]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/data.c
Merge tag 'pinctrl-v3.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/aio.h>
16 #include <linux/writeback.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include <trace/events/f2fs.h>
26
27 static void f2fs_read_end_io(struct bio *bio, int err)
28 {
29 struct bio_vec *bvec;
30 int i;
31
32 bio_for_each_segment_all(bvec, bio, i) {
33 struct page *page = bvec->bv_page;
34
35 if (!err) {
36 SetPageUptodate(page);
37 } else {
38 ClearPageUptodate(page);
39 SetPageError(page);
40 }
41 unlock_page(page);
42 }
43 bio_put(bio);
44 }
45
46 static void f2fs_write_end_io(struct bio *bio, int err)
47 {
48 struct f2fs_sb_info *sbi = bio->bi_private;
49 struct bio_vec *bvec;
50 int i;
51
52 bio_for_each_segment_all(bvec, bio, i) {
53 struct page *page = bvec->bv_page;
54
55 if (unlikely(err)) {
56 set_page_dirty(page);
57 set_bit(AS_EIO, &page->mapping->flags);
58 f2fs_stop_checkpoint(sbi);
59 }
60 end_page_writeback(page);
61 dec_page_count(sbi, F2FS_WRITEBACK);
62 }
63
64 if (!get_pages(sbi, F2FS_WRITEBACK) &&
65 !list_empty(&sbi->cp_wait.task_list))
66 wake_up(&sbi->cp_wait);
67
68 bio_put(bio);
69 }
70
71 /*
72 * Low-level block read/write IO operations.
73 */
74 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
75 int npages, bool is_read)
76 {
77 struct bio *bio;
78
79 /* No failure on bio allocation */
80 bio = bio_alloc(GFP_NOIO, npages);
81
82 bio->bi_bdev = sbi->sb->s_bdev;
83 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
84 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
85 bio->bi_private = sbi;
86
87 return bio;
88 }
89
90 static void __submit_merged_bio(struct f2fs_bio_info *io)
91 {
92 struct f2fs_io_info *fio = &io->fio;
93
94 if (!io->bio)
95 return;
96
97 if (is_read_io(fio->rw))
98 trace_f2fs_submit_read_bio(io->sbi->sb, fio->rw,
99 fio->type, io->bio);
100 else
101 trace_f2fs_submit_write_bio(io->sbi->sb, fio->rw,
102 fio->type, io->bio);
103
104 submit_bio(fio->rw, io->bio);
105 io->bio = NULL;
106 }
107
108 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
109 enum page_type type, int rw)
110 {
111 enum page_type btype = PAGE_TYPE_OF_BIO(type);
112 struct f2fs_bio_info *io;
113
114 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
115
116 down_write(&io->io_rwsem);
117
118 /* change META to META_FLUSH in the checkpoint procedure */
119 if (type >= META_FLUSH) {
120 io->fio.type = META_FLUSH;
121 if (test_opt(sbi, NOBARRIER))
122 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
123 else
124 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
125 }
126 __submit_merged_bio(io);
127 up_write(&io->io_rwsem);
128 }
129
130 /*
131 * Fill the locked page with data located in the block address.
132 * Return unlocked page.
