]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/data.c
f2fs: simplfy a field name in struct f2fs_extent,extent_info
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/aio.h>
16 #include <linux/writeback.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "trace.h"
26 #include <trace/events/f2fs.h>
27
28 static void f2fs_read_end_io(struct bio *bio, int err)
29 {
30 struct bio_vec *bvec;
31 int i;
32
33 bio_for_each_segment_all(bvec, bio, i) {
34 struct page *page = bvec->bv_page;
35
36 if (!err) {
37 SetPageUptodate(page);
38 } else {
39 ClearPageUptodate(page);
40 SetPageError(page);
41 }
42 unlock_page(page);
43 }
44 bio_put(bio);
45 }
46
47 static void f2fs_write_end_io(struct bio *bio, int err)
48 {
49 struct f2fs_sb_info *sbi = bio->bi_private;
50 struct bio_vec *bvec;
51 int i;
52
53 bio_for_each_segment_all(bvec, bio, i) {
54 struct page *page = bvec->bv_page;
55
56 if (unlikely(err)) {
57 set_page_dirty(page);
58 set_bit(AS_EIO, &page->mapping->flags);
59 f2fs_stop_checkpoint(sbi);
60 }
61 end_page_writeback(page);
62 dec_page_count(sbi, F2FS_WRITEBACK);
63 }
64
65 if (!get_pages(sbi, F2FS_WRITEBACK) &&
66 !list_empty(&sbi->cp_wait.task_list))
67 wake_up(&sbi->cp_wait);
68
69 bio_put(bio);
70 }
71
72 /*
73 * Low-level block read/write IO operations.
74 */
75 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
76 int npages, bool is_read)
77 {
78 struct bio *bio;
79
80 /* No failure on bio allocation */
81 bio = bio_alloc(GFP_NOIO, npages);
82
83 bio->bi_bdev = sbi->sb->s_bdev;
84 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
85 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
86 bio->bi_private = sbi;
87
88 return bio;
89 }
90
91 static void __submit_merged_bio(struct f2fs_bio_info *io)
92 {
93 struct f2fs_io_info *fio = &io->fio;
94
95 if (!io->bio)
96 return;
97
98 if (is_read_io(fio->rw))
99 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
100 else
101 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
102
103 submit_bio(fio->rw, io->bio);
104 io->bio = NULL;
105 }
106
107 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
108 enum page_type type, int rw)
109 {
110 enum page_type btype = PAGE_TYPE_OF_BIO(type);
111 struct f2fs_bio_info *io;
112
113 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
114
115 down_write(&io->io_rwsem);
116
117 /* change META to META_FLUSH in the checkpoint procedure */
118 if (type >= META_FLUSH) {
119 io->fio.type = META_FLUSH;
120 if (test_opt(sbi, NOBARRIER))
121 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
122 else
123 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
124 }
125 __submit_merged_bio(io);
126 up_write(&io->io_rwsem);
127 }
128
129 /*
130 * Fill the locked page with data located in the block address.
131 * Return unlocked page.
132 */
133 int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
134 struct f2fs_io_info *fio)
135 {
136 struct bio *bio;
137
138 trace_f2fs_submit_page_bio(page, fio);
139 f2fs_trace_ios(page, fio, 0);
140
141 /* Allocate a new bio */
142 bio = __bio_alloc(sbi, fio->blk_addr, 1, is_read_io(fio->rw));
143
144 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
145 bio_put(bio);
146 f2fs_put_page(page, 1);
147 return -EFAULT;
148 }
149
150 submit_bio(fio->rw, bio);
151 return 0;
152 }
153
154 void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
155 struct f2fs_io_info *fio)
156 {
157 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
158 struct f2fs_bio_info *io;
159 bool is_read = is_read_io(fio->rw);
160
161 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
162
163 verify_block_addr(sbi, fio->blk_addr);
164
165 down_write(&io->io_rwsem);
166
167 if (!is_read)
168 inc_page_count(sbi, F2FS_WRITEBACK);
169
170 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
171 io->fio.rw != fio->rw))
172 __submit_merged_bio(io);
173 alloc_new:
174 if (io->bio == NULL) {
175 int bio_blocks = MAX_BIO_BLOCKS(sbi);
176
177 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
178 io->fio = *fio;
179 }
180
