]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/data.c
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25 #include <linux/sched/signal.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
32
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35 struct address_space *mapping = page->mapping;
36 struct inode *inode;
37 struct f2fs_sb_info *sbi;
38
39 if (!mapping)
40 return false;
41
42 inode = mapping->host;
43 sbi = F2FS_I_SB(inode);
44
45 if (inode->i_ino == F2FS_META_INO(sbi) ||
46 inode->i_ino == F2FS_NODE_INO(sbi) ||
47 S_ISDIR(inode->i_mode) ||
48 is_cold_data(page))
49 return true;
50 return false;
51 }
52
53 static void f2fs_read_end_io(struct bio *bio)
54 {
55 struct bio_vec *bvec;
56 int i;
57
58 #ifdef CONFIG_F2FS_FAULT_INJECTION
59 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) {
60 f2fs_show_injection_info(FAULT_IO);
61 bio->bi_error = -EIO;
62 }
63 #endif
64
65 if (f2fs_bio_encrypted(bio)) {
66 if (bio->bi_error) {
67 fscrypt_release_ctx(bio->bi_private);
68 } else {
69 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
70 return;
71 }
72 }
73
74 bio_for_each_segment_all(bvec, bio, i) {
75 struct page *page = bvec->bv_page;
76
77 if (!bio->bi_error) {
78 if (!PageUptodate(page))
79 SetPageUptodate(page);
80 } else {
81 ClearPageUptodate(page);
82 SetPageError(page);
83 }
84 unlock_page(page);
85 }
86 bio_put(bio);
87 }
88
89 static void f2fs_write_end_io(struct bio *bio)
90 {
91 struct f2fs_sb_info *sbi = bio->bi_private;
92 struct bio_vec *bvec;
93 int i;
94
95 bio_for_each_segment_all(bvec, bio, i) {
96 struct page *page = bvec->bv_page;
97 enum count_type type = WB_DATA_TYPE(page);
98
99 if (IS_DUMMY_WRITTEN_PAGE(page)) {
100 set_page_private(page, (unsigned long)NULL);
101 ClearPagePrivate(page);
102 unlock_page(page);
103 mempool_free(page, sbi->write_io_dummy);
104
105 if (unlikely(bio->bi_error))
106 f2fs_stop_checkpoint(sbi, true);
107 continue;
108 }
109
110 fscrypt_pullback_bio_page(&page, true);
111
112 if (unlikely(bio->bi_error)) {
113 mapping_set_error(page->mapping, -EIO);
114 f2fs_stop_checkpoint(sbi, true);
115 }
116 dec_page_count(sbi, type);
117 clear_cold_data(page);
118 end_page_writeback(page);
119 }
120 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
121 wq_has_sleeper(&sbi->cp_wait))
122 wake_up(&sbi->cp_wait);
123
124 bio_put(bio);
125 }
126
127 /*
128 * Return true, if pre_bio's bdev is same as its target device.
129 */
130 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
131 block_t blk_addr, struct bio *bio)
132 {
133 struct block_device *bdev = sbi->sb->s_bdev;
134 int i;
135
136 for (i = 0; i < sbi->s_ndevs; i++) {
137 if (FDEV(i).start_blk <= blk_addr &&
138 FDEV(i).end_blk >= blk_addr) {
139 blk_addr -= FDEV(i).start_blk;
140 bdev = FDEV(i).bdev;
141 break;
142 }
143 }
144 if (bio) {
145 bio->bi_bdev = bdev;
146 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
147 }
148 return bdev;
149 }
150
151 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
152 {
153 int i;
154
155 for (i = 0; i < sbi->s_ndevs; i++)
156 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
157 return i;
158 return 0;
159 }
160
161 static bool __same_bdev(struct f2fs_sb_info *sbi,
162 block_t blk_addr, struct bio *bio)
163 {
164 return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev;
165 }
166
167 /*
168 * Low-level block read/write IO operations.
169 */
170 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
171 int npages, bool is_read)
172 {
173 struct bio *bio;
174
175 bio = f2fs_bio_alloc(npages);
176
177 f2fs_target_device(sbi, blk_addr, bio);
178 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
179 bio->bi_private = is_read ? NULL : sbi;
180
181 return bio;
182 }
183
184 static inline void __submit_bio(struct f2fs_sb_info *sbi,
185 struct bio *bio, enum page_type type)
186 {
187 if (!is_read_io(bio_op(bio))) {
188 unsigned int start;
189
190 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
191 current->plug && (type == DATA || type == NODE))
192 blk_finish_plug(current->plug);
193
194 if (type != DATA && type != NODE)
195 goto submit_io;
196
197 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
198 start %= F2FS_IO_SIZE(sbi);
199
200 if (start == 0)
201 goto submit_io;
202
203 /* fill dummy pages */
204 for (; start < F2FS_IO_SIZE(sbi); start++) {
205 struct page *page =
206 mempool_alloc(sbi->write_io_dummy,
207 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
208 f2fs_bug_on(sbi, !page);
209
210 SetPagePrivate(page);
211 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
212 lock_page(page);
213 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
214 f2fs_bug_on(sbi, 1);
215 }
216 /*
217 * In the NODE case, we lose next block address chain. So, we
218 * need to do checkpoint in f2fs_sync_file.
219 */
220 if (type == NODE)
221 set_sbi_flag(sbi, SBI_NEED_CP);
222 }
223 submit_io:
224 if (is_read_io(bio_op(bio)))
225 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
226 else
227 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
228 submit_bio(bio);
229 }
230
231 static void __submit_merged_bio(struct f2fs_bio_info *io)
232 {
233 struct f2fs_io_info *fio = &io->fio;
234
235 if (!io->bio)
236 return;
237
238 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
239
240 if (is_read_io(fio->op))
241 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
242 else
243 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
244
245 __submit_bio(io->sbi, io->bio, fio->type);
246 io->bio = NULL;
247 }
248
249 static bool __has_merged_page(struct f2fs_bio_info *io,
250 struct inode *inode, nid_t ino, pgoff_t idx)
251 {
252 struct bio_vec *bvec;
253 struct page *target;
254 int i;
255
256 if (!io->bio)
257 return false;
258
259 if (!inode && !ino)
260 return true;
261
262 bio_for_each_segment_all(bvec, io->bio, i) {
263
264 if (bvec->bv_page->mapping)
265 target = bvec->bv_page;
266 else
267 target = fscrypt_control_page(bvec->bv_page);
268
269 if (idx != target->index)
270 continue;
271
272 if (inode && inode == target->mapping->host)
273 return true;
274 if (ino && ino == ino_of_node(target))
275 return true;
276 }
277
278 return false;
279 }
280
281 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
282 nid_t ino, pgoff_t idx, enum page_type type)
283 {
284 enum page_type btype = PAGE_TYPE_OF_BIO(type);
285 struct f2fs_bio_info *io = &sbi->write_io[btype];
286 bool ret;
287
288 down_read(&io->io_rwsem);
289 ret = __has_merged_page(io, inode, ino, idx);
290 up_read(&io->io_rwsem);
291 return ret;
292 }
293
294 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
295 struct inode *inode, nid_t ino, pgoff_t idx,
296 enum page_type type, int rw)
297 {
298 enum page_type btype = PAGE_TYPE_OF_BIO(type);
299 struct f2fs_bio_info *io;
300
301 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
302
303 down_write(&io->io_rwsem);
304
305 if (!__has_merged_page(io, inode, ino, idx))
306 goto out;
307
308 /* change META to META_FLUSH in the checkpoint procedure */
309 if (type >= META_FLUSH) {
310 io->fio.type = META_FLUSH;
311 io->fio.op = REQ_OP_WRITE;
312 io->fio.op_flags = REQ_META | REQ_PRIO;
313 if (!test_opt(sbi, NOBARRIER))
314 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
315 }
316 __submit_merged_bio(io);
317 out:
318 up_write(&io->io_rwsem);
319 }
320
321 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
322 int rw)
323 {
324 __f2fs_submit_merged_bio(sbi, NULL, 0, 0, type, rw);
325 }
326
327 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
328 struct inode *inode, nid_t ino, pgoff_t idx,
329 enum page_type type, int rw)
330 {
331 if (has_merged_page(sbi, inode, ino, idx, type))
332 __f2fs_submit_merged_bio(sbi, inode, ino, idx, type, rw);
333 }
334
335 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
336 {
337 f2fs_submit_merged_bio(sbi, DATA, WRITE);
338 f2fs_submit_merged_bio(sbi, NODE, WRITE);
339 f2fs_submit_merged_bio(sbi, META, WRITE);
340 }
341
342 /*
343 * Fill the locked page with data located in the block address.
