4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
28 #include <trace/events/f2fs.h>
30 static void f2fs_read_end_io(struct bio
*bio
)
35 if (f2fs_bio_encrypted(bio
)) {
37 f2fs_release_crypto_ctx(bio
->bi_private
);
39 f2fs_end_io_crypto_work(bio
->bi_private
, bio
);
44 bio_for_each_segment_all(bvec
, bio
, i
) {
45 struct page
*page
= bvec
->bv_page
;
48 SetPageUptodate(page
);
50 ClearPageUptodate(page
);
58 static void f2fs_write_end_io(struct bio
*bio
)
60 struct f2fs_sb_info
*sbi
= bio
->bi_private
;
64 bio_for_each_segment_all(bvec
, bio
, i
) {
65 struct page
*page
= bvec
->bv_page
;
67 f2fs_restore_and_release_control_page(&page
);
69 if (unlikely(bio
->bi_error
)) {
71 set_bit(AS_EIO
, &page
->mapping
->flags
);
72 f2fs_stop_checkpoint(sbi
);
74 end_page_writeback(page
);
75 dec_page_count(sbi
, F2FS_WRITEBACK
);
78 if (!get_pages(sbi
, F2FS_WRITEBACK
) &&
79 !list_empty(&sbi
->cp_wait
.task_list
))
80 wake_up(&sbi
->cp_wait
);
86 * Low-level block read/write IO operations.
88 static struct bio
*__bio_alloc(struct f2fs_sb_info
*sbi
, block_t blk_addr
,
89 int npages
, bool is_read
)
93 bio
= f2fs_bio_alloc(npages
);
95 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
96 bio
->bi_iter
.bi_sector
= SECTOR_FROM_BLOCK(blk_addr
);
97 bio
->bi_end_io
= is_read
? f2fs_read_end_io
: f2fs_write_end_io
;
98 bio
->bi_private
= is_read
? NULL
: sbi
;
103 static void __submit_merged_bio(struct f2fs_bio_info
*io
)
105 struct f2fs_io_info
*fio
= &io
->fio
;
110 if (is_read_io(fio
->rw
))
111 trace_f2fs_submit_read_bio(io
->sbi
->sb
, fio
, io
->bio
);
113 trace_f2fs_submit_write_bio(io
->sbi
->sb
, fio
, io
->bio
);
115 submit_bio(fio
->rw
, io
->bio
);
119 void f2fs_submit_merged_bio(struct f2fs_sb_info
*sbi
,
120 enum page_type type
, int rw
)
122 enum page_type btype
= PAGE_TYPE_OF_BIO(type
);
123 struct f2fs_bio_info
*io
;
125 io
= is_read_io(rw
) ? &sbi
->read_io
: &sbi
->write_io
[btype
];
127 down_write(&io
->io_rwsem
);
129 /* change META to META_FLUSH in the checkpoint procedure */
130 if (type
>= META_FLUSH
) {
131 io
->fio
.type
= META_FLUSH
;
132 if (test_opt(sbi
, NOBARRIER
))
133 io
->fio
.rw
= WRITE_FLUSH
| REQ_META
| REQ_PRIO
;
135 io
->fio
.rw
= WRITE_FLUSH_FUA
| REQ_META
| REQ_PRIO
;
137 __submit_merged_bio(io
);
138 up_write(&io
->io_rwsem
);
142 * Fill the locked page with data located in the block address.
143 * Return unlocked page.
145 int f2fs_submit_page_bio(struct f2fs_io_info
*fio
)
148 struct page
*page
= fio
->encrypted_page
? fio
->encrypted_page
: fio
->page
;
150 trace_f2fs_submit_page_bio(page
, fio
);
151 f2fs_trace_ios(fio
, 0);
153 /* Allocate a new bio */
154 bio
= __bio_alloc(fio
->sbi
, fio
->blk_addr
, 1, is_read_io(fio
->rw
));
156 if (bio_add_page(bio
, page
, PAGE_CACHE_SIZE
, 0) < PAGE_CACHE_SIZE
) {
161 submit_bio(fio
->rw
, bio
);
165 void f2fs_submit_page_mbio(struct f2fs_io_info
*fio
)
167 struct f2fs_sb_info
*sbi
= fio
->sbi
;
168 enum page_type btype
= PAGE_TYPE_OF_BIO(fio
->type
);
169 struct f2fs_bio_info
*io
;
170 bool is_read
= is_read_io(fio
->rw
);
171 struct page
*bio_page
;
173 io
= is_read
? &sbi
->read_io
: &sbi
->write_io
[btype
];
175 verify_block_addr(sbi
, fio
->blk_addr
);
177 down_write(&io
->io_rwsem
);
180 inc_page_count(sbi
, F2FS_WRITEBACK
);
182 if (io
->bio
&& (io
->last_block_in_bio
!= fio
->blk_addr
- 1 ||
183 io
->fio
.rw
!= fio
->rw
))
184 __submit_merged_bio(io
);
186 if (io
->bio
== NULL
) {
187 int bio_blocks
= MAX_BIO_BLOCKS(sbi
);
189 io
->bio
= __bio_alloc(sbi
, fio
->blk_addr
, bio_blocks
, is_read
);
193 bio_page
= fio
->encrypted_page
? fio
->encrypted_page
: fio
->page
;
195 if (bio_add_page(io
->bio
, bio_page
, PAGE_CACHE_SIZE
, 0) <
197 __submit_merged_bio(io
);
201 io
->last_block_in_bio
= fio
->blk_addr
;
202 f2fs_trace_ios(fio
, 0);
204 up_write(&io
->io_rwsem
);
205 trace_f2fs_submit_page_mbio(fio
->page
, fio
);
209 * Lock ordering for the change of data block address:
212 * update block addresses in the node page
214 void set_data_blkaddr(struct dnode_of_data
*dn
)
216 struct f2fs_node
*rn
;
218 struct page
*node_page
= dn
->node_page
;
219 unsigned int ofs_in_node
= dn
->ofs_in_node
;