181 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
182 PAGE_CACHE_SIZE) {
183 __submit_merged_bio(io);
184 goto alloc_new;
185 }
186
187 io->last_block_in_bio = fio->blk_addr;
188 f2fs_trace_ios(page, fio, 0);
189
190 up_write(&io->io_rwsem);
191 trace_f2fs_submit_page_mbio(page, fio);
192 }
193
194 /*
195 * Lock ordering for the change of data block address:
196 * ->data_page
197 * ->node_page
198 * update block addresses in the node page
199 */
200 static void __set_data_blkaddr(struct dnode_of_data *dn)
201 {
202 struct f2fs_node *rn;
203 __le32 *addr_array;
204 struct page *node_page = dn->node_page;
205 unsigned int ofs_in_node = dn->ofs_in_node;
206
207 f2fs_wait_on_page_writeback(node_page, NODE);
208
209 rn = F2FS_NODE(node_page);
210
211 /* Get physical address of data block */
212 addr_array = blkaddr_in_node(rn);
213 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
214 set_page_dirty(node_page);
215 }
216
217 int reserve_new_block(struct dnode_of_data *dn)
218 {
219 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
220
221 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
222 return -EPERM;
223 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
224 return -ENOSPC;
225
226 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
227
228 dn->data_blkaddr = NEW_ADDR;
229 __set_data_blkaddr(dn);
230 mark_inode_dirty(dn->inode);
231 sync_inode_page(dn);
232 return 0;
233 }
234
235 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
236 {
237 bool need_put = dn->inode_page ? false : true;
238 int err;
239
240 err = get_dnode_of_data(dn, index, ALLOC_NODE);
241 if (err)
242 return err;
243
244 if (dn->data_blkaddr == NULL_ADDR)
245 err = reserve_new_block(dn);
246 if (err || need_put)
247 f2fs_put_dnode(dn);
248 return err;
249 }
250
251 static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
252 struct buffer_head *bh_result)
253 {
254 struct f2fs_inode_info *fi = F2FS_I(inode);
255 pgoff_t start_fofs, end_fofs;
256 block_t start_blkaddr;
257
258 if (is_inode_flag_set(fi, FI_NO_EXTENT))
259 return 0;
260
261 read_lock(&fi->ext_lock);
262 if (fi->ext.len == 0) {
263 read_unlock(&fi->ext_lock);
264 return 0;
265 }
266
267 stat_inc_total_hit(inode->i_sb);
268
269 start_fofs = fi->ext.fofs;
270 end_fofs = fi->ext.fofs + fi->ext.len - 1;
271 start_blkaddr = fi->ext.blk;
272
273 if (pgofs >= start_fofs && pgofs <= end_fofs) {
274 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
275 size_t count;
276
277 set_buffer_new(bh_result);
278 map_bh(bh_result, inode->i_sb,
279 start_blkaddr + pgofs - start_fofs);
280 count = end_fofs - pgofs + 1;
281 if (count < (UINT_MAX >> blkbits))
282 bh_result->b_size = (count << blkbits);
283 else
284 bh_result->b_size = UINT_MAX;
285
286 stat_inc_read_hit(inode->i_sb);
287 read_unlock(&fi->ext_lock);
288 return 1;
289 }
290 read_unlock(&fi->ext_lock);
291 return 0;
292 }
293
294 void update_extent_cache(struct dnode_of_data *dn)
295 {
296 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
297 pgoff_t fofs, start_fofs, end_fofs;
298 block_t start_blkaddr, end_blkaddr;
299 int need_update = true;
300
301 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
302
303 /* Update the page address in the parent node */
304 __set_data_blkaddr(dn);
305
306 if (is_inode_flag_set(fi, FI_NO_EXTENT))
307 return;
308
309 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
310 dn->ofs_in_node;
311
312 write_lock(&fi->ext_lock);
313
314 start_fofs = fi->ext.fofs;
315 end_fofs = fi->ext.fofs + fi->ext.len - 1;
316 start_blkaddr = fi->ext.blk;
317 end_blkaddr = fi->ext.blk + fi->ext.len - 1;
318
319 /* Drop and initialize the matched extent */
320 if (fi->ext.len == 1 && fofs == start_fofs)
321 fi->ext.len = 0;
322
323 /* Initial extent */
324 if (fi->ext.len == 0) {
325 if (dn->data_blkaddr != NULL_ADDR) {
326 fi->ext.fofs = fofs;
327 fi->ext.blk = dn->data_blkaddr;
328 fi->ext.len = 1;
329 }
330 goto end_update;
331 }
332
333 /* Front merge */
334 if (fofs == start_fofs - 1 && dn->data_blkaddr == start_blkaddr - 1) {
335 fi->ext.fofs--;
