has_inline_data(inode))
1280 return 0;
1281
1282 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1283 }
1284
1285 int do_write_data_page(struct f2fs_io_info *fio)
1286 {
1287 struct page *page = fio->page;
1288 struct inode *inode = page->mapping->host;
1289 struct dnode_of_data dn;
1290 int err = 0;
1291
1292 set_new_dnode(&dn, inode, NULL, NULL, 0);
1293 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1294 if (err)
1295 return err;
1296
1297 fio->old_blkaddr = dn.data_blkaddr;
1298
1299 /* This page is already truncated */
1300 if (fio->old_blkaddr == NULL_ADDR) {
1301 ClearPageUptodate(page);
1302 goto out_writepage;
1303 }
1304
1305 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1306 gfp_t gfp_flags = GFP_NOFS;
1307
1308 /* wait for GCed encrypted page writeback */
1309 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1310 fio->old_blkaddr);
1311 retry_encrypt:
1312 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1313 PAGE_SIZE, 0,
1314 fio->page->index,
1315 gfp_flags);
1316 if (IS_ERR(fio->encrypted_page)) {
1317 err = PTR_ERR(fio->encrypted_page);
1318 if (err == -ENOMEM) {
1319 /* flush pending ios and wait for a while */
1320 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1321 congestion_wait(BLK_RW_ASYNC, HZ/50);
1322 gfp_flags |= __GFP_NOFAIL;
1323 err = 0;
1324 goto retry_encrypt;
1325 }
1326 goto out_writepage;
1327 }
1328 }
1329
1330 set_page_writeback(page);
1331
1332 /*
1333 * If current allocation needs SSR,
1334 * it had better in-place writes for updated data.
1335 */
1336 if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1337 !is_cold_data(page) &&
1338 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1339 need_inplace_update(inode))) {
1340 rewrite_data_page(fio);
1341 set_inode_flag(inode, FI_UPDATE_WRITE);
1342 trace_f2fs_do_write_data_page(page, IPU);
1343 } else {
1344 write_data_page(&dn, fio);
1345 trace_f2fs_do_write_data_page(page, OPU);
1346 set_inode_flag(inode, FI_APPEND_WRITE);
1347 if (page->index == 0)
1348 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1349 }
1350 out_writepage:
1351 f2fs_put_dnode(&dn);
1352 return err;
1353 }
1354
1355 static int __write_data_page(struct page *page, bool *submitted,
1356 struct writeback_control *wbc)
1357 {
1358 struct inode *inode = page->mapping->host;
1359 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1360 loff_t i_size = i_size_read(inode);
1361 const pgoff_t end_index = ((unsigned long long) i_size)
1362 >> PAGE_SHIFT;
1363 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1364 unsigned offset = 0;
1365 bool need_balance_fs = false;
1366 int err = 0;
1367 struct f2fs_io_info fio = {
1368 .sbi = sbi,
1369 .type = DATA,
1370 .op = REQ_OP_WRITE,
1371 .op_flags = wbc_to_write_flags(wbc),
1372 .page = page,
1373 .encrypted_page = NULL,
1374 .submitted = false,
1375 };
1376
1377 trace_f2fs_writepage(page, DATA);
1378
1379 if (page->index < end_index)
1380 goto write;
1381
1382 /*
1383 * If the offset is out-of-range of file size,
1384 * this page does not have to be written to disk.