221 f2fs_wait_on_page_writeback(node_page
, NODE
);
223 rn
= F2FS_NODE(node_page
);
225 /* Get physical address of data block */
226 addr_array
= blkaddr_in_node(rn
);
227 addr_array
[ofs_in_node
] = cpu_to_le32(dn
->data_blkaddr
);
228 set_page_dirty(node_page
);
231 int reserve_new_block(struct dnode_of_data
*dn
)
233 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
235 if (unlikely(is_inode_flag_set(F2FS_I(dn
->inode
), FI_NO_ALLOC
)))
237 if (unlikely(!inc_valid_block_count(sbi
, dn
->inode
, 1)))
240 trace_f2fs_reserve_new_block(dn
->inode
, dn
->nid
, dn
->ofs_in_node
);
242 dn
->data_blkaddr
= NEW_ADDR
;
243 set_data_blkaddr(dn
);
244 mark_inode_dirty(dn
->inode
);
249 int f2fs_reserve_block(struct dnode_of_data
*dn
, pgoff_t index
)
251 bool need_put
= dn
->inode_page
? false : true;
254 err
= get_dnode_of_data(dn
, index
, ALLOC_NODE
);
258 if (dn
->data_blkaddr
== NULL_ADDR
)
259 err
= reserve_new_block(dn
);
265 int f2fs_get_block(struct dnode_of_data
*dn
, pgoff_t index
)
267 struct extent_info ei
;
268 struct inode
*inode
= dn
->inode
;
270 if (f2fs_lookup_extent_cache(inode
, index
, &ei
)) {
271 dn
->data_blkaddr
= ei
.blk
+ index
- ei
.fofs
;
275 return f2fs_reserve_block(dn
, index
);
278 struct page
*get_read_data_page(struct inode
*inode
, pgoff_t index
, int rw
)
280 struct address_space
*mapping
= inode
->i_mapping
;
281 struct dnode_of_data dn
;
283 struct extent_info ei
;
285 struct f2fs_io_info fio
= {
286 .sbi
= F2FS_I_SB(inode
),
289 .encrypted_page
= NULL
,
292 if (f2fs_encrypted_inode(inode
) && S_ISREG(inode
->i_mode
))
293 return read_mapping_page(mapping
, index
, NULL
);
295 page
= grab_cache_page(mapping
, index
);
297 return ERR_PTR(-ENOMEM
);
299 if (f2fs_lookup_extent_cache(inode
, index
, &ei
)) {
300 dn
.data_blkaddr
= ei
.blk
+ index
- ei
.fofs
;
304 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
305 err
= get_dnode_of_data(&dn
, index
, LOOKUP_NODE
);
310 if (unlikely(dn
.data_blkaddr
== NULL_ADDR
)) {
315 if (PageUptodate(page
)) {
321 * A new dentry page is allocated but not able to be written, since its
322 * new inode page couldn't be allocated due to -ENOSPC.
323 * In such the case, its blkaddr can be remained as NEW_ADDR.
324 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
326 if (dn
.data_blkaddr
== NEW_ADDR
) {
327 zero_user_segment(page
, 0, PAGE_CACHE_SIZE
);
328 SetPageUptodate(page
);
333 fio
.blk_addr
= dn
.data_blkaddr
;
335 err
= f2fs_submit_page_bio(&fio
);
341 f2fs_put_page(page
, 1);
345 struct page
*find_data_page(struct inode
*inode
, pgoff_t index
)
347 struct address_space
*mapping
= inode
->i_mapping
;
350 page
= find_get_page(mapping
, index
);
351 if (page
&& PageUptodate(page
))
353 f2fs_put_page(page
, 0);
355 page
= get_read_data_page(inode
, index
, READ_SYNC
);
359 if (PageUptodate(page
))
362 wait_on_page_locked(page
);
363 if (unlikely(!PageUptodate(page
))) {
364 f2fs_put_page(page
, 0);
365 return ERR_PTR(-EIO
);
371 * If it tries to access a hole, return an error.
372 * Because, the callers, functions in dir.c and GC, should be able to know
373 * whether this page exists or not.
375 struct page
*get_lock_data_page(struct inode
*inode
, pgoff_t index
)
377 struct address_space
*mapping
= inode
->i_mapping
;
380 page
= get_read_data_page(inode
, index
, READ_SYNC
);
384 /* wait for read completion */
386 if (unlikely(!PageUptodate(page
))) {
387 f2fs_put_page(page
, 1);
388 return ERR_PTR(-EIO
);
390 if (unlikely(page
->mapping
!= mapping
)) {
391 f2fs_put_page(page
, 1);
398 * Caller ensures that this data page is never allocated.
399 * A new zero-filled data page is allocated in the page cache.
401 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
403 * Note that, ipage is set only by make_empty_dir, and if any error occur,
404 * ipage should be released by this function.
406 struct page
*get_new_data_page(struct inode
*inode
,
407 struct page
*ipage
, pgoff_t index
, bool new_i_size
)
409 struct address_space
*mapping
= inode
->i_mapping
;
411 struct dnode_of_data dn
;
414 page
= grab_cache_page(mapping
, index
);
417 * before exiting, we should make sure ipage will be released
418 * if any error occur.