336 fi->ext.blk--;
337 fi->ext.len++;
338 goto end_update;
339 }
340
341 /* Back merge */
342 if (fofs == end_fofs + 1 && dn->data_blkaddr == end_blkaddr + 1) {
343 fi->ext.len++;
344 goto end_update;
345 }
346
347 /* Split the existing extent */
348 if (fi->ext.len > 1 &&
349 fofs >= start_fofs && fofs <= end_fofs) {
350 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
351 fi->ext.len = fofs - start_fofs;
352 } else {
353 fi->ext.fofs = fofs + 1;
354 fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
355 fi->ext.len -= fofs - start_fofs + 1;
356 }
357 } else {
358 need_update = false;
359 }
360
361 /* Finally, if the extent is very fragmented, let's drop the cache. */
362 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
363 fi->ext.len = 0;
364 set_inode_flag(fi, FI_NO_EXTENT);
365 need_update = true;
366 }
367 end_update:
368 write_unlock(&fi->ext_lock);
369 if (need_update)
370 sync_inode_page(dn);
371 return;
372 }
373
374 struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
375 {
376 struct address_space *mapping = inode->i_mapping;
377 struct dnode_of_data dn;
378 struct page *page;
379 int err;
380 struct f2fs_io_info fio = {
381 .type = DATA,
382 .rw = sync ? READ_SYNC : READA,
383 };
384
385 page = find_get_page(mapping, index);
386 if (page && PageUptodate(page))
387 return page;
388 f2fs_put_page(page, 0);
389
390 set_new_dnode(&dn, inode, NULL, NULL, 0);
391 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
392 if (err)
393 return ERR_PTR(err);
394 f2fs_put_dnode(&dn);
395
396 if (dn.data_blkaddr == NULL_ADDR)
397 return ERR_PTR(-ENOENT);
398
399 /* By fallocate(), there is no cached page, but with NEW_ADDR */
400 if (unlikely(dn.data_blkaddr == NEW_ADDR))
401 return ERR_PTR(-EINVAL);
402
403 page = grab_cache_page(mapping, index);
404 if (!page)
405 return ERR_PTR(-ENOMEM);
406
407 if (PageUptodate(page)) {
408 unlock_page(page);
409 return page;
410 }
411
412 fio.blk_addr = dn.data_blkaddr;
413 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
414 if (err)
415 return ERR_PTR(err);
416
417 if (sync) {
418 wait_on_page_locked(page);
419 if (unlikely(!PageUptodate(page))) {
420 f2fs_put_page(page, 0);
421 return ERR_PTR(-EIO);
422 }
423 }
424 return page;
425 }
426
427 /*
428 * If it tries to access a hole, return an error.
429 * Because, the callers, functions in dir.c and GC, should be able to know
430 * whether this page exists or not.
431 */
432 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
433 {
434 struct address_space *mapping = inode->i_mapping;
435 struct dnode_of_data dn;
436 struct page *page;
437 int err;
438 struct f2fs_io_info fio = {
439 .type = DATA,
440 .rw = READ_SYNC,
441 };
442 repeat:
443 page = grab_cache_page(mapping, index);
444 if (!page)
445 return ERR_PTR(-ENOMEM);
446
447 set_new_dnode(&dn, inode, NULL, NULL, 0);
448 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
449 if (err) {
450 f2fs_put_page(page, 1);
451 return ERR_PTR(err);
452 }
453 f2fs_put_dnode(&dn);
454
455 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
456 f2fs_put_page(page, 1);
457 return ERR_PTR(-ENOENT);
458 }
459
460 if (PageUptodate(page))
461 return page;
462
463 /*
464 * A new dentry page is allocated but not able to be written, since its
465 * new inode page couldn't be allocated due to -ENOSPC.
466 * In such the case, its blkaddr can be remained as NEW_ADDR.
467 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
468 */
469 if (dn.data_blkaddr == NEW_ADDR) {
470 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
471 SetPageUptodate(page);
472 return page;
473 }
474
475 fio.blk_addr = dn.data_blkaddr;
476 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
477 if (err)
478 return ERR_PTR(err);
479
480 lock_page(page);
481 if (unlikely(!PageUptodate(page))) {
482 f2fs_put_page(page, 1);
483 return ERR_PTR(-EIO);
484 }
485 if (unlikely(page->mapping != mapping)) {
486 f2fs_put_page(page, 1);
487 goto repeat;
488 }
489 return page;
490 }
491
492 /*
493 * Caller ensures that this data page is never allocated.
