]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/f2fs/data.c
Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
[mirror_ubuntu-eoan-kernel.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/prefetch.h>
18 #include <linux/uio.h>
19 #include <linux/cleancache.h>
20 #include <linux/sched/signal.h>
21
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "trace.h"
26 #include <trace/events/f2fs.h>
27
28 #define NUM_PREALLOC_POST_READ_CTXS 128
29
30 static struct kmem_cache *bio_post_read_ctx_cache;
31 static mempool_t *bio_post_read_ctx_pool;
32
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35 struct address_space *mapping = page->mapping;
36 struct inode *inode;
37 struct f2fs_sb_info *sbi;
38
39 if (!mapping)
40 return false;
41
42 inode = mapping->host;
43 sbi = F2FS_I_SB(inode);
44
45 if (inode->i_ino == F2FS_META_INO(sbi) ||
46 inode->i_ino == F2FS_NODE_INO(sbi) ||
47 S_ISDIR(inode->i_mode) ||
48 (S_ISREG(inode->i_mode) &&
49 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
50 is_cold_data(page))
51 return true;
52 return false;
53 }
54
55 static enum count_type __read_io_type(struct page *page)
56 {
57 struct address_space *mapping = page->mapping;
58
59 if (mapping) {
60 struct inode *inode = mapping->host;
61 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
62
63 if (inode->i_ino == F2FS_META_INO(sbi))
64 return F2FS_RD_META;
65
66 if (inode->i_ino == F2FS_NODE_INO(sbi))
67 return F2FS_RD_NODE;
68 }
69 return F2FS_RD_DATA;
70 }
71
72 /* postprocessing steps for read bios */
73 enum bio_post_read_step {
74 STEP_INITIAL = 0,
75 STEP_DECRYPT,
76 };
77
78 struct bio_post_read_ctx {
79 struct bio *bio;
80 struct work_struct work;
81 unsigned int cur_step;
82 unsigned int enabled_steps;
83 };
84
85 static void __read_end_io(struct bio *bio)
86 {
87 struct page *page;
88 struct bio_vec *bv;
89 int i;
90 struct bvec_iter_all iter_all;
91
92 bio_for_each_segment_all(bv, bio, i, iter_all) {
93 page = bv->bv_page;
94
95 /* PG_error was set if any post_read step failed */
96 if (bio->bi_status || PageError(page)) {
97 ClearPageUptodate(page);
98 /* will re-read again later */
99 ClearPageError(page);
100 } else {
101 SetPageUptodate(page);
102 }
103 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
104 unlock_page(page);
105 }
106 if (bio->bi_private)
107 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
108 bio_put(bio);
109 }
110
111 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
112
113 static void decrypt_work(struct work_struct *work)
114 {
115 struct bio_post_read_ctx *ctx =
116 container_of(work, struct bio_post_read_ctx, work);
117
118 fscrypt_decrypt_bio(ctx->bio);
119
120 bio_post_read_processing(ctx);
121 }
122
123 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
124 {
125 switch (++ctx->cur_step) {
126 case STEP_DECRYPT:
127 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
128 INIT_WORK(&ctx->work, decrypt_work);
129 fscrypt_enqueue_decrypt_work(&ctx->work);
130 return;
131 }
132 ctx->cur_step++;
133 /* fall-through */
134 default:
135 __read_end_io(ctx->bio);
136 }
137 }
138
139 static bool f2fs_bio_post_read_required(struct bio *bio)
140 {
141 return bio->bi_private && !bio->bi_status;
142 }
143
144 static void f2fs_read_end_io(struct bio *bio)
145 {
146 if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)),
147 FAULT_READ_IO)) {
148 f2fs_show_injection_info(FAULT_READ_IO);
149 bio->bi_status = BLK_STS_IOERR;
150 }
151
152 if (f2fs_bio_post_read_required(bio)) {
153 struct bio_post_read_ctx *ctx = bio->bi_private;
154
155 ctx->cur_step = STEP_INITIAL;
156 bio_post_read_processing(ctx);
157 return;
158 }
159
160 __read_end_io(bio);
161 }
162
163 static void f2fs_write_end_io(struct bio *bio)
164 {
165 struct f2fs_sb_info *sbi = bio->bi_private;
166 struct bio_vec *bvec;
167 int i;
168 struct bvec_iter_all iter_all;
169
170 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
171 f2fs_show_injection_info(FAULT_WRITE_IO);
172 bio->bi_status = BLK_STS_IOERR;
173 }
174
175 bio_for_each_segment_all(bvec, bio, i, iter_all) {
176 struct page *page = bvec->bv_page;
177 enum count_type type = WB_DATA_TYPE(page);
178
179 if (IS_DUMMY_WRITTEN_PAGE(page)) {
180 set_page_private(page, (unsigned long)NULL);
181 ClearPagePrivate(page);
182 unlock_page(page);
183 mempool_free(page, sbi->write_io_dummy);
184
185 if (unlikely(bio->bi_status))
186 f2fs_stop_checkpoint(sbi, true);
187 continue;
188 }
189
190 fscrypt_pullback_bio_page(&page, true);
191
192 if (unlikely(bio->bi_status)) {
193 mapping_set_error(page->mapping, -EIO);
194 if (type == F2FS_WB_CP_DATA)
195 f2fs_stop_checkpoint(sbi, true);
196 }
197
198 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
199 page->index != nid_of_node(page));
200
201 dec_page_count(sbi, type);
202 if (f2fs_in_warm_node_list(sbi, page))
203 f2fs_del_fsync_node_entry(sbi, page);
204 clear_cold_data(page);
205 end_page_writeback(page);
206 }
207 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
208 wq_has_sleeper(&sbi->cp_wait))
209 wake_up(&sbi->cp_wait);
210
211 bio_put(bio);
212 }
213
214 /*
215 * Return true, if pre_bio's bdev is same as its target device.
216 */
217 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
218 block_t blk_addr, struct bio *bio)
219 {
220 struct block_device *bdev = sbi->sb->s_bdev;
221 int i;
222
223 for (i = 0; i < sbi->s_ndevs; i++) {
224 if (FDEV(i).start_blk <= blk_addr &&
225 FDEV(i).end_blk >= blk_addr) {
226 blk_addr -= FDEV(i).start_blk;
227 bdev = FDEV(i).bdev;
228 break;
229 }
230 }
231 if (bio) {
232 bio_set_dev(bio, bdev);
233 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
234 }
235 return bdev;
236 }
237
238 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
239 {
240 int i;
241
242 for (i = 0; i < sbi->s_ndevs; i++)
243 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
244 return i;
245 return 0;
246 }
247
248 static bool __same_bdev(struct f2fs_sb_info *sbi,
249 block_t blk_addr, struct bio *bio)
250 {
251 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
252 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
253 }
254
255 /*
256 * Low-level block read/write IO operations.
257 */
258 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
259 struct writeback_control *wbc,
260 int npages, bool is_read,
261 enum page_type type, enum temp_type temp)
262 {
263 struct bio *bio;
264
265 bio = f2fs_bio_alloc(sbi, npages, true);
266
267 f2fs_target_device(sbi, blk_addr, bio);
268 if (is_read) {
269 bio->bi_end_io = f2fs_read_end_io;
270 bio->bi_private = NULL;
271 } else {
272 bio->bi_end_io = f2fs_write_end_io;
273 bio->bi_private = sbi;
274 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
275 }
276 if (wbc)
277 wbc_init_bio(wbc, bio);
278
279 return bio;
280 }
281
282 static inline void __submit_bio(struct f2fs_sb_info *sbi,
283 struct bio *bio, enum page_type type)
284 {
285 if (!is_read_io(bio_op(bio))) {
286 unsigned int start;
287
288 if (type != DATA && type != NODE)
289 goto submit_io;
290
291 if (test_opt(sbi, LFS) && current->plug)
292 blk_finish_plug(current->plug);
293
294 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
295 start %= F2FS_IO_SIZE(sbi);
296
297 if (start == 0)
298 goto submit_io;
299
300 /* fill dummy pages */
301 for (; start < F2FS_IO_SIZE(sbi); start++) {
302 struct page *page =
303 mempool_alloc(sbi->write_io_dummy,
304 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
305 f2fs_bug_on(sbi, !page);
306
307 SetPagePrivate(page);
308 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
309 lock_page(page);
310 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
311 f2fs_bug_on(sbi, 1);
312 }
313 /*
314 * In the NODE case, we lose next block address chain. So, we
315 * need to do checkpoint in f2fs_sync_file.
316 */
317 if (type == NODE)
318 set_sbi_flag(sbi, SBI_NEED_CP);
319 }
320 submit_io:
321 if (is_read_io(bio_op(bio)))
322 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
323 else
324 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
325 submit_bio(bio);
326 }
327
328 static void __submit_merged_bio(struct f2fs_bio_info *io)
329 {
330 struct f2fs_io_info *fio = &io->fio;
331
332 if (!io->bio)
333 return;
334
335 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
336
337 if (is_read_io(fio->op))
338 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
339 else
340 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
341
342 __submit_bio(io->sbi, io->bio, fio->type);
343 io->bio = NULL;
344 }
345
346 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
347 struct page *page, nid_t ino)
348 {
349 struct bio_vec *bvec;
350 struct page *target;
351 int i;
352 struct bvec_iter_all iter_all;
353
354 if (!io->bio)
355 return false;
356
357 if (!inode && !page && !ino)
358 return true;
359
360 bio_for_each_segment_all(bvec, io->bio, i, iter_all) {
361
362 if (bvec->bv_page->mapping)
363 target = bvec->bv_page;
364 else
365 target = fscrypt_control_page(bvec->bv_page);
366
367 if (inode && inode == target->mapping->host)
368 return true;
369 if (page && page == target)
370 return true;
371 if (ino && ino == ino_of_node(target))
372 return true;
373 }
374
375 return false;
376 }
377
378 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
379 enum page_type type, enum temp_type temp)
380 {
381 enum page_type btype = PAGE_TYPE_OF_BIO(type);
382 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
383
384 down_write(&io->io_rwsem);
385
386 /* change META to META_FLUSH in the checkpoint procedure */
387 if (type >= META_FLUSH) {
388 io->fio.type = META_FLUSH;
389 io->fio.op = REQ_OP_WRITE;
390 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
391 if (!test_opt(sbi, NOBARRIER))
392 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
393 }
394 __submit_merged_bio(io);
395 up_write(&io->io_rwsem);
396 }
397
398 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
399 struct inode *inode, struct page *page,
400 nid_t ino, enum page_type type, bool force)
401 {
402 enum temp_type temp;
403 bool ret = true;
404
405 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
406 if (!force) {
407 enum page_type btype = PAGE_TYPE_OF_BIO(type);
408 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
409
410 down_read(&io->io_rwsem);
411 ret = __has_merged_page(io, inode, page, ino);
412 up_read(&io->io_rwsem);
413 }
414 if (ret)
415 __f2fs_submit_merged_write(sbi, type, temp);
416
417 /* TODO: use HOT temp only for meta pages now. */
418 if (type >= META)
419 break;
420 }
421 }
422
423 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
424 {
425 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
426 }
427
428 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
429 struct inode *inode, struct page *page,
430 nid_t ino, enum page_type type)
431 {
432 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
433 }
434
435 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
436 {
437 f2fs_submit_merged_write(sbi, DATA);
438 f2fs_submit_merged_write(sbi, NODE);
439 f2fs_submit_merged_write(sbi, META);
440 }
441
442 /*
443 * Fill the locked page with data located in the block address.