420 f2fs_put_page(ipage
, 1);
421 return ERR_PTR(-ENOMEM
);
424 set_new_dnode(&dn
, inode
, ipage
, NULL
, 0);
425 err
= f2fs_reserve_block(&dn
, index
);
427 f2fs_put_page(page
, 1);
433 if (PageUptodate(page
))
436 if (dn
.data_blkaddr
== NEW_ADDR
) {
437 zero_user_segment(page
, 0, PAGE_CACHE_SIZE
);
438 SetPageUptodate(page
);
440 f2fs_put_page(page
, 1);
442 page
= get_read_data_page(inode
, index
, READ_SYNC
);
446 /* wait for read completion */
450 if (new_i_size
&& i_size_read(inode
) <
451 ((loff_t
)(index
+ 1) << PAGE_CACHE_SHIFT
)) {
452 i_size_write(inode
, ((loff_t
)(index
+ 1) << PAGE_CACHE_SHIFT
));
453 /* Only the directory inode sets new_i_size */
454 set_inode_flag(F2FS_I(inode
), FI_UPDATE_DIR
);
459 static int __allocate_data_block(struct dnode_of_data
*dn
)
461 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
462 struct f2fs_inode_info
*fi
= F2FS_I(dn
->inode
);
463 struct f2fs_summary sum
;
465 int seg
= CURSEG_WARM_DATA
;
468 if (unlikely(is_inode_flag_set(F2FS_I(dn
->inode
), FI_NO_ALLOC
)))
471 dn
->data_blkaddr
= datablock_addr(dn
->node_page
, dn
->ofs_in_node
);
472 if (dn
->data_blkaddr
== NEW_ADDR
)
475 if (unlikely(!inc_valid_block_count(sbi
, dn
->inode
, 1)))
479 get_node_info(sbi
, dn
->nid
, &ni
);
480 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
482 if (dn
->ofs_in_node
== 0 && dn
->inode_page
== dn
->node_page
)
483 seg
= CURSEG_DIRECT_IO
;
485 allocate_data_block(sbi
, NULL
, dn
->data_blkaddr
, &dn
->data_blkaddr
,
487 set_data_blkaddr(dn
);
490 fofs
= start_bidx_of_node(ofs_of_node(dn
->node_page
), fi
) +
492 if (i_size_read(dn
->inode
) < ((loff_t
)(fofs
+ 1) << PAGE_CACHE_SHIFT
))
493 i_size_write(dn
->inode
,
494 ((loff_t
)(fofs
+ 1) << PAGE_CACHE_SHIFT
));
496 /* direct IO doesn't use extent cache to maximize the performance */
497 f2fs_drop_largest_extent(dn
->inode
, fofs
);
502 static void __allocate_data_blocks(struct inode
*inode
, loff_t offset
,
505 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
506 struct dnode_of_data dn
;
507 u64 start
= F2FS_BYTES_TO_BLK(offset
);
508 u64 len
= F2FS_BYTES_TO_BLK(count
);
513 f2fs_balance_fs(sbi
);
516 /* When reading holes, we need its node page */
517 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
518 if (get_dnode_of_data(&dn
, start
, ALLOC_NODE
))
522 end_offset
= ADDRS_PER_PAGE(dn
.node_page
, F2FS_I(inode
));
524 while (dn
.ofs_in_node
< end_offset
&& len
) {
527 blkaddr
= datablock_addr(dn
.node_page
, dn
.ofs_in_node
);
528 if (blkaddr
== NULL_ADDR
|| blkaddr
== NEW_ADDR
) {
529 if (__allocate_data_block(&dn
))
539 sync_inode_page(&dn
);
548 sync_inode_page(&dn
);
556 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
557 * f2fs_map_blocks structure.
558 * If original data blocks are allocated, then give them to blockdev.
560 * a. preallocate requested block addresses
561 * b. do not use extent cache for better performance
562 * c. give the block addresses to blockdev
564 static int f2fs_map_blocks(struct inode
*inode
, struct f2fs_map_blocks
*map
,
565 int create
, int flag
)
567 unsigned int maxblocks
= map
->m_len
;
568 struct dnode_of_data dn
;
569 int mode
= create
? ALLOC_NODE
: LOOKUP_NODE_RA
;
570 pgoff_t pgofs
, end_offset
;
571 int err
= 0, ofs
= 1;
572 struct extent_info ei
;
573 bool allocated
= false;
578 /* it only supports block size == page size */
579 pgofs
= (pgoff_t
)map
->m_lblk
;
581 if (f2fs_lookup_extent_cache(inode
, pgofs
, &ei
)) {
582 map
->m_pblk
= ei
.blk
+ pgofs
- ei
.fofs
;
583 map
->m_len
= min((pgoff_t
)maxblocks
, ei
.fofs
+ ei
.len
- pgofs
);
584 map
->m_flags
= F2FS_MAP_MAPPED
;
589 f2fs_lock_op(F2FS_I_SB(inode
));
591 /* When reading holes, we need its node page */
592 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
593 err
= get_dnode_of_data(&dn
, pgofs
, mode
);
599 if (dn
.data_blkaddr
== NEW_ADDR
) {
600 if (flag
== F2FS_GET_BLOCK_BMAP
) {
603 } else if (flag
== F2FS_GET_BLOCK_READ
||
604 flag
== F2FS_GET_BLOCK_DIO
) {
608 * if it is in fiemap call path (flag = F2FS_GET_BLOCK_FIEMAP),
609 * mark it as mapped and unwritten block.