1385 */
1386 offset = i_size & (PAGE_SIZE - 1);
1387 if ((page->index >= end_index + 1) || !offset)
1388 goto out;
1389
1390 zero_user_segment(page, offset, PAGE_SIZE);
1391 write:
1392 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1393 goto redirty_out;
1394 if (f2fs_is_drop_cache(inode))
1395 goto out;
1396 /* we should not write 0'th page having journal header */
1397 if (f2fs_is_volatile_file(inode) && (!page->index ||
1398 (!wbc->for_reclaim &&
1399 available_free_memory(sbi, BASE_CHECK))))
1400 goto redirty_out;
1401
1402 /* we should bypass data pages to proceed the kworkder jobs */
1403 if (unlikely(f2fs_cp_error(sbi))) {
1404 mapping_set_error(page->mapping, -EIO);
1405 goto out;
1406 }
1407
1408 /* Dentry blocks are controlled by checkpoint */
1409 if (S_ISDIR(inode->i_mode)) {
1410 err = do_write_data_page(&fio);
1411 goto done;
1412 }
1413
1414 if (!wbc->for_reclaim)
1415 need_balance_fs = true;
1416 else if (has_not_enough_free_secs(sbi, 0, 0))
1417 goto redirty_out;
1418
1419 err = -EAGAIN;
1420 if (f2fs_has_inline_data(inode)) {
1421 err = f2fs_write_inline_data(inode, page);
1422 if (!err)
1423 goto out;
1424 }
1425 f2fs_lock_op(sbi);
1426 if (err == -EAGAIN)
1427 err = do_write_data_page(&fio);
1428 if (F2FS_I(inode)->last_disk_size < psize)
1429 F2FS_I(inode)->last_disk_size = psize;
1430 f2fs_unlock_op(sbi);
1431 done:
1432 if (err && err != -ENOENT)
1433 goto redirty_out;
1434
1435 out:
1436 inode_dec_dirty_pages(inode);
1437 if (err)
1438 ClearPageUptodate(page);
1439
1440 if (wbc->for_reclaim) {
1441 f2fs_submit_merged_bio_cond(sbi, inode, 0, page->index,
1442 DATA, WRITE);
1443 remove_dirty_inode(inode);
1444 submitted = NULL;
1445 }
1446
1447 unlock_page(page);
1448 f2fs_balance_fs(sbi, need_balance_fs);
1449
1450 if (unlikely(f2fs_cp_error(sbi))) {
1451 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1452 submitted = NULL;
1453 }
1454
1455 if (submitted)
1456 *submitted = fio.submitted;
1457
1458 return 0;
1459
1460 redirty_out:
1461 redirty_page_for_writepage(wbc, page);
1462 if (!err)
1463 return AOP_WRITEPAGE_ACTIVATE;
1464 unlock_page(page);
1465 return err;
1466 }
1467
1468 static int f2fs_write_data_page(struct page *page,
1469 struct writeback_control *wbc)
1470 {
1471 return __write_data_page(page, NULL, wbc);
1472 }
1473
1474 /*
1475 * This function was copied from write_cche_pages from mm/page-writeback.c.
1476 * The major change is making write step of cold data page separately from
1477 * warm/hot data page.
1478 */
1479 static int f2fs_write_cache_pages(struct address_space *mapping,
1480 struct writeback_control *wbc)
1481 {
1482 int ret = 0;
1483 int done = 0;
1484 struct pagevec pvec;
1485 int nr_pages;
1486 pgoff_t uninitialized_var(writeback_index);
1487 pgoff_t index;
1488 pgoff_t end; /* Inclusive */
1489 pgoff_t done_index;
1490 pgoff_t last_idx = ULONG_MAX;
1491 int cycled;
1492 int range_whole = 0;
1493 int tag;
1494
1495 pagevec_init(&pvec, 0);
1496
1497 if (wbc->range_cyclic) {
1498 writeback_index = mapping->writeback_index; /* prev offset */
1499 index = writeback_index;
1500 if (index == 0)
1501 cycled = 1;
1502 else
1503 cycled = 0;
1504 end = -1;
1505 } else {
1506 index = wbc->range_start >> PAGE_SHIFT;
1507 end = wbc->range_end >> PAGE_SHIFT;
1508 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1509 range_whole = 1;
1510 cycled = 1; /* ignore range_cyclic tests */
1511 }
1512 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1513 tag = PAGECACHE_TAG_TOWRITE;
1514 else
1515 tag = PAGECACHE_TAG_DIRTY;
1516 retry:
1517 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1518 tag_pages_for_writeback(mapping, index, end);
1519 done_index = index;
1520 while (!done && (index <= end)) {
1521 int i;
1522
1523 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1524 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1525 if (nr_pages == 0)
1526 break;
1527
1528 for (i = 0; i < nr_pages; i++) {
1529 struct page *page = pvec.pages[i];
1530 bool submitted = false;
1531
1532 if (page->index > end) {
1533 done = 1;
1534 break;
1535 }
1536
1537 done_index = page->index;
1538
1539 lock_page(page);
1540
1541 if (unlikely(page->mapping != mapping)) {
1542 continue_unlock:
1543 unlock_page(page);
1544 continue;
1545 }
1546
1547 if (!PageDirty(page)) {
1548 /* someone wrote it for us */
1549 goto continue_unlock;
1550 }
1551
1552 if (PageWriteback(page)) {
1553 if (wbc->sync_mode != WB_SYNC_NONE)
1554 f2fs_wait_on_page_writeback(page,
1555 DATA, true);
1556 else
1557 goto continue_unlock;
1558 }
1559
1560 BUG_ON(PageWriteback(page));
1561 if (!clear_page_dirty_for_io(page))
1562 goto continue_unlock;
1563
1564 ret = __write_data_page(page, &submitted, wbc);
1565 if (unlikely(ret)) {
1566 /*
1567 * keep nr_to_write, since vfs uses this to
1568 * get # of written pages.
