]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/f2fs/data.c
f2fs: add to account direct IO
[mirror_ubuntu-hirsute-kernel.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/prefetch.h>
18 #include <linux/uio.h>
19 #include <linux/cleancache.h>
20 #include <linux/sched/signal.h>
21
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "trace.h"
26 #include <trace/events/f2fs.h>
27
28 #define NUM_PREALLOC_POST_READ_CTXS 128
29
30 static struct kmem_cache *bio_post_read_ctx_cache;
31 static mempool_t *bio_post_read_ctx_pool;
32
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35 struct address_space *mapping = page->mapping;
36 struct inode *inode;
37 struct f2fs_sb_info *sbi;
38
39 if (!mapping)
40 return false;
41
42 inode = mapping->host;
43 sbi = F2FS_I_SB(inode);
44
45 if (inode->i_ino == F2FS_META_INO(sbi) ||
46 inode->i_ino == F2FS_NODE_INO(sbi) ||
47 S_ISDIR(inode->i_mode) ||
48 (S_ISREG(inode->i_mode) &&
49 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
50 is_cold_data(page))
51 return true;
52 return false;
53 }
54
55 static enum count_type __read_io_type(struct page *page)
56 {
57 struct address_space *mapping = page->mapping;
58
59 if (mapping) {
60 struct inode *inode = mapping->host;
61 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
62
63 if (inode->i_ino == F2FS_META_INO(sbi))
64 return F2FS_RD_META;
65
66 if (inode->i_ino == F2FS_NODE_INO(sbi))
67 return F2FS_RD_NODE;
68 }
69 return F2FS_RD_DATA;
70 }
71
72 /* postprocessing steps for read bios */
73 enum bio_post_read_step {
74 STEP_INITIAL = 0,
75 STEP_DECRYPT,
76 };
77
78 struct bio_post_read_ctx {
79 struct bio *bio;
80 struct work_struct work;
81 unsigned int cur_step;
82 unsigned int enabled_steps;
83 };
84
85 static void __read_end_io(struct bio *bio)
86 {
87 struct page *page;
88 struct bio_vec *bv;
89 int i;
90
91 bio_for_each_segment_all(bv, bio, i) {
92 page = bv->bv_page;
93
94 /* PG_error was set if any post_read step failed */
95 if (bio->bi_status || PageError(page)) {
96 ClearPageUptodate(page);
97 /* will re-read again later */
98 ClearPageError(page);
99 } else {
100 SetPageUptodate(page);
101 }
102 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
103 unlock_page(page);
104 }
105 if (bio->bi_private)
106 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
107 bio_put(bio);
108 }
109
110 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
111
112 static void decrypt_work(struct work_struct *work)
113 {
114 struct bio_post_read_ctx *ctx =
115 container_of(work, struct bio_post_read_ctx, work);
116
117 fscrypt_decrypt_bio(ctx->bio);
118
119 bio_post_read_processing(ctx);
120 }
121
122 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
123 {
124 switch (++ctx->cur_step) {
125 case STEP_DECRYPT:
126 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
127 INIT_WORK(&ctx->work, decrypt_work);
128 fscrypt_enqueue_decrypt_work(&ctx->work);
129 return;
130 }
131 ctx->cur_step++;
132 /* fall-through */
133 default:
134 __read_end_io(ctx->bio);
135 }
136 }
137
138 static bool f2fs_bio_post_read_required(struct bio *bio)
139 {
140 return bio->bi_private && !bio->bi_status;
141 }
142
143 static void f2fs_read_end_io(struct bio *bio)
144 {
145 if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)),
146 FAULT_READ_IO)) {
147 f2fs_show_injection_info(FAULT_READ_IO);
148 bio->bi_status = BLK_STS_IOERR;
149 }
150
151 if (f2fs_bio_post_read_required(bio)) {
152 struct bio_post_read_ctx *ctx = bio->bi_private;
153
154 ctx->cur_step = STEP_INITIAL;
155 bio_post_read_processing(ctx);
156 return;
157 }
158
159 __read_end_io(bio);
160 }
161
162 static void f2fs_write_end_io(struct bio *bio)
163 {
164 struct f2fs_sb_info *sbi = bio->bi_private;
165 struct bio_vec *bvec;
166 int i;
167
168 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
169 f2fs_show_injection_info(FAULT_WRITE_IO);
170 bio->bi_status = BLK_STS_IOERR;
171 }
172
173 bio_for_each_segment_all(bvec, bio, i) {
174 struct page *page = bvec->bv_page;
175 enum count_type type = WB_DATA_TYPE(page);
176
177 if (IS_DUMMY_WRITTEN_PAGE(page)) {
178 set_page_private(page, (unsigned long)NULL);
179 ClearPagePrivate(page);
180 unlock_page(page);
181 mempool_free(page, sbi->write_io_dummy);
182
183 if (unlikely(bio->bi_status))
184 f2fs_stop_checkpoint(sbi, true);
185 continue;
186 }
187
188 fscrypt_pullback_bio_page(&page, true);
189
190 if (unlikely(bio->bi_status)) {
191 mapping_set_error(page->mapping, -EIO);
192 if (type == F2FS_WB_CP_DATA)
193 f2fs_stop_checkpoint(sbi, true);
194 }
195
196 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
197 page->index != nid_of_node(page));
198
199 dec_page_count(sbi, type);
200 if (f2fs_in_warm_node_list(sbi, page))
201 f2fs_del_fsync_node_entry(sbi, page);
202 clear_cold_data(page);
203 end_page_writeback(page);
204 }
205 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
206 wq_has_sleeper(&sbi->cp_wait))
207 wake_up(&sbi->cp_wait);
208
209 bio_put(bio);
210 }
211
212 /*
213 * Return true, if pre_bio's bdev is same as its target device.
214 */
215 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
216 block_t blk_addr, struct bio *bio)
217 {
218 struct block_device *bdev = sbi->sb->s_bdev;
219 int i;
220
221 for (i = 0; i < sbi->s_ndevs; i++) {
222 if (FDEV(i).start_blk <= blk_addr &&
223 FDEV(i).end_blk >= blk_addr) {
224 blk_addr -= FDEV(i).start_blk;
225 bdev = FDEV(i).bdev;
226 break;
227 }
228 }
229 if (bio) {
230 bio_set_dev(bio, bdev);
231 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
232 }
233 return bdev;
234 }
235
236 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
237 {
238 int i;
239
240 for (i = 0; i < sbi->s_ndevs; i++)
241 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
242 return i;
243 return 0;
244 }
245
246 static bool __same_bdev(struct f2fs_sb_info *sbi,
247 block_t blk_addr, struct bio *bio)
248 {
249 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
250 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
251 }
252
253 /*
254 * Low-level block read/write IO operations.
255 */
256 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
257 struct writeback_control *wbc,
258 int npages, bool is_read,
259 enum page_type type, enum temp_type temp)
260 {
261 struct bio *bio;
262
263 bio = f2fs_bio_alloc(sbi, npages, true);
264
265 f2fs_target_device(sbi, blk_addr, bio);
266 if (is_read) {
267 bio->bi_end_io = f2fs_read_end_io;
268 bio->bi_private = NULL;
269 } else {
270 bio->bi_end_io = f2fs_write_end_io;
271 bio->bi_private = sbi;
272 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
273 }
274 if (wbc)
275 wbc_init_bio(wbc, bio);
276
277 return bio;
278 }
279
280 static inline void __submit_bio(struct f2fs_sb_info *sbi,
281 struct bio *bio, enum page_type type)
282 {
283 if (!is_read_io(bio_op(bio))) {
284 unsigned int start;
285
286 if (type != DATA && type != NODE)
287 goto submit_io;
288
289 if (test_opt(sbi, LFS) && current->plug)
290 blk_finish_plug(current->plug);
291
292 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
293 start %= F2FS_IO_SIZE(sbi);
294
295 if (start == 0)
296 goto submit_io;
297
298 /* fill dummy pages */
299 for (; start < F2FS_IO_SIZE(sbi); start++) {
300 struct page *page =
301 mempool_alloc(sbi->write_io_dummy,
302 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
303 f2fs_bug_on(sbi, !page);
304
305 SetPagePrivate(page);
306 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
307 lock_page(page);
308 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
309 f2fs_bug_on(sbi, 1);
310 }
311 /*
312 * In the NODE case, we lose next block address chain. So, we
313 * need to do checkpoint in f2fs_sync_file.
314 */
315 if (type == NODE)
316 set_sbi_flag(sbi, SBI_NEED_CP);
317 }
318 submit_io:
319 if (is_read_io(bio_op(bio)))
320 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
321 else
322 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
323 submit_bio(bio);
324 }
325
326 static void __submit_merged_bio(struct f2fs_bio_info *io)
327 {
328 struct f2fs_io_info *fio = &io->fio;
329
330 if (!io->bio)
331 return;
332
333 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
334
335 if (is_read_io(fio->op))
336 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
337 else
338 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
339
340 __submit_bio(io->sbi, io->bio, fio->type);
341 io->bio = NULL;
342 }
343
344 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
345 struct page *page, nid_t ino)
346 {
347 struct bio_vec *bvec;
348 struct page *target;
349 int i;
350
351 if (!io->bio)
352 return false;
353
354 if (!inode && !page && !ino)
355 return true;
356
357 bio_for_each_segment_all(bvec, io->bio, i) {
358
359 if (bvec->bv_page->mapping)
360 target = bvec->bv_page;
361 else
362 target = fscrypt_control_page(bvec->bv_page);
363
364 if (inode && inode == target->mapping->host)
365 return true;
366 if (page && page == target)
367 return true;
368 if (ino && ino == ino_of_node(target))
369 return true;
370 }
371
372 return false;
373 }
374
375 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
376 struct page *page, nid_t ino,
377 enum page_type type)
378 {
379 enum page_type btype = PAGE_TYPE_OF_BIO(type);
380 enum temp_type temp;
381 struct f2fs_bio_info *io;
382 bool ret = false;
383
384 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
385 io = sbi->write_io[btype] + temp;
386
387 down_read(&io->io_rwsem);
388 ret = __has_merged_page(io, inode, page, ino);
389 up_read(&io->io_rwsem);
390
391 /* TODO: use HOT temp only for meta pages now. */
392 if (ret || btype == META)
393 break;
394 }
395 return ret;
396 }
397
398 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
399 enum page_type type, enum temp_type temp)
400 {
401 enum page_type btype = PAGE_TYPE_OF_BIO(type);
402 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
403
404 down_write(&io->io_rwsem);
405
406 /* change META to META_FLUSH in the checkpoint procedure */
407 if (type >= META_FLUSH) {
408 io->fio.type = META_FLUSH;
409 io->fio.op = REQ_OP_WRITE;
410 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
411 if (!test_opt(sbi, NOBARRIER))
412 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
413 }
414 __submit_merged_bio(io);
415 up_write(&io->io_rwsem);
416 }
417
418 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
419 struct inode *inode, struct page *page,
420 nid_t ino, enum page_type type, bool force)
421 {
422 enum temp_type temp;
423
424 if (!force && !has_merged_page(sbi, inode, page, ino, type))
425 return;
426
427 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
428
429 __f2fs_submit_merged_write(sbi, type, temp);
430
431 /* TODO: use HOT temp only for meta pages now. */
432 if (type >= META)
433 break;
434 }
435 }
436
437 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
438 {
439 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
440 }
441
442 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
443 struct inode *inode, struct page *page,
444 nid_t ino, enum page_type type)
445 {
446 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
447 }
448
449 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
450 {
451 f2fs_submit_merged_write(sbi, DATA);
452 f2fs_submit_merged_write(sbi, NODE);
453 f2fs_submit_merged_write(sbi, META);
454 }
455
456 /*
457 * Fill the locked page with data located in the block address.