613 if (dn
.data_blkaddr
!= NULL_ADDR
) {
614 map
->m_flags
= F2FS_MAP_MAPPED
;
615 map
->m_pblk
= dn
.data_blkaddr
;
616 if (dn
.data_blkaddr
== NEW_ADDR
)
617 map
->m_flags
|= F2FS_MAP_UNWRITTEN
;
619 err
= __allocate_data_block(&dn
);
623 map
->m_flags
= F2FS_MAP_NEW
| F2FS_MAP_MAPPED
;
624 map
->m_pblk
= dn
.data_blkaddr
;
626 if (flag
== F2FS_GET_BLOCK_BMAP
)
631 end_offset
= ADDRS_PER_PAGE(dn
.node_page
, F2FS_I(inode
));
637 if (dn
.ofs_in_node
>= end_offset
) {
639 sync_inode_page(&dn
);
643 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
644 err
= get_dnode_of_data(&dn
, pgofs
, mode
);
651 if (dn
.data_blkaddr
== NEW_ADDR
&&
652 flag
!= F2FS_GET_BLOCK_FIEMAP
)
655 end_offset
= ADDRS_PER_PAGE(dn
.node_page
, F2FS_I(inode
));
658 if (maxblocks
> map
->m_len
) {
659 block_t blkaddr
= datablock_addr(dn
.node_page
, dn
.ofs_in_node
);
660 if (blkaddr
== NULL_ADDR
&& create
) {
661 err
= __allocate_data_block(&dn
);
665 map
->m_flags
|= F2FS_MAP_NEW
;
666 blkaddr
= dn
.data_blkaddr
;
668 /* Give more consecutive addresses for the readahead */
669 if ((map
->m_pblk
!= NEW_ADDR
&&
670 blkaddr
== (map
->m_pblk
+ ofs
)) ||
671 (map
->m_pblk
== NEW_ADDR
&&
672 blkaddr
== NEW_ADDR
)) {
682 sync_inode_page(&dn
);
687 f2fs_unlock_op(F2FS_I_SB(inode
));
689 trace_f2fs_map_blocks(inode
, map
, err
);
693 static int __get_data_block(struct inode
*inode
, sector_t iblock
,
694 struct buffer_head
*bh
, int create
, int flag
)
696 struct f2fs_map_blocks map
;
700 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
702 ret
= f2fs_map_blocks(inode
, &map
, create
, flag
);
704 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
705 bh
->b_state
= (bh
->b_state
& ~F2FS_MAP_FLAGS
) | map
.m_flags
;
706 bh
->b_size
= map
.m_len
<< inode
->i_blkbits
;
711 static int get_data_block(struct inode
*inode
, sector_t iblock
,
712 struct buffer_head
*bh_result
, int create
, int flag
)
714 return __get_data_block(inode
, iblock
, bh_result
, create
, flag
);
717 static int get_data_block_dio(struct inode
*inode
, sector_t iblock
,
718 struct buffer_head
*bh_result
, int create
)
720 return __get_data_block(inode
, iblock
, bh_result
, create
,
724 static int get_data_block_bmap(struct inode
*inode
, sector_t iblock
,
725 struct buffer_head
*bh_result
, int create
)
727 return __get_data_block(inode
, iblock
, bh_result
, create
,
728 F2FS_GET_BLOCK_BMAP
);
731 static inline sector_t
logical_to_blk(struct inode
*inode
, loff_t offset
)
733 return (offset
>> inode
->i_blkbits
);
736 static inline loff_t
blk_to_logical(struct inode
*inode
, sector_t blk
)
738 return (blk
<< inode
->i_blkbits
);
741 int f2fs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
744 struct buffer_head map_bh
;
745 sector_t start_blk
, last_blk
;
746 loff_t isize
= i_size_read(inode
);
747 u64 logical
= 0, phys
= 0, size
= 0;
749 bool past_eof
= false, whole_file
= false;
752 ret
= fiemap_check_flags(fieinfo
, FIEMAP_FLAG_SYNC
);
756 mutex_lock(&inode
->i_mutex
);
763 if (logical_to_blk(inode
, len
) == 0)
764 len
= blk_to_logical(inode
, 1);
766 start_blk
= logical_to_blk(inode
, start
);
767 last_blk
= logical_to_blk(inode
, start
+ len
- 1);
769 memset(&map_bh
, 0, sizeof(struct buffer_head
));
772 ret
= get_data_block(inode
, start_blk
, &map_bh
, 0,
773 F2FS_GET_BLOCK_FIEMAP
);
778 if (!buffer_mapped(&map_bh
)) {
781 if (!past_eof
&& blk_to_logical(inode
, start_blk
) >= isize
)
784 if (past_eof
&& size
) {
785 flags
|= FIEMAP_EXTENT_LAST
;
786 ret
= fiemap_fill_next_extent(fieinfo
, logical
,
789 ret
= fiemap_fill_next_extent(fieinfo
, logical
,
794 /* if we have holes up to/past EOF then we're done */
795 if (start_blk
> last_blk
|| past_eof
|| ret
)
798 if (start_blk
> last_blk
&& !whole_file
) {
799 ret
= fiemap_fill_next_extent(fieinfo
, logical
,
805 * if size != 0 then we know we already have an extent
809 ret
= fiemap_fill_next_extent(fieinfo
, logical
,
815 logical
= blk_to_logical(inode
, start_blk
);
816 phys
= blk_to_logical(inode
, map_bh
.b_blocknr
);
817 size
= map_bh
.b_size
;
819 if (buffer_unwritten(&map_bh
))
820 flags
= FIEMAP_EXTENT_UNWRITTEN
;
822 start_blk
+= logical_to_blk(inode
, size
);
825 * If we are past the EOF, then we need to make sure as
826 * soon as we find a hole that the last extent we found
827 * is marked with FIEMAP_EXTENT_LAST
829 if (!past_eof
&& logical
+ size
>= isize
)
833 if (fatal_signal_pending(current
))
841 mutex_unlock(&inode
->i_mutex
);
846 * This function was originally taken from fs/mpage.c, and customized for f2fs.