133 */
134 int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
135 block_t blk_addr, int rw)
136 {
137 struct bio *bio;
138
139 trace_f2fs_submit_page_bio(page, blk_addr, rw);
140
141 /* Allocate a new bio */
142 bio = __bio_alloc(sbi, blk_addr, 1, is_read_io(rw));
143
144 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
145 bio_put(bio);
146 f2fs_put_page(page, 1);
147 return -EFAULT;
148 }
149
150 submit_bio(rw, bio);
151 return 0;
152 }
153
154 void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
155 block_t blk_addr, struct f2fs_io_info *fio)
156 {
157 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
158 struct f2fs_bio_info *io;
159 bool is_read = is_read_io(fio->rw);
160
161 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
162
163 verify_block_addr(sbi, blk_addr);
164
165 down_write(&io->io_rwsem);
166
167 if (!is_read)
168 inc_page_count(sbi, F2FS_WRITEBACK);
169
170 if (io->bio && (io->last_block_in_bio != blk_addr - 1 ||
171 io->fio.rw != fio->rw))
172 __submit_merged_bio(io);
173 alloc_new:
174 if (io->bio == NULL) {
175 int bio_blocks = MAX_BIO_BLOCKS(sbi);
176
177 io->bio = __bio_alloc(sbi, blk_addr, bio_blocks, is_read);
178 io->fio = *fio;
179 }
180
181 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
182 PAGE_CACHE_SIZE) {
183 __submit_merged_bio(io);
184 goto alloc_new;
185 }
186
187 io->last_block_in_bio = blk_addr;
188
189 up_write(&io->io_rwsem);
190 trace_f2fs_submit_page_mbio(page, fio->rw, fio->type, blk_addr);
191 }
192
193 /*
194 * Lock ordering for the change of data block address:
195 * ->data_page
196 * ->node_page
197 * update block addresses in the node page
198 */
199 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
200 {
201 struct f2fs_node *rn;
202 __le32 *addr_array;
203 struct page *node_page = dn->node_page;
204 unsigned int ofs_in_node = dn->ofs_in_node;
205
206 f2fs_wait_on_page_writeback(node_page, NODE);
207
208 rn = F2FS_NODE(node_page);
209
210 /* Get physical address of data block */
211 addr_array = blkaddr_in_node(rn);
212 addr_array[ofs_in_node] = cpu_to_le32(new_addr);
213 set_page_dirty(node_page);
214 }
215
216 int reserve_new_block(struct dnode_of_data *dn)
217 {
218 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
219
220 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
221 return -EPERM;
222 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
223 return -ENOSPC;
224
225 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
226
227 __set_data_blkaddr(dn, NEW_ADDR);
228 dn->data_blkaddr = NEW_ADDR;
229 mark_inode_dirty(dn->inode);
230 sync_inode_page(dn);
231 return 0;
232 }
233
234 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
235 {
236 bool need_put = dn->inode_page ? false : true;
237 int err;
238
239 err = get_dnode_of_data(dn, index, ALLOC_NODE);
240 if (err)
241 return err;
242
243 if (dn->data_blkaddr == NULL_ADDR)
244 err = reserve_new_block(dn);
245 if (err || need_put)
246 f2fs_put_dnode(dn);
247 return err;
248 }
249
250 static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
251 struct buffer_head *bh_result)
252 {
253 struct f2fs_inode_info *fi = F2FS_I(inode);
254 pgoff_t start_fofs, end_fofs;
255 block_t start_blkaddr;
256
257 if (is_inode_flag_set(fi, FI_NO_EXTENT))
258 return 0;
259
260 read_lock(&fi->ext.ext_lock);
261 if (fi->ext.len == 0) {
262 read_unlock(&fi->ext.ext_lock);
263 return 0;
264 }
265
266 stat_inc_total_hit(inode->i_sb);
267
268 start_fofs = fi->ext.fofs;
269 end_fofs = fi->ext.fofs + fi->ext.len - 1;
270 start_blkaddr = fi->ext.blk_addr;
271
272 if (pgofs >= start_fofs && pgofs <= end_fofs) {
273 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
274 size_t count;
275
276 clear_buffer_new(bh_result);
277 map_bh(bh_result, inode->i_sb,
278 start_blkaddr + pgofs - start_fofs);
279 count = end_fofs - pgofs + 1;
280 if (count < (UINT_MAX >> blkbits))
281 bh_result->b_size = (count << blkbits);
282 else
283 bh_result->b_size = UINT_MAX;
284
285 stat_inc_read_hit(inode->i_sb);
286 read_unlock(&fi->ext.ext_lock);
287 return 1;
288 }
289 read_unlock(&fi->ext.ext_lock);
290 return 0;
291 }
292
293 void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
294 {
295 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