494 * A new zero-filled data page is allocated in the page cache.
495 *
496 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
497 * f2fs_unlock_op().
498 * Note that, ipage is set only by make_empty_dir.
499 */
500 struct page *get_new_data_page(struct inode *inode,
501 struct page *ipage, pgoff_t index, bool new_i_size)
502 {
503 struct address_space *mapping = inode->i_mapping;
504 struct page *page;
505 struct dnode_of_data dn;
506 int err;
507
508 set_new_dnode(&dn, inode, ipage, NULL, 0);
509 err = f2fs_reserve_block(&dn, index);
510 if (err)
511 return ERR_PTR(err);
512 repeat:
513 page = grab_cache_page(mapping, index);
514 if (!page) {
515 err = -ENOMEM;
516 goto put_err;
517 }
518
519 if (PageUptodate(page))
520 return page;
521
522 if (dn.data_blkaddr == NEW_ADDR) {
523 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
524 SetPageUptodate(page);
525 } else {
526 struct f2fs_io_info fio = {
527 .type = DATA,
528 .rw = READ_SYNC,
529 .blk_addr = dn.data_blkaddr,
530 };
531 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
532 if (err)
533 goto put_err;
534
535 lock_page(page);
536 if (unlikely(!PageUptodate(page))) {
537 f2fs_put_page(page, 1);
538 err = -EIO;
539 goto put_err;
540 }
541 if (unlikely(page->mapping != mapping)) {
542 f2fs_put_page(page, 1);
543 goto repeat;
544 }
545 }
546
547 if (new_i_size &&
548 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
549 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
550 /* Only the directory inode sets new_i_size */
551 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
552 }
553 return page;
554
555 put_err:
556 f2fs_put_dnode(&dn);
557 return ERR_PTR(err);
558 }
559
560 static int __allocate_data_block(struct dnode_of_data *dn)
561 {
562 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
563 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
564 struct f2fs_summary sum;
565 struct node_info ni;
566 int seg = CURSEG_WARM_DATA;
567 pgoff_t fofs;
568
569 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
570 return -EPERM;
571 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
572 return -ENOSPC;
573
574 get_node_info(sbi, dn->nid, &ni);
575 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
576
577 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
578 seg = CURSEG_DIRECT_IO;
579
580 allocate_data_block(sbi, NULL, NULL_ADDR, &dn->data_blkaddr, &sum, seg);
581
582 /* direct IO doesn't use extent cache to maximize the performance */
583 __set_data_blkaddr(dn);
584
585 /* update i_size */
586 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
587 dn->ofs_in_node;
588 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
589 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
590
591 return 0;
592 }
593
594 static void __allocate_data_blocks(struct inode *inode, loff_t offset,
595 size_t count)
596 {
597 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
598 struct dnode_of_data dn;
599 u64 start = F2FS_BYTES_TO_BLK(offset);
600 u64 len = F2FS_BYTES_TO_BLK(count);
601 bool allocated;
602 u64 end_offset;
603
604 while (len) {
605 f2fs_balance_fs(sbi);
606 f2fs_lock_op(sbi);
607
608 /* When reading holes, we need its node page */
609 set_new_dnode(&dn, inode, NULL, NULL, 0);
610 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
611 goto out;
612
613 allocated = false;
614 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
615
616 while (dn.ofs_in_node < end_offset && len) {
617 if (dn.data_blkaddr == NULL_ADDR) {
618 if (__allocate_data_block(&dn))
619 goto sync_out;
620 allocated = true;
621 }
622 len--;
623 start++;
624 dn.ofs_in_node++;
625 }
626
627 if (allocated)
628 sync_inode_page(&dn);
629
630 f2fs_put_dnode(&dn);
631 f2fs_unlock_op(sbi);
632 }
633 return;
634
635 sync_out:
636 if (allocated)
637 sync_inode_page(&dn);
638 f2fs_put_dnode(&dn);
639 out:
640 f2fs_unlock_op(sbi);
641 return;
642 }
643
644 /*
645 * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
646 * If original data blocks are allocated, then give them to blockdev.
