]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/data.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25 #include <linux/sched/signal.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
32
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35 struct address_space *mapping = page->mapping;
36 struct inode *inode;
37 struct f2fs_sb_info *sbi;
38
39 if (!mapping)
40 return false;
41
42 inode = mapping->host;
43 sbi = F2FS_I_SB(inode);
44
45 if (inode->i_ino == F2FS_META_INO(sbi) ||
46 inode->i_ino == F2FS_NODE_INO(sbi) ||
47 S_ISDIR(inode->i_mode) ||
48 is_cold_data(page))
49 return true;
50 return false;
51 }
52
53 static void f2fs_read_end_io(struct bio *bio)
54 {
55 struct bio_vec *bvec;
56 int i;
57
58 #ifdef CONFIG_F2FS_FAULT_INJECTION
59 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) {
60 f2fs_show_injection_info(FAULT_IO);
61 bio->bi_status = BLK_STS_IOERR;
62 }
63 #endif
64
65 if (f2fs_bio_encrypted(bio)) {
66 if (bio->bi_status) {
67 fscrypt_release_ctx(bio->bi_private);
68 } else {
69 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
70 return;
71 }
72 }
73
74 bio_for_each_segment_all(bvec, bio, i) {
75 struct page *page = bvec->bv_page;
76
77 if (!bio->bi_status) {
78 if (!PageUptodate(page))
79 SetPageUptodate(page);
80 } else {
81 ClearPageUptodate(page);
82 SetPageError(page);
83 }
84 unlock_page(page);
85 }
86 bio_put(bio);
87 }
88
89 static void f2fs_write_end_io(struct bio *bio)
90 {
91 struct f2fs_sb_info *sbi = bio->bi_private;
92 struct bio_vec *bvec;
93 int i;
94
95 bio_for_each_segment_all(bvec, bio, i) {
96 struct page *page = bvec->bv_page;
97 enum count_type type = WB_DATA_TYPE(page);
98
99 if (IS_DUMMY_WRITTEN_PAGE(page)) {
100 set_page_private(page, (unsigned long)NULL);
101 ClearPagePrivate(page);
102 unlock_page(page);
103 mempool_free(page, sbi->write_io_dummy);
104
105 if (unlikely(bio->bi_status))
106 f2fs_stop_checkpoint(sbi, true);
107 continue;
108 }
109
110 fscrypt_pullback_bio_page(&page, true);
111
112 if (unlikely(bio->bi_status)) {
113 mapping_set_error(page->mapping, -EIO);
114 f2fs_stop_checkpoint(sbi, true);
115 }
116 dec_page_count(sbi, type);
117 clear_cold_data(page);
118 end_page_writeback(page);
119 }
120 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
121 wq_has_sleeper(&sbi->cp_wait))
122 wake_up(&sbi->cp_wait);
123
124 bio_put(bio);
125 }
126
127 /*
128 * Return true, if pre_bio's bdev is same as its target device.
129 */
130 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
131 block_t blk_addr, struct bio *bio)
132 {
133 struct block_device *bdev = sbi->sb->s_bdev;
134 int i;
135
136 for (i = 0; i < sbi->s_ndevs; i++) {
137 if (FDEV(i).start_blk <= blk_addr &&
138 FDEV(i).end_blk >= blk_addr) {
139 blk_addr -= FDEV(i).start_blk;
140 bdev = FDEV(i).bdev;
141 break;
142 }
143 }
144 if (bio) {
145 bio->bi_bdev = bdev;
146 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
147 }
148 return bdev;
149 }
150
151 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
152 {
153 int i;
154
155 for (i = 0; i < sbi->s_ndevs; i++)
156 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
157 return i;
158 return 0;
159 }
160
161 static bool __same_bdev(struct f2fs_sb_info *sbi,
162 block_t blk_addr, struct bio *bio)
163 {
164 return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev;
165 }
166
167 /*
168 * Low-level block read/write IO operations.
169 */
170 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
171 int npages, bool is_read)
172 {
173 struct bio *bio;
174
175 bio = f2fs_bio_alloc(npages);
176
177 f2fs_target_device(sbi, blk_addr, bio);
178 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
179 bio->bi_private = is_read ? NULL : sbi;
180
181 return bio;
182 }
183
184 static inline void __submit_bio(struct f2fs_sb_info *sbi,
185 struct bio *bio, enum page_type type)
186 {
187 if (!is_read_io(bio_op(bio))) {
188 unsigned int start;
189
190 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
191 current->plug && (type == DATA || type == NODE))
192 blk_finish_plug(current->plug);
193
194 if (type != DATA && type != NODE)
195 goto submit_io;
196
197 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
198 start %= F2FS_IO_SIZE(sbi);
199
200 if (start == 0)
201 goto submit_io;
202
203 /* fill dummy pages */
204 for (; start < F2FS_IO_SIZE(sbi); start++) {
205 struct page *page =
206 mempool_alloc(sbi->write_io_dummy,
207 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
208 f2fs_bug_on(sbi, !page);
209
210 SetPagePrivate(page);
211 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
212 lock_page(page);
213 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
214 f2fs_bug_on(sbi, 1);
215 }
216 /*
217 * In the NODE case, we lose next block address chain. So, we
218 * need to do checkpoint in f2fs_sync_file.