458 * A caller needs to unlock the page on failure.
459 */
460 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
461 {
462 struct bio *bio;
463 struct page *page = fio->encrypted_page ?
464 fio->encrypted_page : fio->page;
465
466 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
467 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
468 return -EFAULT;
469
470 trace_f2fs_submit_page_bio(page, fio);
471 f2fs_trace_ios(fio, 0);
472
473 /* Allocate a new bio */
474 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
475 1, is_read_io(fio->op), fio->type, fio->temp);
476
477 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
478 bio_put(bio);
479 return -EFAULT;
480 }
481
482 if (fio->io_wbc && !is_read_io(fio->op))
483 wbc_account_io(fio->io_wbc, page, PAGE_SIZE);
484
485 bio_set_op_attrs(bio, fio->op, fio->op_flags);
486
487 inc_page_count(fio->sbi, is_read_io(fio->op) ?
488 __read_io_type(page): WB_DATA_TYPE(fio->page));
489
490 __submit_bio(fio->sbi, bio, fio->type);
491 return 0;
492 }
493
494 void f2fs_submit_page_write(struct f2fs_io_info *fio)
495 {
496 struct f2fs_sb_info *sbi = fio->sbi;
497 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
498 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
499 struct page *bio_page;
500
501 f2fs_bug_on(sbi, is_read_io(fio->op));
502
503 down_write(&io->io_rwsem);
504 next:
505 if (fio->in_list) {
506 spin_lock(&io->io_lock);
507 if (list_empty(&io->io_list)) {
508 spin_unlock(&io->io_lock);
509 goto out;
510 }
511 fio = list_first_entry(&io->io_list,
512 struct f2fs_io_info, list);
513 list_del(&fio->list);
514 spin_unlock(&io->io_lock);
515 }
516
517 if (__is_valid_data_blkaddr(fio->old_blkaddr))
518 verify_block_addr(fio, fio->old_blkaddr);
519 verify_block_addr(fio, fio->new_blkaddr);
520
521 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
522
523 /* set submitted = true as a return value */
524 fio->submitted = true;
525
526 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
527
528 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
529 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
530 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
531 __submit_merged_bio(io);
532 alloc_new:
533 if (io->bio == NULL) {
534 if ((fio->type == DATA || fio->type == NODE) &&
535 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
536 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
537 fio->retry = true;
538 goto skip;
539 }
540 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
541 BIO_MAX_PAGES, false,
542 fio->type, fio->temp);
543 io->fio = *fio;
544 }
545
546 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
547 __submit_merged_bio(io);
548 goto alloc_new;
549 }
550
551 if (fio->io_wbc)
552 wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
553
554 io->last_block_in_bio = fio->new_blkaddr;
555 f2fs_trace_ios(fio, 0);
556
557 trace_f2fs_submit_page_write(fio->page, fio);
558 skip:
559 if (fio->in_list)
560 goto next;
561 out:
562 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
563 f2fs_is_checkpoint_ready(sbi))
564 __submit_merged_bio(io);
565 up_write(&io->io_rwsem);
566 }
567
568 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
569 unsigned nr_pages, unsigned op_flag)
570 {
571 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
572 struct bio *bio;
573 struct bio_post_read_ctx *ctx;
574 unsigned int post_read_steps = 0;
575
576 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
577 return ERR_PTR(-EFAULT);
578
579 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
580 if (!bio)
581 return ERR_PTR(-ENOMEM);
582 f2fs_target_device(sbi, blkaddr, bio);
583 bio->bi_end_io = f2fs_read_end_io;
584 bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
585
586 if (f2fs_encrypted_file(inode))
587 post_read_steps |= 1 << STEP_DECRYPT;
588 if (post_read_steps) {
589 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
590 if (!ctx) {
591 bio_put(bio);
592 return ERR_PTR(-ENOMEM);
593 }
594 ctx->bio = bio;
595 ctx->enabled_steps = post_read_steps;
596 bio->bi_private = ctx;
597 }
598
599 return bio;
600 }
601
602 /* This can handle encryption stuffs */
603 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
604 block_t blkaddr)
605 {
606 struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
607
608 if (IS_ERR(bio))
609 return PTR_ERR(bio);
610
611 /* wait for GCed page writeback via META_MAPPING */
612 f2fs_wait_on_block_writeback(inode, blkaddr);
613
614 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
615 bio_put(bio);
616 return -EFAULT;
617 }
618 ClearPageError(page);
619 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
620 __submit_bio(F2FS_I_SB(inode), bio, DATA);
621 return 0;
622 }
623
624 static void __set_data_blkaddr(struct dnode_of_data *dn)
625 {
626 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
627 __le32 *addr_array;
628 int base = 0;
629
630 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
631 base = get_extra_isize(dn->inode);
632
633 /* Get physical address of data block */
634 addr_array = blkaddr_in_node(rn);
635 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
636 }
637
638 /*
639 * Lock ordering for the change of data block address:
640 * ->data_page
641 * ->node_page
642 * update block addresses in the node page
643 */
644 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
645 {
646 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
647 __set_data_blkaddr(dn);
648 if (set_page_dirty(dn->node_page))
649 dn->node_changed = true;
650 }
651
652 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
653 {
654 dn->data_blkaddr = blkaddr;
655 f2fs_set_data_blkaddr(dn);
656 f2fs_update_extent_cache(dn);
657 }
658
659 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
660 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
661 {
662 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
663 int err;
664
665 if (!count)
666 return 0;
667
668 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
669 return -EPERM;
670 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
671 return err;
672
673 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
674 dn->ofs_in_node, count);
675
676 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
677
678 for (; count > 0; dn->ofs_in_node++) {
679 block_t blkaddr = datablock_addr(dn->inode,
680 dn->node_page, dn->ofs_in_node);
681 if (blkaddr == NULL_ADDR) {
682 dn->data_blkaddr = NEW_ADDR;
683 __set_data_blkaddr(dn);
684 count--;
685 }
686 }
687
688 if (set_page_dirty(dn->node_page))
689 dn->node_changed = true;
690 return 0;
691 }
692
693 /* Should keep dn->ofs_in_node unchanged */
694 int f2fs_reserve_new_block(struct dnode_of_data *dn)
695 {
696 unsigned int ofs_in_node = dn->ofs_in_node;
697 int ret;
698
699 ret = f2fs_reserve_new_blocks(dn, 1);
700 dn->ofs_in_node = ofs_in_node;
701 return ret;
702 }
703
704 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
705 {
706 bool need_put = dn->inode_page ? false : true;
707 int err;
708
709 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
710 if (err)
711 return err;
712
713 if (dn->data_blkaddr == NULL_ADDR)
714 err = f2fs_reserve_new_block(dn);
715 if (err || need_put)
716 f2fs_put_dnode(dn);
717 return err;
718 }
719
720 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
721 {
722 struct extent_info ei = {0,0,0};
723 struct inode *inode = dn->inode;
724
725 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
726 dn->data_blkaddr = ei.blk + index - ei.fofs;
727 return 0;
728 }
729
730 return f2fs_reserve_block(dn, index);
731 }
732
733 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
734 int op_flags, bool for_write)
735 {
736 struct address_space *mapping = inode->i_mapping;
737 struct dnode_of_data dn;
738 struct page *page;
739 struct extent_info ei = {0,0,0};
740 int err;
741
742 page = f2fs_grab_cache_page(mapping, index, for_write);
743 if (!page)
744 return ERR_PTR(-ENOMEM);
745
746 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
747 dn.data_blkaddr = ei.blk + index - ei.fofs;
748 goto got_it;
749 }
750
751 set_new_dnode(&dn, inode, NULL, NULL, 0);
752 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
753 if (err)
754 goto put_err;
755 f2fs_put_dnode(&dn);
756
757 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
758 err = -ENOENT;
759 goto put_err;
760 }
761 got_it:
762 if (PageUptodate(page)) {
763 unlock_page(page);
764 return page;
765 }
766
767 /*
768 * A new dentry page is allocated but not able to be written, since its
769 * new inode page couldn't be allocated due to -ENOSPC.
770 * In such the case, its blkaddr can be remained as NEW_ADDR.
771 * see, f2fs_add_link -> f2fs_get_new_data_page ->
772 * f2fs_init_inode_metadata.
773 */
774 if (dn.data_blkaddr == NEW_ADDR) {
775 zero_user_segment(page, 0, PAGE_SIZE);
776 if (!PageUptodate(page))
777 SetPageUptodate(page);
778 unlock_page(page);
779 return page;
780 }
781
782 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
783 if (err)
784 goto put_err;
785 return page;
786
787 put_err:
788 f2fs_put_page(page, 1);
789 return ERR_PTR(err);
790 }
791
792 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
793 {
794 struct address_space *mapping = inode->i_mapping;
795 struct page *page;
796
797 page = find_get_page(mapping, index);
798 if (page && PageUptodate(page))
799 return page;
800 f2fs_put_page(page, 0);
801
802 page = f2fs_get_read_data_page(inode, index, 0, false);
803 if (IS_ERR(page))
804 return page;
805
806 if (PageUptodate(page))
807 return page;
808
809 wait_on_page_locked(page);
810 if (unlikely(!PageUptodate(page))) {
811 f2fs_put_page(page, 0);
812 return ERR_PTR(-EIO);
813 }
814 return page;
815 }
816
817 /*
818 * If it tries to access a hole, return an error.