344 * Return unlocked page.
345 */
346 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
347 {
348 struct bio *bio;
349 struct page *page = fio->encrypted_page ?
350 fio->encrypted_page : fio->page;
351
352 trace_f2fs_submit_page_bio(page, fio);
353 f2fs_trace_ios(fio, 0);
354
355 /* Allocate a new bio */
356 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
357
358 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
359 bio_put(bio);
360 return -EFAULT;
361 }
362 bio_set_op_attrs(bio, fio->op, fio->op_flags);
363
364 __submit_bio(fio->sbi, bio, fio->type);
365 return 0;
366 }
367
368 int f2fs_submit_page_mbio(struct f2fs_io_info *fio)
369 {
370 struct f2fs_sb_info *sbi = fio->sbi;
371 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
372 struct f2fs_bio_info *io;
373 bool is_read = is_read_io(fio->op);
374 struct page *bio_page;
375 int err = 0;
376
377 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
378
379 if (fio->old_blkaddr != NEW_ADDR)
380 verify_block_addr(sbi, fio->old_blkaddr);
381 verify_block_addr(sbi, fio->new_blkaddr);
382
383 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
384
385 /* set submitted = 1 as a return value */
386 fio->submitted = 1;
387
388 if (!is_read)
389 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
390
391 down_write(&io->io_rwsem);
392
393 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
394 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
395 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
396 __submit_merged_bio(io);
397 alloc_new:
398 if (io->bio == NULL) {
399 if ((fio->type == DATA || fio->type == NODE) &&
400 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
401 err = -EAGAIN;
402 if (!is_read)
403 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
404 goto out_fail;
405 }
406 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
407 BIO_MAX_PAGES, is_read);
408 io->fio = *fio;
409 }
410
411 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
412 PAGE_SIZE) {
413 __submit_merged_bio(io);
414 goto alloc_new;
415 }
416
417 io->last_block_in_bio = fio->new_blkaddr;
418 f2fs_trace_ios(fio, 0);
419 out_fail:
420 up_write(&io->io_rwsem);
421 trace_f2fs_submit_page_mbio(fio->page, fio);
422 return err;
423 }
424
425 static void __set_data_blkaddr(struct dnode_of_data *dn)
426 {
427 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
428 __le32 *addr_array;
429
430 /* Get physical address of data block */
431 addr_array = blkaddr_in_node(rn);
432 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
433 }
434
435 /*
436 * Lock ordering for the change of data block address:
437 * ->data_page
438 * ->node_page
439 * update block addresses in the node page
440 */
441 void set_data_blkaddr(struct dnode_of_data *dn)
442 {
443 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
444 __set_data_blkaddr(dn);
445 if (set_page_dirty(dn->node_page))
446 dn->node_changed = true;
447 }
448
449 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
450 {
451 dn->data_blkaddr = blkaddr;
452 set_data_blkaddr(dn);
453 f2fs_update_extent_cache(dn);
454 }
455
456 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
457 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
458 {
459 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
460
461 if (!count)
462 return 0;
463
464 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
465 return -EPERM;
466 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
467 return -ENOSPC;
468
469 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
470 dn->ofs_in_node, count);
471
472 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
473
474 for (; count > 0; dn->ofs_in_node++) {
475 block_t blkaddr =
476 datablock_addr(dn->node_page, dn->ofs_in_node);
477 if (blkaddr == NULL_ADDR) {
478 dn->data_blkaddr = NEW_ADDR;
479 __set_data_blkaddr(dn);
480 count--;
481 }
482 }
483
484 if (set_page_dirty(dn->node_page))
485 dn->node_changed = true;
486 return 0;
487 }
488
489 /* Should keep dn->ofs_in_node unchanged */
490 int reserve_new_block(struct dnode_of_data *dn)
491 {
492 unsigned int ofs_in_node = dn->ofs_in_node;
493 int ret;
494
495 ret = reserve_new_blocks(dn, 1);
496 dn->ofs_in_node = ofs_in_node;
497 return ret;
498 }
499
500 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
501 {
502 bool need_put = dn->inode_page ? false : true;
503 int err;
504
505 err = get_dnode_of_data(dn, index, ALLOC_NODE);
506 if (err)
507 return err;
508
509 if (dn->data_blkaddr == NULL_ADDR)
510 err = reserve_new_block(dn);
511 if (err || need_put)
512 f2fs_put_dnode(dn);
513 return err;
514 }
515
516 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
517 {
518 struct extent_info ei = {0,0,0};
519 struct inode *inode = dn->inode;
520
521 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
522 dn->data_blkaddr = ei.blk + index - ei.fofs;
523 return 0;
524 }
525
526 return f2fs_reserve_block(dn, index);
527 }
528
529 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
530 int op_flags, bool for_write)
531 {
532 struct address_space *mapping = inode->i_mapping;
533 struct dnode_of_data dn;
534 struct page *page;
535 struct extent_info ei = {0,0,0};
536 int err;
537 struct f2fs_io_info fio = {
538 .sbi = F2FS_I_SB(inode),
539 .type = DATA,
540 .op = REQ_OP_READ,
541 .op_flags = op_flags,
542 .encrypted_page = NULL,
543 };
544
545 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
546 return read_mapping_page(mapping, index, NULL);
547
548 page = f2fs_grab_cache_page(mapping, index, for_write);
549 if (!page)
550 return ERR_PTR(-ENOMEM);
551
552 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
553 dn.data_blkaddr = ei.blk + index - ei.fofs;
554 goto got_it;
555 }
556
557 set_new_dnode(&dn, inode, NULL, NULL, 0);
558 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
559 if (err)
560 goto put_err;
561 f2fs_put_dnode(&dn);
562
563 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
564 err = -ENOENT;
565 goto put_err;
566 }
567 got_it:
568 if (PageUptodate(page)) {
569 unlock_page(page);
570 return page;
571 }
572
573 /*
574 * A new dentry page is allocated but not able to be written, since its
575 * new inode page couldn't be allocated due to -ENOSPC.
576 * In such the case, its blkaddr can be remained as NEW_ADDR.