296 pgoff_t fofs, start_fofs, end_fofs;
297 block_t start_blkaddr, end_blkaddr;
298 int need_update = true;
299
300 f2fs_bug_on(F2FS_I_SB(dn->inode), blk_addr == NEW_ADDR);
301 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
302 dn->ofs_in_node;
303
304 /* Update the page address in the parent node */
305 __set_data_blkaddr(dn, blk_addr);
306
307 if (is_inode_flag_set(fi, FI_NO_EXTENT))
308 return;
309
310 write_lock(&fi->ext.ext_lock);
311
312 start_fofs = fi->ext.fofs;
313 end_fofs = fi->ext.fofs + fi->ext.len - 1;
314 start_blkaddr = fi->ext.blk_addr;
315 end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
316
317 /* Drop and initialize the matched extent */
318 if (fi->ext.len == 1 && fofs == start_fofs)
319 fi->ext.len = 0;
320
321 /* Initial extent */
322 if (fi->ext.len == 0) {
323 if (blk_addr != NULL_ADDR) {
324 fi->ext.fofs = fofs;
325 fi->ext.blk_addr = blk_addr;
326 fi->ext.len = 1;
327 }
328 goto end_update;
329 }
330
331 /* Front merge */
332 if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
333 fi->ext.fofs--;
334 fi->ext.blk_addr--;
335 fi->ext.len++;
336 goto end_update;
337 }
338
339 /* Back merge */
340 if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
341 fi->ext.len++;
342 goto end_update;
343 }
344
345 /* Split the existing extent */
346 if (fi->ext.len > 1 &&
347 fofs >= start_fofs && fofs <= end_fofs) {
348 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
349 fi->ext.len = fofs - start_fofs;
350 } else {
351 fi->ext.fofs = fofs + 1;
352 fi->ext.blk_addr = start_blkaddr +
353 fofs - start_fofs + 1;
354 fi->ext.len -= fofs - start_fofs + 1;
355 }
356 } else {
357 need_update = false;
358 }
359
360 /* Finally, if the extent is very fragmented, let's drop the cache. */
361 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
362 fi->ext.len = 0;
363 set_inode_flag(fi, FI_NO_EXTENT);
364 need_update = true;
365 }
366 end_update:
367 write_unlock(&fi->ext.ext_lock);
368 if (need_update)
369 sync_inode_page(dn);
370 return;
371 }
372
373 struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
374 {
375 struct address_space *mapping = inode->i_mapping;
376 struct dnode_of_data dn;
377 struct page *page;
378 int err;
379
380 page = find_get_page(mapping, index);
381 if (page && PageUptodate(page))
382 return page;
383 f2fs_put_page(page, 0);
384
385 set_new_dnode(&dn, inode, NULL, NULL, 0);
386 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
387 if (err)
388 return ERR_PTR(err);
389 f2fs_put_dnode(&dn);
390
391 if (dn.data_blkaddr == NULL_ADDR)
392 return ERR_PTR(-ENOENT);
393
394 /* By fallocate(), there is no cached page, but with NEW_ADDR */
395 if (unlikely(dn.data_blkaddr == NEW_ADDR))
396 return ERR_PTR(-EINVAL);
397
398 page = grab_cache_page(mapping, index);
399 if (!page)
400 return ERR_PTR(-ENOMEM);
401
402 if (PageUptodate(page)) {
403 unlock_page(page);
404 return page;
405 }
406
407 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, dn.data_blkaddr,
408 sync ? READ_SYNC : READA);
409 if (err)
410 return ERR_PTR(err);
411
412 if (sync) {
413 wait_on_page_locked(page);
414 if (unlikely(!PageUptodate(page))) {
415 f2fs_put_page(page, 0);
416 return ERR_PTR(-EIO);
417 }
418 }
419 return page;
420 }
421
422 /*
423 * If it tries to access a hole, return an error.
424 * Because, the callers, functions in dir.c and GC, should be able to know
425 * whether this page exists or not.
426 */
427 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
428 {
429 struct address_space *mapping = inode->i_mapping;
430 struct dnode_of_data dn;
431 struct page *page;
432 int err;
433
434 repeat:
435 page = grab_cache_page(mapping, index);
436 if (!page)
437 return ERR_PTR(-ENOMEM);
438
439 set_new_dnode(&dn, inode, NULL, NULL, 0);
440 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
441 if (err) {
442 f2fs_put_page(page, 1);
443 return ERR_PTR(err);
444 }
445 f2fs_put_dnode(&dn);
446
447 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
448 f2fs_put_page(page, 1);
449 return ERR_PTR(-ENOENT);
450 }
451
452 if (PageUptodate(page))
453 return page;
454
455 /*
456 * A new dentry page is allocated but not able to be written, since its
457 * new inode page couldn't be allocated due to -ENOSPC.