819 * Because, the callers, functions in dir.c and GC, should be able to know
820 * whether this page exists or not.
821 */
822 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
823 bool for_write)
824 {
825 struct address_space *mapping = inode->i_mapping;
826 struct page *page;
827 repeat:
828 page = f2fs_get_read_data_page(inode, index, 0, for_write);
829 if (IS_ERR(page))
830 return page;
831
832 /* wait for read completion */
833 lock_page(page);
834 if (unlikely(page->mapping != mapping)) {
835 f2fs_put_page(page, 1);
836 goto repeat;
837 }
838 if (unlikely(!PageUptodate(page))) {
839 f2fs_put_page(page, 1);
840 return ERR_PTR(-EIO);
841 }
842 return page;
843 }
844
845 /*
846 * Caller ensures that this data page is never allocated.
847 * A new zero-filled data page is allocated in the page cache.
848 *
849 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
850 * f2fs_unlock_op().
851 * Note that, ipage is set only by make_empty_dir, and if any error occur,
852 * ipage should be released by this function.
853 */
854 struct page *f2fs_get_new_data_page(struct inode *inode,
855 struct page *ipage, pgoff_t index, bool new_i_size)
856 {
857 struct address_space *mapping = inode->i_mapping;
858 struct page *page;
859 struct dnode_of_data dn;
860 int err;
861
862 page = f2fs_grab_cache_page(mapping, index, true);
863 if (!page) {
864 /*
865 * before exiting, we should make sure ipage will be released
866 * if any error occur.
867 */
868 f2fs_put_page(ipage, 1);
869 return ERR_PTR(-ENOMEM);
870 }
871
872 set_new_dnode(&dn, inode, ipage, NULL, 0);
873 err = f2fs_reserve_block(&dn, index);
874 if (err) {
875 f2fs_put_page(page, 1);
876 return ERR_PTR(err);
877 }
878 if (!ipage)
879 f2fs_put_dnode(&dn);
880
881 if (PageUptodate(page))
882 goto got_it;
883
884 if (dn.data_blkaddr == NEW_ADDR) {
885 zero_user_segment(page, 0, PAGE_SIZE);
886 if (!PageUptodate(page))
887 SetPageUptodate(page);
888 } else {
889 f2fs_put_page(page, 1);
890
891 /* if ipage exists, blkaddr should be NEW_ADDR */
892 f2fs_bug_on(F2FS_I_SB(inode), ipage);
893 page = f2fs_get_lock_data_page(inode, index, true);
894 if (IS_ERR(page))
895 return page;
896 }
897 got_it:
898 if (new_i_size && i_size_read(inode) <
899 ((loff_t)(index + 1) << PAGE_SHIFT))
900 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
901 return page;
902 }
903
904 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
905 {
906 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
907 struct f2fs_summary sum;
908 struct node_info ni;
909 block_t old_blkaddr;
910 blkcnt_t count = 1;
911 int err;
912
913 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
914 return -EPERM;
915
916 err = f2fs_get_node_info(sbi, dn->nid, &ni);
917 if (err)
918 return err;
919
920 dn->data_blkaddr = datablock_addr(dn->inode,
921 dn->node_page, dn->ofs_in_node);
922 if (dn->data_blkaddr != NULL_ADDR)
923 goto alloc;
924
925 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
926 return err;
927
928 alloc:
929 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
930 old_blkaddr = dn->data_blkaddr;
931 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
932 &sum, seg_type, NULL, false);
933 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
934 invalidate_mapping_pages(META_MAPPING(sbi),
935 old_blkaddr, old_blkaddr);
936 f2fs_set_data_blkaddr(dn);
937
938 /*
939 * i_size will be updated by direct_IO. Otherwise, we'll get stale
940 * data from unwritten block via dio_read.
941 */
942 return 0;
943 }
944
945 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
946 {
947 struct inode *inode = file_inode(iocb->ki_filp);
948 struct f2fs_map_blocks map;
949 int flag;
950 int err = 0;
951 bool direct_io = iocb->ki_flags & IOCB_DIRECT;
952
953 /* convert inline data for Direct I/O*/
954 if (direct_io) {
955 err = f2fs_convert_inline_inode(inode);
956 if (err)
957 return err;
958 }
959
960 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
961 return 0;
962
963 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
964 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
965 if (map.m_len > map.m_lblk)
966 map.m_len -= map.m_lblk;
967 else
968 map.m_len = 0;
969
970 map.m_next_pgofs = NULL;
971 map.m_next_extent = NULL;
972 map.m_seg_type = NO_CHECK_TYPE;
973
974 if (direct_io) {
975 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
976 flag = f2fs_force_buffered_io(inode, iocb, from) ?
977 F2FS_GET_BLOCK_PRE_AIO :
978 F2FS_GET_BLOCK_PRE_DIO;
979 goto map_blocks;
980 }
981 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
982 err = f2fs_convert_inline_inode(inode);
983 if (err)
984 return err;
985 }
986 if (f2fs_has_inline_data(inode))
987 return err;
988
989 flag = F2FS_GET_BLOCK_PRE_AIO;
990
991 map_blocks:
992 err = f2fs_map_blocks(inode, &map, 1, flag);
993 if (map.m_len > 0 && err == -ENOSPC) {
994 if (!direct_io)
995 set_inode_flag(inode, FI_NO_PREALLOC);
996 err = 0;
997 }
998 return err;
999 }
1000
1001 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1002 {
1003 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1004 if (lock)
1005 down_read(&sbi->node_change);
1006 else
1007 up_read(&sbi->node_change);
1008 } else {
1009 if (lock)
1010 f2fs_lock_op(sbi);
1011 else
1012 f2fs_unlock_op(sbi);
1013 }
1014 }
1015
1016 /*
1017 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1018 * f2fs_map_blocks structure.
1019 * If original data blocks are allocated, then give them to blockdev.
1020 * Otherwise,
1021 * a. preallocate requested block addresses
1022 * b. do not use extent cache for better performance
1023 * c. give the block addresses to blockdev
1024 */
1025 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1026 int create, int flag)
1027 {
1028 unsigned int maxblocks = map->m_len;
1029 struct dnode_of_data dn;
1030 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1031 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
1032 pgoff_t pgofs, end_offset, end;
1033 int err = 0, ofs = 1;
1034 unsigned int ofs_in_node, last_ofs_in_node;
1035 blkcnt_t prealloc;
1036 struct extent_info ei = {0,0,0};
1037 block_t blkaddr;
1038 unsigned int start_pgofs;
1039
1040 if (!maxblocks)
1041 return 0;
1042
1043 map->m_len = 0;
1044 map->m_flags = 0;
1045
1046 /* it only supports block size == page size */
1047 pgofs = (pgoff_t)map->m_lblk;
1048 end = pgofs + maxblocks;
1049
1050 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1051 map->m_pblk = ei.blk + pgofs - ei.fofs;
1052 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1053 map->m_flags = F2FS_MAP_MAPPED;
1054 if (map->m_next_extent)
1055 *map->m_next_extent = pgofs + map->m_len;
1056
1057 /* for hardware encryption, but to avoid potential issue in future */
1058 if (flag == F2FS_GET_BLOCK_DIO)
1059 f2fs_wait_on_block_writeback_range(inode,
1060 map->m_pblk, map->m_len);
1061 goto out;
1062 }
1063
1064 next_dnode:
1065 if (create)
1066 __do_map_lock(sbi, flag, true);
1067
1068 /* When reading holes, we need its node page */
1069 set_new_dnode(&dn, inode, NULL, NULL, 0);
1070 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1071 if (err) {
1072 if (flag == F2FS_GET_BLOCK_BMAP)
1073 map->m_pblk = 0;
1074 if (err == -ENOENT) {
1075 err = 0;
1076 if (map->m_next_pgofs)
1077 *map->m_next_pgofs =
1078 f2fs_get_next_page_offset(&dn, pgofs);
1079 if (map->m_next_extent)
1080 *map->m_next_extent =
1081 f2fs_get_next_page_offset(&dn, pgofs);
1082 }
1083 goto unlock_out;
1084 }
1085
1086 start_pgofs = pgofs;
1087 prealloc = 0;
1088 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1089 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1090
1091 next_block:
1092 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1093
1094 if (__is_valid_data_blkaddr(blkaddr) &&
1095 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
1096 err = -EFAULT;
1097 goto sync_out;
1098 }
1099
1100 if (is_valid_data_blkaddr(sbi, blkaddr)) {
1101 /* use out-place-update for driect IO under LFS mode */
1102 if (test_opt(sbi, LFS) && create &&
1103 flag == F2FS_GET_BLOCK_DIO) {
1104 err = __allocate_data_block(&dn, map->m_seg_type);
1105 if (!err)
1106 set_inode_flag(inode, FI_APPEND_WRITE);
1107 }
1108 } else {
1109 if (create) {
1110 if (unlikely(f2fs_cp_error(sbi))) {
1111 err = -EIO;
1112 goto sync_out;
1113 }
1114 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1115 if (blkaddr == NULL_ADDR) {
1116 prealloc++;
1117 last_ofs_in_node = dn.ofs_in_node;
1118 }
1119 } else {
1120 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1121 flag != F2FS_GET_BLOCK_DIO);
1122 err = __allocate_data_block(&dn,
1123 map->m_seg_type);
1124 if (!err)
1125 set_inode_flag(inode, FI_APPEND_WRITE);
1126 }
1127 if (err)
1128 goto sync_out;
1129 map->m_flags |= F2FS_MAP_NEW;
1130 blkaddr = dn.data_blkaddr;
1131 } else {
1132 if (flag == F2FS_GET_BLOCK_BMAP) {
1133 map->m_pblk = 0;
1134 goto sync_out;
1135 }
1136 if (flag == F2FS_GET_BLOCK_PRECACHE)
1137 goto sync_out;
1138 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1139 blkaddr == NULL_ADDR) {
1140 if (map->m_next_pgofs)
1141 *map->m_next_pgofs = pgofs + 1;
1142 goto sync_out;
1143 }
1144 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1145 /* for defragment case */
1146 if (map->m_next_pgofs)
1147 *map->m_next_pgofs = pgofs + 1;
1148 goto sync_out;
1149 }
1150 }
1151 }
1152
1153 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1154 goto skip;