219 */
220 if (type == NODE)
221 set_sbi_flag(sbi, SBI_NEED_CP);
222 }
223 submit_io:
224 if (is_read_io(bio_op(bio)))
225 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
226 else
227 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
228 submit_bio(bio);
229 }
230
231 static void __submit_merged_bio(struct f2fs_bio_info *io)
232 {
233 struct f2fs_io_info *fio = &io->fio;
234
235 if (!io->bio)
236 return;
237
238 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
239
240 if (is_read_io(fio->op))
241 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
242 else
243 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
244
245 __submit_bio(io->sbi, io->bio, fio->type);
246 io->bio = NULL;
247 }
248
249 static bool __has_merged_page(struct f2fs_bio_info *io,
250 struct inode *inode, nid_t ino, pgoff_t idx)
251 {
252 struct bio_vec *bvec;
253 struct page *target;
254 int i;
255
256 if (!io->bio)
257 return false;
258
259 if (!inode && !ino)
260 return true;
261
262 bio_for_each_segment_all(bvec, io->bio, i) {
263
264 if (bvec->bv_page->mapping)
265 target = bvec->bv_page;
266 else
267 target = fscrypt_control_page(bvec->bv_page);
268
269 if (idx != target->index)
270 continue;
271
272 if (inode && inode == target->mapping->host)
273 return true;
274 if (ino && ino == ino_of_node(target))
275 return true;
276 }
277
278 return false;
279 }
280
281 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
282 nid_t ino, pgoff_t idx, enum page_type type)
283 {
284 enum page_type btype = PAGE_TYPE_OF_BIO(type);
285 enum temp_type temp;
286 struct f2fs_bio_info *io;
287 bool ret = false;
288
289 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
290 io = sbi->write_io[btype] + temp;
291
292 down_read(&io->io_rwsem);
293 ret = __has_merged_page(io, inode, ino, idx);
294 up_read(&io->io_rwsem);
295
296 /* TODO: use HOT temp only for meta pages now. */
297 if (ret || btype == META)
298 break;
299 }
300 return ret;
301 }
302
303 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
304 enum page_type type, enum temp_type temp)
305 {
306 enum page_type btype = PAGE_TYPE_OF_BIO(type);
307 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
308
309 down_write(&io->io_rwsem);
310
311 /* change META to META_FLUSH in the checkpoint procedure */
312 if (type >= META_FLUSH) {
313 io->fio.type = META_FLUSH;
314 io->fio.op = REQ_OP_WRITE;
315 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
316 if (!test_opt(sbi, NOBARRIER))
317 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
318 }
319 __submit_merged_bio(io);
320 up_write(&io->io_rwsem);
321 }
322
323 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
324 struct inode *inode, nid_t ino, pgoff_t idx,
325 enum page_type type, bool force)
326 {
327 enum temp_type temp;
328
329 if (!force && !has_merged_page(sbi, inode, ino, idx, type))
330 return;
331
332 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
333
334 __f2fs_submit_merged_write(sbi, type, temp);
335
336 /* TODO: use HOT temp only for meta pages now. */
337 if (type >= META)
338 break;
339 }
340 }
341
342 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
343 {
344 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
345 }
346
347 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
348 struct inode *inode, nid_t ino, pgoff_t idx,
349 enum page_type type)
350 {
351 __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
352 }
353
354 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
355 {
356 f2fs_submit_merged_write(sbi, DATA);
357 f2fs_submit_merged_write(sbi, NODE);
358 f2fs_submit_merged_write(sbi, META);
359 }
360
361 /*
362 * Fill the locked page with data located in the block address.
363 * A caller needs to unlock the page on failure.
364 */
365 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
366 {
367 struct bio *bio;
368 struct page *page = fio->encrypted_page ?