847 * Major change was from block_size == page_size in f2fs by default.
849 static int f2fs_mpage_readpages(struct address_space
*mapping
,
850 struct list_head
*pages
, struct page
*page
,
853 struct bio
*bio
= NULL
;
855 sector_t last_block_in_bio
= 0;
856 struct inode
*inode
= mapping
->host
;
857 const unsigned blkbits
= inode
->i_blkbits
;
858 const unsigned blocksize
= 1 << blkbits
;
859 sector_t block_in_file
;
861 sector_t last_block_in_file
;
863 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
864 struct f2fs_map_blocks map
;
871 for (page_idx
= 0; nr_pages
; page_idx
++, nr_pages
--) {
873 prefetchw(&page
->flags
);
875 page
= list_entry(pages
->prev
, struct page
, lru
);
876 list_del(&page
->lru
);
877 if (add_to_page_cache_lru(page
, mapping
,
878 page
->index
, GFP_KERNEL
))
882 block_in_file
= (sector_t
)page
->index
;
883 last_block
= block_in_file
+ nr_pages
;
884 last_block_in_file
= (i_size_read(inode
) + blocksize
- 1) >>
886 if (last_block
> last_block_in_file
)
887 last_block
= last_block_in_file
;
890 * Map blocks using the previous result first.
892 if ((map
.m_flags
& F2FS_MAP_MAPPED
) &&
893 block_in_file
> map
.m_lblk
&&
894 block_in_file
< (map
.m_lblk
+ map
.m_len
))
898 * Then do more f2fs_map_blocks() calls until we are
899 * done with this page.
903 if (block_in_file
< last_block
) {
904 map
.m_lblk
= block_in_file
;
905 map
.m_len
= last_block
- block_in_file
;
907 if (f2fs_map_blocks(inode
, &map
, 0, false))
911 if ((map
.m_flags
& F2FS_MAP_MAPPED
)) {
912 block_nr
= map
.m_pblk
+ block_in_file
- map
.m_lblk
;
913 SetPageMappedToDisk(page
);
915 if (!PageUptodate(page
) && !cleancache_get_page(page
)) {
916 SetPageUptodate(page
);
920 zero_user_segment(page
, 0, PAGE_CACHE_SIZE
);
921 SetPageUptodate(page
);
927 * This page will go to BIO. Do we need to send this
930 if (bio
&& (last_block_in_bio
!= block_nr
- 1)) {
932 submit_bio(READ
, bio
);
936 struct f2fs_crypto_ctx
*ctx
= NULL
;
938 if (f2fs_encrypted_inode(inode
) &&
939 S_ISREG(inode
->i_mode
)) {
942 ctx
= f2fs_get_crypto_ctx(inode
);
946 /* wait the page to be moved by cleaning */
947 cpage
= find_lock_page(
948 META_MAPPING(F2FS_I_SB(inode
)),
951 f2fs_wait_on_page_writeback(cpage
,
953 f2fs_put_page(cpage
, 1);
957 bio
= bio_alloc(GFP_KERNEL
,
958 min_t(int, nr_pages
, BIO_MAX_PAGES
));
961 f2fs_release_crypto_ctx(ctx
);
965 bio
->bi_iter
.bi_sector
= SECTOR_FROM_BLOCK(block_nr
);
966 bio
->bi_end_io
= f2fs_read_end_io
;
967 bio
->bi_private
= ctx
;
970 if (bio_add_page(bio
, page
, blocksize
, 0) < blocksize
)
971 goto submit_and_realloc
;
973 last_block_in_bio
= block_nr
;
977 zero_user_segment(page
, 0, PAGE_CACHE_SIZE
);
982 submit_bio(READ
, bio
);
988 page_cache_release(page
);
990 BUG_ON(pages
&& !list_empty(pages
));
992 submit_bio(READ
, bio
);
996 static int f2fs_read_data_page(struct file
*file
, struct page
*page
)
998 struct inode
*inode
= page
->mapping
->host
;
1001 trace_f2fs_readpage(page
, DATA
);
1003 /* If the file has inline data, try to read it directly */
1004 if (f2fs_has_inline_data(inode
))
1005 ret
= f2fs_read_inline_data(inode
, page
);
1007 ret
= f2fs_mpage_readpages(page
->mapping
, NULL
, page
, 1);
1011 static int f2fs_read_data_pages(struct file
*file
,
1012 struct address_space
*mapping
,
1013 struct list_head
*pages
, unsigned nr_pages
)
1015 struct inode
*inode
= file
->f_mapping
->host
;
1017 /* If the file has inline data, skip readpages */
1018 if (f2fs_has_inline_data(inode
))
1021 return f2fs_mpage_readpages(mapping
, pages
, NULL
, nr_pages
);
1024 int do_write_data_page(struct f2fs_io_info
*fio
)
1026 struct page
*page
= fio
->page
;
1027 struct inode
*inode
= page
->mapping
->host
;
1028 struct dnode_of_data dn
;
1031 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
1032 err
= get_dnode_of_data(&dn
, page
->index
, LOOKUP_NODE
);
1036 fio
->blk_addr
= dn
.data_blkaddr
;
1038 /* This page is already truncated */
1039 if (fio
->blk_addr
== NULL_ADDR
) {
1040 ClearPageUptodate(page
);
1044 if (f2fs_encrypted_inode(inode
) && S_ISREG(inode
->i_mode
)) {
1045 fio
->encrypted_page
= f2fs_encrypt(inode
, fio
->page
);
1046 if (IS_ERR(fio
->encrypted_page
)) {
1047 err
= PTR_ERR(fio
->encrypted_page
);
1052 set_page_writeback(page
);
1055 * If current allocation needs SSR,
1056 * it had better in-place writes for updated data.