1155
1156 if (map->m_len == 0) {
1157 /* preallocated unwritten block should be mapped for fiemap. */
1158 if (blkaddr == NEW_ADDR)
1159 map->m_flags |= F2FS_MAP_UNWRITTEN;
1160 map->m_flags |= F2FS_MAP_MAPPED;
1161
1162 map->m_pblk = blkaddr;
1163 map->m_len = 1;
1164 } else if ((map->m_pblk != NEW_ADDR &&
1165 blkaddr == (map->m_pblk + ofs)) ||
1166 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1167 flag == F2FS_GET_BLOCK_PRE_DIO) {
1168 ofs++;
1169 map->m_len++;
1170 } else {
1171 goto sync_out;
1172 }
1173
1174 skip:
1175 dn.ofs_in_node++;
1176 pgofs++;
1177
1178 /* preallocate blocks in batch for one dnode page */
1179 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1180 (pgofs == end || dn.ofs_in_node == end_offset)) {
1181
1182 dn.ofs_in_node = ofs_in_node;
1183 err = f2fs_reserve_new_blocks(&dn, prealloc);
1184 if (err)
1185 goto sync_out;
1186
1187 map->m_len += dn.ofs_in_node - ofs_in_node;
1188 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1189 err = -ENOSPC;
1190 goto sync_out;
1191 }
1192 dn.ofs_in_node = end_offset;
1193 }
1194
1195 if (pgofs >= end)
1196 goto sync_out;
1197 else if (dn.ofs_in_node < end_offset)
1198 goto next_block;
1199
1200 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1201 if (map->m_flags & F2FS_MAP_MAPPED) {
1202 unsigned int ofs = start_pgofs - map->m_lblk;
1203
1204 f2fs_update_extent_cache_range(&dn,
1205 start_pgofs, map->m_pblk + ofs,
1206 map->m_len - ofs);
1207 }
1208 }
1209
1210 f2fs_put_dnode(&dn);
1211
1212 if (create) {
1213 __do_map_lock(sbi, flag, false);
1214 f2fs_balance_fs(sbi, dn.node_changed);
1215 }
1216 goto next_dnode;
1217
1218 sync_out:
1219
1220 /* for hardware encryption, but to avoid potential issue in future */
1221 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1222 f2fs_wait_on_block_writeback_range(inode,
1223 map->m_pblk, map->m_len);
1224
1225 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1226 if (map->m_flags & F2FS_MAP_MAPPED) {
1227 unsigned int ofs = start_pgofs - map->m_lblk;
1228
1229 f2fs_update_extent_cache_range(&dn,
1230 start_pgofs, map->m_pblk + ofs,
1231 map->m_len - ofs);
1232 }
1233 if (map->m_next_extent)
1234 *map->m_next_extent = pgofs + 1;
1235 }
1236 f2fs_put_dnode(&dn);
1237 unlock_out:
1238 if (create) {
1239 __do_map_lock(sbi, flag, false);
1240 f2fs_balance_fs(sbi, dn.node_changed);
1241 }
1242 out:
1243 trace_f2fs_map_blocks(inode, map, err);
1244 return err;
1245 }
1246
1247 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1248 {
1249 struct f2fs_map_blocks map;
1250 block_t last_lblk;
1251 int err;
1252
1253 if (pos + len > i_size_read(inode))
1254 return false;
1255
1256 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1257 map.m_next_pgofs = NULL;
1258 map.m_next_extent = NULL;
1259 map.m_seg_type = NO_CHECK_TYPE;
1260 last_lblk = F2FS_BLK_ALIGN(pos + len);
1261
1262 while (map.m_lblk < last_lblk) {
1263 map.m_len = last_lblk - map.m_lblk;
1264 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1265 if (err || map.m_len == 0)
1266 return false;
1267 map.m_lblk += map.m_len;
1268 }
1269 return true;
1270 }
1271
1272 static int __get_data_block(struct inode *inode, sector_t iblock,
1273 struct buffer_head *bh, int create, int flag,
1274 pgoff_t *next_pgofs, int seg_type)
1275 {
1276 struct f2fs_map_blocks map;
1277 int err;
1278
1279 map.m_lblk = iblock;
1280 map.m_len = bh->b_size >> inode->i_blkbits;
1281 map.m_next_pgofs = next_pgofs;
1282 map.m_next_extent = NULL;
1283 map.m_seg_type = seg_type;
1284
1285 err = f2fs_map_blocks(inode, &map, create, flag);
1286 if (!err) {
1287 map_bh(bh, inode->i_sb, map.m_pblk);
1288 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1289 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1290 }
1291 return err;
1292 }
1293
1294 static int get_data_block(struct inode *inode, sector_t iblock,
1295 struct buffer_head *bh_result, int create, int flag,
1296 pgoff_t *next_pgofs)
1297 {
1298 return __get_data_block(inode, iblock, bh_result, create,
1299 flag, next_pgofs,
1300 NO_CHECK_TYPE);
1301 }
1302
1303 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1304 struct buffer_head *bh_result, int create)
1305 {
1306 return __get_data_block(inode, iblock, bh_result, create,
1307 F2FS_GET_BLOCK_DIO, NULL,
1308 f2fs_rw_hint_to_seg_type(
1309 inode->i_write_hint));
1310 }
1311
1312 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1313 struct buffer_head *bh_result, int create)
1314 {
1315 /* Block number less than F2FS MAX BLOCKS */
1316 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1317 return -EFBIG;
1318
1319 return __get_data_block(inode, iblock, bh_result, create,
1320 F2FS_GET_BLOCK_BMAP, NULL,
1321 NO_CHECK_TYPE);
1322 }
1323
1324 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1325 {
1326 return (offset >> inode->i_blkbits);
1327 }
1328
1329 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1330 {
1331 return (blk << inode->i_blkbits);
1332 }
1333
1334 static int f2fs_xattr_fiemap(struct inode *inode,
1335 struct fiemap_extent_info *fieinfo)
1336 {
1337 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1338 struct page *page;
1339 struct node_info ni;
1340 __u64 phys = 0, len;
1341 __u32 flags;
1342 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1343 int err = 0;
1344
1345 if (f2fs_has_inline_xattr(inode)) {
1346 int offset;
1347
1348 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1349 inode->i_ino, false);
1350 if (!page)
1351 return -ENOMEM;
1352
1353 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1354 if (err) {
1355 f2fs_put_page(page, 1);
1356 return err;
1357 }
1358
1359 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1360 offset = offsetof(struct f2fs_inode, i_addr) +
1361 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1362 get_inline_xattr_addrs(inode));
1363
1364 phys += offset;
1365 len = inline_xattr_size(inode);
1366
1367 f2fs_put_page(page, 1);
1368
1369 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1370
1371 if (!xnid)
1372 flags |= FIEMAP_EXTENT_LAST;
1373
1374 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1375 if (err || err == 1)
1376 return err;
1377 }
1378
1379 if (xnid) {
1380 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1381 if (!page)
1382 return -ENOMEM;
1383
1384 err = f2fs_get_node_info(sbi, xnid, &ni);
1385 if (err) {
1386 f2fs_put_page(page, 1);
1387 return err;
1388 }
1389
1390 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1391 len = inode->i_sb->s_blocksize;
1392
1393 f2fs_put_page(page, 1);
1394
1395 flags = FIEMAP_EXTENT_LAST;
1396 }
1397
1398 if (phys)
1399 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1400
1401 return (err < 0 ? err : 0);
1402 }
1403
1404 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1405 u64 start, u64 len)
1406 {
1407 struct buffer_head map_bh;
1408 sector_t start_blk, last_blk;
1409 pgoff_t next_pgofs;
1410 u64 logical = 0, phys = 0, size = 0;
1411 u32 flags = 0;
1412 int ret = 0;
1413
1414 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1415 ret = f2fs_precache_extents(inode);
1416 if (ret)
1417 return ret;
1418 }
1419
1420 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1421 if (ret)
1422 return ret;
1423
1424 inode_lock(inode);
1425
1426 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1427 ret = f2fs_xattr_fiemap(inode, fieinfo);
1428 goto out;
1429 }
1430
1431 if (f2fs_has_inline_data(inode)) {
1432 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1433 if (ret != -EAGAIN)
1434 goto out;
1435 }
1436
1437 if (logical_to_blk(inode, len) == 0)
1438 len = blk_to_logical(inode, 1);
1439
1440 start_blk = logical_to_blk(inode, start);
1441 last_blk = logical_to_blk(inode, start + len - 1);
1442
1443 next:
1444 memset(&map_bh, 0, sizeof(struct buffer_head));
1445 map_bh.b_size = len;
1446
1447 ret = get_data_block(inode, start_blk, &map_bh, 0,
1448 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1449 if (ret)
1450 goto out;
1451
1452 /* HOLE */
1453 if (!buffer_mapped(&map_bh)) {
1454 start_blk = next_pgofs;
1455
1456 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1457 F2FS_I_SB(inode)->max_file_blocks))
1458 goto prep_next;
1459
1460 flags |= FIEMAP_EXTENT_LAST;
1461 }
1462
1463 if (size) {
1464 if (f2fs_encrypted_inode(inode))
1465 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1466
1467 ret = fiemap_fill_next_extent(fieinfo, logical,
1468 phys, size, flags);
1469 }
1470
1471 if (start_blk > last_blk || ret)
1472 goto out;
1473
1474 logical = blk_to_logical(inode, start_blk);
1475 phys = blk_to_logical(inode, map_bh.b_blocknr);
1476 size = map_bh.b_size;
1477 flags = 0;
1478 if (buffer_unwritten(&map_bh))
1479 flags = FIEMAP_EXTENT_UNWRITTEN;
1480
1481 start_blk += logical_to_blk(inode, size);
1482
1483 prep_next:
1484 cond_resched();
1485 if (fatal_signal_pending(current))
1486 ret = -EINTR;
1487 else
1488 goto next;
1489 out:
1490 if (ret == 1)
1491 ret = 0;
1492
1493 inode_unlock(inode);
1494 return ret;
1495 }
1496
1497 /*
1498 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1499 * Major change was from block_size == page_size in f2fs by default.
1500 *
1501 * Note that the aops->readpages() function is ONLY used for read-ahead. If
1502 * this function ever deviates from doing just read-ahead, it should either
1503 * use ->readpage() or do the necessary surgery to decouple ->readpages()
1504 * from read-ahead.