369 fio->encrypted_page : fio->page;
370
371 trace_f2fs_submit_page_bio(page, fio);
372 f2fs_trace_ios(fio, 0);
373
374 /* Allocate a new bio */
375 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
376
377 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
378 bio_put(bio);
379 return -EFAULT;
380 }
381 bio_set_op_attrs(bio, fio->op, fio->op_flags);
382
383 __submit_bio(fio->sbi, bio, fio->type);
384
385 if (!is_read_io(fio->op))
386 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
387 return 0;
388 }
389
390 int f2fs_submit_page_write(struct f2fs_io_info *fio)
391 {
392 struct f2fs_sb_info *sbi = fio->sbi;
393 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
394 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
395 struct page *bio_page;
396 int err = 0;
397
398 f2fs_bug_on(sbi, is_read_io(fio->op));
399
400 down_write(&io->io_rwsem);
401 next:
402 if (fio->in_list) {
403 spin_lock(&io->io_lock);
404 if (list_empty(&io->io_list)) {
405 spin_unlock(&io->io_lock);
406 goto out_fail;
407 }
408 fio = list_first_entry(&io->io_list,
409 struct f2fs_io_info, list);
410 list_del(&fio->list);
411 spin_unlock(&io->io_lock);
412 }
413
414 if (fio->old_blkaddr != NEW_ADDR)
415 verify_block_addr(sbi, fio->old_blkaddr);
416 verify_block_addr(sbi, fio->new_blkaddr);
417
418 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
419
420 /* set submitted = 1 as a return value */
421 fio->submitted = 1;
422
423 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
424
425 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
426 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
427 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
428 __submit_merged_bio(io);
429 alloc_new:
430 if (io->bio == NULL) {
431 if ((fio->type == DATA || fio->type == NODE) &&
432 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
433 err = -EAGAIN;
434 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
435 goto out_fail;
436 }
437 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
438 BIO_MAX_PAGES, false);
439 io->fio = *fio;
440 }
441
442 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
443 __submit_merged_bio(io);
444 goto alloc_new;
445 }
446
447 io->last_block_in_bio = fio->new_blkaddr;
448 f2fs_trace_ios(fio, 0);
449
450 trace_f2fs_submit_page_write(fio->page, fio);
451
452 if (fio->in_list)
453 goto next;
454 out_fail:
455 up_write(&io->io_rwsem);
456 return err;
457 }
458
459 static void __set_data_blkaddr(struct dnode_of_data *dn)
460 {
461 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
462 __le32 *addr_array;
463
464 /* Get physical address of data block */
465 addr_array = blkaddr_in_node(rn);
466 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
467 }
468
469 /*
470 * Lock ordering for the change of data block address:
471 * ->data_page
472 * ->node_page
473 * update block addresses in the node page
474 */
475 void set_data_blkaddr(struct dnode_of_data *dn)
476 {
477 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
478 __set_data_blkaddr(dn);
479 if (set_page_dirty(dn->node_page))
480 dn->node_changed = true;
481 }
482
483 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
484 {
485 dn->data_blkaddr = blkaddr;
486 set_data_blkaddr(dn);
487 f2fs_update_extent_cache(dn);
488 }
489
490 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
491 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
492 {
493 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
494 int err;
495
496 if (!count)
497 return 0;
498
499 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
500 return -EPERM;
501 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
502 return err;
503
504 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
505 dn->ofs_in_node, count);
506
507 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
508
509 for (; count > 0; dn->ofs_in_node++) {
510 block_t blkaddr =
511 datablock_addr(dn->node_page, dn->ofs_in_node);
512 if (blkaddr == NULL_ADDR) {
513 dn->data_blkaddr = NEW_ADDR;
514 __set_data_blkaddr(dn);
515 count--;
516 }
517 }
518
519 if (set_page_dirty(dn->node_page))
520 dn->node_changed = true;
521 return 0;
522 }
523
524 /* Should keep dn->ofs_in_node unchanged */
525 int reserve_new_block(struct dnode_of_data *dn)
526 {
527 unsigned int ofs_in_node = dn->ofs_in_node;
528 int ret;
529
530 ret = reserve_new_blocks(dn, 1);
531 dn->ofs_in_node = ofs_in_node;
532 return ret;
533 }
534
535 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
536 {
537 bool need_put = dn->inode_page ? false : true;
538 int err;
539
540 err = get_dnode_of_data(dn, index, ALLOC_NODE);
541 if (err)
542 return err;
543
544 if (dn->data_blkaddr == NULL_ADDR)
545 err = reserve_new_block(dn);
546 if (err || need_put)
547 f2fs_put_dnode(dn);
548 return err;
549 }
550
551 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
552 {
553 struct extent_info ei = {0,0,0};
554 struct inode *inode = dn->inode;
555
556 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
557 dn->data_blkaddr = ei.blk + index - ei.fofs;
558 return 0;
559 }
560
561 return f2fs_reserve_block(dn, index);
562 }
563
564 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
565 int op_flags, bool for_write)
566 {
567 struct address_space *mapping = inode->i_mapping;
568 struct dnode_of_data dn;
569 struct page *page;
570 struct extent_info ei = {0,0,0};
571 int err;
572 struct f2fs_io_info fio = {
573 .sbi = F2FS_I_SB(inode),
574 .type = DATA,
575 .op = REQ_OP_READ,
576 .op_flags = op_flags,
577 .encrypted_page = NULL,
578 };
579
580 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
581 return read_mapping_page(mapping, index, NULL);
582
583 page = f2fs_grab_cache_page(mapping, index, for_write);
584 if (!page)
585 return ERR_PTR(-ENOMEM);
586
587 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
588 dn.data_blkaddr = ei.blk + index - ei.fofs;
589 goto got_it;
590 }
591
592 set_new_dnode(&dn, inode, NULL, NULL, 0);
593 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
594 if (err)
595 goto put_err;
596 f2fs_put_dnode(&dn);
597
598 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
599 err = -ENOENT;
600 goto put_err;
601 }
602 got_it:
603 if (PageUptodate(page)) {
604 unlock_page(page);
605 return page;
606 }
607
608 /*
609 * A new dentry page is allocated but not able to be written, since its
610 * new inode page couldn't be allocated due to -ENOSPC.