1569 */
1570 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1571 unlock_page(page);
1572 ret = 0;
1573 continue;
1574 }
1575 done_index = page->index + 1;
1576 done = 1;
1577 break;
1578 } else if (submitted) {
1579 last_idx = page->index;
1580 }
1581
1582 if (--wbc->nr_to_write <= 0 &&
1583 wbc->sync_mode == WB_SYNC_NONE) {
1584 done = 1;
1585 break;
1586 }
1587 }
1588 pagevec_release(&pvec);
1589 cond_resched();
1590 }
1591
1592 if (!cycled && !done) {
1593 cycled = 1;
1594 index = 0;
1595 end = writeback_index - 1;
1596 goto retry;
1597 }
1598 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1599 mapping->writeback_index = done_index;
1600
1601 if (last_idx != ULONG_MAX)
1602 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host,
1603 0, last_idx, DATA, WRITE);
1604
1605 return ret;
1606 }
1607
1608 static int f2fs_write_data_pages(struct address_space *mapping,
1609 struct writeback_control *wbc)
1610 {
1611 struct inode *inode = mapping->host;
1612 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1613 struct blk_plug plug;
1614 int ret;
1615
1616 /* deal with chardevs and other special file */
1617 if (!mapping->a_ops->writepage)
1618 return 0;
1619
1620 /* skip writing if there is no dirty page in this inode */
1621 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1622 return 0;
1623
1624 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1625 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1626 available_free_memory(sbi, DIRTY_DENTS))
1627 goto skip_write;
1628
1629 /* skip writing during file defragment */
1630 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1631 goto skip_write;
1632
1633 /* during POR, we don't need to trigger writepage at all. */
1634 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1635 goto skip_write;
1636
1637 trace_f2fs_writepages(mapping->host, wbc, DATA);
1638
1639 blk_start_plug(&plug);
1640 ret = f2fs_write_cache_pages(mapping, wbc);
1641 blk_finish_plug(&plug);
1642 /*
1643 * if some pages were truncated, we cannot guarantee its mapping->host
1644 * to detect pending bios.
1645 */
1646
1647 remove_dirty_inode(inode);
1648 return ret;
1649
1650 skip_write:
1651 wbc->pages_skipped += get_dirty_pages(inode);
1652 trace_f2fs_writepages(mapping->host, wbc, DATA);
1653 return 0;
1654 }
1655
1656 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1657 {
1658 struct inode *inode = mapping->host;
1659 loff_t i_size = i_size_read(inode);
1660
1661 if (to > i_size) {
1662 truncate_pagecache(inode, i_size);
1663 truncate_blocks(inode, i_size, true);
1664 }
1665 }
1666
1667 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1668 struct page *page, loff_t pos, unsigned len,
1669 block_t *blk_addr, bool *node_changed)
1670 {
1671 struct inode *inode = page->mapping->host;
1672 pgoff_t index = page->index;
1673 struct dnode_of_data dn;
1674 struct page *ipage;
1675 bool locked = false;
1676 struct extent_info ei = {0,0,0};
1677 int err = 0;
1678
1679 /*
1680 * we already allocated all the blocks, so we don't need to get
1681 * the block addresses when there is no need to fill the page.