577 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
578 */
579 if (dn.data_blkaddr == NEW_ADDR) {
580 zero_user_segment(page, 0, PAGE_SIZE);
581 if (!PageUptodate(page))
582 SetPageUptodate(page);
583 unlock_page(page);
584 return page;
585 }
586
587 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
588 fio.page = page;
589 err = f2fs_submit_page_bio(&fio);
590 if (err)
591 goto put_err;
592 return page;
593
594 put_err:
595 f2fs_put_page(page, 1);
596 return ERR_PTR(err);
597 }
598
599 struct page *find_data_page(struct inode *inode, pgoff_t index)
600 {
601 struct address_space *mapping = inode->i_mapping;
602 struct page *page;
603
604 page = find_get_page(mapping, index);
605 if (page && PageUptodate(page))
606 return page;
607 f2fs_put_page(page, 0);
608
609 page = get_read_data_page(inode, index, 0, false);
610 if (IS_ERR(page))
611 return page;
612
613 if (PageUptodate(page))
614 return page;
615
616 wait_on_page_locked(page);
617 if (unlikely(!PageUptodate(page))) {
618 f2fs_put_page(page, 0);
619 return ERR_PTR(-EIO);
620 }
621 return page;
622 }
623
624 /*
625 * If it tries to access a hole, return an error.
626 * Because, the callers, functions in dir.c and GC, should be able to know
627 * whether this page exists or not.
628 */
629 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
630 bool for_write)
631 {
632 struct address_space *mapping = inode->i_mapping;
633 struct page *page;
634 repeat:
635 page = get_read_data_page(inode, index, 0, for_write);
636 if (IS_ERR(page))
637 return page;
638
639 /* wait for read completion */
640 lock_page(page);
641 if (unlikely(page->mapping != mapping)) {
642 f2fs_put_page(page, 1);
643 goto repeat;
644 }
645 if (unlikely(!PageUptodate(page))) {
646 f2fs_put_page(page, 1);
647 return ERR_PTR(-EIO);
648 }
649 return page;
650 }
651
652 /*
653 * Caller ensures that this data page is never allocated.
654 * A new zero-filled data page is allocated in the page cache.
655 *
656 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
657 * f2fs_unlock_op().
658 * Note that, ipage is set only by make_empty_dir, and if any error occur,
659 * ipage should be released by this function.
660 */
661 struct page *get_new_data_page(struct inode *inode,
662 struct page *ipage, pgoff_t index, bool new_i_size)
663 {
664 struct address_space *mapping = inode->i_mapping;
665 struct page *page;
666 struct dnode_of_data dn;
667 int err;
668
669 page = f2fs_grab_cache_page(mapping, index, true);
670 if (!page) {
671 /*
672 * before exiting, we should make sure ipage will be released
673 * if any error occur.
674 */
675 f2fs_put_page(ipage, 1);
676 return ERR_PTR(-ENOMEM);
677 }
678
679 set_new_dnode(&dn, inode, ipage, NULL, 0);
680 err = f2fs_reserve_block(&dn, index);
681 if (err) {
682 f2fs_put_page(page, 1);
683 return ERR_PTR(err);
684 }
685 if (!ipage)
686 f2fs_put_dnode(&dn);
687
688 if (PageUptodate(page))
689 goto got_it;
690
691 if (dn.data_blkaddr == NEW_ADDR) {
692 zero_user_segment(page, 0, PAGE_SIZE);
693 if (!PageUptodate(page))
694 SetPageUptodate(page);
695 } else {
696 f2fs_put_page(page, 1);
697
698 /* if ipage exists, blkaddr should be NEW_ADDR */
699 f2fs_bug_on(F2FS_I_SB(inode), ipage);
700 page = get_lock_data_page(inode, index, true);
701 if (IS_ERR(page))
702 return page;
703 }
704 got_it:
705 if (new_i_size && i_size_read(inode) <
706 ((loff_t)(index + 1) << PAGE_SHIFT))
707 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
708 return page;
709 }
710
711 static int __allocate_data_block(struct dnode_of_data *dn)
712 {
713 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
714 struct f2fs_summary sum;
715 struct node_info ni;
716 pgoff_t fofs;
717 blkcnt_t count = 1;
718
719 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
720 return -EPERM;
721
722 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
723 if (dn->data_blkaddr == NEW_ADDR)
724 goto alloc;
725
726 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
727 return -ENOSPC;
728
729 alloc:
730 get_node_info(sbi, dn->nid, &ni);
731 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
732
733 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
734 &sum, CURSEG_WARM_DATA);
735 set_data_blkaddr(dn);
736
737 /* update i_size */
738 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
739 dn->ofs_in_node;
740 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
741 f2fs_i_size_write(dn->inode,
742 ((loff_t)(fofs + 1) << PAGE_SHIFT));
743 return 0;
744 }
745
746 static inline bool __force_buffered_io(struct inode *inode, int rw)
747 {
748 return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) ||
749 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
750 F2FS_I_SB(inode)->s_ndevs);
751 }
752
753 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
754 {
755 struct inode *inode = file_inode(iocb->ki_filp);
756 struct f2fs_map_blocks map;
757 int err = 0;
758
759 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
760 return 0;
761
762 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
763 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
764 if (map.m_len > map.m_lblk)
765 map.m_len -= map.m_lblk;
766 else
767 map.m_len = 0;
768
769 map.m_next_pgofs = NULL;
770
771 if (iocb->ki_flags & IOCB_DIRECT) {
772 err = f2fs_convert_inline_inode(inode);
773 if (err)
774 return err;
775 return f2fs_map_blocks(inode, &map, 1,
776 __force_buffered_io(inode, WRITE) ?
777 F2FS_GET_BLOCK_PRE_AIO :
778 F2FS_GET_BLOCK_PRE_DIO);
779 }
780 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
781 err = f2fs_convert_inline_inode(inode);
782 if (err)
783 return err;
784 }
785 if (!f2fs_has_inline_data(inode))
786 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
787 return err;
788 }
789
790 /*
791 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
792 * f2fs_map_blocks structure.
793 * If original data blocks are allocated, then give them to blockdev.