444 * A caller needs to unlock the page on failure.
445 */
446 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
447 {
448 struct bio *bio;
449 struct page *page = fio->encrypted_page ?
450 fio->encrypted_page : fio->page;
451
452 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
453 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
454 return -EFAULT;
455
456 trace_f2fs_submit_page_bio(page, fio);
457 f2fs_trace_ios(fio, 0);
458
459 /* Allocate a new bio */
460 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
461 1, is_read_io(fio->op), fio->type, fio->temp);
462
463 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
464 bio_put(bio);
465 return -EFAULT;
466 }
467
468 if (fio->io_wbc && !is_read_io(fio->op))
469 wbc_account_io(fio->io_wbc, page, PAGE_SIZE);
470
471 bio_set_op_attrs(bio, fio->op, fio->op_flags);
472
473 inc_page_count(fio->sbi, is_read_io(fio->op) ?
474 __read_io_type(page): WB_DATA_TYPE(fio->page));
475
476 __submit_bio(fio->sbi, bio, fio->type);
477 return 0;
478 }
479
480 void f2fs_submit_page_write(struct f2fs_io_info *fio)
481 {
482 struct f2fs_sb_info *sbi = fio->sbi;
483 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
484 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
485 struct page *bio_page;
486
487 f2fs_bug_on(sbi, is_read_io(fio->op));
488
489 down_write(&io->io_rwsem);
490 next:
491 if (fio->in_list) {
492 spin_lock(&io->io_lock);
493 if (list_empty(&io->io_list)) {
494 spin_unlock(&io->io_lock);
495 goto out;
496 }
497 fio = list_first_entry(&io->io_list,
498 struct f2fs_io_info, list);
499 list_del(&fio->list);
500 spin_unlock(&io->io_lock);
501 }
502
503 if (__is_valid_data_blkaddr(fio->old_blkaddr))
504 verify_block_addr(fio, fio->old_blkaddr);
505 verify_block_addr(fio, fio->new_blkaddr);
506
507 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
508
509 /* set submitted = true as a return value */
510 fio->submitted = true;
511
512 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
513
514 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
515 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
516 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
517 __submit_merged_bio(io);
518 alloc_new:
519 if (io->bio == NULL) {
520 if ((fio->type == DATA || fio->type == NODE) &&
521 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
522 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
523 fio->retry = true;
524 goto skip;
525 }
526 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
527 BIO_MAX_PAGES, false,
528 fio->type, fio->temp);
529 io->fio = *fio;
530 }
531
532 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
533 __submit_merged_bio(io);
534 goto alloc_new;
535 }
536
537 if (fio->io_wbc)
538 wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
539
540 io->last_block_in_bio = fio->new_blkaddr;
541 f2fs_trace_ios(fio, 0);
542
543 trace_f2fs_submit_page_write(fio->page, fio);
544 skip:
545 if (fio->in_list)
546 goto next;
547 out:
548 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
549 f2fs_is_checkpoint_ready(sbi))
550 __submit_merged_bio(io);
551 up_write(&io->io_rwsem);
552 }
553
554 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
555 unsigned nr_pages, unsigned op_flag)
556 {
557 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
558 struct bio *bio;
559 struct bio_post_read_ctx *ctx;
560 unsigned int post_read_steps = 0;
561
562 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
563 return ERR_PTR(-EFAULT);
564
565 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
566 if (!bio)
567 return ERR_PTR(-ENOMEM);
568 f2fs_target_device(sbi, blkaddr, bio);
569 bio->bi_end_io = f2fs_read_end_io;
570 bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
571
572 if (f2fs_encrypted_file(inode))
573 post_read_steps |= 1 << STEP_DECRYPT;
574 if (post_read_steps) {
575 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
576 if (!ctx) {
577 bio_put(bio);
578 return ERR_PTR(-ENOMEM);
579 }
580 ctx->bio = bio;
581 ctx->enabled_steps = post_read_steps;
582 bio->bi_private = ctx;
583 }
584
585 return bio;
586 }
587
588 /* This can handle encryption stuffs */
589 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
590 block_t blkaddr)
591 {
592 struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
593
594 if (IS_ERR(bio))
595 return PTR_ERR(bio);
596
597 /* wait for GCed page writeback via META_MAPPING */
598 f2fs_wait_on_block_writeback(inode, blkaddr);
599
600 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
601 bio_put(bio);
602 return -EFAULT;
603 }
604 ClearPageError(page);
605 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
606 __submit_bio(F2FS_I_SB(inode), bio, DATA);
607 return 0;
608 }
609
610 static void __set_data_blkaddr(struct dnode_of_data *dn)
611 {
612 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
613 __le32 *addr_array;
614 int base = 0;
615
616 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
617 base = get_extra_isize(dn->inode);
618
619 /* Get physical address of data block */
620 addr_array = blkaddr_in_node(rn);
621 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
622 }
623
624 /*
625 * Lock ordering for the change of data block address:
626 * ->data_page
627 * ->node_page
628 * update block addresses in the node page
629 */
630 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
631 {
632 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
633 __set_data_blkaddr(dn);
634 if (set_page_dirty(dn->node_page))
635 dn->node_changed = true;
636 }
637
638 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
639 {
640 dn->data_blkaddr = blkaddr;
641 f2fs_set_data_blkaddr(dn);
642 f2fs_update_extent_cache(dn);
643 }
644
645 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
646 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
647 {
648 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
649 int err;
650
651 if (!count)
652 return 0;
653
654 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
655 return -EPERM;
656 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
657 return err;
658
659 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
660 dn->ofs_in_node, count);
661
662 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
663
664 for (; count > 0; dn->ofs_in_node++) {
665 block_t blkaddr = datablock_addr(dn->inode,
666 dn->node_page, dn->ofs_in_node);
667 if (blkaddr == NULL_ADDR) {
668 dn->data_blkaddr = NEW_ADDR;
669 __set_data_blkaddr(dn);
670 count--;
671 }
672 }
673
674 if (set_page_dirty(dn->node_page))
675 dn->node_changed = true;
676 return 0;
677 }
678
679 /* Should keep dn->ofs_in_node unchanged */
680 int f2fs_reserve_new_block(struct dnode_of_data *dn)
681 {
682 unsigned int ofs_in_node = dn->ofs_in_node;
683 int ret;
684
685 ret = f2fs_reserve_new_blocks(dn, 1);
686 dn->ofs_in_node = ofs_in_node;
687 return ret;
688 }
689
690 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
691 {
692 bool need_put = dn->inode_page ? false : true;
693 int err;
694
695 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
696 if (err)
697 return err;
698
699 if (dn->data_blkaddr == NULL_ADDR)
700 err = f2fs_reserve_new_block(dn);
701 if (err || need_put)
702 f2fs_put_dnode(dn);
703 return err;
704 }
705
706 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
707 {
708 struct extent_info ei = {0,0,0};
709 struct inode *inode = dn->inode;
710
711 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
712 dn->data_blkaddr = ei.blk + index - ei.fofs;
713 return 0;
714 }
715
716 return f2fs_reserve_block(dn, index);
717 }
718
719 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
720 int op_flags, bool for_write)
721 {
722 struct address_space *mapping = inode->i_mapping;
723 struct dnode_of_data dn;
724 struct page *page;
725 struct extent_info ei = {0,0,0};
726 int err;
727
728 page = f2fs_grab_cache_page(mapping, index, for_write);
729 if (!page)
730 return ERR_PTR(-ENOMEM);
731
732 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
733 dn.data_blkaddr = ei.blk + index - ei.fofs;
734 goto got_it;
735 }
736
737 set_new_dnode(&dn, inode, NULL, NULL, 0);
738 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
739 if (err)
740 goto put_err;
741 f2fs_put_dnode(&dn);
742
743 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
744 err = -ENOENT;
745 goto put_err;
746 }
747 got_it:
748 if (PageUptodate(page)) {
749 unlock_page(page);
750 return page;
751 }
752
753 /*
754 * A new dentry page is allocated but not able to be written, since its
755 * new inode page couldn't be allocated due to -ENOSPC.
756 * In such the case, its blkaddr can be remained as NEW_ADDR.
757 * see, f2fs_add_link -> f2fs_get_new_data_page ->
758 * f2fs_init_inode_metadata.
759 */
760 if (dn.data_blkaddr == NEW_ADDR) {
761 zero_user_segment(page, 0, PAGE_SIZE);
762 if (!PageUptodate(page))
763 SetPageUptodate(page);
764 unlock_page(page);
765 return page;
766 }
767
768 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
769 if (err)
770 goto put_err;
771 return page;
772
773 put_err:
774 f2fs_put_page(page, 1);
775 return ERR_PTR(err);
776 }
777
778 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
779 {
780 struct address_space *mapping = inode->i_mapping;
781 struct page *page;
782
783 page = find_get_page(mapping, index);
784 if (page && PageUptodate(page))
785 return page;
786 f2fs_put_page(page, 0);
787
788 page = f2fs_get_read_data_page(inode, index, 0, false);
789 if (IS_ERR(page))
790 return page;
791
792 if (PageUptodate(page))
793 return page;
794
795 wait_on_page_locked(page);
796 if (unlikely(!PageUptodate(page))) {
797 f2fs_put_page(page, 0);
798 return ERR_PTR(-EIO);
799 }
800 return page;
801 }
802
803 /*
804 * If it tries to access a hole, return an error.
805 * Because, the callers, functions in dir.c and GC, should be able to know
806 * whether this page exists or not.