1682 */
1683 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
1684 !is_inode_flag_set(inode, FI_NO_PREALLOC))
1685 return 0;
1686
1687 if (f2fs_has_inline_data(inode) ||
1688 (pos & PAGE_MASK) >= i_size_read(inode)) {
1689 f2fs_lock_op(sbi);
1690 locked = true;
1691 }
1692 restart:
1693 /* check inline_data */
1694 ipage = get_node_page(sbi, inode->i_ino);
1695 if (IS_ERR(ipage)) {
1696 err = PTR_ERR(ipage);
1697 goto unlock_out;
1698 }
1699
1700 set_new_dnode(&dn, inode, ipage, ipage, 0);
1701
1702 if (f2fs_has_inline_data(inode)) {
1703 if (pos + len <= MAX_INLINE_DATA) {
1704 read_inline_data(page, ipage);
1705 set_inode_flag(inode, FI_DATA_EXIST);
1706 if (inode->i_nlink)
1707 set_inline_node(ipage);
1708 } else {
1709 err = f2fs_convert_inline_page(&dn, page);
1710 if (err)
1711 goto out;
1712 if (dn.data_blkaddr == NULL_ADDR)
1713 err = f2fs_get_block(&dn, index);
1714 }
1715 } else if (locked) {
1716 err = f2fs_get_block(&dn, index);
1717 } else {
1718 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1719 dn.data_blkaddr = ei.blk + index - ei.fofs;
1720 } else {
1721 /* hole case */
1722 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1723 if (err || dn.data_blkaddr == NULL_ADDR) {
1724 f2fs_put_dnode(&dn);
1725 f2fs_lock_op(sbi);
1726 locked = true;
1727 goto restart;
1728 }
1729 }
1730 }
1731
1732 /* convert_inline_page can make node_changed */
1733 *blk_addr = dn.data_blkaddr;
1734 *node_changed = dn.node_changed;
1735 out:
1736 f2fs_put_dnode(&dn);
1737 unlock_out:
1738 if (locked)
1739 f2fs_unlock_op(sbi);
1740 return err;
1741 }
1742
1743 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1744 loff_t pos, unsigned len, unsigned flags,
1745 struct page **pagep, void **fsdata)
1746 {
1747 struct inode *inode = mapping->host;
1748 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1749 struct page *page = NULL;
1750 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1751 bool need_balance = false;
1752 block_t blkaddr = NULL_ADDR;
1753 int err = 0;
1754
1755 trace_f2fs_write_begin(inode, pos, len, flags);
1756
1757 /*
1758 * We should check this at this moment to avoid deadlock on inode page
1759 * and #0 page. The locking rule for inline_data conversion should be:
1760 * lock_page(page #0) -> lock_page(inode_page)
1761 */
1762 if (index != 0) {
1763 err = f2fs_convert_inline_inode(inode);
1764 if (err)
1765 goto fail;
1766 }
1767 repeat:
1768 /*
1769 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
1770 * wait_for_stable_page. Will wait that below with our IO control.
1771 */
1772 page = pagecache_get_page(mapping, index,
1773 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
1774 if (!page) {
1775 err = -ENOMEM;
1776 goto fail;
1777 }
1778
1779 *pagep = page;
1780
1781 err = prepare_write_begin(sbi, page, pos, len,
1782 &blkaddr, &need_balance);
1783 if (err)
1784 goto fail;
1785
1786 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1787 unlock_page(page);
1788 f2fs_balance_fs(sbi, true);
1789 lock_page(page);
1790 if (page->mapping != mapping) {
1791 /* The page got truncated from under us */
1792 f2fs_put_page(page, 1);
1793 goto repeat;
1794 }
1795 }
1796
1797 f2fs_wait_on_page_writeback(page, DATA, false);
1798
1799 /* wait for GCed encrypted page writeback */
1800 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1801 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1802
1803 if (len == PAGE_SIZE || PageUptodate(page))
1804 return 0;
1805
1806 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
1807 zero_user_segment(page, len, PAGE_SIZE);
1808 return 0;
1809 }
1810
1811 if (blkaddr == NEW_ADDR) {
1812 zero_user_segment(page, 0, PAGE_SIZE);
1813 SetPageUptodate(page);
1814 } else {
1815 struct bio *bio;
1816
1817 bio = f2fs_grab_bio(inode, blkaddr, 1);
1818 if (IS_ERR(bio)) {
1819 err = PTR_ERR(bio);
1820 goto fail;
1821 }
1822 bio->bi_opf = REQ_OP_READ;
1823 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1824 bio_put(bio);
1825 err = -EFAULT;
1826 goto fail;
1827 }
1828
1829 __submit_bio(sbi, bio, DATA);
1830
1831 lock_page(page);
1832 if (unlikely(page->mapping != mapping)) {
1833 f2fs_put_page(page, 1);
1834 goto repeat;
1835 }
1836 if (unlikely(!PageUptodate(page))) {
1837 err = -EIO;
1838 goto fail;
1839 }
1840 }
1841 return 0;
1842
1843 fail:
1844 f2fs_put_page(page, 1);
1845 f2fs_write_failed(mapping, pos + len);
1846 return err;
1847 }
1848
1849 static int f2fs_write_end(struct file *file,
1850 struct address_space *mapping,
1851 loff_t pos, unsigned len, unsigned copied,
1852 struct page *page, void *fsdata)
1853 {
1854 struct inode *inode = page->mapping->host;
1855
1856 trace_f2fs_write_end(inode, pos, len, copied);
1857
1858 /*
1859 * This should be come from len == PAGE_SIZE, and we expect copied
1860 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
1861 * let generic_perform_write() try to copy data again through copied=0.