794 * Otherwise,
795 * a. preallocate requested block addresses
796 * b. do not use extent cache for better performance
797 * c. give the block addresses to blockdev
798 */
799 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
800 int create, int flag)
801 {
802 unsigned int maxblocks = map->m_len;
803 struct dnode_of_data dn;
804 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
805 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
806 pgoff_t pgofs, end_offset, end;
807 int err = 0, ofs = 1;
808 unsigned int ofs_in_node, last_ofs_in_node;
809 blkcnt_t prealloc;
810 struct extent_info ei = {0,0,0};
811 block_t blkaddr;
812
813 if (!maxblocks)
814 return 0;
815
816 map->m_len = 0;
817 map->m_flags = 0;
818
819 /* it only supports block size == page size */
820 pgofs = (pgoff_t)map->m_lblk;
821 end = pgofs + maxblocks;
822
823 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
824 map->m_pblk = ei.blk + pgofs - ei.fofs;
825 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
826 map->m_flags = F2FS_MAP_MAPPED;
827 goto out;
828 }
829
830 next_dnode:
831 if (create)
832 f2fs_lock_op(sbi);
833
834 /* When reading holes, we need its node page */
835 set_new_dnode(&dn, inode, NULL, NULL, 0);
836 err = get_dnode_of_data(&dn, pgofs, mode);
837 if (err) {
838 if (flag == F2FS_GET_BLOCK_BMAP)
839 map->m_pblk = 0;
840 if (err == -ENOENT) {
841 err = 0;
842 if (map->m_next_pgofs)
843 *map->m_next_pgofs =
844 get_next_page_offset(&dn, pgofs);
845 }
846 goto unlock_out;
847 }
848
849 prealloc = 0;
850 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
851 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
852
853 next_block:
854 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
855
856 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
857 if (create) {
858 if (unlikely(f2fs_cp_error(sbi))) {
859 err = -EIO;
860 goto sync_out;
861 }
862 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
863 if (blkaddr == NULL_ADDR) {
864 prealloc++;
865 last_ofs_in_node = dn.ofs_in_node;
866 }
867 } else {
868 err = __allocate_data_block(&dn);
869 if (!err)
870 set_inode_flag(inode, FI_APPEND_WRITE);
871 }
872 if (err)
873 goto sync_out;
874 map->m_flags |= F2FS_MAP_NEW;
875 blkaddr = dn.data_blkaddr;
876 } else {
877 if (flag == F2FS_GET_BLOCK_BMAP) {
878 map->m_pblk = 0;
879 goto sync_out;
880 }
881 if (flag == F2FS_GET_BLOCK_FIEMAP &&
882 blkaddr == NULL_ADDR) {
883 if (map->m_next_pgofs)
884 *map->m_next_pgofs = pgofs + 1;
885 }
886 if (flag != F2FS_GET_BLOCK_FIEMAP ||
887 blkaddr != NEW_ADDR)
888 goto sync_out;
889 }
890 }
891
892 if (flag == F2FS_GET_BLOCK_PRE_AIO)
893 goto skip;
894
895 if (map->m_len == 0) {
896 /* preallocated unwritten block should be mapped for fiemap. */
897 if (blkaddr == NEW_ADDR)
898 map->m_flags |= F2FS_MAP_UNWRITTEN;
899 map->m_flags |= F2FS_MAP_MAPPED;
900
901 map->m_pblk = blkaddr;
902 map->m_len = 1;
903 } else if ((map->m_pblk != NEW_ADDR &&
904 blkaddr == (map->m_pblk + ofs)) ||
905 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
906 flag == F2FS_GET_BLOCK_PRE_DIO) {
907 ofs++;
908 map->m_len++;
909 } else {
910 goto sync_out;
911 }
912
913 skip:
914 dn.ofs_in_node++;
915 pgofs++;
916
917 /* preallocate blocks in batch for one dnode page */
918 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
919 (pgofs == end || dn.ofs_in_node == end_offset)) {
920
921 dn.ofs_in_node = ofs_in_node;
922 err = reserve_new_blocks(&dn, prealloc);
923 if (err)
924 goto sync_out;
925
926 map->m_len += dn.ofs_in_node - ofs_in_node;
927 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
928 err = -ENOSPC;
929 goto sync_out;
930 }
931 dn.ofs_in_node = end_offset;
932 }
933
934 if (pgofs >= end)
935 goto sync_out;
936 else if (dn.ofs_in_node < end_offset)
937 goto next_block;
938
939 f2fs_put_dnode(&dn);
940
941 if (create) {
942 f2fs_unlock_op(sbi);
943 f2fs_balance_fs(sbi, dn.node_changed);
944 }
945 goto next_dnode;
946
947 sync_out:
948 f2fs_put_dnode(&dn);
949 unlock_out:
950 if (create) {
951 f2fs_unlock_op(sbi);
952 f2fs_balance_fs(sbi, dn.node_changed);
953 }
954 out:
955 trace_f2fs_map_blocks(inode, map, err);
956 return err;
957 }
958
959 static int __get_data_block(struct inode *inode, sector_t iblock,
960 struct buffer_head *bh, int create, int flag,
961 pgoff_t *next_pgofs)
962 {
963 struct f2fs_map_blocks map;
964 int err;
965
966 map.m_lblk = iblock;
967 map.m_len = bh->b_size >> inode->i_blkbits;
968 map.m_next_pgofs = next_pgofs;
969
970 err = f2fs_map_blocks(inode, &map, create, flag);
971 if (!err) {
972 map_bh(bh, inode->i_sb, map.m_pblk);
973 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
974 bh->b_size = (u64)map.m_len << inode->i_blkbits;
975 }
976 return err;
977 }
978
979 static int get_data_block(struct inode *inode, sector_t iblock,
980 struct buffer_head *bh_result, int create, int flag,
981 pgoff_t *next_pgofs)
982 {
983 return __get_data_block(inode, iblock, bh_result, create,
984 flag, next_pgofs);
985 }
986
987 static int get_data_block_dio(struct inode *inode, sector_t iblock,
988 struct buffer_head *bh_result, int create)
989 {
990 return __get_data_block(inode, iblock, bh_result, create,
991 F2FS_GET_BLOCK_DIO, NULL);
992 }
993
994 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
995 struct buffer_head *bh_result, int create)
996 {
997 /* Block number less than F2FS MAX BLOCKS */
998 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
999 return -EFBIG;
1000
1001 return __get_data_block(inode, iblock, bh_result, create,
1002 F2FS_GET_BLOCK_BMAP, NULL);
1003 }
1004
1005 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1006 {
1007 return (offset >> inode->i_blkbits);
1008 }
1009
1010 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1011 {
1012 return (blk << inode->i_blkbits);
1013 }
1014
1015 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1016 u64 start, u64 len)
1017 {
1018 struct buffer_head map_bh;
1019 sector_t start_blk, last_blk;
1020 pgoff_t next_pgofs;
1021 u64 logical = 0, phys = 0, size = 0;
1022 u32 flags = 0;
1023 int ret = 0;
1024
1025 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1026 if (ret)
1027 return ret;
1028
1029 if (f2fs_has_inline_data(inode)) {
1030 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1031 if (ret != -EAGAIN)
1032 return ret;
1033 }
1034
1035 inode_lock(inode);
1036
1037 if (logical_to_blk(inode, len) == 0)
1038 len = blk_to_logical(inode, 1);
1039
1040 start_blk = logical_to_blk(inode, start);
1041 last_blk = logical_to_blk(inode, start + len - 1);
1042
1043 next:
1044 memset(&map_bh, 0, sizeof(struct buffer_head));
1045 map_bh.b_size = len;
1046
1047 ret = get_data_block(inode, start_blk, &map_bh, 0,
1048 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1049 if (ret)
1050 goto out;
1051
1052 /* HOLE */
1053 if (!buffer_mapped(&map_bh)) {
1054 start_blk = next_pgofs;
1055
1056 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1057 F2FS_I_SB(inode)->max_file_blocks))
1058 goto prep_next;
1059
1060 flags |= FIEMAP_EXTENT_LAST;
1061 }
1062
1063 if (size) {
1064 if (f2fs_encrypted_inode(inode))
1065 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1066
1067 ret = fiemap_fill_next_extent(fieinfo, logical,
1068 phys, size, flags);
1069 }
1070
1071 if (start_blk > last_blk || ret)
1072 goto out;
1073
1074 logical = blk_to_logical(inode, start_blk);
1075 phys = blk_to_logical(inode, map_bh.b_blocknr);
1076 size = map_bh.b_size;
1077 flags = 0;
1078 if (buffer_unwritten(&map_bh))
1079 flags = FIEMAP_EXTENT_UNWRITTEN;
1080
1081 start_blk += logical_to_blk(inode, size);
1082
1083 prep_next:
1084 cond_resched();
1085 if (fatal_signal_pending(current))
1086 ret = -EINTR;
1087 else
1088 goto next;
1089 out:
1090 if (ret == 1)
1091 ret = 0;
1092
1093 inode_unlock(inode);
1094 return ret;
1095 }
1096
1097 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
1098 unsigned nr_pages)
1099 {
1100 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1101 struct fscrypt_ctx *ctx = NULL;
1102 struct bio *bio;
1103
1104 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1105 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1106 if (IS_ERR(ctx))
1107 return ERR_CAST(ctx);
1108
1109 /* wait the page to be moved by cleaning */
1110 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1111 }
1112
1113 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1114 if (!bio) {
1115 if (ctx)
1116 fscrypt_release_ctx(ctx);
1117 return ERR_PTR(-ENOMEM);
1118 }
1119 f2fs_target_device(sbi, blkaddr, bio);
1120 bio->bi_end_io = f2fs_read_end_io;
1121 bio->bi_private = ctx;
1122
1123 return bio;
1124 }
1125
1126 /*
1127 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1128 * Major change was from block_size == page_size in f2fs by default.