807 */
808 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
809 bool for_write)
810 {
811 struct address_space *mapping = inode->i_mapping;
812 struct page *page;
813 repeat:
814 page = f2fs_get_read_data_page(inode, index, 0, for_write);
815 if (IS_ERR(page))
816 return page;
817
818 /* wait for read completion */
819 lock_page(page);
820 if (unlikely(page->mapping != mapping)) {
821 f2fs_put_page(page, 1);
822 goto repeat;
823 }
824 if (unlikely(!PageUptodate(page))) {
825 f2fs_put_page(page, 1);
826 return ERR_PTR(-EIO);
827 }
828 return page;
829 }
830
831 /*
832 * Caller ensures that this data page is never allocated.
833 * A new zero-filled data page is allocated in the page cache.
834 *
835 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
836 * f2fs_unlock_op().
837 * Note that, ipage is set only by make_empty_dir, and if any error occur,
838 * ipage should be released by this function.
839 */
840 struct page *f2fs_get_new_data_page(struct inode *inode,
841 struct page *ipage, pgoff_t index, bool new_i_size)
842 {
843 struct address_space *mapping = inode->i_mapping;
844 struct page *page;
845 struct dnode_of_data dn;
846 int err;
847
848 page = f2fs_grab_cache_page(mapping, index, true);
849 if (!page) {
850 /*
851 * before exiting, we should make sure ipage will be released
852 * if any error occur.
853 */
854 f2fs_put_page(ipage, 1);
855 return ERR_PTR(-ENOMEM);
856 }
857
858 set_new_dnode(&dn, inode, ipage, NULL, 0);
859 err = f2fs_reserve_block(&dn, index);
860 if (err) {
861 f2fs_put_page(page, 1);
862 return ERR_PTR(err);
863 }
864 if (!ipage)
865 f2fs_put_dnode(&dn);
866
867 if (PageUptodate(page))
868 goto got_it;
869
870 if (dn.data_blkaddr == NEW_ADDR) {
871 zero_user_segment(page, 0, PAGE_SIZE);
872 if (!PageUptodate(page))
873 SetPageUptodate(page);
874 } else {
875 f2fs_put_page(page, 1);
876
877 /* if ipage exists, blkaddr should be NEW_ADDR */
878 f2fs_bug_on(F2FS_I_SB(inode), ipage);
879 page = f2fs_get_lock_data_page(inode, index, true);
880 if (IS_ERR(page))
881 return page;
882 }
883 got_it:
884 if (new_i_size && i_size_read(inode) <
885 ((loff_t)(index + 1) << PAGE_SHIFT))
886 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
887 return page;
888 }
889
890 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
891 {
892 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
893 struct f2fs_summary sum;
894 struct node_info ni;
895 block_t old_blkaddr;
896 blkcnt_t count = 1;
897 int err;
898
899 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
900 return -EPERM;
901
902 err = f2fs_get_node_info(sbi, dn->nid, &ni);
903 if (err)
904 return err;
905
906 dn->data_blkaddr = datablock_addr(dn->inode,
907 dn->node_page, dn->ofs_in_node);
908 if (dn->data_blkaddr != NULL_ADDR)
909 goto alloc;
910
911 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
912 return err;
913
914 alloc:
915 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
916 old_blkaddr = dn->data_blkaddr;
917 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
918 &sum, seg_type, NULL, false);
919 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
920 invalidate_mapping_pages(META_MAPPING(sbi),
921 old_blkaddr, old_blkaddr);
922 f2fs_set_data_blkaddr(dn);
923
924 /*
925 * i_size will be updated by direct_IO. Otherwise, we'll get stale
926 * data from unwritten block via dio_read.
927 */
928 return 0;
929 }
930
931 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
932 {
933 struct inode *inode = file_inode(iocb->ki_filp);
934 struct f2fs_map_blocks map;
935 int flag;
936 int err = 0;
937 bool direct_io = iocb->ki_flags & IOCB_DIRECT;
938
939 /* convert inline data for Direct I/O*/
940 if (direct_io) {
941 err = f2fs_convert_inline_inode(inode);
942 if (err)
943 return err;
944 }
945
946 if (direct_io && allow_outplace_dio(inode, iocb, from))
947 return 0;
948
949 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
950 return 0;
951
952 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
953 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
954 if (map.m_len > map.m_lblk)
955 map.m_len -= map.m_lblk;
956 else
957 map.m_len = 0;
958
959 map.m_next_pgofs = NULL;
960 map.m_next_extent = NULL;
961 map.m_seg_type = NO_CHECK_TYPE;
962 map.m_may_create = true;
963
964 if (direct_io) {
965 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
966 flag = f2fs_force_buffered_io(inode, iocb, from) ?
967 F2FS_GET_BLOCK_PRE_AIO :
968 F2FS_GET_BLOCK_PRE_DIO;
969 goto map_blocks;
970 }
971 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
972 err = f2fs_convert_inline_inode(inode);
973 if (err)
974 return err;
975 }
976 if (f2fs_has_inline_data(inode))
977 return err;
978
979 flag = F2FS_GET_BLOCK_PRE_AIO;
980
981 map_blocks:
982 err = f2fs_map_blocks(inode, &map, 1, flag);
983 if (map.m_len > 0 && err == -ENOSPC) {
984 if (!direct_io)
985 set_inode_flag(inode, FI_NO_PREALLOC);
986 err = 0;
987 }
988 return err;
989 }
990
991 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
992 {
993 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
994 if (lock)
995 down_read(&sbi->node_change);
996 else
997 up_read(&sbi->node_change);
998 } else {
999 if (lock)
1000 f2fs_lock_op(sbi);
1001 else
1002 f2fs_unlock_op(sbi);
1003 }
1004 }
1005
1006 /*
1007 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1008 * f2fs_map_blocks structure.
1009 * If original data blocks are allocated, then give them to blockdev.
1010 * Otherwise,
1011 * a. preallocate requested block addresses
1012 * b. do not use extent cache for better performance
1013 * c. give the block addresses to blockdev
1014 */
1015 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1016 int create, int flag)
1017 {
1018 unsigned int maxblocks = map->m_len;
1019 struct dnode_of_data dn;
1020 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1021 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1022 pgoff_t pgofs, end_offset, end;
1023 int err = 0, ofs = 1;
1024 unsigned int ofs_in_node, last_ofs_in_node;
1025 blkcnt_t prealloc;
1026 struct extent_info ei = {0,0,0};
1027 block_t blkaddr;
1028 unsigned int start_pgofs;
1029
1030 if (!maxblocks)
1031 return 0;
1032
1033 map->m_len = 0;
1034 map->m_flags = 0;
1035
1036 /* it only supports block size == page size */
1037 pgofs = (pgoff_t)map->m_lblk;
1038 end = pgofs + maxblocks;
1039
1040 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1041 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1042 map->m_may_create)
1043 goto next_dnode;
1044
1045 map->m_pblk = ei.blk + pgofs - ei.fofs;
1046 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1047 map->m_flags = F2FS_MAP_MAPPED;
1048 if (map->m_next_extent)
1049 *map->m_next_extent = pgofs + map->m_len;
1050
1051 /* for hardware encryption, but to avoid potential issue in future */
1052 if (flag == F2FS_GET_BLOCK_DIO)
1053 f2fs_wait_on_block_writeback_range(inode,
1054 map->m_pblk, map->m_len);
1055 goto out;
1056 }
1057
1058 next_dnode:
1059 if (map->m_may_create)
1060 __do_map_lock(sbi, flag, true);
1061
1062 /* When reading holes, we need its node page */
1063 set_new_dnode(&dn, inode, NULL, NULL, 0);
1064 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1065 if (err) {
1066 if (flag == F2FS_GET_BLOCK_BMAP)
1067 map->m_pblk = 0;
1068 if (err == -ENOENT) {
1069 err = 0;
1070 if (map->m_next_pgofs)
1071 *map->m_next_pgofs =
1072 f2fs_get_next_page_offset(&dn, pgofs);
1073 if (map->m_next_extent)
1074 *map->m_next_extent =
1075 f2fs_get_next_page_offset(&dn, pgofs);
1076 }
1077 goto unlock_out;
1078 }
1079
1080 start_pgofs = pgofs;
1081 prealloc = 0;
1082 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1083 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1084
1085 next_block:
1086 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1087
1088 if (__is_valid_data_blkaddr(blkaddr) &&
1089 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
1090 err = -EFAULT;
1091 goto sync_out;
1092 }
1093
1094 if (is_valid_data_blkaddr(sbi, blkaddr)) {
1095 /* use out-place-update for driect IO under LFS mode */
1096 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1097 map->m_may_create) {
1098 err = __allocate_data_block(&dn, map->m_seg_type);
1099 if (!err) {
1100 blkaddr = dn.data_blkaddr;
1101 set_inode_flag(inode, FI_APPEND_WRITE);
1102 }
1103 }
1104 } else {
1105 if (create) {
1106 if (unlikely(f2fs_cp_error(sbi))) {
1107 err = -EIO;
1108 goto sync_out;
1109 }
1110 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1111 if (blkaddr == NULL_ADDR) {
1112 prealloc++;
1113 last_ofs_in_node = dn.ofs_in_node;
1114 }
1115 } else {
1116 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1117 flag != F2FS_GET_BLOCK_DIO);
1118 err = __allocate_data_block(&dn,
1119 map->m_seg_type);
1120 if (!err)
1121 set_inode_flag(inode, FI_APPEND_WRITE);
1122 }
1123 if (err)
1124 goto sync_out;
1125 map->m_flags |= F2FS_MAP_NEW;
1126 blkaddr = dn.data_blkaddr;
1127 } else {
1128 if (flag == F2FS_GET_BLOCK_BMAP) {
1129 map->m_pblk = 0;
1130 goto sync_out;
1131 }
1132 if (flag == F2FS_GET_BLOCK_PRECACHE)
1133 goto sync_out;
1134 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1135 blkaddr == NULL_ADDR) {
1136 if (map->m_next_pgofs)
1137 *map->m_next_pgofs = pgofs + 1;
1138 goto sync_out;
1139 }
1140 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1141 /* for defragment case */
1142 if (map->m_next_pgofs)
1143 *map->m_next_pgofs = pgofs + 1;
1144 goto sync_out;
1145 }
1146 }
1147 }
1148
1149 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1150 goto skip;
1151
1152 if (map->m_len == 0) {
1153 /* preallocated unwritten block should be mapped for fiemap. */
1154 if (blkaddr == NEW_ADDR)