1862 */
1863 if (!PageUptodate(page)) {
1864 if (unlikely(copied != len))
1865 copied = 0;
1866 else
1867 SetPageUptodate(page);
1868 }
1869 if (!copied)
1870 goto unlock_out;
1871
1872 set_page_dirty(page);
1873
1874 if (pos + copied > i_size_read(inode))
1875 f2fs_i_size_write(inode, pos + copied);
1876 unlock_out:
1877 f2fs_put_page(page, 1);
1878 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1879 return copied;
1880 }
1881
1882 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1883 loff_t offset)
1884 {
1885 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1886
1887 if (offset & blocksize_mask)
1888 return -EINVAL;
1889
1890 if (iov_iter_alignment(iter) & blocksize_mask)
1891 return -EINVAL;
1892
1893 return 0;
1894 }
1895
1896 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1897 {
1898 struct address_space *mapping = iocb->ki_filp->f_mapping;
1899 struct inode *inode = mapping->host;
1900 size_t count = iov_iter_count(iter);
1901 loff_t offset = iocb->ki_pos;
1902 int rw = iov_iter_rw(iter);
1903 int err;
1904
1905 err = check_direct_IO(inode, iter, offset);
1906 if (err)
1907 return err;
1908
1909 if (__force_buffered_io(inode, rw))
1910 return 0;
1911
1912 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1913
1914 down_read(&F2FS_I(inode)->dio_rwsem[rw]);
1915 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1916 up_read(&F2FS_I(inode)->dio_rwsem[rw]);
1917
1918 if (rw == WRITE) {
1919 if (err > 0)
1920 set_inode_flag(inode, FI_UPDATE_WRITE);
1921 else if (err < 0)
1922 f2fs_write_failed(mapping, offset + count);
1923 }
1924
1925 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1926
1927 return err;
1928 }
1929
1930 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1931 unsigned int length)
1932 {
1933 struct inode *inode = page->mapping->host;
1934 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1935
1936 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1937 (offset % PAGE_SIZE || length != PAGE_SIZE))
1938 return;
1939
1940 if (PageDirty(page)) {
1941 if (inode->i_ino == F2FS_META_INO(sbi)) {
1942 dec_page_count(sbi, F2FS_DIRTY_META);
1943 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
1944 dec_page_count(sbi, F2FS_DIRTY_NODES);
1945 } else {
1946 inode_dec_dirty_pages(inode);
1947 remove_dirty_inode(inode);
1948 }
1949 }
1950
1951 /* This is atomic written page, keep Private */
1952 if (IS_ATOMIC_WRITTEN_PAGE(page))
1953 return;
1954
1955 set_page_private(page, 0);
1956 ClearPagePrivate(page);
1957 }
1958
1959 int f2fs_release_page(struct page *page, gfp_t wait)
1960 {
1961 /* If this is dirty page, keep PagePrivate */
1962 if (PageDirty(page))
1963 return 0;
1964
1965 /* This is atomic written page, keep Private */
1966 if (IS_ATOMIC_WRITTEN_PAGE(page))
1967 return 0;
1968
1969 set_page_private(page, 0);
1970 ClearPagePrivate(page);
1971 return 1;
1972 }
1973
1974 /*
1975 * This was copied from __set_page_dirty_buffers which gives higher performance
1976 * in very high speed storages. (e.g., pmem)
1977 */
1978 void f2fs_set_page_dirty_nobuffers(struct page *page)
1979 {
1980 struct address_space *mapping = page->mapping;
1981 unsigned long flags;
1982
1983 if (unlikely(!mapping))
1984 return;
1985
1986 spin_lock(&mapping->private_lock);
1987 lock_page_memcg(page);
1988 SetPageDirty(page);
1989 spin_unlock(&mapping->private_lock);
1990
1991 spin_lock_irqsave(&mapping->tree_lock, flags);
1992 WARN_ON_ONCE(!PageUptodate(page));
1993 account_page_dirtied(page, mapping);
1994 radix_tree_tag_set(&mapping->page_tree,
1995 page_index(page), PAGECACHE_TAG_DIRTY);
1996 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1997 unlock_page_memcg(page);
1998
1999 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2000 return;
2001 }
2002
2003 static int f2fs_set_data_page_dirty(struct page *page)
2004 {
2005 struct address_space *mapping = page->mapping;
2006 struct inode *inode = mapping->host;
2007
2008 trace_f2fs_set_page_dirty(page, DATA);
2009
2010 if (!PageUptodate(page))
2011 SetPageUptodate(page);
2012
2013 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2014 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2015 register_inmem_page(inode, page);
2016 return 1;
2017 }
2018 /*
2019 * Previously, this page has been registered, we just
2020 * return here.