1129 */
1130 static int f2fs_mpage_readpages(struct address_space *mapping,
1131 struct list_head *pages, struct page *page,
1132 unsigned nr_pages)
1133 {
1134 struct bio *bio = NULL;
1135 unsigned page_idx;
1136 sector_t last_block_in_bio = 0;
1137 struct inode *inode = mapping->host;
1138 const unsigned blkbits = inode->i_blkbits;
1139 const unsigned blocksize = 1 << blkbits;
1140 sector_t block_in_file;
1141 sector_t last_block;
1142 sector_t last_block_in_file;
1143 sector_t block_nr;
1144 struct f2fs_map_blocks map;
1145
1146 map.m_pblk = 0;
1147 map.m_lblk = 0;
1148 map.m_len = 0;
1149 map.m_flags = 0;
1150 map.m_next_pgofs = NULL;
1151
1152 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1153
1154 prefetchw(&page->flags);
1155 if (pages) {
1156 page = list_last_entry(pages, struct page, lru);
1157 list_del(&page->lru);
1158 if (add_to_page_cache_lru(page, mapping,
1159 page->index,
1160 readahead_gfp_mask(mapping)))
1161 goto next_page;
1162 }
1163
1164 block_in_file = (sector_t)page->index;
1165 last_block = block_in_file + nr_pages;
1166 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1167 blkbits;
1168 if (last_block > last_block_in_file)
1169 last_block = last_block_in_file;
1170
1171 /*
1172 * Map blocks using the previous result first.
1173 */
1174 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1175 block_in_file > map.m_lblk &&
1176 block_in_file < (map.m_lblk + map.m_len))
1177 goto got_it;
1178
1179 /*
1180 * Then do more f2fs_map_blocks() calls until we are
1181 * done with this page.
1182 */
1183 map.m_flags = 0;
1184
1185 if (block_in_file < last_block) {
1186 map.m_lblk = block_in_file;
1187 map.m_len = last_block - block_in_file;
1188
1189 if (f2fs_map_blocks(inode, &map, 0,
1190 F2FS_GET_BLOCK_READ))
1191 goto set_error_page;
1192 }
1193 got_it:
1194 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1195 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1196 SetPageMappedToDisk(page);
1197
1198 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1199 SetPageUptodate(page);
1200 goto confused;
1201 }
1202 } else {
1203 zero_user_segment(page, 0, PAGE_SIZE);
1204 if (!PageUptodate(page))
1205 SetPageUptodate(page);
1206 unlock_page(page);
1207 goto next_page;
1208 }
1209
1210 /*
1211 * This page will go to BIO. Do we need to send this
1212 * BIO off first?
1213 */
1214 if (bio && (last_block_in_bio != block_nr - 1 ||
1215 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1216 submit_and_realloc:
1217 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1218 bio = NULL;
1219 }
1220 if (bio == NULL) {
1221 bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1222 if (IS_ERR(bio)) {
1223 bio = NULL;
1224 goto set_error_page;
1225 }
1226 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1227 }
1228
1229 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1230 goto submit_and_realloc;
1231
1232 last_block_in_bio = block_nr;
1233 goto next_page;
1234 set_error_page:
1235 SetPageError(page);
1236 zero_user_segment(page, 0, PAGE_SIZE);
1237 unlock_page(page);
1238 goto next_page;
1239 confused:
1240 if (bio) {
1241 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1242 bio = NULL;
1243 }
1244 unlock_page(page);
1245 next_page:
1246 if (pages)
1247 put_page(page);
1248 }
1249 BUG_ON(pages && !list_empty(pages));
1250 if (bio)
1251 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1252 return 0;
1253 }
1254
1255 static int f2fs_read_data_page(struct file *file, struct page *page)
1256 {
1257 struct inode *inode = page->mapping->host;
1258 int ret = -EAGAIN;
1259
1260 trace_f2fs_readpage(page, DATA);
1261
1262 /* If the file has inline data, try to read it directly */
1263 if (f2fs_has_inline_data(inode))
1264 ret = f2fs_read_inline_data(inode, page);
1265 if (ret == -EAGAIN)
1266 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1267 return ret;
1268 }
1269
1270 static int f2fs_read_data_pages(struct file *file,
1271 struct address_space *mapping,
1272 struct list_head *pages, unsigned nr_pages)
1273 {
1274 struct inode *inode = file->f_mapping->host;
1275 struct page *page = list_last_entry(pages, struct page, lru);
1276
1277 trace_f2fs_readpages(inode, page, nr_pages);
1278
1279 /* If the file has inline data, skip readpages */
1280 if (f2fs_has_inline_data(inode))
1281 return 0;
1282
1283 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1284 }
1285
1286 int do_write_data_page(struct f2fs_io_info *fio)
1287 {
1288 struct page *page = fio->page;
1289 struct inode *inode = page->mapping->host;
1290 struct dnode_of_data dn;
1291 int err = 0;
1292
1293 set_new_dnode(&dn, inode, NULL, NULL, 0);
1294 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1295 if (err)
1296 return err;
1297
1298 fio->old_blkaddr = dn.data_blkaddr;
1299
1300 /* This page is already truncated */
1301 if (fio->old_blkaddr == NULL_ADDR) {
1302 ClearPageUptodate(page);
1303 goto out_writepage;
1304 }
1305
1306 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1307 gfp_t gfp_flags = GFP_NOFS;
1308
1309 /* wait for GCed encrypted page writeback */
1310 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1311 fio->old_blkaddr);
1312 retry_encrypt:
1313 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1314 PAGE_SIZE, 0,
1315 fio->page->index,
1316 gfp_flags);
1317 if (IS_ERR(fio->encrypted_page)) {
1318 err = PTR_ERR(fio->encrypted_page);
1319 if (err == -ENOMEM) {
1320 /* flush pending ios and wait for a while */
1321 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1322 congestion_wait(BLK_RW_ASYNC, HZ/50);
1323 gfp_flags |= __GFP_NOFAIL;
1324 err = 0;
1325 goto retry_encrypt;
1326 }
1327 goto out_writepage;
1328 }
1329 }
1330
1331 set_page_writeback(page);
1332
1333 /*
1334 * If current allocation needs SSR,
1335 * it had better in-place writes for updated data.
1336 */
1337 if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1338 !is_cold_data(page) &&
1339 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1340 need_inplace_update(inode))) {
1341 rewrite_data_page(fio);
1342 set_inode_flag(inode, FI_UPDATE_WRITE);
1343 trace_f2fs_do_write_data_page(page, IPU);
1344 } else {
1345 write_data_page(&dn, fio);
1346 trace_f2fs_do_write_data_page(page, OPU);
1347 set_inode_flag(inode, FI_APPEND_WRITE);
1348 if (page->index == 0)
1349 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1350 }
1351 out_writepage:
1352 f2fs_put_dnode(&dn);
1353 return err;
1354 }
1355
1356 static int __write_data_page(struct page *page, bool *submitted,
1357 struct writeback_control *wbc)
1358 {
1359 struct inode *inode = page->mapping->host;
1360 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1361 loff_t i_size = i_size_read(inode);
1362 const pgoff_t end_index = ((unsigned long long) i_size)
1363 >> PAGE_SHIFT;
1364 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1365 unsigned offset = 0;
1366 bool need_balance_fs = false;
1367 int err = 0;
1368 struct f2fs_io_info fio = {
1369 .sbi = sbi,
1370 .type = DATA,
1371 .op = REQ_OP_WRITE,
1372 .op_flags = wbc_to_write_flags(wbc),
1373 .page = page,
1374 .encrypted_page = NULL,
1375 .submitted = false,
1376 };
1377
1378 trace_f2fs_writepage(page, DATA);
1379
1380 if (page->index < end_index)
1381 goto write;
1382
1383 /*
1384 * If the offset is out-of-range of file size,
1385 * this page does not have to be written to disk.