647 * Otherwise,
648 * a. preallocate requested block addresses
649 * b. do not use extent cache for better performance
650 * c. give the block addresses to blockdev
651 */
652 static int __get_data_block(struct inode *inode, sector_t iblock,
653 struct buffer_head *bh_result, int create, bool fiemap)
654 {
655 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
656 unsigned maxblocks = bh_result->b_size >> blkbits;
657 struct dnode_of_data dn;
658 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
659 pgoff_t pgofs, end_offset;
660 int err = 0, ofs = 1;
661 bool allocated = false;
662
663 /* Get the page offset from the block offset(iblock) */
664 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
665
666 if (check_extent_cache(inode, pgofs, bh_result))
667 goto out;
668
669 if (create)
670 f2fs_lock_op(F2FS_I_SB(inode));
671
672 /* When reading holes, we need its node page */
673 set_new_dnode(&dn, inode, NULL, NULL, 0);
674 err = get_dnode_of_data(&dn, pgofs, mode);
675 if (err) {
676 if (err == -ENOENT)
677 err = 0;
678 goto unlock_out;
679 }
680 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
681 goto put_out;
682
683 if (dn.data_blkaddr != NULL_ADDR) {
684 set_buffer_new(bh_result);
685 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
686 } else if (create) {
687 err = __allocate_data_block(&dn);
688 if (err)
689 goto put_out;
690 allocated = true;
691 set_buffer_new(bh_result);
692 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
693 } else {
694 goto put_out;
695 }
696
697 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
698 bh_result->b_size = (((size_t)1) << blkbits);
699 dn.ofs_in_node++;
700 pgofs++;
701
702 get_next:
703 if (dn.ofs_in_node >= end_offset) {
704 if (allocated)
705 sync_inode_page(&dn);
706 allocated = false;
707 f2fs_put_dnode(&dn);
708
709 set_new_dnode(&dn, inode, NULL, NULL, 0);
710 err = get_dnode_of_data(&dn, pgofs, mode);
711 if (err) {
712 if (err == -ENOENT)
713 err = 0;
714 goto unlock_out;
715 }
716 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
717 goto put_out;
718
719 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
720 }
721
722 if (maxblocks > (bh_result->b_size >> blkbits)) {
723 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
724 if (blkaddr == NULL_ADDR && create) {
725 err = __allocate_data_block(&dn);
726 if (err)
727 goto sync_out;
728 allocated = true;
729 blkaddr = dn.data_blkaddr;
730 }
731 /* Give more consecutive addresses for the readahead */
732 if (blkaddr == (bh_result->b_blocknr + ofs)) {
733 ofs++;
734 dn.ofs_in_node++;
735 pgofs++;
736 bh_result->b_size += (((size_t)1) << blkbits);
737 goto get_next;
738 }
739 }
740 sync_out:
741 if (allocated)
742 sync_inode_page(&dn);
743 put_out:
744 f2fs_put_dnode(&dn);
745 unlock_out:
746 if (create)
747 f2fs_unlock_op(F2FS_I_SB(inode));
748 out:
749 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
750 return err;
751 }
752
753 static int get_data_block(struct inode *inode, sector_t iblock,
754 struct buffer_head *bh_result, int create)
755 {
756 return __get_data_block(inode, iblock, bh_result, create, false);
757 }
758
759 static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
760 struct buffer_head *bh_result, int create)
761 {
762 return __get_data_block(inode, iblock, bh_result, create, true);
763 }
764
765 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
766 u64 start, u64 len)
767 {
768 return generic_block_fiemap(inode, fieinfo,
769 start, len, get_data_block_fiemap);
770 }
771
772 static int f2fs_read_data_page(struct file *file, struct page *page)
773 {
774 struct inode *inode = page->mapping->host;
775 int ret = -EAGAIN;
776
777 trace_f2fs_readpage(page, DATA);
778
779 /* If the file has inline data, try to read it directly */
780 if (f2fs_has_inline_data(inode))
781 ret = f2fs_read_inline_data(inode, page);
782 if (ret == -EAGAIN)
783 ret = mpage_readpage(page, get_data_block);
784
785 return ret;
786 }
787
788 static int f2fs_read_data_pages(struct file *file,
789 struct address_space *mapping,
790 struct list_head *pages, unsigned nr_pages)
791 {
792 struct inode *inode = file->f_mapping->host;
793
794 /* If the file has inline data, skip readpages */
795 if (f2fs_has_inline_data(inode))
796 return 0;
797
798 return mpage_readpages(mapping, pages, nr_pages, get_data_block);
799 }
800
801 int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
802 {
803 struct inode *inode = page->mapping->host;
804 struct dnode_of_data dn;
805 int err = 0;
806
807 set_new_dnode(&dn, inode, NULL, NULL, 0);
808 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
809 if (err)
810 return err;
811
812 fio->blk_addr = dn.data_blkaddr;
813
814 /* This page is already truncated */
815 if (fio->blk_addr == NULL_ADDR)
816 goto out_writepage;
817
818 set_page_writeback(page);
819
820 /*
821 * If current allocation needs SSR,
822 * it had better in-place writes for updated data.