1058 if (unlikely(fio
->blk_addr
!= NEW_ADDR
&&
1059 !is_cold_data(page
) &&
1060 need_inplace_update(inode
))) {
1061 rewrite_data_page(fio
);
1062 set_inode_flag(F2FS_I(inode
), FI_UPDATE_WRITE
);
1063 trace_f2fs_do_write_data_page(page
, IPU
);
1065 write_data_page(&dn
, fio
);
1066 set_data_blkaddr(&dn
);
1067 f2fs_update_extent_cache(&dn
);
1068 trace_f2fs_do_write_data_page(page
, OPU
);
1069 set_inode_flag(F2FS_I(inode
), FI_APPEND_WRITE
);
1070 if (page
->index
== 0)
1071 set_inode_flag(F2FS_I(inode
), FI_FIRST_BLOCK_WRITTEN
);
1074 f2fs_put_dnode(&dn
);
1078 static int f2fs_write_data_page(struct page
*page
,
1079 struct writeback_control
*wbc
)
1081 struct inode
*inode
= page
->mapping
->host
;
1082 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1083 loff_t i_size
= i_size_read(inode
);
1084 const pgoff_t end_index
= ((unsigned long long) i_size
)
1085 >> PAGE_CACHE_SHIFT
;
1086 unsigned offset
= 0;
1087 bool need_balance_fs
= false;
1089 struct f2fs_io_info fio
= {
1092 .rw
= (wbc
->sync_mode
== WB_SYNC_ALL
) ? WRITE_SYNC
: WRITE
,
1094 .encrypted_page
= NULL
,
1097 trace_f2fs_writepage(page
, DATA
);
1099 if (page
->index
< end_index
)
1103 * If the offset is out-of-range of file size,
1104 * this page does not have to be written to disk.
1106 offset
= i_size
& (PAGE_CACHE_SIZE
- 1);
1107 if ((page
->index
>= end_index
+ 1) || !offset
)
1110 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
1112 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1114 if (f2fs_is_drop_cache(inode
))
1116 if (f2fs_is_volatile_file(inode
) && !wbc
->for_reclaim
&&
1117 available_free_memory(sbi
, BASE_CHECK
))
1120 /* Dentry blocks are controlled by checkpoint */
1121 if (S_ISDIR(inode
->i_mode
)) {
1122 if (unlikely(f2fs_cp_error(sbi
)))
1124 err
= do_write_data_page(&fio
);
1128 /* we should bypass data pages to proceed the kworkder jobs */
1129 if (unlikely(f2fs_cp_error(sbi
))) {
1134 if (!wbc
->for_reclaim
)
1135 need_balance_fs
= true;
1136 else if (has_not_enough_free_secs(sbi
, 0))
1141 if (f2fs_has_inline_data(inode
))
1142 err
= f2fs_write_inline_data(inode
, page
);
1144 err
= do_write_data_page(&fio
);
1145 f2fs_unlock_op(sbi
);
1147 if (err
&& err
!= -ENOENT
)
1150 clear_cold_data(page
);
1152 inode_dec_dirty_pages(inode
);
1154 ClearPageUptodate(page
);
1156 if (need_balance_fs
)
1157 f2fs_balance_fs(sbi
);
1158 if (wbc
->for_reclaim
)
1159 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
1163 redirty_page_for_writepage(wbc
, page
);
1164 return AOP_WRITEPAGE_ACTIVATE
;
1167 static int __f2fs_writepage(struct page
*page
, struct writeback_control
*wbc
,
1170 struct address_space
*mapping
= data
;
1171 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
1172 mapping_set_error(mapping
, ret
);
1177 * This function was copied from write_cche_pages from mm/page-writeback.c.
1178 * The major change is making write step of cold data page separately from
1179 * warm/hot data page.