458 * In such the case, its blkaddr can be remained as NEW_ADDR.
459 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
460 */
461 if (dn.data_blkaddr == NEW_ADDR) {
462 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
463 SetPageUptodate(page);
464 return page;
465 }
466
467 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page,
468 dn.data_blkaddr, READ_SYNC);
469 if (err)
470 return ERR_PTR(err);
471
472 lock_page(page);
473 if (unlikely(!PageUptodate(page))) {
474 f2fs_put_page(page, 1);
475 return ERR_PTR(-EIO);
476 }
477 if (unlikely(page->mapping != mapping)) {
478 f2fs_put_page(page, 1);
479 goto repeat;
480 }
481 return page;
482 }
483
484 /*
485 * Caller ensures that this data page is never allocated.
486 * A new zero-filled data page is allocated in the page cache.
487 *
488 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
489 * f2fs_unlock_op().
490 * Note that, ipage is set only by make_empty_dir.
491 */
492 struct page *get_new_data_page(struct inode *inode,
493 struct page *ipage, pgoff_t index, bool new_i_size)
494 {
495 struct address_space *mapping = inode->i_mapping;
496 struct page *page;
497 struct dnode_of_data dn;
498 int err;
499
500 set_new_dnode(&dn, inode, ipage, NULL, 0);
501 err = f2fs_reserve_block(&dn, index);
502 if (err)
503 return ERR_PTR(err);
504 repeat:
505 page = grab_cache_page(mapping, index);
506 if (!page) {
507 err = -ENOMEM;
508 goto put_err;
509 }
510
511 if (PageUptodate(page))
512 return page;
513
514 if (dn.data_blkaddr == NEW_ADDR) {
515 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
516 SetPageUptodate(page);
517 } else {
518 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page,
519 dn.data_blkaddr, READ_SYNC);
520 if (err)
521 goto put_err;
522
523 lock_page(page);
524 if (unlikely(!PageUptodate(page))) {
525 f2fs_put_page(page, 1);
526 err = -EIO;
527 goto put_err;
528 }
529 if (unlikely(page->mapping != mapping)) {
530 f2fs_put_page(page, 1);
531 goto repeat;
532 }
533 }
534
535 if (new_i_size &&
536 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
537 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
538 /* Only the directory inode sets new_i_size */
539 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
540 }
541 return page;
542
543 put_err:
544 f2fs_put_dnode(&dn);
545 return ERR_PTR(err);
546 }
547
548 static int __allocate_data_block(struct dnode_of_data *dn)
549 {
550 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
551 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
552 struct f2fs_summary sum;
553 block_t new_blkaddr;
554 struct node_info ni;
555 pgoff_t fofs;
556 int type;
557
558 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
559 return -EPERM;
560 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
561 return -ENOSPC;
562
563 __set_data_blkaddr(dn, NEW_ADDR);
564 dn->data_blkaddr = NEW_ADDR;
565
566 get_node_info(sbi, dn->nid, &ni);
567 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
568
569 type = CURSEG_WARM_DATA;
570
571 allocate_data_block(sbi, NULL, NULL_ADDR, &new_blkaddr, &sum, type);
572
573 /* direct IO doesn't use extent cache to maximize the performance */
574 set_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
575 update_extent_cache(new_blkaddr, dn);
576 clear_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
577
578 /* update i_size */
579 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
580 dn->ofs_in_node;
581 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
582 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
583
584 dn->data_blkaddr = new_blkaddr;
585 return 0;
586 }
587
588 /*
589 * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
590 * If original data blocks are allocated, then give them to blockdev.