1505 */
1506 static int f2fs_mpage_readpages(struct address_space *mapping,
1507 struct list_head *pages, struct page *page,
1508 unsigned nr_pages, bool is_readahead)
1509 {
1510 struct bio *bio = NULL;
1511 sector_t last_block_in_bio = 0;
1512 struct inode *inode = mapping->host;
1513 const unsigned blkbits = inode->i_blkbits;
1514 const unsigned blocksize = 1 << blkbits;
1515 sector_t block_in_file;
1516 sector_t last_block;
1517 sector_t last_block_in_file;
1518 sector_t block_nr;
1519 struct f2fs_map_blocks map;
1520
1521 map.m_pblk = 0;
1522 map.m_lblk = 0;
1523 map.m_len = 0;
1524 map.m_flags = 0;
1525 map.m_next_pgofs = NULL;
1526 map.m_next_extent = NULL;
1527 map.m_seg_type = NO_CHECK_TYPE;
1528
1529 for (; nr_pages; nr_pages--) {
1530 if (pages) {
1531 page = list_last_entry(pages, struct page, lru);
1532
1533 prefetchw(&page->flags);
1534 list_del(&page->lru);
1535 if (add_to_page_cache_lru(page, mapping,
1536 page->index,
1537 readahead_gfp_mask(mapping)))
1538 goto next_page;
1539 }
1540
1541 block_in_file = (sector_t)page->index;
1542 last_block = block_in_file + nr_pages;
1543 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1544 blkbits;
1545 if (last_block > last_block_in_file)
1546 last_block = last_block_in_file;
1547
1548 /*
1549 * Map blocks using the previous result first.
1550 */
1551 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1552 block_in_file > map.m_lblk &&
1553 block_in_file < (map.m_lblk + map.m_len))
1554 goto got_it;
1555
1556 /*
1557 * Then do more f2fs_map_blocks() calls until we are
1558 * done with this page.
1559 */
1560 map.m_flags = 0;
1561
1562 if (block_in_file < last_block) {
1563 map.m_lblk = block_in_file;
1564 map.m_len = last_block - block_in_file;
1565
1566 if (f2fs_map_blocks(inode, &map, 0,
1567 F2FS_GET_BLOCK_DEFAULT))
1568 goto set_error_page;
1569 }
1570 got_it:
1571 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1572 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1573 SetPageMappedToDisk(page);
1574
1575 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1576 SetPageUptodate(page);
1577 goto confused;
1578 }
1579
1580 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1581 DATA_GENERIC))
1582 goto set_error_page;
1583 } else {
1584 zero_user_segment(page, 0, PAGE_SIZE);
1585 if (!PageUptodate(page))
1586 SetPageUptodate(page);
1587 unlock_page(page);
1588 goto next_page;
1589 }
1590
1591 /*
1592 * This page will go to BIO. Do we need to send this
1593 * BIO off first?
1594 */
1595 if (bio && (last_block_in_bio != block_nr - 1 ||
1596 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1597 submit_and_realloc:
1598 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1599 bio = NULL;
1600 }
1601 if (bio == NULL) {
1602 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1603 is_readahead ? REQ_RAHEAD : 0);
1604 if (IS_ERR(bio)) {
1605 bio = NULL;
1606 goto set_error_page;
1607 }
1608 }
1609
1610 /*
1611 * If the page is under writeback, we need to wait for
1612 * its completion to see the correct decrypted data.
1613 */
1614 f2fs_wait_on_block_writeback(inode, block_nr);
1615
1616 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1617 goto submit_and_realloc;
1618
1619 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1620 ClearPageError(page);
1621 last_block_in_bio = block_nr;
1622 goto next_page;
1623 set_error_page:
1624 SetPageError(page);
1625 zero_user_segment(page, 0, PAGE_SIZE);
1626 unlock_page(page);
1627 goto next_page;
1628 confused:
1629 if (bio) {
1630 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1631 bio = NULL;
1632 }
1633 unlock_page(page);
1634 next_page:
1635 if (pages)
1636 put_page(page);
1637 }
1638 BUG_ON(pages && !list_empty(pages));
1639 if (bio)
1640 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1641 return 0;
1642 }
1643
1644 static int f2fs_read_data_page(struct file *file, struct page *page)
1645 {
1646 struct inode *inode = page->mapping->host;
1647 int ret = -EAGAIN;
1648
1649 trace_f2fs_readpage(page, DATA);
1650
1651 /* If the file has inline data, try to read it directly */
1652 if (f2fs_has_inline_data(inode))
1653 ret = f2fs_read_inline_data(inode, page);
1654 if (ret == -EAGAIN)
1655 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false);
1656 return ret;
1657 }
1658
1659 static int f2fs_read_data_pages(struct file *file,
1660 struct address_space *mapping,
1661 struct list_head *pages, unsigned nr_pages)
1662 {
1663 struct inode *inode = mapping->host;
1664 struct page *page = list_last_entry(pages, struct page, lru);
1665
1666 trace_f2fs_readpages(inode, page, nr_pages);
1667
1668 /* If the file has inline data, skip readpages */
1669 if (f2fs_has_inline_data(inode))
1670 return 0;
1671
1672 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1673 }
1674
1675 static int encrypt_one_page(struct f2fs_io_info *fio)
1676 {
1677 struct inode *inode = fio->page->mapping->host;
1678 struct page *mpage;
1679 gfp_t gfp_flags = GFP_NOFS;
1680
1681 if (!f2fs_encrypted_file(inode))
1682 return 0;
1683
1684 /* wait for GCed page writeback via META_MAPPING */
1685 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1686
1687 retry_encrypt:
1688 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1689 PAGE_SIZE, 0, fio->page->index, gfp_flags);
1690 if (IS_ERR(fio->encrypted_page)) {
1691 /* flush pending IOs and wait for a while in the ENOMEM case */
1692 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1693 f2fs_flush_merged_writes(fio->sbi);
1694 congestion_wait(BLK_RW_ASYNC, HZ/50);
1695 gfp_flags |= __GFP_NOFAIL;
1696 goto retry_encrypt;
1697 }
1698 return PTR_ERR(fio->encrypted_page);
1699 }
1700
1701 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1702 if (mpage) {
1703 if (PageUptodate(mpage))
1704 memcpy(page_address(mpage),
1705 page_address(fio->encrypted_page), PAGE_SIZE);
1706 f2fs_put_page(mpage, 1);
1707 }
1708 return 0;
1709 }
1710
1711 static inline bool check_inplace_update_policy(struct inode *inode,
1712 struct f2fs_io_info *fio)
1713 {
1714 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1715 unsigned int policy = SM_I(sbi)->ipu_policy;
1716
1717 if (policy & (0x1 << F2FS_IPU_FORCE))
1718 return true;
1719 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1720 return true;
1721 if (policy & (0x1 << F2FS_IPU_UTIL) &&
1722 utilization(sbi) > SM_I(sbi)->min_ipu_util)
1723 return true;
1724 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1725 utilization(sbi) > SM_I(sbi)->min_ipu_util)
1726 return true;
1727
1728 /*
1729 * IPU for rewrite async pages
1730 */
1731 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1732 fio && fio->op == REQ_OP_WRITE &&
1733 !(fio->op_flags & REQ_SYNC) &&
1734 !f2fs_encrypted_inode(inode))
1735 return true;
1736
1737 /* this is only set during fdatasync */
1738 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1739 is_inode_flag_set(inode, FI_NEED_IPU))
1740 return true;
1741
1742 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1743 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1744 return true;
1745
1746 return false;
1747 }
1748
1749 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1750 {
1751 if (f2fs_is_pinned_file(inode))
1752 return true;
1753
1754 /* if this is cold file, we should overwrite to avoid fragmentation */
1755 if (file_is_cold(inode))
1756 return true;
1757
1758 return check_inplace_update_policy(inode, fio);
1759 }
1760
1761 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1762 {
1763 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1764
1765 if (test_opt(sbi, LFS))
1766 return true;
1767 if (S_ISDIR(inode->i_mode))
1768 return true;
1769 if (IS_NOQUOTA(inode))
1770 return true;
1771 if (f2fs_is_atomic_file(inode))
1772 return true;
1773 if (fio) {
1774 if (is_cold_data(fio->page))
1775 return true;
1776 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1777 return true;
1778 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1779 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1780 return true;
1781 }
1782 return false;
1783 }
1784
1785 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1786 {
1787 struct inode *inode = fio->page->mapping->host;
1788
1789 if (f2fs_should_update_outplace(inode, fio))
1790 return false;
1791
1792 return f2fs_should_update_inplace(inode, fio);
1793 }
1794
1795 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1796 {
1797 struct page *page = fio->page;
1798 struct inode *inode = page->mapping->host;
1799 struct dnode_of_data dn;
1800 struct extent_info ei = {0,0,0};
1801 struct node_info ni;
1802 bool ipu_force = false;
1803 int err = 0;
1804
1805 set_new_dnode(&dn, inode, NULL, NULL, 0);
1806 if (need_inplace_update(fio) &&
1807 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1808 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1809
1810 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1811 DATA_GENERIC))
1812 return -EFAULT;
1813
1814 ipu_force = true;
1815 fio->need_lock = LOCK_DONE;
1816 goto got_it;
1817 }
1818
1819 /* Deadlock due to between page->lock and f2fs_lock_op */
1820 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1821 return -EAGAIN;
1822
1823 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1824 if (err)
1825 goto out;
1826
1827 fio->old_blkaddr = dn.data_blkaddr;
1828
1829 /* This page is already truncated */
1830 if (fio->old_blkaddr == NULL_ADDR) {
1831 ClearPageUptodate(page);
1832 clear_cold_data(page);
1833 goto out_writepage;
1834 }
1835 got_it:
1836 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1837 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1838 DATA_GENERIC)) {
1839 err = -EFAULT;
1840 goto out_writepage;
1841 }
1842 /*
1843 * If current allocation needs SSR,
1844 * it had better in-place writes for updated data.