611 * In such the case, its blkaddr can be remained as NEW_ADDR.
612 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
613 */
614 if (dn.data_blkaddr == NEW_ADDR) {
615 zero_user_segment(page, 0, PAGE_SIZE);
616 if (!PageUptodate(page))
617 SetPageUptodate(page);
618 unlock_page(page);
619 return page;
620 }
621
622 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
623 fio.page = page;
624 err = f2fs_submit_page_bio(&fio);
625 if (err)
626 goto put_err;
627 return page;
628
629 put_err:
630 f2fs_put_page(page, 1);
631 return ERR_PTR(err);
632 }
633
634 struct page *find_data_page(struct inode *inode, pgoff_t index)
635 {
636 struct address_space *mapping = inode->i_mapping;
637 struct page *page;
638
639 page = find_get_page(mapping, index);
640 if (page && PageUptodate(page))
641 return page;
642 f2fs_put_page(page, 0);
643
644 page = get_read_data_page(inode, index, 0, false);
645 if (IS_ERR(page))
646 return page;
647
648 if (PageUptodate(page))
649 return page;
650
651 wait_on_page_locked(page);
652 if (unlikely(!PageUptodate(page))) {
653 f2fs_put_page(page, 0);
654 return ERR_PTR(-EIO);
655 }
656 return page;
657 }
658
659 /*
660 * If it tries to access a hole, return an error.
661 * Because, the callers, functions in dir.c and GC, should be able to know
662 * whether this page exists or not.
663 */
664 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
665 bool for_write)
666 {
667 struct address_space *mapping = inode->i_mapping;
668 struct page *page;
669 repeat:
670 page = get_read_data_page(inode, index, 0, for_write);
671 if (IS_ERR(page))
672 return page;
673
674 /* wait for read completion */
675 lock_page(page);
676 if (unlikely(page->mapping != mapping)) {
677 f2fs_put_page(page, 1);
678 goto repeat;
679 }
680 if (unlikely(!PageUptodate(page))) {
681 f2fs_put_page(page, 1);
682 return ERR_PTR(-EIO);
683 }
684 return page;
685 }
686
687 /*
688 * Caller ensures that this data page is never allocated.
689 * A new zero-filled data page is allocated in the page cache.
690 *
691 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
692 * f2fs_unlock_op().
693 * Note that, ipage is set only by make_empty_dir, and if any error occur,
694 * ipage should be released by this function.
695 */
696 struct page *get_new_data_page(struct inode *inode,
697 struct page *ipage, pgoff_t index, bool new_i_size)
698 {
699 struct address_space *mapping = inode->i_mapping;
700 struct page *page;
701 struct dnode_of_data dn;
702 int err;
703
704 page = f2fs_grab_cache_page(mapping, index, true);
705 if (!page) {
706 /*
707 * before exiting, we should make sure ipage will be released
708 * if any error occur.