591 * Otherwise,
592 * a. preallocate requested block addresses
593 * b. do not use extent cache for better performance
594 * c. give the block addresses to blockdev
595 */
596 static int __get_data_block(struct inode *inode, sector_t iblock,
597 struct buffer_head *bh_result, int create, bool fiemap)
598 {
599 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
600 unsigned maxblocks = bh_result->b_size >> blkbits;
601 struct dnode_of_data dn;
602 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
603 pgoff_t pgofs, end_offset;
604 int err = 0, ofs = 1;
605 bool allocated = false;
606
607 /* Get the page offset from the block offset(iblock) */
608 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
609
610 if (check_extent_cache(inode, pgofs, bh_result))
611 goto out;
612
613 if (create) {
614 f2fs_balance_fs(F2FS_I_SB(inode));
615 f2fs_lock_op(F2FS_I_SB(inode));
616 }
617
618 /* When reading holes, we need its node page */
619 set_new_dnode(&dn, inode, NULL, NULL, 0);
620 err = get_dnode_of_data(&dn, pgofs, mode);
621 if (err) {
622 if (err == -ENOENT)
623 err = 0;
624 goto unlock_out;
625 }
626 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
627 goto put_out;
628
629 if (dn.data_blkaddr != NULL_ADDR) {
630 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
631 } else if (create) {
632 err = __allocate_data_block(&dn);
633 if (err)
634 goto put_out;
635 allocated = true;
636 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
637 } else {
638 goto put_out;
639 }
640
641 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
642 bh_result->b_size = (((size_t)1) << blkbits);
643 dn.ofs_in_node++;
644 pgofs++;
645
646 get_next:
647 if (dn.ofs_in_node >= end_offset) {
648 if (allocated)
649 sync_inode_page(&dn);
650 allocated = false;
651 f2fs_put_dnode(&dn);
652
653 set_new_dnode(&dn, inode, NULL, NULL, 0);
654 err = get_dnode_of_data(&dn, pgofs, mode);
655 if (err) {
656 if (err == -ENOENT)
657 err = 0;
658 goto unlock_out;
659 }
660 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
661 goto put_out;
662
663 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
664 }
665
666 if (maxblocks > (bh_result->b_size >> blkbits)) {
667 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
668 if (blkaddr == NULL_ADDR && create) {
669 err = __allocate_data_block(&dn);
670 if (err)
671 goto sync_out;
672 allocated = true;
673 blkaddr = dn.data_blkaddr;
674 }
675 /* Give more consecutive addresses for the readahead */
676 if (blkaddr == (bh_result->b_blocknr + ofs)) {
677 ofs++;
678 dn.ofs_in_node++;
679 pgofs++;
680 bh_result->b_size += (((size_t)1) << blkbits);
681 goto get_next;
682 }
683 }
684 sync_out:
685 if (allocated)
686 sync_inode_page(&dn);
687 put_out:
688 f2fs_put_dnode(&dn);
689 unlock_out:
690 if (create)
691 f2fs_unlock_op(F2FS_I_SB(inode));
692 out:
693 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
694 return err;
695 }
696
697 static int get_data_block(struct inode *inode, sector_t iblock,
698 struct buffer_head *bh_result, int create)
699 {
700 return __get_data_block(inode, iblock, bh_result, create, false);
701 }
702
703 static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
704 struct buffer_head *bh_result, int create)
705 {
706 return __get_data_block(inode, iblock, bh_result, create, true);
707 }
708
709 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
710 u64 start, u64 len)
711 {
712 return generic_block_fiemap(inode, fieinfo,
713 start, len, get_data_block_fiemap);
714 }
715
716 static int f2fs_read_data_page(struct file *file, struct page *page)
717 {
718 struct inode *inode = page->mapping->host;
719 int ret = -EAGAIN;
720
721 trace_f2fs_readpage(page, DATA);
722
723 /* If the file has inline data, try to read it directly */
724 if (f2fs_has_inline_data(inode))
725 ret = f2fs_read_inline_data(inode, page);
726 if (ret == -EAGAIN)
727 ret = mpage_readpage(page, get_data_block);
728
729 return ret;
730 }
731
732 static int f2fs_read_data_pages(struct file *file,
733 struct address_space *mapping,
734 struct list_head *pages, unsigned nr_pages)
735 {
736 struct inode *inode = file->f_mapping->host;
737
738 /* If the file has inline data, skip readpages */
739 if (f2fs_has_inline_data(inode))
740 return 0;
741
742 return mpage_readpages(mapping, pages, nr_pages, get_data_block);
743 }
744
745 int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
746 {
747 struct inode *inode = page->mapping->host;
748 block_t old_blkaddr, new_blkaddr;
749 struct dnode_of_data dn;
750 int err = 0;
751
752 set_new_dnode(&dn, inode, NULL, NULL, 0);
753 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
754 if (err)
755 return err;
756
757 old_blkaddr = dn.data_blkaddr;
758
759 /* This page is already truncated */
760 if (old_blkaddr == NULL_ADDR)
761 goto out_writepage;
762
763 set_page_writeback(page);
764
765 /*
766 * If current allocation needs SSR,
767 * it had better in-place writes for updated data.