1386 */
1387 offset = i_size & (PAGE_SIZE - 1);
1388 if ((page->index >= end_index + 1) || !offset)
1389 goto out;
1390
1391 zero_user_segment(page, offset, PAGE_SIZE);
1392 write:
1393 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1394 goto redirty_out;
1395 if (f2fs_is_drop_cache(inode))
1396 goto out;
1397 /* we should not write 0'th page having journal header */
1398 if (f2fs_is_volatile_file(inode) && (!page->index ||
1399 (!wbc->for_reclaim &&
1400 available_free_memory(sbi, BASE_CHECK))))
1401 goto redirty_out;
1402
1403 /* we should bypass data pages to proceed the kworkder jobs */
1404 if (unlikely(f2fs_cp_error(sbi))) {
1405 mapping_set_error(page->mapping, -EIO);
1406 goto out;
1407 }
1408
1409 /* Dentry blocks are controlled by checkpoint */
1410 if (S_ISDIR(inode->i_mode)) {
1411 err = do_write_data_page(&fio);
1412 goto done;
1413 }
1414
1415 if (!wbc->for_reclaim)
1416 need_balance_fs = true;
1417 else if (has_not_enough_free_secs(sbi, 0, 0))
1418 goto redirty_out;
1419
1420 err = -EAGAIN;
1421 if (f2fs_has_inline_data(inode)) {
1422 err = f2fs_write_inline_data(inode, page);
1423 if (!err)
1424 goto out;
1425 }
1426 f2fs_lock_op(sbi);
1427 if (err == -EAGAIN)
1428 err = do_write_data_page(&fio);
1429 if (F2FS_I(inode)->last_disk_size < psize)
1430 F2FS_I(inode)->last_disk_size = psize;
1431 f2fs_unlock_op(sbi);
1432 done:
1433 if (err && err != -ENOENT)
1434 goto redirty_out;
1435
1436 out:
1437 inode_dec_dirty_pages(inode);
1438 if (err)
1439 ClearPageUptodate(page);
1440
1441 if (wbc->for_reclaim) {
1442 f2fs_submit_merged_bio_cond(sbi, inode, 0, page->index,
1443 DATA, WRITE);
1444 remove_dirty_inode(inode);
1445 submitted = NULL;
1446 }
1447
1448 unlock_page(page);
1449 f2fs_balance_fs(sbi, need_balance_fs);
1450
1451 if (unlikely(f2fs_cp_error(sbi))) {
1452 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1453 submitted = NULL;
1454 }
1455
1456 if (submitted)
1457 *submitted = fio.submitted;
1458
1459 return 0;
1460
1461 redirty_out:
1462 redirty_page_for_writepage(wbc, page);
1463 if (!err)
1464 return AOP_WRITEPAGE_ACTIVATE;
1465 unlock_page(page);
1466 return err;
1467 }
1468
1469 static int f2fs_write_data_page(struct page *page,
1470 struct writeback_control *wbc)
1471 {
1472 return __write_data_page(page, NULL, wbc);
1473 }
1474
1475 /*
1476 * This function was copied from write_cche_pages from mm/page-writeback.c.
1477 * The major change is making write step of cold data page separately from
1478 * warm/hot data page.
1479 */
1480 static int f2fs_write_cache_pages(struct address_space *mapping,
1481 struct writeback_control *wbc)
1482 {
1483 int ret = 0;
1484 int done = 0;
1485 struct pagevec pvec;
1486 int nr_pages;
1487 pgoff_t uninitialized_var(writeback_index);
1488 pgoff_t index;
1489 pgoff_t end; /* Inclusive */
1490 pgoff_t done_index;
1491 pgoff_t last_idx = ULONG_MAX;
1492 int cycled;
1493 int range_whole = 0;
1494 int tag;
1495
1496 pagevec_init(&pvec, 0);
1497
1498 if (wbc->range_cyclic) {
1499 writeback_index = mapping->writeback_index; /* prev offset */
1500 index = writeback_index;
1501 if (index == 0)
1502 cycled = 1;
1503 else
1504 cycled = 0;
1505 end = -1;
1506 } else {
1507 index = wbc->range_start >> PAGE_SHIFT;
1508 end = wbc->range_end >> PAGE_SHIFT;
1509 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1510 range_whole = 1;
1511 cycled = 1; /* ignore range_cyclic tests */
1512 }
1513 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1514 tag = PAGECACHE_TAG_TOWRITE;
1515 else
1516 tag = PAGECACHE_TAG_DIRTY;
1517 retry:
1518 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1519 tag_pages_for_writeback(mapping, index, end);
1520 done_index = index;
1521 while (!done && (index <= end)) {
1522 int i;
1523
1524 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1525 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1526 if (nr_pages == 0)
1527 break;
1528
1529 for (i = 0; i < nr_pages; i++) {
1530 struct page *page = pvec.pages[i];
1531 bool submitted = false;
1532
1533 if (page->index > end) {
1534 done = 1;
1535 break;
1536 }
1537
1538 done_index = page->index;
1539
1540 lock_page(page);
1541
1542 if (unlikely(page->mapping != mapping)) {
1543 continue_unlock:
1544 unlock_page(page);
1545 continue;
1546 }
1547
1548 if (!PageDirty(page)) {
1549 /* someone wrote it for us */
1550 goto continue_unlock;
1551 }
1552
1553 if (PageWriteback(page)) {
1554 if (wbc->sync_mode != WB_SYNC_NONE)
1555 f2fs_wait_on_page_writeback(page,
1556 DATA, true);
1557 else
1558 goto continue_unlock;
1559 }
1560
1561 BUG_ON(PageWriteback(page));
1562 if (!clear_page_dirty_for_io(page))
1563 goto continue_unlock;
1564
1565 ret = __write_data_page(page, &submitted, wbc);
1566 if (unlikely(ret)) {
1567 /*
1568 * keep nr_to_write, since vfs uses this to
1569 * get # of written pages.
1570 */
1571 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1572 unlock_page(page);
1573 ret = 0;
1574 continue;
1575 }
1576 done_index = page->index + 1;
1577 done = 1;
1578 break;
1579 } else if (submitted) {
1580 last_idx = page->index;
1581 }
1582
1583 if (--wbc->nr_to_write <= 0 &&
1584 wbc->sync_mode == WB_SYNC_NONE) {
1585 done = 1;
1586 break;
1587 }
1588 }
1589 pagevec_release(&pvec);
1590 cond_resched();
1591 }
1592
1593 if (!cycled && !done) {
1594 cycled = 1;
1595 index = 0;
1596 end = writeback_index - 1;
1597 goto retry;
1598 }
1599 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1600 mapping->writeback_index = done_index;
1601
1602 if (last_idx != ULONG_MAX)
1603 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host,
1604 0, last_idx, DATA, WRITE);
1605
1606 return ret;
1607 }
1608
1609 static int f2fs_write_data_pages(struct address_space *mapping,
1610 struct writeback_control *wbc)
1611 {
1612 struct inode *inode = mapping->host;
1613 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1614 struct blk_plug plug;
1615 int ret;
1616
1617 /* deal with chardevs and other special file */
1618 if (!mapping->a_ops->writepage)
1619 return 0;
1620
1621 /* skip writing if there is no dirty page in this inode */
1622 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1623 return 0;
1624
1625 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1626 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1627 available_free_memory(sbi, DIRTY_DENTS))
1628 goto skip_write;
1629
1630 /* skip writing during file defragment */
1631 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1632 goto skip_write;
1633
1634 /* during POR, we don't need to trigger writepage at all. */
1635 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1636 goto skip_write;
1637
1638 trace_f2fs_writepages(mapping->host, wbc, DATA);
1639
1640 blk_start_plug(&plug);
1641 ret = f2fs_write_cache_pages(mapping, wbc);
1642 blk_finish_plug(&plug);
1643 /*
1644 * if some pages were truncated, we cannot guarantee its mapping->host
1645 * to detect pending bios.