2021 */
2022 return 0;
2023 }
2024
2025 if (!PageDirty(page)) {
2026 f2fs_set_page_dirty_nobuffers(page);
2027 update_dirty_page(inode, page);
2028 return 1;
2029 }
2030 return 0;
2031 }
2032
2033 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2034 {
2035 struct inode *inode = mapping->host;
2036
2037 if (f2fs_has_inline_data(inode))
2038 return 0;
2039
2040 /* make sure allocating whole blocks */
2041 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2042 filemap_write_and_wait(mapping);
2043
2044 return generic_block_bmap(mapping, block, get_data_block_bmap);
2045 }
2046
2047 #ifdef CONFIG_MIGRATION
2048 #include <linux/migrate.h>
2049
2050 int f2fs_migrate_page(struct address_space *mapping,
2051 struct page *newpage, struct page *page, enum migrate_mode mode)
2052 {
2053 int rc, extra_count;
2054 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2055 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2056
2057 BUG_ON(PageWriteback(page));
2058
2059 /* migrating an atomic written page is safe with the inmem_lock hold */
2060 if (atomic_written && !mutex_trylock(&fi->inmem_lock))
2061 return -EAGAIN;
2062
2063 /*
2064 * A reference is expected if PagePrivate set when move mapping,
2065 * however F2FS breaks this for maintaining dirty page counts when
2066 * truncating pages. So here adjusting the 'extra_count' make it work.
2067 */
2068 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2069 rc = migrate_page_move_mapping(mapping, newpage,
2070 page, NULL, mode, extra_count);
2071 if (rc != MIGRATEPAGE_SUCCESS) {
2072 if (atomic_written)
2073 mutex_unlock(&fi->inmem_lock);
2074 return rc;
2075 }
2076
2077 if (atomic_written) {
2078 struct inmem_pages *cur;
2079 list_for_each_entry(cur, &fi->inmem_pages, list)
2080 if (cur->page == page) {
2081 cur->page = newpage;
2082 break;
2083 }
2084 mutex_unlock(&fi->inmem_lock);
2085 put_page(page);
2086 get_page(newpage);
2087 }
2088
2089 if (PagePrivate(page))
2090 SetPagePrivate(newpage);
2091 set_page_private(newpage, page_private(page));
2092
2093 migrate_page_copy(newpage, page);
2094
2095 return MIGRATEPAGE_SUCCESS;
2096 }
2097 #endif
2098
2099 const struct address_space_operations f2fs_dblock_aops = {
2100 .readpage = f2fs_read_data_page,
2101 .readpages = f2fs_read_data_pages,
2102 .writepage = f2fs_write_data_page,
2103 .writepages = f2fs_write_data_pages,
2104 .write_begin = f2fs_write_begin,
2105 .write_end = f2fs_write_end,
2106 .set_page_dirty = f2fs_set_data_page_dirty,
2107 .invalidatepage = f2fs_invalidate_page,
2108 .releasepage = f2fs_release_page,
2109 .direct_IO = f2fs_direct_IO,
2110 .bmap = f2fs_bmap,
2111 #ifdef CONFIG_MIGRATION
2112 .migratepage = f2fs_migrate_page,
2113 #endif
2114 };