768 */
769 if (unlikely(old_blkaddr != NEW_ADDR &&
770 !is_cold_data(page) &&
771 need_inplace_update(inode))) {
772 rewrite_data_page(page, old_blkaddr, fio);
773 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
774 } else {
775 write_data_page(page, &dn, &new_blkaddr, fio);
776 update_extent_cache(new_blkaddr, &dn);
777 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
778 }
779 out_writepage:
780 f2fs_put_dnode(&dn);
781 return err;
782 }
783
784 static int f2fs_write_data_page(struct page *page,
785 struct writeback_control *wbc)
786 {
787 struct inode *inode = page->mapping->host;
788 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
789 loff_t i_size = i_size_read(inode);
790 const pgoff_t end_index = ((unsigned long long) i_size)
791 >> PAGE_CACHE_SHIFT;
792 unsigned offset = 0;
793 bool need_balance_fs = false;
794 int err = 0;
795 struct f2fs_io_info fio = {
796 .type = DATA,
797 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
798 };
799
800 trace_f2fs_writepage(page, DATA);
801
802 if (page->index < end_index)
803 goto write;
804
805 /*
806 * If the offset is out-of-range of file size,
807 * this page does not have to be written to disk.
808 */
809 offset = i_size & (PAGE_CACHE_SIZE - 1);
810 if ((page->index >= end_index + 1) || !offset)
811 goto out;
812
813 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
814 write:
815 if (unlikely(sbi->por_doing))
816 goto redirty_out;
817
818 /* Dentry blocks are controlled by checkpoint */
819 if (S_ISDIR(inode->i_mode)) {
820 if (unlikely(f2fs_cp_error(sbi)))
821 goto redirty_out;
822 err = do_write_data_page(page, &fio);
823 goto done;
824 }
825
826 /* we should bypass data pages to proceed the kworkder jobs */
827 if (unlikely(f2fs_cp_error(sbi))) {
828 SetPageError(page);
829 unlock_page(page);
830 goto out;
831 }
832
833 if (!wbc->for_reclaim)
834 need_balance_fs = true;
835 else if (has_not_enough_free_secs(sbi, 0))
836 goto redirty_out;
837
838 err = -EAGAIN;
839 f2fs_lock_op(sbi);
840 if (f2fs_has_inline_data(inode))
841 err = f2fs_write_inline_data(inode, page);
842 if (err == -EAGAIN)
843 err = do_write_data_page(page, &fio);
844 f2fs_unlock_op(sbi);
845 done:
846 if (err && err != -ENOENT)
847 goto redirty_out;
848
849 clear_cold_data(page);
850 out:
851 inode_dec_dirty_pages(inode);
852 unlock_page(page);
853 if (need_balance_fs)
854 f2fs_balance_fs(sbi);
855 if (wbc->for_reclaim)
856 f2fs_submit_merged_bio(sbi, DATA, WRITE);
857 return 0;
858
859 redirty_out:
860 redirty_page_for_writepage(wbc, page);
861 return AOP_WRITEPAGE_ACTIVATE;
862 }
863
864 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
865 void *data)
866 {
867 struct address_space *mapping = data;
868 int ret = mapping->a_ops->writepage(page, wbc);
869 mapping_set_error(mapping, ret);
870 return ret;
871 }
872
873 static int f2fs_write_data_pages(struct address_space *mapping,
874 struct writeback_control *wbc)
875 {
876 struct inode *inode = mapping->host;
877 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
878 bool locked = false;
879 int ret;
880 long diff;
881
882 trace_f2fs_writepages(mapping->host, wbc, DATA);
883
884 /* deal with chardevs and other special file */
885 if (!mapping->a_ops->writepage)
886 return 0;
887
888 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
889 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
890 available_free_memory(sbi, DIRTY_DENTS))
891 goto skip_write;
892
893 diff = nr_pages_to_write(sbi, DATA, wbc);
894
895 if (!S_ISDIR(inode->i_mode)) {
896 mutex_lock(&sbi->writepages);
897 locked = true;
898 }
899 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