1155 map->m_flags |= F2FS_MAP_UNWRITTEN;
1156 map->m_flags |= F2FS_MAP_MAPPED;
1157
1158 map->m_pblk = blkaddr;
1159 map->m_len = 1;
1160 } else if ((map->m_pblk != NEW_ADDR &&
1161 blkaddr == (map->m_pblk + ofs)) ||
1162 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1163 flag == F2FS_GET_BLOCK_PRE_DIO) {
1164 ofs++;
1165 map->m_len++;
1166 } else {
1167 goto sync_out;
1168 }
1169
1170 skip:
1171 dn.ofs_in_node++;
1172 pgofs++;
1173
1174 /* preallocate blocks in batch for one dnode page */
1175 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1176 (pgofs == end || dn.ofs_in_node == end_offset)) {
1177
1178 dn.ofs_in_node = ofs_in_node;
1179 err = f2fs_reserve_new_blocks(&dn, prealloc);
1180 if (err)
1181 goto sync_out;
1182
1183 map->m_len += dn.ofs_in_node - ofs_in_node;
1184 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1185 err = -ENOSPC;
1186 goto sync_out;
1187 }
1188 dn.ofs_in_node = end_offset;
1189 }
1190
1191 if (pgofs >= end)
1192 goto sync_out;
1193 else if (dn.ofs_in_node < end_offset)
1194 goto next_block;
1195
1196 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1197 if (map->m_flags & F2FS_MAP_MAPPED) {
1198 unsigned int ofs = start_pgofs - map->m_lblk;
1199
1200 f2fs_update_extent_cache_range(&dn,
1201 start_pgofs, map->m_pblk + ofs,
1202 map->m_len - ofs);
1203 }
1204 }
1205
1206 f2fs_put_dnode(&dn);
1207
1208 if (map->m_may_create) {
1209 __do_map_lock(sbi, flag, false);
1210 f2fs_balance_fs(sbi, dn.node_changed);
1211 }
1212 goto next_dnode;
1213
1214 sync_out:
1215
1216 /* for hardware encryption, but to avoid potential issue in future */
1217 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1218 f2fs_wait_on_block_writeback_range(inode,
1219 map->m_pblk, map->m_len);
1220
1221 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1222 if (map->m_flags & F2FS_MAP_MAPPED) {
1223 unsigned int ofs = start_pgofs - map->m_lblk;
1224
1225 f2fs_update_extent_cache_range(&dn,
1226 start_pgofs, map->m_pblk + ofs,
1227 map->m_len - ofs);
1228 }
1229 if (map->m_next_extent)
1230 *map->m_next_extent = pgofs + 1;
1231 }
1232 f2fs_put_dnode(&dn);
1233 unlock_out:
1234 if (map->m_may_create) {
1235 __do_map_lock(sbi, flag, false);
1236 f2fs_balance_fs(sbi, dn.node_changed);
1237 }
1238 out:
1239 trace_f2fs_map_blocks(inode, map, err);
1240 return err;
1241 }
1242
1243 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1244 {
1245 struct f2fs_map_blocks map;
1246 block_t last_lblk;
1247 int err;
1248
1249 if (pos + len > i_size_read(inode))
1250 return false;
1251
1252 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1253 map.m_next_pgofs = NULL;
1254 map.m_next_extent = NULL;
1255 map.m_seg_type = NO_CHECK_TYPE;
1256 map.m_may_create = false;
1257 last_lblk = F2FS_BLK_ALIGN(pos + len);
1258
1259 while (map.m_lblk < last_lblk) {
1260 map.m_len = last_lblk - map.m_lblk;
1261 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1262 if (err || map.m_len == 0)
1263 return false;
1264 map.m_lblk += map.m_len;
1265 }
1266 return true;
1267 }
1268
1269 static int __get_data_block(struct inode *inode, sector_t iblock,
1270 struct buffer_head *bh, int create, int flag,
1271 pgoff_t *next_pgofs, int seg_type, bool may_write)
1272 {
1273 struct f2fs_map_blocks map;
1274 int err;
1275
1276 map.m_lblk = iblock;
1277 map.m_len = bh->b_size >> inode->i_blkbits;
1278 map.m_next_pgofs = next_pgofs;
1279 map.m_next_extent = NULL;
1280 map.m_seg_type = seg_type;
1281 map.m_may_create = may_write;
1282
1283 err = f2fs_map_blocks(inode, &map, create, flag);
1284 if (!err) {
1285 map_bh(bh, inode->i_sb, map.m_pblk);
1286 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1287 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1288 }
1289 return err;
1290 }
1291
1292 static int get_data_block(struct inode *inode, sector_t iblock,
1293 struct buffer_head *bh_result, int create, int flag,
1294 pgoff_t *next_pgofs)
1295 {
1296 return __get_data_block(inode, iblock, bh_result, create,
1297 flag, next_pgofs,
1298 NO_CHECK_TYPE, create);
1299 }
1300
1301 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1302 struct buffer_head *bh_result, int create)
1303 {
1304 return __get_data_block(inode, iblock, bh_result, create,
1305 F2FS_GET_BLOCK_DIO, NULL,
1306 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1307 true);
1308 }
1309
1310 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1311 struct buffer_head *bh_result, int create)
1312 {
1313 return __get_data_block(inode, iblock, bh_result, create,
1314 F2FS_GET_BLOCK_DIO, NULL,
1315 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1316 false);
1317 }
1318
1319 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1320 struct buffer_head *bh_result, int create)
1321 {
1322 /* Block number less than F2FS MAX BLOCKS */
1323 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1324 return -EFBIG;
1325
1326 return __get_data_block(inode, iblock, bh_result, create,
1327 F2FS_GET_BLOCK_BMAP, NULL,
1328 NO_CHECK_TYPE, create);
1329 }
1330
1331 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1332 {
1333 return (offset >> inode->i_blkbits);
1334 }
1335
1336 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1337 {
1338 return (blk << inode->i_blkbits);
1339 }
1340
1341 static int f2fs_xattr_fiemap(struct inode *inode,
1342 struct fiemap_extent_info *fieinfo)
1343 {
1344 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1345 struct page *page;
1346 struct node_info ni;
1347 __u64 phys = 0, len;
1348 __u32 flags;
1349 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1350 int err = 0;
1351
1352 if (f2fs_has_inline_xattr(inode)) {
1353 int offset;
1354
1355 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1356 inode->i_ino, false);
1357 if (!page)
1358 return -ENOMEM;
1359
1360 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1361 if (err) {
1362 f2fs_put_page(page, 1);
1363 return err;
1364 }
1365
1366 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1367 offset = offsetof(struct f2fs_inode, i_addr) +
1368 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1369 get_inline_xattr_addrs(inode));
1370
1371 phys += offset;
1372 len = inline_xattr_size(inode);
1373
1374 f2fs_put_page(page, 1);
1375
1376 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1377
1378 if (!xnid)
1379 flags |= FIEMAP_EXTENT_LAST;
1380
1381 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1382 if (err || err == 1)
1383 return err;
1384 }
1385
1386 if (xnid) {
1387 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1388 if (!page)
1389 return -ENOMEM;
1390
1391 err = f2fs_get_node_info(sbi, xnid, &ni);
1392 if (err) {
1393 f2fs_put_page(page, 1);
1394 return err;
1395 }
1396
1397 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1398 len = inode->i_sb->s_blocksize;
1399
1400 f2fs_put_page(page, 1);
1401
1402 flags = FIEMAP_EXTENT_LAST;
1403 }
1404
1405 if (phys)
1406 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1407
1408 return (err < 0 ? err : 0);
1409 }
1410
1411 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1412 u64 start, u64 len)
1413 {
1414 struct buffer_head map_bh;
1415 sector_t start_blk, last_blk;
1416 pgoff_t next_pgofs;
1417 u64 logical = 0, phys = 0, size = 0;
1418 u32 flags = 0;
1419 int ret = 0;
1420
1421 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1422 ret = f2fs_precache_extents(inode);
1423 if (ret)
1424 return ret;
1425 }
1426
1427 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1428 if (ret)
1429 return ret;
1430
1431 inode_lock(inode);
1432
1433 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1434 ret = f2fs_xattr_fiemap(inode, fieinfo);
1435 goto out;
1436 }
1437
1438 if (f2fs_has_inline_data(inode)) {
1439 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1440 if (ret != -EAGAIN)
1441 goto out;
1442 }
1443
1444 if (logical_to_blk(inode, len) == 0)
1445 len = blk_to_logical(inode, 1);
1446
1447 start_blk = logical_to_blk(inode, start);
1448 last_blk = logical_to_blk(inode, start + len - 1);
1449
1450 next:
1451 memset(&map_bh, 0, sizeof(struct buffer_head));
1452 map_bh.b_size = len;
1453
1454 ret = get_data_block(inode, start_blk, &map_bh, 0,
1455 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1456 if (ret)
1457 goto out;
1458
1459 /* HOLE */
1460 if (!buffer_mapped(&map_bh)) {
1461 start_blk = next_pgofs;
1462
1463 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1464 F2FS_I_SB(inode)->max_file_blocks))
1465 goto prep_next;
1466
1467 flags |= FIEMAP_EXTENT_LAST;
1468 }
1469
1470 if (size) {
1471 if (IS_ENCRYPTED(inode))
1472 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1473
1474 ret = fiemap_fill_next_extent(fieinfo, logical,
1475 phys, size, flags);
1476 }
1477
1478 if (start_blk > last_blk || ret)
1479 goto out;
1480
1481 logical = blk_to_logical(inode, start_blk);
1482 phys = blk_to_logical(inode, map_bh.b_blocknr);
1483 size = map_bh.b_size;
1484 flags = 0;
1485 if (buffer_unwritten(&map_bh))
1486 flags = FIEMAP_EXTENT_UNWRITTEN;
1487
1488 start_blk += logical_to_blk(inode, size);
1489
1490 prep_next:
1491 cond_resched();
1492 if (fatal_signal_pending(current))
1493 ret = -EINTR;
1494 else
1495 goto next;
1496 out:
1497 if (ret == 1)
1498 ret = 0;
1499
1500 inode_unlock(inode);
1501 return ret;
1502 }
1503
1504 /*
1505 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1506 * Major change was from block_size == page_size in f2fs by default.
1507 *
1508 * Note that the aops->readpages() function is ONLY used for read-ahead. If
1509 * this function ever deviates from doing just read-ahead, it should either
1510 * use ->readpage() or do the necessary surgery to decouple ->readpages()
1511 * from read-ahead.