823 */
824 if (unlikely(fio->blk_addr != NEW_ADDR &&
825 !is_cold_data(page) &&
826 need_inplace_update(inode))) {
827 rewrite_data_page(page, fio);
828 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
829 } else {
830 write_data_page(page, &dn, fio);
831 update_extent_cache(&dn);
832 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
833 }
834 out_writepage:
835 f2fs_put_dnode(&dn);
836 return err;
837 }
838
839 static int f2fs_write_data_page(struct page *page,
840 struct writeback_control *wbc)
841 {
842 struct inode *inode = page->mapping->host;
843 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
844 loff_t i_size = i_size_read(inode);
845 const pgoff_t end_index = ((unsigned long long) i_size)
846 >> PAGE_CACHE_SHIFT;
847 unsigned offset = 0;
848 bool need_balance_fs = false;
849 int err = 0;
850 struct f2fs_io_info fio = {
851 .type = DATA,
852 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
853 };
854
855 trace_f2fs_writepage(page, DATA);
856
857 if (page->index < end_index)
858 goto write;
859
860 /*
861 * If the offset is out-of-range of file size,
862 * this page does not have to be written to disk.
863 */
864 offset = i_size & (PAGE_CACHE_SIZE - 1);
865 if ((page->index >= end_index + 1) || !offset)
866 goto out;
867
868 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
869 write:
870 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
871 goto redirty_out;
872 if (f2fs_is_drop_cache(inode))
873 goto out;
874 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
875 available_free_memory(sbi, BASE_CHECK))
876 goto redirty_out;
877
878 /* Dentry blocks are controlled by checkpoint */
879 if (S_ISDIR(inode->i_mode)) {
880 if (unlikely(f2fs_cp_error(sbi)))
881 goto redirty_out;
882 err = do_write_data_page(page, &fio);
883 goto done;
884 }
885
886 /* we should bypass data pages to proceed the kworkder jobs */
887 if (unlikely(f2fs_cp_error(sbi))) {
888 SetPageError(page);
889 goto out;
890 }
891
892 if (!wbc->for_reclaim)
893 need_balance_fs = true;
894 else if (has_not_enough_free_secs(sbi, 0))
895 goto redirty_out;
896
897 err = -EAGAIN;
898 f2fs_lock_op(sbi);
899 if (f2fs_has_inline_data(inode))
900 err = f2fs_write_inline_data(inode, page);
901 if (err == -EAGAIN)
902 err = do_write_data_page(page, &fio);
903 f2fs_unlock_op(sbi);
904 done:
905 if (err && err != -ENOENT)
906 goto redirty_out;
907
908 clear_cold_data(page);
909 out:
910 inode_dec_dirty_pages(inode);
911 unlock_page(page);
912 if (need_balance_fs)
913 f2fs_balance_fs(sbi);
914 if (wbc->for_reclaim)
915 f2fs_submit_merged_bio(sbi, DATA, WRITE);
916 return 0;
917
918 redirty_out:
919 redirty_page_for_writepage(wbc, page);
920 return AOP_WRITEPAGE_ACTIVATE;
921 }
922
923 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
924 void *data)
925 {
926 struct address_space *mapping = data;
927 int ret = mapping->a_ops->writepage(page, wbc);
928 mapping_set_error(mapping, ret);
929 return ret;
930 }
931
932 static int f2fs_write_data_pages(struct address_space *mapping,
933 struct writeback_control *wbc)
934 {
935 struct inode *inode = mapping->host;
936 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
937 bool locked = false;
938 int ret;
939 long diff;
940
941 trace_f2fs_writepages(mapping->host, wbc, DATA);
942
943 /* deal with chardevs and other special file */
944 if (!mapping->a_ops->writepage)
945 return 0;
946
947 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
948 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
949 available_free_memory(sbi, DIRTY_DENTS))
950 goto skip_write;
951
952 diff = nr_pages_to_write(sbi, DATA, wbc);
953
954 if (!S_ISDIR(inode->i_mode)) {
955 mutex_lock(&sbi->writepages);
956 locked = true;
957 }
958 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
959 if (locked)
960 mutex_unlock(&sbi->writepages);