900 if (locked)
901 mutex_unlock(&sbi->writepages);
902
903 f2fs_submit_merged_bio(sbi, DATA, WRITE);
904
905 remove_dirty_dir_inode(inode);
906
907 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
908 return ret;
909
910 skip_write:
911 wbc->pages_skipped += get_dirty_pages(inode);
912 return 0;
913 }
914
915 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
916 {
917 struct inode *inode = mapping->host;
918
919 if (to > inode->i_size) {
920 truncate_pagecache(inode, inode->i_size);
921 truncate_blocks(inode, inode->i_size, true);
922 }
923 }
924
925 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
926 loff_t pos, unsigned len, unsigned flags,
927 struct page **pagep, void **fsdata)
928 {
929 struct inode *inode = mapping->host;
930 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
931 struct page *page, *ipage;
932 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
933 struct dnode_of_data dn;
934 int err = 0;
935
936 trace_f2fs_write_begin(inode, pos, len, flags);
937
938 f2fs_balance_fs(sbi);
939
940 /*
941 * We should check this at this moment to avoid deadlock on inode page
942 * and #0 page. The locking rule for inline_data conversion should be:
943 * lock_page(page #0) -> lock_page(inode_page)
944 */
945 if (index != 0) {
946 err = f2fs_convert_inline_inode(inode);
947 if (err)
948 goto fail;
949 }
950 repeat:
951 page = grab_cache_page_write_begin(mapping, index, flags);
952 if (!page) {
953 err = -ENOMEM;
954 goto fail;
955 }
956
957 *pagep = page;
958
959 f2fs_lock_op(sbi);
960
961 /* check inline_data */
962 ipage = get_node_page(sbi, inode->i_ino);
963 if (IS_ERR(ipage)) {
964 err = PTR_ERR(ipage);
965 goto unlock_fail;
966 }
967
968 set_new_dnode(&dn, inode, ipage, ipage, 0);
969
970 if (f2fs_has_inline_data(inode)) {
971 if (pos + len <= MAX_INLINE_DATA) {
972 read_inline_data(page, ipage);
973 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
974 sync_inode_page(&dn);
975 goto put_next;
976 }
977 err = f2fs_convert_inline_page(&dn, page);
978 if (err)
979 goto put_fail;
980 }
981 err = f2fs_reserve_block(&dn, index);
982 if (err)
983 goto put_fail;
984 put_next:
985 f2fs_put_dnode(&dn);
986 f2fs_unlock_op(sbi);
987
988 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
989 return 0;
990
991 f2fs_wait_on_page_writeback(page, DATA);
992
993 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
994 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
995 unsigned end = start + len;
996
997 /* Reading beyond i_size is simple: memset to zero */
998 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
999 goto out;
1000 }
1001
1002 if (dn.data_blkaddr == NEW_ADDR) {
1003 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1004 } else {
1005 err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
1006 READ_SYNC);
1007 if (err)
1008 goto fail;
1009
1010 lock_page(page);
1011 if (unlikely(!PageUptodate(page))) {
1012 f2fs_put_page(page, 1);
1013 err = -EIO;
1014 goto fail;
1015 }
1016 if (unlikely(page->mapping != mapping)) {
1017 f2fs_put_page(page, 1);
1018 goto repeat;
1019 }
1020 }
1021 out:
1022 SetPageUptodate(page);
1023 clear_cold_data(page);
1024 return 0;
1025
1026 put_fail:
1027 f2fs_put_dnode(&dn);
1028 unlock_fail:
1029 f2fs_unlock_op(sbi);
1030 f2fs_put_page(page, 1);
1031 fail:
1032 f2fs_write_failed(mapping, pos + len);
1033 return err;
1034 }
1035
1036 static int f2fs_write_end(struct file *file,
1037 struct address_space *mapping,
1038 loff_t pos, unsigned len, unsigned copied,
1039 struct page *page, void *fsdata)
1040 {
1041 struct inode *inode = page->mapping->host;