1512 */
1513 static int f2fs_mpage_readpages(struct address_space *mapping,
1514 struct list_head *pages, struct page *page,
1515 unsigned nr_pages, bool is_readahead)
1516 {
1517 struct bio *bio = NULL;
1518 sector_t last_block_in_bio = 0;
1519 struct inode *inode = mapping->host;
1520 const unsigned blkbits = inode->i_blkbits;
1521 const unsigned blocksize = 1 << blkbits;
1522 sector_t block_in_file;
1523 sector_t last_block;
1524 sector_t last_block_in_file;
1525 sector_t block_nr;
1526 struct f2fs_map_blocks map;
1527
1528 map.m_pblk = 0;
1529 map.m_lblk = 0;
1530 map.m_len = 0;
1531 map.m_flags = 0;
1532 map.m_next_pgofs = NULL;
1533 map.m_next_extent = NULL;
1534 map.m_seg_type = NO_CHECK_TYPE;
1535 map.m_may_create = false;
1536
1537 for (; nr_pages; nr_pages--) {
1538 if (pages) {
1539 page = list_last_entry(pages, struct page, lru);
1540
1541 prefetchw(&page->flags);
1542 list_del(&page->lru);
1543 if (add_to_page_cache_lru(page, mapping,
1544 page->index,
1545 readahead_gfp_mask(mapping)))
1546 goto next_page;
1547 }
1548
1549 block_in_file = (sector_t)page->index;
1550 last_block = block_in_file + nr_pages;
1551 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1552 blkbits;
1553 if (last_block > last_block_in_file)
1554 last_block = last_block_in_file;
1555
1556 /*
1557 * Map blocks using the previous result first.
1558 */
1559 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1560 block_in_file > map.m_lblk &&
1561 block_in_file < (map.m_lblk + map.m_len))
1562 goto got_it;
1563
1564 /*
1565 * Then do more f2fs_map_blocks() calls until we are
1566 * done with this page.
1567 */
1568 map.m_flags = 0;
1569
1570 if (block_in_file < last_block) {
1571 map.m_lblk = block_in_file;
1572 map.m_len = last_block - block_in_file;
1573
1574 if (f2fs_map_blocks(inode, &map, 0,
1575 F2FS_GET_BLOCK_DEFAULT))
1576 goto set_error_page;
1577 }
1578 got_it:
1579 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1580 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1581 SetPageMappedToDisk(page);
1582
1583 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1584 SetPageUptodate(page);
1585 goto confused;
1586 }
1587
1588 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1589 DATA_GENERIC))
1590 goto set_error_page;
1591 } else {
1592 zero_user_segment(page, 0, PAGE_SIZE);
1593 if (!PageUptodate(page))
1594 SetPageUptodate(page);
1595 unlock_page(page);
1596 goto next_page;
1597 }
1598
1599 /*
1600 * This page will go to BIO. Do we need to send this
1601 * BIO off first?
1602 */
1603 if (bio && (last_block_in_bio != block_nr - 1 ||
1604 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1605 submit_and_realloc:
1606 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1607 bio = NULL;
1608 }
1609 if (bio == NULL) {
1610 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1611 is_readahead ? REQ_RAHEAD : 0);
1612 if (IS_ERR(bio)) {
1613 bio = NULL;
1614 goto set_error_page;
1615 }
1616 }
1617
1618 /*
1619 * If the page is under writeback, we need to wait for
1620 * its completion to see the correct decrypted data.
1621 */
1622 f2fs_wait_on_block_writeback(inode, block_nr);
1623
1624 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1625 goto submit_and_realloc;
1626
1627 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1628 ClearPageError(page);
1629 last_block_in_bio = block_nr;
1630 goto next_page;
1631 set_error_page:
1632 SetPageError(page);
1633 zero_user_segment(page, 0, PAGE_SIZE);
1634 unlock_page(page);
1635 goto next_page;
1636 confused:
1637 if (bio) {
1638 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1639 bio = NULL;
1640 }
1641 unlock_page(page);
1642 next_page:
1643 if (pages)
1644 put_page(page);
1645 }
1646 BUG_ON(pages && !list_empty(pages));
1647 if (bio)
1648 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1649 return 0;
1650 }
1651
1652 static int f2fs_read_data_page(struct file *file, struct page *page)
1653 {
1654 struct inode *inode = page->mapping->host;
1655 int ret = -EAGAIN;
1656
1657 trace_f2fs_readpage(page, DATA);
1658
1659 /* If the file has inline data, try to read it directly */
1660 if (f2fs_has_inline_data(inode))
1661 ret = f2fs_read_inline_data(inode, page);
1662 if (ret == -EAGAIN)
1663 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false);
1664 return ret;
1665 }
1666
1667 static int f2fs_read_data_pages(struct file *file,
1668 struct address_space *mapping,
1669 struct list_head *pages, unsigned nr_pages)
1670 {
1671 struct inode *inode = mapping->host;
1672 struct page *page = list_last_entry(pages, struct page, lru);
1673
1674 trace_f2fs_readpages(inode, page, nr_pages);
1675
1676 /* If the file has inline data, skip readpages */
1677 if (f2fs_has_inline_data(inode))
1678 return 0;
1679
1680 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1681 }
1682
1683 static int encrypt_one_page(struct f2fs_io_info *fio)
1684 {
1685 struct inode *inode = fio->page->mapping->host;
1686 struct page *mpage;
1687 gfp_t gfp_flags = GFP_NOFS;
1688
1689 if (!f2fs_encrypted_file(inode))
1690 return 0;
1691
1692 /* wait for GCed page writeback via META_MAPPING */
1693 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1694
1695 retry_encrypt:
1696 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1697 PAGE_SIZE, 0, fio->page->index, gfp_flags);
1698 if (IS_ERR(fio->encrypted_page)) {
1699 /* flush pending IOs and wait for a while in the ENOMEM case */
1700 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1701 f2fs_flush_merged_writes(fio->sbi);
1702 congestion_wait(BLK_RW_ASYNC, HZ/50);
1703 gfp_flags |= __GFP_NOFAIL;
1704 goto retry_encrypt;
1705 }
1706 return PTR_ERR(fio->encrypted_page);
1707 }
1708
1709 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1710 if (mpage) {
1711 if (PageUptodate(mpage))
1712 memcpy(page_address(mpage),
1713 page_address(fio->encrypted_page), PAGE_SIZE);
1714 f2fs_put_page(mpage, 1);
1715 }
1716 return 0;
1717 }
1718
1719 static inline bool check_inplace_update_policy(struct inode *inode,
1720 struct f2fs_io_info *fio)
1721 {
1722 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1723 unsigned int policy = SM_I(sbi)->ipu_policy;
1724
1725 if (policy & (0x1 << F2FS_IPU_FORCE))
1726 return true;
1727 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1728 return true;
1729 if (policy & (0x1 << F2FS_IPU_UTIL) &&
1730 utilization(sbi) > SM_I(sbi)->min_ipu_util)
1731 return true;
1732 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1733 utilization(sbi) > SM_I(sbi)->min_ipu_util)
1734 return true;
1735
1736 /*
1737 * IPU for rewrite async pages
1738 */
1739 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1740 fio && fio->op == REQ_OP_WRITE &&
1741 !(fio->op_flags & REQ_SYNC) &&
1742 !IS_ENCRYPTED(inode))
1743 return true;
1744
1745 /* this is only set during fdatasync */
1746 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1747 is_inode_flag_set(inode, FI_NEED_IPU))
1748 return true;
1749
1750 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1751 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1752 return true;
1753
1754 return false;
1755 }
1756
1757 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1758 {
1759 if (f2fs_is_pinned_file(inode))
1760 return true;
1761
1762 /* if this is cold file, we should overwrite to avoid fragmentation */
1763 if (file_is_cold(inode))
1764 return true;
1765
1766 return check_inplace_update_policy(inode, fio);
1767 }
1768
1769 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1770 {
1771 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1772
1773 if (test_opt(sbi, LFS))
1774 return true;
1775 if (S_ISDIR(inode->i_mode))
1776 return true;
1777 if (IS_NOQUOTA(inode))
1778 return true;
1779 if (f2fs_is_atomic_file(inode))
1780 return true;
1781 if (fio) {
1782 if (is_cold_data(fio->page))
1783 return true;
1784 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1785 return true;
1786 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1787 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1788 return true;
1789 }
1790 return false;
1791 }
1792
1793 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1794 {
1795 struct inode *inode = fio->page->mapping->host;
1796
1797 if (f2fs_should_update_outplace(inode, fio))
1798 return false;
1799
1800 return f2fs_should_update_inplace(inode, fio);
1801 }
1802
1803 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1804 {
1805 struct page *page = fio->page;
1806 struct inode *inode = page->mapping->host;
1807 struct dnode_of_data dn;
1808 struct extent_info ei = {0,0,0};
1809 struct node_info ni;
1810 bool ipu_force = false;
1811 int err = 0;
1812
1813 set_new_dnode(&dn, inode, NULL, NULL, 0);
1814 if (need_inplace_update(fio) &&
1815 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1816 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1817
1818 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1819 DATA_GENERIC))
1820 return -EFAULT;
1821
1822 ipu_force = true;
1823 fio->need_lock = LOCK_DONE;
1824 goto got_it;
1825 }
1826
1827 /* Deadlock due to between page->lock and f2fs_lock_op */
1828 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1829 return -EAGAIN;
1830
1831 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1832 if (err)
1833 goto out;
1834
1835 fio->old_blkaddr = dn.data_blkaddr;
1836
1837 /* This page is already truncated */
1838 if (fio->old_blkaddr == NULL_ADDR) {
1839 ClearPageUptodate(page);
1840 clear_cold_data(page);
1841 goto out_writepage;
1842 }
1843 got_it:
1844 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1845 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1846 DATA_GENERIC)) {
1847 err = -EFAULT;
1848 goto out_writepage;
1849 }
1850 /*
1851 * If current allocation needs SSR,
1852 * it had better in-place writes for updated data.