1845 */
1846 if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) &&
1847 need_inplace_update(fio))) {
1848 err = encrypt_one_page(fio);
1849 if (err)
1850 goto out_writepage;
1851
1852 set_page_writeback(page);
1853 ClearPageError(page);
1854 f2fs_put_dnode(&dn);
1855 if (fio->need_lock == LOCK_REQ)
1856 f2fs_unlock_op(fio->sbi);
1857 err = f2fs_inplace_write_data(fio);
1858 trace_f2fs_do_write_data_page(fio->page, IPU);
1859 set_inode_flag(inode, FI_UPDATE_WRITE);
1860 return err;
1861 }
1862
1863 if (fio->need_lock == LOCK_RETRY) {
1864 if (!f2fs_trylock_op(fio->sbi)) {
1865 err = -EAGAIN;
1866 goto out_writepage;
1867 }
1868 fio->need_lock = LOCK_REQ;
1869 }
1870
1871 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1872 if (err)
1873 goto out_writepage;
1874
1875 fio->version = ni.version;
1876
1877 err = encrypt_one_page(fio);
1878 if (err)
1879 goto out_writepage;
1880
1881 set_page_writeback(page);
1882 ClearPageError(page);
1883
1884 /* LFS mode write path */
1885 f2fs_outplace_write_data(&dn, fio);
1886 trace_f2fs_do_write_data_page(page, OPU);
1887 set_inode_flag(inode, FI_APPEND_WRITE);
1888 if (page->index == 0)
1889 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1890 out_writepage:
1891 f2fs_put_dnode(&dn);
1892 out:
1893 if (fio->need_lock == LOCK_REQ)
1894 f2fs_unlock_op(fio->sbi);
1895 return err;
1896 }
1897
1898 static int __write_data_page(struct page *page, bool *submitted,
1899 struct writeback_control *wbc,
1900 enum iostat_type io_type)
1901 {
1902 struct inode *inode = page->mapping->host;
1903 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1904 loff_t i_size = i_size_read(inode);
1905 const pgoff_t end_index = ((unsigned long long) i_size)
1906 >> PAGE_SHIFT;
1907 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1908 unsigned offset = 0;
1909 bool need_balance_fs = false;
1910 int err = 0;
1911 struct f2fs_io_info fio = {
1912 .sbi = sbi,
1913 .ino = inode->i_ino,
1914 .type = DATA,
1915 .op = REQ_OP_WRITE,
1916 .op_flags = wbc_to_write_flags(wbc),
1917 .old_blkaddr = NULL_ADDR,
1918 .page = page,
1919 .encrypted_page = NULL,
1920 .submitted = false,
1921 .need_lock = LOCK_RETRY,
1922 .io_type = io_type,
1923 .io_wbc = wbc,
1924 };
1925
1926 trace_f2fs_writepage(page, DATA);
1927
1928 /* we should bypass data pages to proceed the kworkder jobs */
1929 if (unlikely(f2fs_cp_error(sbi))) {
1930 mapping_set_error(page->mapping, -EIO);
1931 /*
1932 * don't drop any dirty dentry pages for keeping lastest
1933 * directory structure.
1934 */
1935 if (S_ISDIR(inode->i_mode))
1936 goto redirty_out;
1937 goto out;
1938 }
1939
1940 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1941 goto redirty_out;
1942
1943 if (page->index < end_index)
1944 goto write;
1945
1946 /*
1947 * If the offset is out-of-range of file size,
1948 * this page does not have to be written to disk.
1949 */
1950 offset = i_size & (PAGE_SIZE - 1);
1951 if ((page->index >= end_index + 1) || !offset)
1952 goto out;
1953
1954 zero_user_segment(page, offset, PAGE_SIZE);
1955 write:
1956 if (f2fs_is_drop_cache(inode))
1957 goto out;
1958 /* we should not write 0'th page having journal header */
1959 if (f2fs_is_volatile_file(inode) && (!page->index ||
1960 (!wbc->for_reclaim &&
1961 f2fs_available_free_memory(sbi, BASE_CHECK))))
1962 goto redirty_out;
1963
1964 /* Dentry blocks are controlled by checkpoint */
1965 if (S_ISDIR(inode->i_mode)) {
1966 fio.need_lock = LOCK_DONE;
1967 err = f2fs_do_write_data_page(&fio);
1968 goto done;
1969 }
1970
1971 if (!wbc->for_reclaim)
1972 need_balance_fs = true;
1973 else if (has_not_enough_free_secs(sbi, 0, 0))
1974 goto redirty_out;
1975 else
1976 set_inode_flag(inode, FI_HOT_DATA);
1977
1978 err = -EAGAIN;
1979 if (f2fs_has_inline_data(inode)) {
1980 err = f2fs_write_inline_data(inode, page);
1981 if (!err)
1982 goto out;
1983 }
1984
1985 if (err == -EAGAIN) {
1986 err = f2fs_do_write_data_page(&fio);
1987 if (err == -EAGAIN) {
1988 fio.need_lock = LOCK_REQ;
1989 err = f2fs_do_write_data_page(&fio);
1990 }
1991 }
1992
1993 if (err) {
1994 file_set_keep_isize(inode);
1995 } else {
1996 down_write(&F2FS_I(inode)->i_sem);
1997 if (F2FS_I(inode)->last_disk_size < psize)
1998 F2FS_I(inode)->last_disk_size = psize;
1999 up_write(&F2FS_I(inode)->i_sem);
2000 }
2001
2002 done:
2003 if (err && err != -ENOENT)
2004 goto redirty_out;
2005
2006 out:
2007 inode_dec_dirty_pages(inode);
2008 if (err) {
2009 ClearPageUptodate(page);
2010 clear_cold_data(page);
2011 }
2012
2013 if (wbc->for_reclaim) {
2014 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2015 clear_inode_flag(inode, FI_HOT_DATA);
2016 f2fs_remove_dirty_inode(inode);
2017 submitted = NULL;
2018 }
2019
2020 unlock_page(page);
2021 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode))
2022 f2fs_balance_fs(sbi, need_balance_fs);
2023
2024 if (unlikely(f2fs_cp_error(sbi))) {
2025 f2fs_submit_merged_write(sbi, DATA);
2026 submitted = NULL;
2027 }
2028
2029 if (submitted)
2030 *submitted = fio.submitted;
2031
2032 return 0;
2033
2034 redirty_out:
2035 redirty_page_for_writepage(wbc, page);
2036 /*
2037 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2038 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2039 * file_write_and_wait_range() will see EIO error, which is critical
2040 * to return value of fsync() followed by atomic_write failure to user.
2041 */
2042 if (!err || wbc->for_reclaim)
2043 return AOP_WRITEPAGE_ACTIVATE;
2044 unlock_page(page);
2045 return err;
2046 }
2047
2048 static int f2fs_write_data_page(struct page *page,
2049 struct writeback_control *wbc)
2050 {
2051 return __write_data_page(page, NULL, wbc, FS_DATA_IO);
2052 }
2053
2054 /*
2055 * This function was copied from write_cche_pages from mm/page-writeback.c.
2056 * The major change is making write step of cold data page separately from
2057 * warm/hot data page.
2058 */
2059 static int f2fs_write_cache_pages(struct address_space *mapping,
2060 struct writeback_control *wbc,
2061 enum iostat_type io_type)
2062 {
2063 int ret = 0;
2064 int done = 0;
2065 struct pagevec pvec;
2066 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2067 int nr_pages;
2068 pgoff_t uninitialized_var(writeback_index);
2069 pgoff_t index;
2070 pgoff_t end; /* Inclusive */
2071 pgoff_t done_index;
2072 int cycled;
2073 int range_whole = 0;
2074 xa_mark_t tag;
2075 int nwritten = 0;
2076
2077 pagevec_init(&pvec);
2078
2079 if (get_dirty_pages(mapping->host) <=
2080 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2081 set_inode_flag(mapping->host, FI_HOT_DATA);
2082 else
2083 clear_inode_flag(mapping->host, FI_HOT_DATA);
2084
2085 if (wbc->range_cyclic) {
2086 writeback_index = mapping->writeback_index; /* prev offset */
2087 index = writeback_index;
2088 if (index == 0)
2089 cycled = 1;
2090 else
2091 cycled = 0;
2092 end = -1;
2093 } else {
2094 index = wbc->range_start >> PAGE_SHIFT;
2095 end = wbc->range_end >> PAGE_SHIFT;
2096 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2097 range_whole = 1;
2098 cycled = 1; /* ignore range_cyclic tests */
2099 }
2100 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2101 tag = PAGECACHE_TAG_TOWRITE;
2102 else
2103 tag = PAGECACHE_TAG_DIRTY;
2104 retry:
2105 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2106 tag_pages_for_writeback(mapping, index, end);
2107 done_index = index;
2108 while (!done && (index <= end)) {
2109 int i;
2110
2111 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2112 tag);
2113 if (nr_pages == 0)
2114 break;
2115
2116 for (i = 0; i < nr_pages; i++) {
2117 struct page *page = pvec.pages[i];
2118 bool submitted = false;
2119
2120 /* give a priority to WB_SYNC threads */
2121 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2122 wbc->sync_mode == WB_SYNC_NONE) {
2123 done = 1;
2124 break;
2125 }
2126
2127 done_index = page->index;
2128 retry_write:
2129 lock_page(page);
2130
2131 if (unlikely(page->mapping != mapping)) {
2132 continue_unlock:
2133 unlock_page(page);
2134 continue;
2135 }
2136
2137 if (!PageDirty(page)) {
2138 /* someone wrote it for us */
2139 goto continue_unlock;
2140 }
2141
2142 if (PageWriteback(page)) {
2143 if (wbc->sync_mode != WB_SYNC_NONE)
2144 f2fs_wait_on_page_writeback(page,
2145 DATA, true);
2146 else
2147 goto continue_unlock;
2148 }
2149
2150 BUG_ON(PageWriteback(page));
2151 if (!clear_page_dirty_for_io(page))
2152 goto continue_unlock;
2153
2154 ret = __write_data_page(page, &submitted, wbc, io_type);
2155 if (unlikely(ret)) {
2156 /*
2157 * keep nr_to_write, since vfs uses this to
2158 * get # of written pages.