709 */
710 f2fs_put_page(ipage, 1);
711 return ERR_PTR(-ENOMEM);
712 }
713
714 set_new_dnode(&dn, inode, ipage, NULL, 0);
715 err = f2fs_reserve_block(&dn, index);
716 if (err) {
717 f2fs_put_page(page, 1);
718 return ERR_PTR(err);
719 }
720 if (!ipage)
721 f2fs_put_dnode(&dn);
722
723 if (PageUptodate(page))
724 goto got_it;
725
726 if (dn.data_blkaddr == NEW_ADDR) {
727 zero_user_segment(page, 0, PAGE_SIZE);
728 if (!PageUptodate(page))
729 SetPageUptodate(page);
730 } else {
731 f2fs_put_page(page, 1);
732
733 /* if ipage exists, blkaddr should be NEW_ADDR */
734 f2fs_bug_on(F2FS_I_SB(inode), ipage);
735 page = get_lock_data_page(inode, index, true);
736 if (IS_ERR(page))
737 return page;
738 }
739 got_it:
740 if (new_i_size && i_size_read(inode) <
741 ((loff_t)(index + 1) << PAGE_SHIFT))
742 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
743 return page;
744 }
745
746 static int __allocate_data_block(struct dnode_of_data *dn)
747 {
748 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
749 struct f2fs_summary sum;
750 struct node_info ni;
751 pgoff_t fofs;
752 blkcnt_t count = 1;
753 int err;
754
755 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
756 return -EPERM;
757
758 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
759 if (dn->data_blkaddr == NEW_ADDR)
760 goto alloc;
761
762 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
763 return err;
764
765 alloc:
766 get_node_info(sbi, dn->nid, &ni);
767 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
768
769 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
770 &sum, CURSEG_WARM_DATA, NULL, false);
771 set_data_blkaddr(dn);
772
773 /* update i_size */
774 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
775 dn->ofs_in_node;
776 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
777 f2fs_i_size_write(dn->inode,
778 ((loff_t)(fofs + 1) << PAGE_SHIFT));
779 return 0;
780 }
781
782 static inline bool __force_buffered_io(struct inode *inode, int rw)
783 {
784 return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) ||
785 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
786 F2FS_I_SB(inode)->s_ndevs);
787 }
788
789 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
790 {
791 struct inode *inode = file_inode(iocb->ki_filp);
792 struct f2fs_map_blocks map;
793 int err = 0;
794
795 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
796 return 0;
797
798 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
799 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
800 if (map.m_len > map.m_lblk)
801 map.m_len -= map.m_lblk;
802 else
803 map.m_len = 0;
804
805 map.m_next_pgofs = NULL;
806
807 if (iocb->ki_flags & IOCB_DIRECT) {
808 err = f2fs_convert_inline_inode(inode);
809 if (err)
810 return err;
811 return f2fs_map_blocks(inode, &map, 1,
812 __force_buffered_io(inode, WRITE) ?
813 F2FS_GET_BLOCK_PRE_AIO :
814 F2FS_GET_BLOCK_PRE_DIO);
815 }
816 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
817 err = f2fs_convert_inline_inode(inode);
818 if (err)
819 return err;
820 }
821 if (!f2fs_has_inline_data(inode))
822 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
823 return err;
824 }
825
826 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
827 {
828 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
829 if (lock)
830 down_read(&sbi->node_change);
831 else
832 up_read(&sbi->node_change);
833 } else {
834 if (lock)
835 f2fs_lock_op(sbi);
836 else
837 f2fs_unlock_op(sbi);
838 }
839 }
840
841 /*
842 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
843 * f2fs_map_blocks structure.
844 * If original data blocks are allocated, then give them to blockdev.
845 * Otherwise,
846 * a. preallocate requested block addresses
847 * b. do not use extent cache for better performance
848 * c. give the block addresses to blockdev
849 */
850 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
851 int create, int flag)
852 {
853 unsigned int maxblocks = map->m_len;
854 struct dnode_of_data dn;
855 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
856 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
857 pgoff_t pgofs, end_offset, end;
858 int err = 0, ofs = 1;
859 unsigned int ofs_in_node, last_ofs_in_node;
860 blkcnt_t prealloc;
861 struct extent_info ei = {0,0,0};
862 block_t blkaddr;
863
864 if (!maxblocks)
865 return 0;
866
867 map->m_len = 0;
868 map->m_flags = 0;
869
870 /* it only supports block size == page size */
871 pgofs = (pgoff_t)map->m_lblk;
872 end = pgofs + maxblocks;
873
874 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
875 map->m_pblk = ei.blk + pgofs - ei.fofs;