1853 */
1854 if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) &&
1855 need_inplace_update(fio))) {
1856 err = encrypt_one_page(fio);
1857 if (err)
1858 goto out_writepage;
1859
1860 set_page_writeback(page);
1861 ClearPageError(page);
1862 f2fs_put_dnode(&dn);
1863 if (fio->need_lock == LOCK_REQ)
1864 f2fs_unlock_op(fio->sbi);
1865 err = f2fs_inplace_write_data(fio);
1866 if (err && PageWriteback(page))
1867 end_page_writeback(page);
1868 trace_f2fs_do_write_data_page(fio->page, IPU);
1869 set_inode_flag(inode, FI_UPDATE_WRITE);
1870 return err;
1871 }
1872
1873 if (fio->need_lock == LOCK_RETRY) {
1874 if (!f2fs_trylock_op(fio->sbi)) {
1875 err = -EAGAIN;
1876 goto out_writepage;
1877 }
1878 fio->need_lock = LOCK_REQ;
1879 }
1880
1881 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1882 if (err)
1883 goto out_writepage;
1884
1885 fio->version = ni.version;
1886
1887 err = encrypt_one_page(fio);
1888 if (err)
1889 goto out_writepage;
1890
1891 set_page_writeback(page);
1892 ClearPageError(page);
1893
1894 /* LFS mode write path */
1895 f2fs_outplace_write_data(&dn, fio);
1896 trace_f2fs_do_write_data_page(page, OPU);
1897 set_inode_flag(inode, FI_APPEND_WRITE);
1898 if (page->index == 0)
1899 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1900 out_writepage:
1901 f2fs_put_dnode(&dn);
1902 out:
1903 if (fio->need_lock == LOCK_REQ)
1904 f2fs_unlock_op(fio->sbi);
1905 return err;
1906 }
1907
1908 static int __write_data_page(struct page *page, bool *submitted,
1909 struct writeback_control *wbc,
1910 enum iostat_type io_type)
1911 {
1912 struct inode *inode = page->mapping->host;
1913 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1914 loff_t i_size = i_size_read(inode);
1915 const pgoff_t end_index = ((unsigned long long) i_size)
1916 >> PAGE_SHIFT;
1917 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1918 unsigned offset = 0;
1919 bool need_balance_fs = false;
1920 int err = 0;
1921 struct f2fs_io_info fio = {
1922 .sbi = sbi,
1923 .ino = inode->i_ino,
1924 .type = DATA,
1925 .op = REQ_OP_WRITE,
1926 .op_flags = wbc_to_write_flags(wbc),
1927 .old_blkaddr = NULL_ADDR,
1928 .page = page,
1929 .encrypted_page = NULL,
1930 .submitted = false,
1931 .need_lock = LOCK_RETRY,
1932 .io_type = io_type,
1933 .io_wbc = wbc,
1934 };
1935
1936 trace_f2fs_writepage(page, DATA);
1937
1938 /* we should bypass data pages to proceed the kworkder jobs */
1939 if (unlikely(f2fs_cp_error(sbi))) {
1940 mapping_set_error(page->mapping, -EIO);
1941 /*
1942 * don't drop any dirty dentry pages for keeping lastest
1943 * directory structure.
1944 */
1945 if (S_ISDIR(inode->i_mode))
1946 goto redirty_out;
1947 goto out;
1948 }
1949
1950 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1951 goto redirty_out;
1952
1953 if (page->index < end_index)
1954 goto write;
1955
1956 /*
1957 * If the offset is out-of-range of file size,
1958 * this page does not have to be written to disk.
1959 */
1960 offset = i_size & (PAGE_SIZE - 1);
1961 if ((page->index >= end_index + 1) || !offset)
1962 goto out;
1963
1964 zero_user_segment(page, offset, PAGE_SIZE);
1965 write:
1966 if (f2fs_is_drop_cache(inode))
1967 goto out;
1968 /* we should not write 0'th page having journal header */
1969 if (f2fs_is_volatile_file(inode) && (!page->index ||
1970 (!wbc->for_reclaim &&
1971 f2fs_available_free_memory(sbi, BASE_CHECK))))
1972 goto redirty_out;
1973
1974 /* Dentry blocks are controlled by checkpoint */
1975 if (S_ISDIR(inode->i_mode)) {
1976 fio.need_lock = LOCK_DONE;
1977 err = f2fs_do_write_data_page(&fio);
1978 goto done;
1979 }
1980
1981 if (!wbc->for_reclaim)
1982 need_balance_fs = true;
1983 else if (has_not_enough_free_secs(sbi, 0, 0))
1984 goto redirty_out;
1985 else
1986 set_inode_flag(inode, FI_HOT_DATA);
1987
1988 err = -EAGAIN;
1989 if (f2fs_has_inline_data(inode)) {
1990 err = f2fs_write_inline_data(inode, page);
1991 if (!err)
1992 goto out;
1993 }
1994
1995 if (err == -EAGAIN) {
1996 err = f2fs_do_write_data_page(&fio);
1997 if (err == -EAGAIN) {
1998 fio.need_lock = LOCK_REQ;
1999 err = f2fs_do_write_data_page(&fio);
2000 }
2001 }
2002
2003 if (err) {
2004 file_set_keep_isize(inode);
2005 } else {
2006 down_write(&F2FS_I(inode)->i_sem);
2007 if (F2FS_I(inode)->last_disk_size < psize)
2008 F2FS_I(inode)->last_disk_size = psize;
2009 up_write(&F2FS_I(inode)->i_sem);
2010 }
2011
2012 done:
2013 if (err && err != -ENOENT)
2014 goto redirty_out;
2015
2016 out:
2017 inode_dec_dirty_pages(inode);
2018 if (err) {
2019 ClearPageUptodate(page);
2020 clear_cold_data(page);
2021 }
2022
2023 if (wbc->for_reclaim) {
2024 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2025 clear_inode_flag(inode, FI_HOT_DATA);
2026 f2fs_remove_dirty_inode(inode);
2027 submitted = NULL;
2028 }
2029
2030 unlock_page(page);
2031 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode))
2032 f2fs_balance_fs(sbi, need_balance_fs);
2033
2034 if (unlikely(f2fs_cp_error(sbi))) {
2035 f2fs_submit_merged_write(sbi, DATA);
2036 submitted = NULL;
2037 }
2038
2039 if (submitted)
2040 *submitted = fio.submitted;
2041
2042 return 0;
2043
2044 redirty_out:
2045 redirty_page_for_writepage(wbc, page);
2046 /*
2047 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2048 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2049 * file_write_and_wait_range() will see EIO error, which is critical
2050 * to return value of fsync() followed by atomic_write failure to user.
2051 */
2052 if (!err || wbc->for_reclaim)
2053 return AOP_WRITEPAGE_ACTIVATE;
2054 unlock_page(page);
2055 return err;
2056 }
2057
2058 static int f2fs_write_data_page(struct page *page,
2059 struct writeback_control *wbc)
2060 {
2061 return __write_data_page(page, NULL, wbc, FS_DATA_IO);
2062 }
2063
2064 /*
2065 * This function was copied from write_cche_pages from mm/page-writeback.c.
2066 * The major change is making write step of cold data page separately from
2067 * warm/hot data page.
2068 */
2069 static int f2fs_write_cache_pages(struct address_space *mapping,
2070 struct writeback_control *wbc,
2071 enum iostat_type io_type)
2072 {
2073 int ret = 0;
2074 int done = 0;
2075 struct pagevec pvec;
2076 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2077 int nr_pages;
2078 pgoff_t uninitialized_var(writeback_index);
2079 pgoff_t index;
2080 pgoff_t end; /* Inclusive */
2081 pgoff_t done_index;
2082 int cycled;
2083 int range_whole = 0;
2084 xa_mark_t tag;
2085 int nwritten = 0;
2086
2087 pagevec_init(&pvec);
2088
2089 if (get_dirty_pages(mapping->host) <=
2090 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2091 set_inode_flag(mapping->host, FI_HOT_DATA);
2092 else
2093 clear_inode_flag(mapping->host, FI_HOT_DATA);
2094
2095 if (wbc->range_cyclic) {
2096 writeback_index = mapping->writeback_index; /* prev offset */
2097 index = writeback_index;
2098 if (index == 0)
2099 cycled = 1;
2100 else
2101 cycled = 0;
2102 end = -1;
2103 } else {
2104 index = wbc->range_start >> PAGE_SHIFT;
2105 end = wbc->range_end >> PAGE_SHIFT;
2106 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2107 range_whole = 1;
2108 cycled = 1; /* ignore range_cyclic tests */
2109 }
2110 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2111 tag = PAGECACHE_TAG_TOWRITE;
2112 else
2113 tag = PAGECACHE_TAG_DIRTY;
2114 retry:
2115 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2116 tag_pages_for_writeback(mapping, index, end);
2117 done_index = index;
2118 while (!done && (index <= end)) {
2119 int i;
2120
2121 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2122 tag);
2123 if (nr_pages == 0)
2124 break;
2125
2126 for (i = 0; i < nr_pages; i++) {
2127 struct page *page = pvec.pages[i];
2128 bool submitted = false;
2129
2130 /* give a priority to WB_SYNC threads */
2131 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2132 wbc->sync_mode == WB_SYNC_NONE) {
2133 done = 1;
2134 break;
2135 }
2136
2137 done_index = page->index;
2138 retry_write:
2139 lock_page(page);
2140
2141 if (unlikely(page->mapping != mapping)) {
2142 continue_unlock:
2143 unlock_page(page);
2144 continue;
2145 }
2146
2147 if (!PageDirty(page)) {
2148 /* someone wrote it for us */
2149 goto continue_unlock;
2150 }
2151
2152 if (PageWriteback(page)) {
2153 if (wbc->sync_mode != WB_SYNC_NONE)
2154 f2fs_wait_on_page_writeback(page,
2155 DATA, true, true);
2156 else
2157 goto continue_unlock;
2158 }
2159
2160 if (!clear_page_dirty_for_io(page))
2161 goto continue_unlock;
2162
2163 ret = __write_data_page(page, &submitted, wbc, io_type);
2164 if (unlikely(ret)) {
2165 /*
2166 * keep nr_to_write, since vfs uses this to
2167 * get # of written pages.