2159 */
2160 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2161 unlock_page(page);
2162 ret = 0;
2163 continue;
2164 } else if (ret == -EAGAIN) {
2165 ret = 0;
2166 if (wbc->sync_mode == WB_SYNC_ALL) {
2167 cond_resched();
2168 congestion_wait(BLK_RW_ASYNC,
2169 HZ/50);
2170 goto retry_write;
2171 }
2172 continue;
2173 }
2174 done_index = page->index + 1;
2175 done = 1;
2176 break;
2177 } else if (submitted) {
2178 nwritten++;
2179 }
2180
2181 if (--wbc->nr_to_write <= 0 &&
2182 wbc->sync_mode == WB_SYNC_NONE) {
2183 done = 1;
2184 break;
2185 }
2186 }
2187 pagevec_release(&pvec);
2188 cond_resched();
2189 }
2190
2191 if (!cycled && !done) {
2192 cycled = 1;
2193 index = 0;
2194 end = writeback_index - 1;
2195 goto retry;
2196 }
2197 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2198 mapping->writeback_index = done_index;
2199
2200 if (nwritten)
2201 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2202 NULL, 0, DATA);
2203
2204 return ret;
2205 }
2206
2207 static inline bool __should_serialize_io(struct inode *inode,
2208 struct writeback_control *wbc)
2209 {
2210 if (!S_ISREG(inode->i_mode))
2211 return false;
2212 if (IS_NOQUOTA(inode))
2213 return false;
2214 if (wbc->sync_mode != WB_SYNC_ALL)
2215 return true;
2216 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2217 return true;
2218 return false;
2219 }
2220
2221 static int __f2fs_write_data_pages(struct address_space *mapping,
2222 struct writeback_control *wbc,
2223 enum iostat_type io_type)
2224 {
2225 struct inode *inode = mapping->host;
2226 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2227 struct blk_plug plug;
2228 int ret;
2229 bool locked = false;
2230
2231 /* deal with chardevs and other special file */
2232 if (!mapping->a_ops->writepage)
2233 return 0;
2234
2235 /* skip writing if there is no dirty page in this inode */
2236 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2237 return 0;
2238
2239 /* during POR, we don't need to trigger writepage at all. */
2240 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2241 goto skip_write;
2242
2243 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2244 wbc->sync_mode == WB_SYNC_NONE &&
2245 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2246 f2fs_available_free_memory(sbi, DIRTY_DENTS))
2247 goto skip_write;
2248
2249 /* skip writing during file defragment */
2250 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2251 goto skip_write;
2252
2253 trace_f2fs_writepages(mapping->host, wbc, DATA);
2254
2255 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2256 if (wbc->sync_mode == WB_SYNC_ALL)
2257 atomic_inc(&sbi->wb_sync_req[DATA]);
2258 else if (atomic_read(&sbi->wb_sync_req[DATA]))
2259 goto skip_write;
2260
2261 if (__should_serialize_io(inode, wbc)) {
2262 mutex_lock(&sbi->writepages);
2263 locked = true;
2264 }
2265
2266 blk_start_plug(&plug);
2267 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2268 blk_finish_plug(&plug);
2269
2270 if (locked)
2271 mutex_unlock(&sbi->writepages);
2272
2273 if (wbc->sync_mode == WB_SYNC_ALL)
2274 atomic_dec(&sbi->wb_sync_req[DATA]);
2275 /*
2276 * if some pages were truncated, we cannot guarantee its mapping->host
2277 * to detect pending bios.
2278 */
2279
2280 f2fs_remove_dirty_inode(inode);
2281 return ret;
2282
2283 skip_write:
2284 wbc->pages_skipped += get_dirty_pages(inode);
2285 trace_f2fs_writepages(mapping->host, wbc, DATA);
2286 return 0;
2287 }
2288
2289 static int f2fs_write_data_pages(struct address_space *mapping,
2290 struct writeback_control *wbc)
2291 {
2292 struct inode *inode = mapping->host;
2293
2294 return __f2fs_write_data_pages(mapping, wbc,
2295 F2FS_I(inode)->cp_task == current ?
2296 FS_CP_DATA_IO : FS_DATA_IO);
2297 }
2298
2299 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2300 {
2301 struct inode *inode = mapping->host;
2302 loff_t i_size = i_size_read(inode);
2303
2304 if (to > i_size) {
2305 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2306 down_write(&F2FS_I(inode)->i_mmap_sem);
2307
2308 truncate_pagecache(inode, i_size);
2309 f2fs_truncate_blocks(inode, i_size, true, true);
2310
2311 up_write(&F2FS_I(inode)->i_mmap_sem);
2312 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2313 }
2314 }
2315
2316 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2317 struct page *page, loff_t pos, unsigned len,
2318 block_t *blk_addr, bool *node_changed)
2319 {
2320 struct inode *inode = page->mapping->host;
2321 pgoff_t index = page->index;
2322 struct dnode_of_data dn;
2323 struct page *ipage;
2324 bool locked = false;
2325 struct extent_info ei = {0,0,0};
2326 int err = 0;
2327
2328 /*
2329 * we already allocated all the blocks, so we don't need to get
2330 * the block addresses when there is no need to fill the page.
2331 */
2332 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2333 !is_inode_flag_set(inode, FI_NO_PREALLOC))
2334 return 0;
2335
2336 if (f2fs_has_inline_data(inode) ||
2337 (pos & PAGE_MASK) >= i_size_read(inode)) {
2338 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
2339 locked = true;
2340 }
2341 restart:
2342 /* check inline_data */
2343 ipage = f2fs_get_node_page(sbi, inode->i_ino);
2344 if (IS_ERR(ipage)) {
2345 err = PTR_ERR(ipage);
2346 goto unlock_out;
2347 }
2348
2349 set_new_dnode(&dn, inode, ipage, ipage, 0);
2350
2351 if (f2fs_has_inline_data(inode)) {
2352 if (pos + len <= MAX_INLINE_DATA(inode)) {
2353 f2fs_do_read_inline_data(page, ipage);
2354 set_inode_flag(inode, FI_DATA_EXIST);
2355 if (inode->i_nlink)
2356 set_inline_node(ipage);
2357 } else {
2358 err = f2fs_convert_inline_page(&dn, page);
2359 if (err)
2360 goto out;
2361 if (dn.data_blkaddr == NULL_ADDR)
2362 err = f2fs_get_block(&dn, index);
2363 }
2364 } else if (locked) {
2365 err = f2fs_get_block(&dn, index);
2366 } else {
2367 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2368 dn.data_blkaddr = ei.blk + index - ei.fofs;
2369 } else {
2370 /* hole case */
2371 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2372 if (err || dn.data_blkaddr == NULL_ADDR) {
2373 f2fs_put_dnode(&dn);
2374 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2375 true);
2376 locked = true;
2377 goto restart;
2378 }
2379 }
2380 }
2381
2382 /* convert_inline_page can make node_changed */
2383 *blk_addr = dn.data_blkaddr;
2384 *node_changed = dn.node_changed;
2385 out:
2386 f2fs_put_dnode(&dn);
2387 unlock_out:
2388 if (locked)
2389 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
2390 return err;
2391 }
2392
2393 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2394 loff_t pos, unsigned len, unsigned flags,
2395 struct page **pagep, void **fsdata)
2396 {
2397 struct inode *inode = mapping->host;
2398 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2399 struct page *page = NULL;
2400 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2401 bool need_balance = false, drop_atomic = false;
2402 block_t blkaddr = NULL_ADDR;
2403 int err = 0;
2404
2405 trace_f2fs_write_begin(inode, pos, len, flags);
2406
2407 err = f2fs_is_checkpoint_ready(sbi);
2408 if (err)
2409 goto fail;
2410
2411 if ((f2fs_is_atomic_file(inode) &&
2412 !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2413 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2414 err = -ENOMEM;
2415 drop_atomic = true;
2416 goto fail;
2417 }
2418
2419 /*
2420 * We should check this at this moment to avoid deadlock on inode page
2421 * and #0 page. The locking rule for inline_data conversion should be:
2422 * lock_page(page #0) -> lock_page(inode_page)
2423 */
2424 if (index != 0) {
2425 err = f2fs_convert_inline_inode(inode);
2426 if (err)
2427 goto fail;
2428 }
2429 repeat:
2430 /*
2431 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2432 * wait_for_stable_page. Will wait that below with our IO control.
2433 */
2434 page = f2fs_pagecache_get_page(mapping, index,
2435 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2436 if (!page) {
2437 err = -ENOMEM;
2438 goto fail;
2439 }
2440
2441 *pagep = page;
2442
2443 err = prepare_write_begin(sbi, page, pos, len,
2444 &blkaddr, &need_balance);
2445 if (err)
2446 goto fail;
2447
2448 if (need_balance && !IS_NOQUOTA(inode) &&
2449 has_not_enough_free_secs(sbi, 0, 0)) {
2450 unlock_page(page);
2451 f2fs_balance_fs(sbi, true);
2452 lock_page(page);
2453 if (page->mapping != mapping) {
2454 /* The page got truncated from under us */
2455 f2fs_put_page(page, 1);
2456 goto repeat;
2457 }
2458 }
2459
2460 f2fs_wait_on_page_writeback(page, DATA, false);
2461
2462 if (len == PAGE_SIZE || PageUptodate(page))
2463 return 0;
2464
2465 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2466 zero_user_segment(page, len, PAGE_SIZE);
2467 return 0;
2468 }
2469
2470 if (blkaddr == NEW_ADDR) {
2471 zero_user_segment(page, 0, PAGE_SIZE);
2472 SetPageUptodate(page);
2473 } else {
2474 err = f2fs_submit_page_read(inode, page, blkaddr);
2475 if (err)
2476 goto fail;
2477
2478 lock_page(page);
2479 if (unlikely(page->mapping != mapping)) {
2480 f2fs_put_page(page, 1);
2481 goto repeat;
2482 }
2483 if (unlikely(!PageUptodate(page))) {
2484 err = -EIO;
2485 goto fail;
2486 }
2487 }
2488 return 0;
2489
2490 fail:
2491 f2fs_put_page(page, 1);
2492 f2fs_write_failed(mapping, pos + len);
2493 if (drop_atomic)
2494 f2fs_drop_inmem_pages_all(sbi, false);
2495 return err;
2496 }
2497
2498 static int f2fs_write_end(struct file *file,
2499 struct address_space *mapping,
2500 loff_t pos, unsigned len, unsigned copied,
2501 struct page *page, void *fsdata)
2502 {
2503 struct inode *inode = page->mapping->host;
2504
2505 trace_f2fs_write_end(inode, pos, len, copied);
2506
2507 /*
2508 * This should be come from len == PAGE_SIZE, and we expect copied
2509 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2510 * let generic_perform_write() try to copy data again through copied=0.