1181 static int f2fs_write_cache_pages(struct address_space
*mapping
,
1182 struct writeback_control
*wbc
, writepage_t writepage
,
1187 struct pagevec pvec
;
1189 pgoff_t
uninitialized_var(writeback_index
);
1191 pgoff_t end
; /* Inclusive */
1194 int range_whole
= 0;
1198 pagevec_init(&pvec
, 0);
1200 if (wbc
->range_cyclic
) {
1201 writeback_index
= mapping
->writeback_index
; /* prev offset */
1202 index
= writeback_index
;
1209 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
1210 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
1211 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
1213 cycled
= 1; /* ignore range_cyclic tests */
1215 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1216 tag
= PAGECACHE_TAG_TOWRITE
;
1218 tag
= PAGECACHE_TAG_DIRTY
;
1220 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1221 tag_pages_for_writeback(mapping
, index
, end
);
1223 while (!done
&& (index
<= end
)) {
1226 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
1227 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1);
1231 for (i
= 0; i
< nr_pages
; i
++) {
1232 struct page
*page
= pvec
.pages
[i
];
1234 if (page
->index
> end
) {
1239 done_index
= page
->index
;
1243 if (unlikely(page
->mapping
!= mapping
)) {
1249 if (!PageDirty(page
)) {
1250 /* someone wrote it for us */
1251 goto continue_unlock
;
1254 if (step
== is_cold_data(page
))
1255 goto continue_unlock
;
1257 if (PageWriteback(page
)) {
1258 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
1259 f2fs_wait_on_page_writeback(page
, DATA
);
1261 goto continue_unlock
;
1264 BUG_ON(PageWriteback(page
));
1265 if (!clear_page_dirty_for_io(page
))
1266 goto continue_unlock
;
1268 ret
= (*writepage
)(page
, wbc
, data
);
1269 if (unlikely(ret
)) {
1270 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
1274 done_index
= page
->index
+ 1;
1280 if (--wbc
->nr_to_write
<= 0 &&
1281 wbc
->sync_mode
== WB_SYNC_NONE
) {
1286 pagevec_release(&pvec
);
1295 if (!cycled
&& !done
) {
1298 end
= writeback_index
- 1;
1301 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
1302 mapping
->writeback_index
= done_index
;
1307 static int f2fs_write_data_pages(struct address_space
*mapping
,
1308 struct writeback_control
*wbc
)
1310 struct inode
*inode
= mapping
->host
;
1311 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1312 bool locked
= false;
1316 trace_f2fs_writepages(mapping
->host
, wbc
, DATA
);
1318 /* deal with chardevs and other special file */
1319 if (!mapping
->a_ops
->writepage
)
1322 /* skip writing if there is no dirty page in this inode */
1323 if (!get_dirty_pages(inode
) && wbc
->sync_mode
== WB_SYNC_NONE
)
1326 if (S_ISDIR(inode
->i_mode
) && wbc
->sync_mode
== WB_SYNC_NONE
&&
1327 get_dirty_pages(inode
) < nr_pages_to_skip(sbi
, DATA
) &&
1328 available_free_memory(sbi
, DIRTY_DENTS
))
1331 /* during POR, we don't need to trigger writepage at all. */
1332 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1335 diff
= nr_pages_to_write(sbi
, DATA
, wbc
);
1337 if (!S_ISDIR(inode
->i_mode
)) {
1338 mutex_lock(&sbi
->writepages
);
1341 ret
= f2fs_write_cache_pages(mapping
, wbc
, __f2fs_writepage
, mapping
);
1342 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
1344 mutex_unlock(&sbi
->writepages
);
1346 remove_dirty_dir_inode(inode
);
1348 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- diff
);
1352 wbc
->pages_skipped
+= get_dirty_pages(inode
);
1356 static void f2fs_write_failed(struct address_space
*mapping
, loff_t to
)
1358 struct inode
*inode
= mapping
->host
;
1360 if (to
> inode
->i_size
) {
1361 truncate_pagecache(inode
, inode
->i_size
);
1362 truncate_blocks(inode
, inode
->i_size
, true);
1366 static int f2fs_write_begin(struct file
*file
, struct address_space
*mapping
,
1367 loff_t pos
, unsigned len
, unsigned flags
,
1368 struct page
**pagep
, void **fsdata
)
1370 struct inode
*inode
= mapping
->host
;
1371 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1372 struct page
*page
= NULL
;
1374 pgoff_t index
= ((unsigned long long) pos
) >> PAGE_CACHE_SHIFT
;
1375 struct dnode_of_data dn
;
1378 trace_f2fs_write_begin(inode
, pos
, len
, flags
);
1380 f2fs_balance_fs(sbi
);
1383 * We should check this at this moment to avoid deadlock on inode page
1384 * and #0 page. The locking rule for inline_data conversion should be:
1385 * lock_page(page #0) -> lock_page(inode_page)
1388 err
= f2fs_convert_inline_inode(inode
);
1393 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1403 /* check inline_data */
1404 ipage
= get_node_page(sbi
, inode
->i_ino
);
1405 if (IS_ERR(ipage
)) {
1406 err
= PTR_ERR(ipage
);
1410 set_new_dnode(&dn
, inode
, ipage
, ipage
, 0);
1412 if (f2fs_has_inline_data(inode
)) {
1413 if (pos
+ len
<= MAX_INLINE_DATA
) {
1414 read_inline_data(page
, ipage
);
1415 set_inode_flag(F2FS_I(inode
), FI_DATA_EXIST
);
1416 sync_inode_page(&dn
);
1419 err
= f2fs_convert_inline_page(&dn
, page
);
1424 err
= f2fs_get_block(&dn
, index
);
1428 f2fs_put_dnode(&dn
);
1429 f2fs_unlock_op(sbi
);
1431 f2fs_wait_on_page_writeback(page