2168 */
2169 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2170 unlock_page(page);
2171 ret = 0;
2172 continue;
2173 } else if (ret == -EAGAIN) {
2174 ret = 0;
2175 if (wbc->sync_mode == WB_SYNC_ALL) {
2176 cond_resched();
2177 congestion_wait(BLK_RW_ASYNC,
2178 HZ/50);
2179 goto retry_write;
2180 }
2181 continue;
2182 }
2183 done_index = page->index + 1;
2184 done = 1;
2185 break;
2186 } else if (submitted) {
2187 nwritten++;
2188 }
2189
2190 if (--wbc->nr_to_write <= 0 &&
2191 wbc->sync_mode == WB_SYNC_NONE) {
2192 done = 1;
2193 break;
2194 }
2195 }
2196 pagevec_release(&pvec);
2197 cond_resched();
2198 }
2199
2200 if (!cycled && !done) {
2201 cycled = 1;
2202 index = 0;
2203 end = writeback_index - 1;
2204 goto retry;
2205 }
2206 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2207 mapping->writeback_index = done_index;
2208
2209 if (nwritten)
2210 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2211 NULL, 0, DATA);
2212
2213 return ret;
2214 }
2215
2216 static inline bool __should_serialize_io(struct inode *inode,
2217 struct writeback_control *wbc)
2218 {
2219 if (!S_ISREG(inode->i_mode))
2220 return false;
2221 if (IS_NOQUOTA(inode))
2222 return false;
2223 if (wbc->sync_mode != WB_SYNC_ALL)
2224 return true;
2225 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2226 return true;
2227 return false;
2228 }
2229
2230 static int __f2fs_write_data_pages(struct address_space *mapping,
2231 struct writeback_control *wbc,
2232 enum iostat_type io_type)
2233 {
2234 struct inode *inode = mapping->host;
2235 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2236 struct blk_plug plug;
2237 int ret;
2238 bool locked = false;
2239
2240 /* deal with chardevs and other special file */
2241 if (!mapping->a_ops->writepage)
2242 return 0;
2243
2244 /* skip writing if there is no dirty page in this inode */
2245 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2246 return 0;
2247
2248 /* during POR, we don't need to trigger writepage at all. */
2249 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2250 goto skip_write;
2251
2252 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2253 wbc->sync_mode == WB_SYNC_NONE &&
2254 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2255 f2fs_available_free_memory(sbi, DIRTY_DENTS))
2256 goto skip_write;
2257
2258 /* skip writing during file defragment */
2259 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2260 goto skip_write;
2261
2262 trace_f2fs_writepages(mapping->host, wbc, DATA);
2263
2264 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2265 if (wbc->sync_mode == WB_SYNC_ALL)
2266 atomic_inc(&sbi->wb_sync_req[DATA]);
2267 else if (atomic_read(&sbi->wb_sync_req[DATA]))
2268 goto skip_write;
2269
2270 if (__should_serialize_io(inode, wbc)) {
2271 mutex_lock(&sbi->writepages);
2272 locked = true;
2273 }
2274
2275 blk_start_plug(&plug);
2276 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2277 blk_finish_plug(&plug);
2278
2279 if (locked)
2280 mutex_unlock(&sbi->writepages);
2281
2282 if (wbc->sync_mode == WB_SYNC_ALL)
2283 atomic_dec(&sbi->wb_sync_req[DATA]);
2284 /*
2285 * if some pages were truncated, we cannot guarantee its mapping->host
2286 * to detect pending bios.
2287 */
2288
2289 f2fs_remove_dirty_inode(inode);
2290 return ret;
2291
2292 skip_write:
2293 wbc->pages_skipped += get_dirty_pages(inode);
2294 trace_f2fs_writepages(mapping->host, wbc, DATA);
2295 return 0;
2296 }
2297
2298 static int f2fs_write_data_pages(struct address_space *mapping,
2299 struct writeback_control *wbc)
2300 {
2301 struct inode *inode = mapping->host;
2302
2303 return __f2fs_write_data_pages(mapping, wbc,
2304 F2FS_I(inode)->cp_task == current ?
2305 FS_CP_DATA_IO : FS_DATA_IO);
2306 }
2307
2308 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2309 {
2310 struct inode *inode = mapping->host;
2311 loff_t i_size = i_size_read(inode);
2312
2313 if (to > i_size) {
2314 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2315 down_write(&F2FS_I(inode)->i_mmap_sem);
2316
2317 truncate_pagecache(inode, i_size);
2318 f2fs_truncate_blocks(inode, i_size, true, true);
2319
2320 up_write(&F2FS_I(inode)->i_mmap_sem);
2321 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2322 }
2323 }
2324
2325 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2326 struct page *page, loff_t pos, unsigned len,
2327 block_t *blk_addr, bool *node_changed)
2328 {
2329 struct inode *inode = page->mapping->host;
2330 pgoff_t index = page->index;
2331 struct dnode_of_data dn;
2332 struct page *ipage;
2333 bool locked = false;
2334 struct extent_info ei = {0,0,0};
2335 int err = 0;
2336 int flag;
2337
2338 /*
2339 * we already allocated all the blocks, so we don't need to get
2340 * the block addresses when there is no need to fill the page.
2341 */
2342 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2343 !is_inode_flag_set(inode, FI_NO_PREALLOC))
2344 return 0;
2345
2346 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
2347 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2348 flag = F2FS_GET_BLOCK_DEFAULT;
2349 else
2350 flag = F2FS_GET_BLOCK_PRE_AIO;
2351
2352 if (f2fs_has_inline_data(inode) ||
2353 (pos & PAGE_MASK) >= i_size_read(inode)) {
2354 __do_map_lock(sbi, flag, true);
2355 locked = true;
2356 }
2357 restart:
2358 /* check inline_data */
2359 ipage = f2fs_get_node_page(sbi, inode->i_ino);
2360 if (IS_ERR(ipage)) {
2361 err = PTR_ERR(ipage);
2362 goto unlock_out;
2363 }
2364
2365 set_new_dnode(&dn, inode, ipage, ipage, 0);
2366
2367 if (f2fs_has_inline_data(inode)) {
2368 if (pos + len <= MAX_INLINE_DATA(inode)) {
2369 f2fs_do_read_inline_data(page, ipage);
2370 set_inode_flag(inode, FI_DATA_EXIST);
2371 if (inode->i_nlink)
2372 set_inline_node(ipage);
2373 } else {
2374 err = f2fs_convert_inline_page(&dn, page);
2375 if (err)
2376 goto out;
2377 if (dn.data_blkaddr == NULL_ADDR)
2378 err = f2fs_get_block(&dn, index);
2379 }
2380 } else if (locked) {
2381 err = f2fs_get_block(&dn, index);
2382 } else {
2383 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2384 dn.data_blkaddr = ei.blk + index - ei.fofs;
2385 } else {
2386 /* hole case */
2387 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2388 if (err || dn.data_blkaddr == NULL_ADDR) {
2389 f2fs_put_dnode(&dn);
2390 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2391 true);
2392 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2393 locked = true;
2394 goto restart;
2395 }
2396 }
2397 }
2398
2399 /* convert_inline_page can make node_changed */
2400 *blk_addr = dn.data_blkaddr;
2401 *node_changed = dn.node_changed;
2402 out:
2403 f2fs_put_dnode(&dn);
2404 unlock_out:
2405 if (locked)
2406 __do_map_lock(sbi, flag, false);
2407 return err;
2408 }
2409
2410 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2411 loff_t pos, unsigned len, unsigned flags,
2412 struct page **pagep, void **fsdata)
2413 {
2414 struct inode *inode = mapping->host;
2415 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2416 struct page *page = NULL;
2417 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2418 bool need_balance = false, drop_atomic = false;
2419 block_t blkaddr = NULL_ADDR;
2420 int err = 0;
2421
2422 trace_f2fs_write_begin(inode, pos, len, flags);
2423
2424 err = f2fs_is_checkpoint_ready(sbi);
2425 if (err)
2426 goto fail;
2427
2428 if ((f2fs_is_atomic_file(inode) &&
2429 !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2430 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2431 err = -ENOMEM;
2432 drop_atomic = true;
2433 goto fail;
2434 }
2435
2436 /*
2437 * We should check this at this moment to avoid deadlock on inode page
2438 * and #0 page. The locking rule for inline_data conversion should be:
2439 * lock_page(page #0) -> lock_page(inode_page)
2440 */
2441 if (index != 0) {
2442 err = f2fs_convert_inline_inode(inode);
2443 if (err)
2444 goto fail;
2445 }
2446 repeat:
2447 /*
2448 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2449 * wait_for_stable_page. Will wait that below with our IO control.
2450 */
2451 page = f2fs_pagecache_get_page(mapping, index,
2452 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2453 if (!page) {
2454 err = -ENOMEM;
2455 goto fail;
2456 }
2457
2458 *pagep = page;
2459
2460 err = prepare_write_begin(sbi, page, pos, len,
2461 &blkaddr, &need_balance);
2462 if (err)
2463 goto fail;
2464
2465 if (need_balance && !IS_NOQUOTA(inode) &&
2466 has_not_enough_free_secs(sbi, 0, 0)) {
2467 unlock_page(page);
2468 f2fs_balance_fs(sbi, true);
2469 lock_page(page);
2470 if (page->mapping != mapping) {
2471 /* The page got truncated from under us */
2472 f2fs_put_page(page, 1);
2473 goto repeat;
2474 }
2475 }
2476
2477 f2fs_wait_on_page_writeback(page, DATA, false, true);
2478
2479 if (len == PAGE_SIZE || PageUptodate(page))
2480 return 0;
2481
2482 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2483 zero_user_segment(page, len, PAGE_SIZE);
2484 return 0;
2485 }
2486
2487 if (blkaddr == NEW_ADDR) {
2488 zero_user_segment(page, 0, PAGE_SIZE);
2489 SetPageUptodate(page);
2490 } else {
2491 err = f2fs_submit_page_read(inode, page, blkaddr);
2492 if (err)
2493 goto fail;
2494
2495 lock_page(page);
2496 if (unlikely(page->mapping != mapping)) {
2497 f2fs_put_page(page, 1);
2498 goto repeat;
2499 }
2500 if (unlikely(!PageUptodate(page))) {
2501 err = -EIO;
2502 goto fail;
2503 }
2504 }
2505 return 0;
2506
2507 fail:
2508 f2fs_put_page(page, 1);
2509 f2fs_write_failed(mapping, pos + len);
2510 if (drop_atomic)
2511 f2fs_drop_inmem_pages_all(sbi, false);
2512 return err;
2513 }
2514
2515 static int f2fs_write_end(struct file *file,
2516 struct address_space *mapping,
2517 loff_t pos, unsigned len, unsigned copied,
2518 struct page *page, void *fsdata)
2519 {
2520 struct inode *inode = page->mapping->host;
2521
2522 trace_f2fs_write_end(inode, pos, len, copied);
2523
2524 /*
2525 * This should be come from len == PAGE_SIZE, and we expect copied
2526 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2527 * let generic_perform_write() try to copy data again through copied=0.