2511 */
2512 if (!PageUptodate(page)) {
2513 if (unlikely(copied != len))
2514 copied = 0;
2515 else
2516 SetPageUptodate(page);
2517 }
2518 if (!copied)
2519 goto unlock_out;
2520
2521 set_page_dirty(page);
2522
2523 if (pos + copied > i_size_read(inode))
2524 f2fs_i_size_write(inode, pos + copied);
2525 unlock_out:
2526 f2fs_put_page(page, 1);
2527 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2528 return copied;
2529 }
2530
2531 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2532 loff_t offset)
2533 {
2534 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2535 unsigned blkbits = i_blkbits;
2536 unsigned blocksize_mask = (1 << blkbits) - 1;
2537 unsigned long align = offset | iov_iter_alignment(iter);
2538 struct block_device *bdev = inode->i_sb->s_bdev;
2539
2540 if (align & blocksize_mask) {
2541 if (bdev)
2542 blkbits = blksize_bits(bdev_logical_block_size(bdev));
2543 blocksize_mask = (1 << blkbits) - 1;
2544 if (align & blocksize_mask)
2545 return -EINVAL;
2546 return 1;
2547 }
2548 return 0;
2549 }
2550
2551 static void f2fs_dio_end_io(struct bio *bio)
2552 {
2553 struct f2fs_private_dio *dio = bio->bi_private;
2554
2555 dec_page_count(F2FS_I_SB(dio->inode),
2556 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2557
2558 bio->bi_private = dio->orig_private;
2559 bio->bi_end_io = dio->orig_end_io;
2560
2561 kfree(dio);
2562
2563 bio_endio(bio);
2564 }
2565
2566 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2567 loff_t file_offset)
2568 {
2569 struct f2fs_private_dio *dio;
2570 bool write = (bio_op(bio) == REQ_OP_WRITE);
2571 int err;
2572
2573 dio = f2fs_kzalloc(F2FS_I_SB(inode),
2574 sizeof(struct f2fs_private_dio), GFP_NOFS);
2575 if (!dio) {
2576 err = -ENOMEM;
2577 goto out;
2578 }
2579
2580 dio->inode = inode;
2581 dio->orig_end_io = bio->bi_end_io;
2582 dio->orig_private = bio->bi_private;
2583 dio->write = write;
2584
2585 bio->bi_end_io = f2fs_dio_end_io;
2586 bio->bi_private = dio;
2587
2588 inc_page_count(F2FS_I_SB(inode),
2589 write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2590
2591 submit_bio(bio);
2592 return;
2593 out:
2594 bio->bi_status = BLK_STS_IOERR;
2595 bio_endio(bio);
2596 }
2597
2598 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2599 {
2600 struct address_space *mapping = iocb->ki_filp->f_mapping;
2601 struct inode *inode = mapping->host;
2602 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2603 struct f2fs_inode_info *fi = F2FS_I(inode);
2604 size_t count = iov_iter_count(iter);
2605 loff_t offset = iocb->ki_pos;
2606 int rw = iov_iter_rw(iter);
2607 int err;
2608 enum rw_hint hint = iocb->ki_hint;
2609 int whint_mode = F2FS_OPTION(sbi).whint_mode;
2610 bool do_opu;
2611
2612 err = check_direct_IO(inode, iter, offset);
2613 if (err)
2614 return err < 0 ? err : 0;
2615
2616 if (f2fs_force_buffered_io(inode, iocb, iter))
2617 return 0;
2618
2619 do_opu = allow_outplace_dio(inode, iocb, iter);
2620
2621 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2622
2623 if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2624 iocb->ki_hint = WRITE_LIFE_NOT_SET;
2625
2626 if (iocb->ki_flags & IOCB_NOWAIT) {
2627 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2628 iocb->ki_hint = hint;
2629 err = -EAGAIN;
2630 goto out;
2631 }
2632 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2633 up_read(&fi->i_gc_rwsem[rw]);
2634 iocb->ki_hint = hint;
2635 err = -EAGAIN;
2636 goto out;
2637 }
2638 } else {
2639 down_read(&fi->i_gc_rwsem[rw]);
2640 if (do_opu)
2641 down_read(&fi->i_gc_rwsem[READ]);
2642 }
2643
2644 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2645 iter, get_data_block_dio, NULL, f2fs_dio_submit_bio,
2646 DIO_LOCKING | DIO_SKIP_HOLES);
2647
2648 if (do_opu)
2649 up_read(&fi->i_gc_rwsem[READ]);
2650
2651 up_read(&fi->i_gc_rwsem[rw]);
2652
2653 if (rw == WRITE) {
2654 if (whint_mode == WHINT_MODE_OFF)
2655 iocb->ki_hint = hint;
2656 if (err > 0) {
2657 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2658 err);
2659 if (!do_opu)
2660 set_inode_flag(inode, FI_UPDATE_WRITE);
2661 } else if (err < 0) {
2662 f2fs_write_failed(mapping, offset + count);
2663 }
2664 }
2665
2666 out:
2667 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2668
2669 return err;
2670 }
2671
2672 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2673 unsigned int length)
2674 {
2675 struct inode *inode = page->mapping->host;
2676 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2677
2678 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2679 (offset % PAGE_SIZE || length != PAGE_SIZE))
2680 return;
2681
2682 if (PageDirty(page)) {
2683 if (inode->i_ino == F2FS_META_INO(sbi)) {
2684 dec_page_count(sbi, F2FS_DIRTY_META);
2685 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2686 dec_page_count(sbi, F2FS_DIRTY_NODES);
2687 } else {
2688 inode_dec_dirty_pages(inode);
2689 f2fs_remove_dirty_inode(inode);
2690 }
2691 }
2692
2693 clear_cold_data(page);
2694
2695 /* This is atomic written page, keep Private */
2696 if (IS_ATOMIC_WRITTEN_PAGE(page))
2697 return f2fs_drop_inmem_page(inode, page);
2698
2699 set_page_private(page, 0);
2700 ClearPagePrivate(page);
2701 }
2702
2703 int f2fs_release_page(struct page *page, gfp_t wait)
2704 {
2705 /* If this is dirty page, keep PagePrivate */
2706 if (PageDirty(page))
2707 return 0;
2708
2709 /* This is atomic written page, keep Private */
2710 if (IS_ATOMIC_WRITTEN_PAGE(page))
2711 return 0;
2712
2713 clear_cold_data(page);
2714 set_page_private(page, 0);
2715 ClearPagePrivate(page);
2716 return 1;
2717 }
2718
2719 static int f2fs_set_data_page_dirty(struct page *page)
2720 {
2721 struct address_space *mapping = page->mapping;
2722 struct inode *inode = mapping->host;
2723
2724 trace_f2fs_set_page_dirty(page, DATA);
2725
2726 if (!PageUptodate(page))
2727 SetPageUptodate(page);
2728
2729 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2730 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2731 f2fs_register_inmem_page(inode, page);
2732 return 1;
2733 }
2734 /*
2735 * Previously, this page has been registered, we just
2736 * return here.
2737 */
2738 return 0;
2739 }
2740
2741 if (!PageDirty(page)) {
2742 __set_page_dirty_nobuffers(page);
2743 f2fs_update_dirty_page(inode, page);
2744 return 1;
2745 }
2746 return 0;
2747 }
2748
2749 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2750 {
2751 struct inode *inode = mapping->host;
2752
2753 if (f2fs_has_inline_data(inode))
2754 return 0;
2755
2756 /* make sure allocating whole blocks */
2757 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2758 filemap_write_and_wait(mapping);
2759
2760 return generic_block_bmap(mapping, block, get_data_block_bmap);
2761 }
2762
2763 #ifdef CONFIG_MIGRATION
2764 #include <linux/migrate.h>
2765
2766 int f2fs_migrate_page(struct address_space *mapping,
2767 struct page *newpage, struct page *page, enum migrate_mode mode)
2768 {
2769 int rc, extra_count;
2770 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2771 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2772
2773 BUG_ON(PageWriteback(page));
2774
2775 /* migrating an atomic written page is safe with the inmem_lock hold */
2776 if (atomic_written) {
2777 if (mode != MIGRATE_SYNC)
2778 return -EBUSY;
2779 if (!mutex_trylock(&fi->inmem_lock))
2780 return -EAGAIN;
2781 }
2782
2783 /*
2784 * A reference is expected if PagePrivate set when move mapping,
2785 * however F2FS breaks this for maintaining dirty page counts when
2786 * truncating pages. So here adjusting the 'extra_count' make it work.
2787 */
2788 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2789 rc = migrate_page_move_mapping(mapping, newpage,
2790 page, NULL, mode, extra_count);
2791 if (rc != MIGRATEPAGE_SUCCESS) {
2792 if (atomic_written)
2793 mutex_unlock(&fi->inmem_lock);
2794 return rc;
2795 }
2796
2797 if (atomic_written) {
2798 struct inmem_pages *cur;
2799 list_for_each_entry(cur, &fi->inmem_pages, list)
2800 if (cur->page == page) {
2801 cur->page = newpage;
2802 break;
2803 }
2804 mutex_unlock(&fi->inmem_lock);
2805 put_page(page);
2806 get_page(newpage);
2807 }
2808
2809 if (PagePrivate(page))
2810 SetPagePrivate(newpage);
2811 set_page_private(newpage, page_private(page));
2812
2813 if (mode != MIGRATE_SYNC_NO_COPY)
2814 migrate_page_copy(newpage, page);
2815 else
2816 migrate_page_states(newpage, page);
2817
2818 return MIGRATEPAGE_SUCCESS;
2819 }
2820 #endif
2821
2822 const struct address_space_operations f2fs_dblock_aops = {
2823 .readpage = f2fs_read_data_page,
2824 .readpages = f2fs_read_data_pages,
2825 .writepage = f2fs_write_data_page,
2826 .writepages = f2fs_write_data_pages,
2827 .write_begin = f2fs_write_begin,
2828 .write_end = f2fs_write_end,
2829 .set_page_dirty = f2fs_set_data_page_dirty,
2830 .invalidatepage = f2fs_invalidate_page,
2831 .releasepage = f2fs_release_page,
2832 .direct_IO = f2fs_direct_IO,
2833 .bmap = f2fs_bmap,
2834 #ifdef CONFIG_MIGRATION
2835 .migratepage = f2fs_migrate_page,
2836 #endif
2837 };
2838
2839 void f2fs_clear_page_cache_dirty_tag(struct page *page)
2840 {
2841 struct address_space *mapping = page_mapping(page);
2842 unsigned long flags;
2843
2844 xa_lock_irqsave(&mapping->i_pages, flags);
2845 __xa_clear_mark(&mapping->i_pages, page_index(page),
2846 PAGECACHE_TAG_DIRTY);
2847 xa_unlock_irqrestore(&mapping->i_pages, flags);
2848 }
2849
2850 int __init f2fs_init_post_read_processing(void)
2851 {
2852 bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
2853 if (!bio_post_read_ctx_cache)
2854 goto fail;
2855 bio_post_read_ctx_pool =
2856 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
2857 bio_post_read_ctx_cache);
2858 if (!bio_post_read_ctx_pool)
2859 goto fail_free_cache;
2860 return 0;
2861
2862 fail_free_cache:
2863 kmem_cache_destroy(bio_post_read_ctx_cache);
2864 fail:
2865 return -ENOMEM;
2866 }
2867
2868 void __exit f2fs_destroy_post_read_processing(void)
2869 {
2870 mempool_destroy(bio_post_read_ctx_pool);
2871 kmem_cache_destroy(bio_post_read_ctx_cache);
2872 }