1646 */
1647
1648 remove_dirty_inode(inode);
1649 return ret;
1650
1651 skip_write:
1652 wbc->pages_skipped += get_dirty_pages(inode);
1653 trace_f2fs_writepages(mapping->host, wbc, DATA);
1654 return 0;
1655 }
1656
1657 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1658 {
1659 struct inode *inode = mapping->host;
1660 loff_t i_size = i_size_read(inode);
1661
1662 if (to > i_size) {
1663 truncate_pagecache(inode, i_size);
1664 truncate_blocks(inode, i_size, true);
1665 }
1666 }
1667
1668 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1669 struct page *page, loff_t pos, unsigned len,
1670 block_t *blk_addr, bool *node_changed)
1671 {
1672 struct inode *inode = page->mapping->host;
1673 pgoff_t index = page->index;
1674 struct dnode_of_data dn;
1675 struct page *ipage;
1676 bool locked = false;
1677 struct extent_info ei = {0,0,0};
1678 int err = 0;
1679
1680 /*
1681 * we already allocated all the blocks, so we don't need to get
1682 * the block addresses when there is no need to fill the page.
1683 */
1684 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
1685 !is_inode_flag_set(inode, FI_NO_PREALLOC))
1686 return 0;
1687
1688 if (f2fs_has_inline_data(inode) ||
1689 (pos & PAGE_MASK) >= i_size_read(inode)) {
1690 f2fs_lock_op(sbi);
1691 locked = true;
1692 }
1693 restart:
1694 /* check inline_data */
1695 ipage = get_node_page(sbi, inode->i_ino);
1696 if (IS_ERR(ipage)) {
1697 err = PTR_ERR(ipage);
1698 goto unlock_out;
1699 }
1700
1701 set_new_dnode(&dn, inode, ipage, ipage, 0);
1702
1703 if (f2fs_has_inline_data(inode)) {
1704 if (pos + len <= MAX_INLINE_DATA) {
1705 read_inline_data(page, ipage);
1706 set_inode_flag(inode, FI_DATA_EXIST);
1707 if (inode->i_nlink)
1708 set_inline_node(ipage);
1709 } else {
1710 err = f2fs_convert_inline_page(&dn, page);
1711 if (err)
1712 goto out;
1713 if (dn.data_blkaddr == NULL_ADDR)
1714 err = f2fs_get_block(&dn, index);
1715 }
1716 } else if (locked) {
1717 err = f2fs_get_block(&dn, index);
1718 } else {
1719 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1720 dn.data_blkaddr = ei.blk + index - ei.fofs;
1721 } else {
1722 /* hole case */
1723 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1724 if (err || dn.data_blkaddr == NULL_ADDR) {
1725 f2fs_put_dnode(&dn);
1726 f2fs_lock_op(sbi);
1727 locked = true;
1728 goto restart;
1729 }
1730 }
1731 }
1732
1733 /* convert_inline_page can make node_changed */
1734 *blk_addr = dn.data_blkaddr;
1735 *node_changed = dn.node_changed;
1736 out:
1737 f2fs_put_dnode(&dn);
1738 unlock_out:
1739 if (locked)
1740 f2fs_unlock_op(sbi);
1741 return err;
1742 }
1743
1744 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1745 loff_t pos, unsigned len, unsigned flags,
1746 struct page **pagep, void **fsdata)
1747 {
1748 struct inode *inode = mapping->host;
1749 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1750 struct page *page = NULL;
1751 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1752 bool need_balance = false;
1753 block_t blkaddr = NULL_ADDR;
1754 int err = 0;
1755
1756 trace_f2fs_write_begin(inode, pos, len, flags);
1757
1758 /*
1759 * We should check this at this moment to avoid deadlock on inode page
1760 * and #0 page. The locking rule for inline_data conversion should be:
1761 * lock_page(page #0) -> lock_page(inode_page)
1762 */
1763 if (index != 0) {
1764 err = f2fs_convert_inline_inode(inode);
1765 if (err)
1766 goto fail;
1767 }
1768 repeat:
1769 /*
1770 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
1771 * wait_for_stable_page. Will wait that below with our IO control.
1772 */
1773 page = pagecache_get_page(mapping, index,
1774 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
1775 if (!page) {
1776 err = -ENOMEM;
1777 goto fail;
1778 }
1779
1780 *pagep = page;
1781
1782 err = prepare_write_begin(sbi, page, pos, len,
1783 &blkaddr, &need_balance);
1784 if (err)
1785 goto fail;
1786
1787 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1788 unlock_page(page);
1789 f2fs_balance_fs(sbi, true);
1790 lock_page(page);
1791 if (page->mapping != mapping) {
1792 /* The page got truncated from under us */
1793 f2fs_put_page(page, 1);
1794 goto repeat;
1795 }
1796 }
1797
1798 f2fs_wait_on_page_writeback(page, DATA, false);
1799
1800 /* wait for GCed encrypted page writeback */
1801 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1802 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1803
1804 if (len == PAGE_SIZE || PageUptodate(page))
1805 return 0;
1806
1807 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
1808 zero_user_segment(page, len, PAGE_SIZE);
1809 return 0;
1810 }
1811
1812 if (blkaddr == NEW_ADDR) {
1813 zero_user_segment(page, 0, PAGE_SIZE);
1814 SetPageUptodate(page);
1815 } else {
1816 struct bio *bio;
1817
1818 bio = f2fs_grab_bio(inode, blkaddr, 1);
1819 if (IS_ERR(bio)) {
1820 err = PTR_ERR(bio);
1821 goto fail;
1822 }
1823 bio->bi_opf = REQ_OP_READ;
1824 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1825 bio_put(bio);
1826 err = -EFAULT;
1827 goto fail;
1828 }
1829
1830 __submit_bio(sbi, bio, DATA);
1831
1832 lock_page(page);
1833 if (unlikely(page->mapping != mapping)) {
1834 f2fs_put_page(page, 1);
1835 goto repeat;
1836 }
1837 if (unlikely(!PageUptodate(page))) {
1838 err = -EIO;
1839 goto fail;
1840 }
1841 }
1842 return 0;
1843
1844 fail:
1845 f2fs_put_page(page, 1);
1846 f2fs_write_failed(mapping, pos + len);
1847 return err;
1848 }
1849
1850 static int f2fs_write_end(struct file *file,
1851 struct address_space *mapping,
1852 loff_t pos, unsigned len, unsigned copied,
1853 struct page *page, void *fsdata)
1854 {
1855 struct inode *inode = page->mapping->host;
1856
1857 trace_f2fs_write_end(inode, pos, len, copied);
1858
1859 /*
1860 * This should be come from len == PAGE_SIZE, and we expect copied
1861 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
1862 * let generic_perform_write() try to copy data again through copied=0.