2528 */
2529 if (!PageUptodate(page)) {
2530 if (unlikely(copied != len))
2531 copied = 0;
2532 else
2533 SetPageUptodate(page);
2534 }
2535 if (!copied)
2536 goto unlock_out;
2537
2538 set_page_dirty(page);
2539
2540 if (pos + copied > i_size_read(inode))
2541 f2fs_i_size_write(inode, pos + copied);
2542 unlock_out:
2543 f2fs_put_page(page, 1);
2544 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2545 return copied;
2546 }
2547
2548 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2549 loff_t offset)
2550 {
2551 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2552 unsigned blkbits = i_blkbits;
2553 unsigned blocksize_mask = (1 << blkbits) - 1;
2554 unsigned long align = offset | iov_iter_alignment(iter);
2555 struct block_device *bdev = inode->i_sb->s_bdev;
2556
2557 if (align & blocksize_mask) {
2558 if (bdev)
2559 blkbits = blksize_bits(bdev_logical_block_size(bdev));
2560 blocksize_mask = (1 << blkbits) - 1;
2561 if (align & blocksize_mask)
2562 return -EINVAL;
2563 return 1;
2564 }
2565 return 0;
2566 }
2567
2568 static void f2fs_dio_end_io(struct bio *bio)
2569 {
2570 struct f2fs_private_dio *dio = bio->bi_private;
2571
2572 dec_page_count(F2FS_I_SB(dio->inode),
2573 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2574
2575 bio->bi_private = dio->orig_private;
2576 bio->bi_end_io = dio->orig_end_io;
2577
2578 kvfree(dio);
2579
2580 bio_endio(bio);
2581 }
2582
2583 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2584 loff_t file_offset)
2585 {
2586 struct f2fs_private_dio *dio;
2587 bool write = (bio_op(bio) == REQ_OP_WRITE);
2588 int err;
2589
2590 dio = f2fs_kzalloc(F2FS_I_SB(inode),
2591 sizeof(struct f2fs_private_dio), GFP_NOFS);
2592 if (!dio) {
2593 err = -ENOMEM;
2594 goto out;
2595 }
2596
2597 dio->inode = inode;
2598 dio->orig_end_io = bio->bi_end_io;
2599 dio->orig_private = bio->bi_private;
2600 dio->write = write;
2601
2602 bio->bi_end_io = f2fs_dio_end_io;
2603 bio->bi_private = dio;
2604
2605 inc_page_count(F2FS_I_SB(inode),
2606 write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2607
2608 submit_bio(bio);
2609 return;
2610 out:
2611 bio->bi_status = BLK_STS_IOERR;
2612 bio_endio(bio);
2613 }
2614
2615 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2616 {
2617 struct address_space *mapping = iocb->ki_filp->f_mapping;
2618 struct inode *inode = mapping->host;
2619 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2620 struct f2fs_inode_info *fi = F2FS_I(inode);
2621 size_t count = iov_iter_count(iter);
2622 loff_t offset = iocb->ki_pos;
2623 int rw = iov_iter_rw(iter);
2624 int err;
2625 enum rw_hint hint = iocb->ki_hint;
2626 int whint_mode = F2FS_OPTION(sbi).whint_mode;
2627 bool do_opu;
2628
2629 err = check_direct_IO(inode, iter, offset);
2630 if (err)
2631 return err < 0 ? err : 0;
2632
2633 if (f2fs_force_buffered_io(inode, iocb, iter))
2634 return 0;
2635
2636 do_opu = allow_outplace_dio(inode, iocb, iter);
2637
2638 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2639
2640 if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2641 iocb->ki_hint = WRITE_LIFE_NOT_SET;
2642
2643 if (iocb->ki_flags & IOCB_NOWAIT) {
2644 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2645 iocb->ki_hint = hint;
2646 err = -EAGAIN;
2647 goto out;
2648 }
2649 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2650 up_read(&fi->i_gc_rwsem[rw]);
2651 iocb->ki_hint = hint;
2652 err = -EAGAIN;
2653 goto out;
2654 }
2655 } else {
2656 down_read(&fi->i_gc_rwsem[rw]);
2657 if (do_opu)
2658 down_read(&fi->i_gc_rwsem[READ]);
2659 }
2660
2661 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2662 iter, rw == WRITE ? get_data_block_dio_write :
2663 get_data_block_dio, NULL, f2fs_dio_submit_bio,
2664 DIO_LOCKING | DIO_SKIP_HOLES);
2665
2666 if (do_opu)
2667 up_read(&fi->i_gc_rwsem[READ]);
2668
2669 up_read(&fi->i_gc_rwsem[rw]);
2670
2671 if (rw == WRITE) {
2672 if (whint_mode == WHINT_MODE_OFF)
2673 iocb->ki_hint = hint;
2674 if (err > 0) {
2675 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2676 err);
2677 if (!do_opu)
2678 set_inode_flag(inode, FI_UPDATE_WRITE);
2679 } else if (err < 0) {
2680 f2fs_write_failed(mapping, offset + count);
2681 }
2682 }
2683
2684 out:
2685 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2686
2687 return err;
2688 }
2689
2690 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2691 unsigned int length)
2692 {
2693 struct inode *inode = page->mapping->host;
2694 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2695
2696 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2697 (offset % PAGE_SIZE || length != PAGE_SIZE))
2698 return;
2699
2700 if (PageDirty(page)) {
2701 if (inode->i_ino == F2FS_META_INO(sbi)) {
2702 dec_page_count(sbi, F2FS_DIRTY_META);
2703 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2704 dec_page_count(sbi, F2FS_DIRTY_NODES);
2705 } else {
2706 inode_dec_dirty_pages(inode);
2707 f2fs_remove_dirty_inode(inode);
2708 }
2709 }
2710
2711 clear_cold_data(page);
2712
2713 /* This is atomic written page, keep Private */
2714 if (IS_ATOMIC_WRITTEN_PAGE(page))
2715 return f2fs_drop_inmem_page(inode, page);
2716
2717 set_page_private(page, 0);
2718 ClearPagePrivate(page);
2719 }
2720
2721 int f2fs_release_page(struct page *page, gfp_t wait)
2722 {
2723 /* If this is dirty page, keep PagePrivate */
2724 if (PageDirty(page))
2725 return 0;
2726
2727 /* This is atomic written page, keep Private */
2728 if (IS_ATOMIC_WRITTEN_PAGE(page))
2729 return 0;
2730
2731 clear_cold_data(page);
2732 set_page_private(page, 0);
2733 ClearPagePrivate(page);
2734 return 1;
2735 }
2736
2737 static int f2fs_set_data_page_dirty(struct page *page)
2738 {
2739 struct address_space *mapping = page->mapping;
2740 struct inode *inode = mapping->host;
2741
2742 trace_f2fs_set_page_dirty(page, DATA);
2743
2744 if (!PageUptodate(page))
2745 SetPageUptodate(page);
2746
2747 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2748 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2749 f2fs_register_inmem_page(inode, page);
2750 return 1;
2751 }
2752 /*
2753 * Previously, this page has been registered, we just
2754 * return here.
2755 */
2756 return 0;
2757 }
2758
2759 if (!PageDirty(page)) {
2760 __set_page_dirty_nobuffers(page);
2761 f2fs_update_dirty_page(inode, page);
2762 return 1;
2763 }
2764 return 0;
2765 }
2766
2767 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2768 {
2769 struct inode *inode = mapping->host;
2770
2771 if (f2fs_has_inline_data(inode))
2772 return 0;
2773
2774 /* make sure allocating whole blocks */
2775 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2776 filemap_write_and_wait(mapping);
2777
2778 return generic_block_bmap(mapping, block, get_data_block_bmap);
2779 }
2780
2781 #ifdef CONFIG_MIGRATION
2782 #include <linux/migrate.h>
2783
2784 int f2fs_migrate_page(struct address_space *mapping,
2785 struct page *newpage, struct page *page, enum migrate_mode mode)
2786 {
2787 int rc, extra_count;
2788 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2789 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2790
2791 BUG_ON(PageWriteback(page));
2792
2793 /* migrating an atomic written page is safe with the inmem_lock hold */
2794 if (atomic_written) {
2795 if (mode != MIGRATE_SYNC)
2796 return -EBUSY;
2797 if (!mutex_trylock(&fi->inmem_lock))
2798 return -EAGAIN;
2799 }
2800
2801 /*
2802 * A reference is expected if PagePrivate set when move mapping,
2803 * however F2FS breaks this for maintaining dirty page counts when
2804 * truncating pages. So here adjusting the 'extra_count' make it work.
2805 */
2806 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2807 rc = migrate_page_move_mapping(mapping, newpage,
2808 page, mode, extra_count);
2809 if (rc != MIGRATEPAGE_SUCCESS) {
2810 if (atomic_written)
2811 mutex_unlock(&fi->inmem_lock);
2812 return rc;
2813 }
2814
2815 if (atomic_written) {
2816 struct inmem_pages *cur;
2817 list_for_each_entry(cur, &fi->inmem_pages, list)
2818 if (cur->page == page) {
2819 cur->page = newpage;
2820 break;
2821 }
2822 mutex_unlock(&fi->inmem_lock);
2823 put_page(page);
2824 get_page(newpage);
2825 }
2826
2827 if (PagePrivate(page))
2828 SetPagePrivate(newpage);
2829 set_page_private(newpage, page_private(page));
2830
2831 if (mode != MIGRATE_SYNC_NO_COPY)
2832 migrate_page_copy(newpage, page);
2833 else
2834 migrate_page_states(newpage, page);
2835
2836 return MIGRATEPAGE_SUCCESS;
2837 }
2838 #endif
2839
2840 const struct address_space_operations f2fs_dblock_aops = {
2841 .readpage = f2fs_read_data_page,
2842 .readpages = f2fs_read_data_pages,
2843 .writepage = f2fs_write_data_page,
2844 .writepages = f2fs_write_data_pages,
2845 .write_begin = f2fs_write_begin,
2846 .write_end = f2fs_write_end,
2847 .set_page_dirty = f2fs_set_data_page_dirty,
2848 .invalidatepage = f2fs_invalidate_page,
2849 .releasepage = f2fs_release_page,
2850 .direct_IO = f2fs_direct_IO,
2851 .bmap = f2fs_bmap,
2852 #ifdef CONFIG_MIGRATION
2853 .migratepage = f2fs_migrate_page,
2854 #endif
2855 };
2856
2857 void f2fs_clear_page_cache_dirty_tag(struct page *page)
2858 {
2859 struct address_space *mapping = page_mapping(page);
2860 unsigned long flags;
2861
2862 xa_lock_irqsave(&mapping->i_pages, flags);
2863 __xa_clear_mark(&mapping->i_pages, page_index(page),
2864 PAGECACHE_TAG_DIRTY);
2865 xa_unlock_irqrestore(&mapping->i_pages, flags);
2866 }
2867
2868 int __init f2fs_init_post_read_processing(void)
2869 {
2870 bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
2871 if (!bio_post_read_ctx_cache)
2872 goto fail;
2873 bio_post_read_ctx_pool =
2874 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
2875 bio_post_read_ctx_cache);
2876 if (!bio_post_read_ctx_pool)
2877 goto fail_free_cache;
2878 return 0;
2879
2880 fail_free_cache:
2881 kmem_cache_destroy(bio_post_read_ctx_cache);
2882 fail:
2883 return -ENOMEM;
2884 }
2885
2886 void __exit f2fs_destroy_post_read_processing(void)
2887 {
2888 mempool_destroy(bio_post_read_ctx_pool);
2889 kmem_cache_destroy(bio_post_read_ctx_cache);
2890 }