961
962 f2fs_submit_merged_bio(sbi, DATA, WRITE);
963
964 remove_dirty_dir_inode(inode);
965
966 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
967 return ret;
968
969 skip_write:
970 wbc->pages_skipped += get_dirty_pages(inode);
971 return 0;
972 }
973
974 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
975 {
976 struct inode *inode = mapping->host;
977
978 if (to > inode->i_size) {
979 truncate_pagecache(inode, inode->i_size);
980 truncate_blocks(inode, inode->i_size, true);
981 }
982 }
983
984 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
985 loff_t pos, unsigned len, unsigned flags,
986 struct page **pagep, void **fsdata)
987 {
988 struct inode *inode = mapping->host;
989 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
990 struct page *page, *ipage;
991 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
992 struct dnode_of_data dn;
993 int err = 0;
994
995 trace_f2fs_write_begin(inode, pos, len, flags);
996
997 f2fs_balance_fs(sbi);
998
999 /*
1000 * We should check this at this moment to avoid deadlock on inode page
1001 * and #0 page. The locking rule for inline_data conversion should be:
1002 * lock_page(page #0) -> lock_page(inode_page)
1003 */
1004 if (index != 0) {
1005 err = f2fs_convert_inline_inode(inode);
1006 if (err)
1007 goto fail;
1008 }
1009 repeat:
1010 page = grab_cache_page_write_begin(mapping, index, flags);
1011 if (!page) {
1012 err = -ENOMEM;
1013 goto fail;
1014 }
1015
1016 *pagep = page;
1017
1018 f2fs_lock_op(sbi);
1019
1020 /* check inline_data */
1021 ipage = get_node_page(sbi, inode->i_ino);
1022 if (IS_ERR(ipage)) {
1023 err = PTR_ERR(ipage);
1024 goto unlock_fail;
1025 }
1026
1027 set_new_dnode(&dn, inode, ipage, ipage, 0);
1028
1029 if (f2fs_has_inline_data(inode)) {
1030 if (pos + len <= MAX_INLINE_DATA) {
1031 read_inline_data(page, ipage);
1032 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1033 sync_inode_page(&dn);
1034 goto put_next;
1035 }
1036 err = f2fs_convert_inline_page(&dn, page);
1037 if (err)
1038 goto put_fail;
1039 }
1040 err = f2fs_reserve_block(&dn, index);
1041 if (err)
1042 goto put_fail;
1043 put_next:
1044 f2fs_put_dnode(&dn);
1045 f2fs_unlock_op(sbi);
1046
1047 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1048 return 0;
1049
1050 f2fs_wait_on_page_writeback(page, DATA);
1051
1052 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1053 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1054 unsigned end = start + len;
1055
1056 /* Reading beyond i_size is simple: memset to zero */
1057 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1058 goto out;
1059 }
1060
1061 if (dn.data_blkaddr == NEW_ADDR) {
1062 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1063 } else {
1064 struct f2fs_io_info fio = {
1065 .type = DATA,
1066 .rw = READ_SYNC,
1067 .blk_addr = dn.data_blkaddr,
1068 };
1069 err = f2fs_submit_page_bio(sbi, page, &fio);
1070 if (err)
1071 goto fail;
1072
1073 lock_page(page);
1074 if (unlikely(!PageUptodate(page))) {
1075 f2fs_put_page(page, 1);
1076 err = -EIO;
1077 goto fail;
1078 }
1079 if (unlikely(page->mapping != mapping)) {
1080 f2fs_put_page(page, 1);
1081 goto repeat;
1082 }
1083 }
1084 out:
1085 SetPageUptodate(page);
1086 clear_cold_data(page);
1087 return 0;
1088
1089 put_fail:
1090 f2fs_put_dnode(&dn);
1091 unlock_fail:
1092 f2fs_unlock_op(sbi);
1093 f2fs_put_page(page, 1);
1094 fail:
1095 f2fs_write_failed(mapping, pos + len);
1096 return err;
1097 }
1098
1099 static int f2fs_write_end(struct file *file,
1100 struct address_space *mapping,
1101 loff_t pos, unsigned len, unsigned copied,
1102 struct page *page, void *fsdata)
1103 {
1104 struct inode *inode = page->mapping->host;
1105
1106 trace_f2fs_write_end(inode, pos, len, copied);
1107
1108 set_page_dirty(page);
1109