, DATA
);
1433 if (len
== PAGE_CACHE_SIZE
)
1435 if (PageUptodate(page
))
1438 if ((pos
& PAGE_CACHE_MASK
) >= i_size_read(inode
)) {
1439 unsigned start
= pos
& (PAGE_CACHE_SIZE
- 1);
1440 unsigned end
= start
+ len
;
1442 /* Reading beyond i_size is simple: memset to zero */
1443 zero_user_segments(page
, 0, start
, end
, PAGE_CACHE_SIZE
);
1447 if (dn
.data_blkaddr
== NEW_ADDR
) {
1448 zero_user_segment(page
, 0, PAGE_CACHE_SIZE
);
1450 struct f2fs_io_info fio
= {
1454 .blk_addr
= dn
.data_blkaddr
,
1456 .encrypted_page
= NULL
,
1458 err
= f2fs_submit_page_bio(&fio
);
1463 if (unlikely(!PageUptodate(page
))) {
1467 if (unlikely(page
->mapping
!= mapping
)) {
1468 f2fs_put_page(page
, 1);
1472 /* avoid symlink page */
1473 if (f2fs_encrypted_inode(inode
) && S_ISREG(inode
->i_mode
)) {
1474 err
= f2fs_decrypt_one(inode
, page
);
1480 SetPageUptodate(page
);
1482 clear_cold_data(page
);
1486 f2fs_put_dnode(&dn
);
1488 f2fs_unlock_op(sbi
);
1490 f2fs_put_page(page
, 1);
1491 f2fs_write_failed(mapping
, pos
+ len
);
1495 static int f2fs_write_end(struct file
*file
,
1496 struct address_space
*mapping
,
1497 loff_t pos
, unsigned len
, unsigned copied
,
1498 struct page
*page
, void *fsdata
)
1500 struct inode
*inode
= page
->mapping
->host
;
1502 trace_f2fs_write_end(inode
, pos
, len
, copied
);
1504 set_page_dirty(page
);
1506 if (pos
+ copied
> i_size_read(inode
)) {
1507 i_size_write(inode
, pos
+ copied
);
1508 mark_inode_dirty(inode
);
1509 update_inode_page(inode
);
1512 f2fs_put_page(page
, 1);
1516 static int check_direct_IO(struct inode
*inode
, struct iov_iter
*iter
,
1519 unsigned blocksize_mask
= inode
->i_sb
->s_blocksize
- 1;
1521 if (offset
& blocksize_mask
)
1524 if (iov_iter_alignment(iter
) & blocksize_mask
)
1530 static ssize_t
f2fs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
,
1533 struct file
*file
= iocb
->ki_filp
;
1534 struct address_space
*mapping
= file
->f_mapping
;
1535 struct inode
*inode
= mapping
->host
;
1536 size_t count
= iov_iter_count(iter
);
1539 /* we don't need to use inline_data strictly */
1540 if (f2fs_has_inline_data(inode
)) {
1541 err
= f2fs_convert_inline_inode(inode
);
1546 if (f2fs_encrypted_inode(inode
) && S_ISREG(inode
->i_mode
))
1549 err
= check_direct_IO(inode
, iter
, offset
);
1553 trace_f2fs_direct_IO_enter(inode
, offset
, count
, iov_iter_rw(iter
));
1555 if (iov_iter_rw(iter
) == WRITE
)
1556 __allocate_data_blocks(inode
, offset
, count
);
1558 err
= blockdev_direct_IO(iocb
, inode
, iter
, offset
, get_data_block_dio
);
1559 if (err
< 0 && iov_iter_rw(iter
) == WRITE
)
1560 f2fs_write_failed(mapping
, offset
+ count
);
1562 trace_f2fs_direct_IO_exit(inode
, offset
, count
, iov_iter_rw(iter
), err
);
1567 void f2fs_invalidate_page(struct page
*page
, unsigned int offset
,
1568 unsigned int length
)
1570 struct inode
*inode
= page
->mapping
->host
;
1571 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1573 if (inode
->i_ino
>= F2FS_ROOT_INO(sbi
) &&
1574 (offset
% PAGE_CACHE_SIZE
|| length
!= PAGE_CACHE_SIZE
))
1577 if (PageDirty(page
)) {
1578 if (inode
->i_ino
== F2FS_META_INO(sbi
))
1579 dec_page_count(sbi
, F2FS_DIRTY_META
);
1580 else if (inode
->i_ino
== F2FS_NODE_INO(sbi
))
1581 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1583 inode_dec_dirty_pages(inode
);
1586 /* This is atomic written page, keep Private */
1587 if (IS_ATOMIC_WRITTEN_PAGE(page
))
1590 ClearPagePrivate(page
);
1593 int f2fs_release_page(struct page
*page
, gfp_t wait
)
1595 /* If this is dirty page, keep PagePrivate */
1596 if (PageDirty(page
))
1599 /* This is atomic written page, keep Private */
1600 if (IS_ATOMIC_WRITTEN_PAGE(page
))
1603 ClearPagePrivate(page
);
1607 static int f2fs_set_data_page_dirty(struct page
*page
)
1609 struct address_space
*mapping
= page
->mapping
;
1610 struct inode
*inode
= mapping
->host
;
1612 trace_f2fs_set_page_dirty(page
, DATA
);
1614 SetPageUptodate(page
);
1616 if (f2fs_is_atomic_file(inode
)) {
1617 if (!IS_ATOMIC_WRITTEN_PAGE(page
)) {
1618 register_inmem_page(inode
, page
);
1622 * Previously, this page has been registered, we just
1628 if (!PageDirty(page
)) {
1629 __set_page_dirty_nobuffers(page
);
1630 update_dirty_page(inode
, page
);
1636 static sector_t
f2fs_bmap(struct address_space
*mapping
, sector_t block
)
1638 struct inode
*inode
= mapping
->host
;
1640 /* we don't need to use inline_data strictly */
1641 if (f2fs_has_inline_data(inode
)) {
1642 int err
= f2fs_convert_inline_inode(inode
);
1646 return generic_block_bmap(mapping
, block
, get_data_block_bmap
);
1649 const struct address_space_operations f2fs_dblock_aops
= {
1650 .readpage
= f2fs_read_data_page
,
1651 .readpages
= f2fs_read_data_pages
,
1652 .writepage
= f2fs_write_data_page
,
1653 .writepages
= f2fs_write_data_pages
,
1654 .write_begin
= f2fs_write_begin
,
1655 .write_end
= f2fs_write_end
,
1656 .set_page_dirty
= f2fs_set_data_page_dirty
,
1657 .invalidatepage
= f2fs_invalidate_page
,
1658 .releasepage
= f2fs_release_page
,
1659 .direct_IO
= f2fs_direct_IO
,