1042
1043 trace_f2fs_write_end(inode, pos, len, copied);
1044
1045 set_page_dirty(page);
1046
1047 if (pos + copied > i_size_read(inode)) {
1048 i_size_write(inode, pos + copied);
1049 mark_inode_dirty(inode);
1050 update_inode_page(inode);
1051 }
1052
1053 f2fs_put_page(page, 1);
1054 return copied;
1055 }
1056
1057 static int check_direct_IO(struct inode *inode, int rw,
1058 struct iov_iter *iter, loff_t offset)
1059 {
1060 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1061
1062 if (rw == READ)
1063 return 0;
1064
1065 if (offset & blocksize_mask)
1066 return -EINVAL;
1067
1068 if (iov_iter_alignment(iter) & blocksize_mask)
1069 return -EINVAL;
1070
1071 return 0;
1072 }
1073
1074 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
1075 struct iov_iter *iter, loff_t offset)
1076 {
1077 struct file *file = iocb->ki_filp;
1078 struct address_space *mapping = file->f_mapping;
1079 struct inode *inode = mapping->host;
1080 size_t count = iov_iter_count(iter);
1081 int err;
1082
1083 /* we don't need to use inline_data strictly */
1084 if (f2fs_has_inline_data(inode)) {
1085 err = f2fs_convert_inline_inode(inode);
1086 if (err)
1087 return err;
1088 }
1089
1090 if (check_direct_IO(inode, rw, iter, offset))
1091 return 0;
1092
1093 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1094
1095 err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block);
1096 if (err < 0 && (rw & WRITE))
1097 f2fs_write_failed(mapping, offset + count);
1098
1099 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1100
1101 return err;
1102 }
1103
1104 static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
1105 unsigned int length)
1106 {
1107 struct inode *inode = page->mapping->host;
1108
1109 if (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE)
1110 return;
1111
1112 if (f2fs_is_atomic_file(inode) || f2fs_is_volatile_file(inode))
1113 invalidate_inmem_page(inode, page);
1114
1115 if (PageDirty(page))
1116 inode_dec_dirty_pages(inode);
1117 ClearPagePrivate(page);
1118 }
1119
1120 static int f2fs_release_data_page(struct page *page, gfp_t wait)
1121 {
1122 ClearPagePrivate(page);
1123 return 1;
1124 }
1125
1126 static int f2fs_set_data_page_dirty(struct page *page)
1127 {
1128 struct address_space *mapping = page->mapping;
1129 struct inode *inode = mapping->host;
1130
1131 trace_f2fs_set_page_dirty(page, DATA);
1132
1133 SetPageUptodate(page);
1134
1135 if (f2fs_is_atomic_file(inode) || f2fs_is_volatile_file(inode)) {
1136 register_inmem_page(inode, page);
1137 return 1;
1138 }
1139
1140 mark_inode_dirty(inode);
1141
1142 if (!PageDirty(page)) {
1143 __set_page_dirty_nobuffers(page);
1144 update_dirty_page(inode, page);
1145 return 1;
1146 }
1147 return 0;
1148 }
1149
1150 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1151 {
1152 struct inode *inode = mapping->host;
1153
1154 /* we don't need to use inline_data strictly */
1155 if (f2fs_has_inline_data(inode)) {
1156 int err = f2fs_convert_inline_inode(inode);
1157 if (err)
1158 return err;
1159 }
1160 return generic_block_bmap(mapping, block, get_data_block);
1161 }
1162
1163 const struct address_space_operations f2fs_dblock_aops = {
1164 .readpage = f2fs_read_data_page,
1165 .readpages = f2fs_read_data_pages,
1166 .writepage = f2fs_write_data_page,
1167 .writepages = f2fs_write_data_pages,
1168 .write_begin = f2fs_write_begin,
1169 .write_end = f2fs_write_end,
1170 .set_page_dirty = f2fs_set_data_page_dirty,
1171 .invalidatepage = f2fs_invalidate_data_page,
1172 .releasepage = f2fs_release_data_page,
1173 .direct_IO = f2fs_direct_IO,
1174 .bmap = f2fs_bmap,
1175 };