876 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
877 map->m_flags = F2FS_MAP_MAPPED;
878 goto out;
879 }
880
881 next_dnode:
882 if (create)
883 __do_map_lock(sbi, flag, true);
884
885 /* When reading holes, we need its node page */
886 set_new_dnode(&dn, inode, NULL, NULL, 0);
887 err = get_dnode_of_data(&dn, pgofs, mode);
888 if (err) {
889 if (flag == F2FS_GET_BLOCK_BMAP)
890 map->m_pblk = 0;
891 if (err == -ENOENT) {
892 err = 0;
893 if (map->m_next_pgofs)
894 *map->m_next_pgofs =
895 get_next_page_offset(&dn, pgofs);
896 }
897 goto unlock_out;
898 }
899
900 prealloc = 0;
901 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
902 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
903
904 next_block:
905 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
906
907 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
908 if (create) {
909 if (unlikely(f2fs_cp_error(sbi))) {
910 err = -EIO;
911 goto sync_out;
912 }
913 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
914 if (blkaddr == NULL_ADDR) {
915 prealloc++;
916 last_ofs_in_node = dn.ofs_in_node;
917 }
918 } else {
919 err = __allocate_data_block(&dn);
920 if (!err)
921 set_inode_flag(inode, FI_APPEND_WRITE);
922 }
923 if (err)
924 goto sync_out;
925 map->m_flags |= F2FS_MAP_NEW;
926 blkaddr = dn.data_blkaddr;
927 } else {
928 if (flag == F2FS_GET_BLOCK_BMAP) {
929 map->m_pblk = 0;
930 goto sync_out;
931 }
932 if (flag == F2FS_GET_BLOCK_FIEMAP &&
933 blkaddr == NULL_ADDR) {
934 if (map->m_next_pgofs)
935 *map->m_next_pgofs = pgofs + 1;
936 }
937 if (flag != F2FS_GET_BLOCK_FIEMAP ||
938 blkaddr != NEW_ADDR)
939 goto sync_out;
940 }
941 }
942
943 if (flag == F2FS_GET_BLOCK_PRE_AIO)
944 goto skip;
945
946 if (map->m_len == 0) {
947 /* preallocated unwritten block should be mapped for fiemap. */
948 if (blkaddr == NEW_ADDR)
949 map->m_flags |= F2FS_MAP_UNWRITTEN;
950 map->m_flags |= F2FS_MAP_MAPPED;
951
952 map->m_pblk = blkaddr;
953 map->m_len = 1;
954 } else if ((map->m_pblk != NEW_ADDR &&
955 blkaddr == (map->m_pblk + ofs)) ||
956 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
957 flag == F2FS_GET_BLOCK_PRE_DIO) {
958 ofs++;
959 map->m_len++;
960 } else {
961 goto sync_out;
962 }
963
964 skip:
965 dn.ofs_in_node++;
966 pgofs++;
967
968 /* preallocate blocks in batch for one dnode page */
969 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
970 (pgofs == end || dn.ofs_in_node == end_offset)) {
971
972 dn.ofs_in_node = ofs_in_node;
973 err = reserve_new_blocks(&dn, prealloc);
974 if (err)
975 goto sync_out;
976
977 map->m_len += dn.ofs_in_node - ofs_in_node;
978 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
979 err = -ENOSPC;
980 goto sync_out;
981 }
982 dn.ofs_in_node = end_offset;
983 }
984
985 if (pgofs >= end)
986 goto sync_out;
987 else if (dn.ofs_in_node < end_offset)
988 goto next_block;
989
990 f2fs_put_dnode(&dn);
991
992 if (create) {
993 __do_map_lock(sbi, flag, false);
994 f2fs_balance_fs(sbi, dn.node_changed);
995 }
996 goto next_dnode;
997
998 sync_out:
999 f2fs_put_dnode(&dn);
1000 unlock_out:
1001 if (create) {
1002 __do_map_lock(sbi, flag, false);
1003 f2fs_balance_fs(sbi, dn.node_changed);
1004 }
1005 out:
1006 trace_f2fs_map_blocks(inode, map, err);
1007 return err;
1008 }
1009
1010 static int __get_data_block(struct inode *inode, sector_t iblock,
1011 struct buffer_head *bh, int create, int flag,
1012 pgoff_t *next_pgofs)
1013 {
1014 struct f2fs_map_blocks map;
1015 int err;
1016
1017 map.m_lblk = iblock;
1018 map.m_len = bh->b_size >> inode->i_blkbits;
1019 map.m_next_pgofs = next_pgofs;
1020
1021 err = f2fs_map_blocks(inode, &map, create, flag);
1022 if (!err) {
1023 map_bh(bh, inode->i_sb, map.m_pblk);
1024 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1025 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1026 }
1027 return err;
1028 }
1029
1030 static int get_data_block(struct inode *inode, sector_t iblock,
1031 struct buffer_head *bh_result, int create, int flag,
1032 pgoff_t *next_pgofs)
1033 {
1034 return __get_data_block(inode, iblock, bh_result, create,
1035 flag, next_pgofs);
1036 }
1037
1038 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1039 struct buffer_head *bh_result, int create)
1040 {
1041 return __get_data_block(inode, iblock, bh_result, create,
1042 F2FS_GET_BLOCK_DIO, NULL);
1043 }
1044
1045 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1046 struct buffer_head *bh_result, int create)
1047 {
1048 /* Block number less than F2FS MAX BLOCKS */
1049 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1050 return -EFBIG;
1051