1863 */
1864 if (!PageUptodate(page)) {
1865 if (unlikely(copied != len))
1866 copied = 0;
1867 else
1868 SetPageUptodate(page);
1869 }
1870 if (!copied)
1871 goto unlock_out;
1872
1873 set_page_dirty(page);
1874
1875 if (pos + copied > i_size_read(inode))
1876 f2fs_i_size_write(inode, pos + copied);
1877 unlock_out:
1878 f2fs_put_page(page, 1);
1879 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1880 return copied;
1881 }
1882
1883 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1884 loff_t offset)
1885 {
1886 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1887
1888 if (offset & blocksize_mask)
1889 return -EINVAL;
1890
1891 if (iov_iter_alignment(iter) & blocksize_mask)
1892 return -EINVAL;
1893
1894 return 0;
1895 }
1896
1897 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1898 {
1899 struct address_space *mapping = iocb->ki_filp->f_mapping;
1900 struct inode *inode = mapping->host;
1901 size_t count = iov_iter_count(iter);
1902 loff_t offset = iocb->ki_pos;
1903 int rw = iov_iter_rw(iter);
1904 int err;
1905
1906 err = check_direct_IO(inode, iter, offset);
1907 if (err)
1908 return err;
1909
1910 if (__force_buffered_io(inode, rw))
1911 return 0;
1912
1913 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1914
1915 down_read(&F2FS_I(inode)->dio_rwsem[rw]);
1916 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1917 up_read(&F2FS_I(inode)->dio_rwsem[rw]);
1918
1919 if (rw == WRITE) {
1920 if (err > 0)
1921 set_inode_flag(inode, FI_UPDATE_WRITE);
1922 else if (err < 0)
1923 f2fs_write_failed(mapping, offset + count);
1924 }
1925
1926 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1927
1928 return err;
1929 }
1930
1931 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1932 unsigned int length)
1933 {
1934 struct inode *inode = page->mapping->host;
1935 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1936
1937 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1938 (offset % PAGE_SIZE || length != PAGE_SIZE))
1939 return;
1940
1941 if (PageDirty(page)) {
1942 if (inode->i_ino == F2FS_META_INO(sbi)) {
1943 dec_page_count(sbi, F2FS_DIRTY_META);
1944 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
1945 dec_page_count(sbi, F2FS_DIRTY_NODES);
1946 } else {
1947 inode_dec_dirty_pages(inode);
1948 remove_dirty_inode(inode);
1949 }
1950 }
1951
1952 /* This is atomic written page, keep Private */
1953 if (IS_ATOMIC_WRITTEN_PAGE(page))
1954 return;
1955
1956 set_page_private(page, 0);
1957 ClearPagePrivate(page);
1958 }
1959
1960 int f2fs_release_page(struct page *page, gfp_t wait)
1961 {
1962 /* If this is dirty page, keep PagePrivate */
1963 if (PageDirty(page))
1964 return 0;
1965
1966 /* This is atomic written page, keep Private */
1967 if (IS_ATOMIC_WRITTEN_PAGE(page))
1968 return 0;
1969
1970 set_page_private(page, 0);
1971 ClearPagePrivate(page);
1972 return 1;
1973 }
1974
1975 /*
1976 * This was copied from __set_page_dirty_buffers which gives higher performance
1977 * in very high speed storages. (e.g., pmem)
1978 */
1979 void f2fs_set_page_dirty_nobuffers(struct page *page)
1980 {
1981 struct address_space *mapping = page->mapping;
1982 unsigned long flags;
1983
1984 if (unlikely(!mapping))
1985 return;
1986
1987 spin_lock(&mapping->private_lock);
1988 lock_page_memcg(page);
1989 SetPageDirty(page);
1990 spin_unlock(&mapping->private_lock);
1991
1992 spin_lock_irqsave(&mapping->tree_lock, flags);
1993 WARN_ON_ONCE(!PageUptodate(page));
1994 account_page_dirtied(page, mapping);
1995 radix_tree_tag_set(&mapping->page_tree,
1996 page_index(page), PAGECACHE_TAG_DIRTY);
1997 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1998 unlock_page_memcg(page);
1999
2000 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2001 return;
2002 }
2003
2004 static int f2fs_set_data_page_dirty(struct page *page)
2005 {
2006 struct address_space *mapping = page->mapping;
2007 struct inode *inode = mapping->host;
2008
2009 trace_f2fs_set_page_dirty(page, DATA);
2010
2011 if (!PageUptodate(page))
2012 SetPageUptodate(page);
2013
2014 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2015 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2016 register_inmem_page(inode, page);
2017 return 1;
2018 }
2019 /*
2020 * Previously, this page has been registered, we just
2021 * return here.
2022 */
2023 return 0;
2024 }
2025
2026 if (!PageDirty(page)) {
2027 f2fs_set_page_dirty_nobuffers(page);
2028 update_dirty_page(inode, page);
2029 return 1;
2030 }
2031 return 0;
2032 }
2033
2034 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2035 {
2036 struct inode *inode = mapping->host;
2037
2038 if (f2fs_has_inline_data(inode))
2039 return 0;
2040
2041 /* make sure allocating whole blocks */
2042 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2043 filemap_write_and_wait(mapping);
2044
2045 return generic_block_bmap(mapping, block, get_data_block_bmap);
2046 }
2047
2048 #ifdef CONFIG_MIGRATION
2049 #include <linux/migrate.h>
2050
2051 int f2fs_migrate_page(struct address_space *mapping,
2052 struct page *newpage, struct page *page, enum migrate_mode mode)
2053 {
2054 int rc, extra_count;
2055 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2056 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2057
2058 BUG_ON(PageWriteback(page));
2059
2060 /* migrating an atomic written page is safe with the inmem_lock hold */
2061 if (atomic_written && !mutex_trylock(&fi->inmem_lock))
2062 return -EAGAIN;
2063
2064 /*
2065 * A reference is expected if PagePrivate set when move mapping,
2066 * however F2FS breaks this for maintaining dirty page counts when
2067 * truncating pages. So here adjusting the 'extra_count' make it work.
2068 */
2069 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2070 rc = migrate_page_move_mapping(mapping, newpage,
2071 page, NULL, mode, extra_count);
2072 if (rc != MIGRATEPAGE_SUCCESS) {
2073 if (atomic_written)
2074 mutex_unlock(&fi->inmem_lock);
2075 return rc;
2076 }
2077
2078 if (atomic_written) {
2079 struct inmem_pages *cur;
2080 list_for_each_entry(cur, &fi->inmem_pages, list)
2081 if (cur->page == page) {
2082 cur->page = newpage;
2083 break;
2084 }
2085 mutex_unlock(&fi->inmem_lock);
2086 put_page(page);
2087 get_page(newpage);
2088 }
2089
2090 if (PagePrivate(page))
2091 SetPagePrivate(newpage);
2092 set_page_private(newpage, page_private(page));
2093
2094 migrate_page_copy(newpage, page);
2095
2096 return MIGRATEPAGE_SUCCESS;
2097 }
2098 #endif
2099
2100 const struct address_space_operations f2fs_dblock_aops = {
2101 .readpage = f2fs_read_data_page,
2102 .readpages = f2fs_read_data_pages,
2103 .writepage = f2fs_write_data_page,
2104 .writepages = f2fs_write_data_pages,
2105 .write_begin = f2fs_write_begin,
2106 .write_end = f2fs_write_end,
2107 .set_page_dirty = f2fs_set_data_page_dirty,
2108 .invalidatepage = f2fs_invalidate_page,
2109 .releasepage = f2fs_release_page,
2110 .direct_IO = f2fs_direct_IO,
2111 .bmap = f2fs_bmap,
2112 #ifdef CONFIG_MIGRATION
2113 .migratepage = f2fs_migrate_page,
2114 #endif
2115 };