1110 if (pos + copied > i_size_read(inode)) {
1111 i_size_write(inode, pos + copied);
1112 mark_inode_dirty(inode);
1113 update_inode_page(inode);
1114 }
1115
1116 f2fs_put_page(page, 1);
1117 return copied;
1118 }
1119
1120 static int check_direct_IO(struct inode *inode, int rw,
1121 struct iov_iter *iter, loff_t offset)
1122 {
1123 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1124
1125 if (rw == READ)
1126 return 0;
1127
1128 if (offset & blocksize_mask)
1129 return -EINVAL;
1130
1131 if (iov_iter_alignment(iter) & blocksize_mask)
1132 return -EINVAL;
1133
1134 return 0;
1135 }
1136
1137 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
1138 struct iov_iter *iter, loff_t offset)
1139 {
1140 struct file *file = iocb->ki_filp;
1141 struct address_space *mapping = file->f_mapping;
1142 struct inode *inode = mapping->host;
1143 size_t count = iov_iter_count(iter);
1144 int err;
1145
1146 /* we don't need to use inline_data strictly */
1147 if (f2fs_has_inline_data(inode)) {
1148 err = f2fs_convert_inline_inode(inode);
1149 if (err)
1150 return err;
1151 }
1152
1153 if (check_direct_IO(inode, rw, iter, offset))
1154 return 0;
1155
1156 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1157
1158 if (rw & WRITE)
1159 __allocate_data_blocks(inode, offset, count);
1160
1161 err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block);
1162 if (err < 0 && (rw & WRITE))
1163 f2fs_write_failed(mapping, offset + count);
1164
1165 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1166
1167 return err;
1168 }
1169
1170 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1171 unsigned int length)
1172 {
1173 struct inode *inode = page->mapping->host;
1174 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1175
1176 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1177 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
1178 return;
1179
1180 if (PageDirty(page)) {
1181 if (inode->i_ino == F2FS_META_INO(sbi))
1182 dec_page_count(sbi, F2FS_DIRTY_META);
1183 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1184 dec_page_count(sbi, F2FS_DIRTY_NODES);
1185 else
1186 inode_dec_dirty_pages(inode);
1187 }
1188 ClearPagePrivate(page);
1189 }
1190
1191 int f2fs_release_page(struct page *page, gfp_t wait)
1192 {
1193 /* If this is dirty page, keep PagePrivate */
1194 if (PageDirty(page))
1195 return 0;
1196
1197 ClearPagePrivate(page);
1198 return 1;
1199 }
1200
1201 static int f2fs_set_data_page_dirty(struct page *page)
1202 {
1203 struct address_space *mapping = page->mapping;
1204 struct inode *inode = mapping->host;
1205
1206 trace_f2fs_set_page_dirty(page, DATA);
1207
1208 SetPageUptodate(page);
1209
1210 if (f2fs_is_atomic_file(inode)) {
1211 register_inmem_page(inode, page);
1212 return 1;
1213 }
1214
1215 mark_inode_dirty(inode);
1216
1217 if (!PageDirty(page)) {
1218 __set_page_dirty_nobuffers(page);
1219 update_dirty_page(inode, page);
1220 return 1;
1221 }
1222 return 0;
1223 }
1224
1225 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1226 {
1227 struct inode *inode = mapping->host;
1228
1229 /* we don't need to use inline_data strictly */
1230 if (f2fs_has_inline_data(inode)) {
1231 int err = f2fs_convert_inline_inode(inode);
1232 if (err)
1233 return err;
1234 }
1235 return generic_block_bmap(mapping, block, get_data_block);
1236 }
1237
1238 const struct address_space_operations f2fs_dblock_aops = {
1239 .readpage = f2fs_read_data_page,
1240 .readpages = f2fs_read_data_pages,
1241 .writepage = f2fs_write_data_page,
1242 .writepages = f2fs_write_data_pages,
1243 .write_begin = f2fs_write_begin,
1244 .write_end = f2fs_write_end,
1245 .set_page_dirty = f2fs_set_data_page_dirty,
1246 .invalidatepage = f2fs_invalidate_page,
1247 .releasepage = f2fs_release_page,
1248 .direct_IO = f2fs_direct_IO,
1249 .bmap = f2fs_bmap,
1250 };