1052 return __get_data_block(inode, iblock, bh_result, create,
1053 F2FS_GET_BLOCK_BMAP, NULL);
1054 }
1055
1056 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1057 {
1058 return (offset >> inode->i_blkbits);
1059 }
1060
1061 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1062 {
1063 return (blk << inode->i_blkbits);
1064 }
1065
1066 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1067 u64 start, u64 len)
1068 {
1069 struct buffer_head map_bh;
1070 sector_t start_blk, last_blk;
1071 pgoff_t next_pgofs;
1072 u64 logical = 0, phys = 0, size = 0;
1073 u32 flags = 0;
1074 int ret = 0;
1075
1076 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1077 if (ret)
1078 return ret;
1079
1080 if (f2fs_has_inline_data(inode)) {
1081 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1082 if (ret != -EAGAIN)
1083 return ret;
1084 }
1085
1086 inode_lock(inode);
1087
1088 if (logical_to_blk(inode, len) == 0)
1089 len = blk_to_logical(inode, 1);
1090
1091 start_blk = logical_to_blk(inode, start);
1092 last_blk = logical_to_blk(inode, start + len - 1);
1093
1094 next:
1095 memset(&map_bh, 0, sizeof(struct buffer_head));
1096 map_bh.b_size = len;
1097
1098 ret = get_data_block(inode, start_blk, &map_bh, 0,
1099 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1100 if (ret)
1101 goto out;
1102
1103 /* HOLE */
1104 if (!buffer_mapped(&map_bh)) {
1105 start_blk = next_pgofs;
1106
1107 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1108 F2FS_I_SB(inode)->max_file_blocks))
1109 goto prep_next;
1110
1111 flags |= FIEMAP_EXTENT_LAST;
1112 }
1113
1114 if (size) {
1115 if (f2fs_encrypted_inode(inode))
1116 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1117
1118 ret = fiemap_fill_next_extent(fieinfo, logical,
1119 phys, size, flags);
1120 }
1121
1122 if (start_blk > last_blk || ret)
1123 goto out;
1124
1125 logical = blk_to_logical(inode, start_blk);
1126 phys = blk_to_logical(inode, map_bh.b_blocknr);
1127 size = map_bh.b_size;
1128 flags = 0;
1129 if (buffer_unwritten(&map_bh))
1130 flags = FIEMAP_EXTENT_UNWRITTEN;
1131
1132 start_blk += logical_to_blk(inode, size);
1133
1134 prep_next:
1135 cond_resched();
1136 if (fatal_signal_pending(current))
1137 ret = -EINTR;
1138 else
1139 goto next;
1140 out:
1141 if (ret == 1)
1142 ret = 0;
1143
1144 inode_unlock(inode);
1145 return ret;
1146 }
1147
1148 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
1149 unsigned nr_pages)
1150 {
1151 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1152 struct fscrypt_ctx *ctx = NULL;
1153 struct bio *bio;
1154
1155 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1156 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1157 if (IS_ERR(ctx))
1158 return ERR_CAST(ctx);
1159
1160 /* wait the page to be moved by cleaning */
1161 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1162 }
1163
1164 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1165 if (!bio) {
1166 if (ctx)
1167 fscrypt_release_ctx(ctx);
1168 return ERR_PTR(-ENOMEM);
1169 }
1170 f2fs_target_device(sbi, blkaddr, bio);
1171 bio->bi_end_io = f2fs_read_end_io;
1172 bio->bi_private = ctx;
1173
1174 return bio;
1175 }
1176
1177 /*
1178 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1179 * Major change was from block_size == page_size in f2fs by default.
1180 */
1181 static int f2fs_mpage_readpages(struct address_space *mapping,
1182 struct list_head *pages, struct page *page,
1183 unsigned nr_pages)
1184 {
1185 struct bio *bio = NULL;
1186 unsigned page_idx;
1187 sector_t last_block_in_bio = 0;
1188 struct inode *inode = mapping->host;
1189 const unsigned blkbits = inode->i_blkbits;
1190 const unsigned blocksize = 1 << blkbits;
1191 sector_t block_in_file;
1192 sector_t last_block;
1193 sector_t last_block_in_file;
1194 sector_t block_nr;
1195 struct f2fs_map_blocks map;
1196
1197 map.m_pblk = 0;
1198 map.m_lblk = 0;
1199 map.m_len = 0;
1200 map.m_flags = 0;
1201 map.m_next_pgofs = NULL;
1202
1203 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1204
1205 if (pages) {
1206 page = list_last_entry(pages, struct page, lru);
1207
1208 prefetchw(&page->flags);
1209 list_del(&page->lru);
1210 if (add_to_page_cache_lru(page, mapping,
1211 page->index,
1212 readahead_gfp_mask(mapping)))
1213 goto next_page;
1214 }
1215
1216 block_in_file = (sector_t)page->index;
1217 last_block = block_in_file + nr_pages;
1218 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1219 blkbits;
1220 if (last_block > last_block_in_file)
1221 last_block = last_block_in_file;
1222
1223 /*
1224 * Map blocks using the previous result first.
1225 */
1226 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1227 block_in_file > map.m_lblk &&
1228 block_in_file < (map.m_lblk + map.m_len))
1229 goto got_it;
1230
1231 /*
1232 * Then do more f2fs_map_blocks() calls until we are
1233 * done with this page.
1234 */
1235 map.m_flags = 0;
1236
1237 if (block_in_file < last_block) {
1238 map.m_lblk = block_in_file;
1239 map.m_len = last_block - block_in_file;
1240
1241 if (f2fs_map_blocks(inode, &map, 0,
1242 F2FS_GET_BLOCK_READ))
1243 goto set_error_page;
1244 }
1245 got_it:
1246 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1247 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1248 SetPageMappedToDisk(page);
1249
1250 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1251 SetPageUptodate(page);
1252 goto confused;
1253 }
1254 } else {
1255 zero_user_segment(page, 0, PAGE_SIZE);
1256 if (!PageUptodate(page))
1257 SetPageUptodate(page);
1258 unlock_page(page);
1259 goto next_page;
1260 }
1261
1262 /*
1263 * This page will go to BIO. Do we need to send this
1264 * BIO off first?
1265 */
1266 if (bio && (last_block_in_bio != block_nr - 1 ||
1267 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1268 submit_and_realloc:
1269 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1270 bio = NULL;
1271 }
1272 if (bio == NULL) {
1273 bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1274 if (IS_ERR(bio)) {
1275 bio = NULL;
1276 goto set_error_page;
1277 }
1278 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1279 }
1280
1281 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1282 goto submit_and_realloc;
1283
1284 last_block_in_bio = block_nr;
1285 goto next_page;
1286 set_error_page:
1287 SetPageError(page);
1288 zero_user_segment(page, 0, PAGE_SIZE);
1289 unlock_page(page);
1290 goto next_page;
1291 confused:
1292 if (bio) {
1293 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1294 bio = NULL;
1295 }
1296 unlock_page(page);
1297 next_page:
1298 if (pages)
1299 put_page(page);
1300 }
1301 BUG_ON(pages && !list_empty(pages));
1302 if (bio)
1303 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1304 return 0;
1305 }
1306
1307 static int f2fs_read_data_page(struct file *file, struct page *page)
1308 {
1309 struct inode *inode = page->mapping->host;
1310 int ret = -EAGAIN;
1311
1312 trace_f2fs_readpage(page, DATA);
1313
1314 /* If the file has inline data, try to read it directly */
1315 if (f2fs_has_inline_data(inode))
1316 ret = f2fs_read_inline_data(inode, page);
1317 if (ret == -EAGAIN)
1318 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1319 return ret;
1320 }
1321
1322 static int f2fs_read_data_pages(struct file *file,
1323 struct address_space *mapping,
1324 struct list_head *pages, unsigned nr_pages)
1325 {
1326 struct inode *inode = file->f_mapping->host;
1327 struct page *page = list_last_entry(pages, struct page, lru);
1328
1329 trace_f2fs_readpages(inode, page, nr_pages);
1330
1331 /* If the file has inline data, skip readpages */
1332 if (f2fs_has_inline_data(inode))
1333 return 0;
1334
1335 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1336 }
1337
1338 static int encrypt_one_page(struct f2fs_io_info *fio)
1339 {
1340 struct inode *inode = fio->page->mapping->host;
1341 gfp_t gfp_flags = GFP_NOFS;
1342
1343 if (!f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
1344 return 0;
1345
1346 /* wait for GCed encrypted page writeback */
1347 f2fs_wait_on_encrypted_page_writeback(fio->sbi, fio->old_blkaddr);
1348
1349 retry_encrypt:
1350 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1351 PAGE_SIZE, 0, fio->page->index, gfp_flags);
1352 if (!IS_ERR(fio->encrypted_page))
1353 return 0;
1354
1355 /* flush pending IOs and wait for a while in the ENOMEM case */
1356 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1357 f2fs_flush_merged_writes(fio->sbi);
1358 congestion_wait(BLK_RW_ASYNC, HZ/50);
1359 gfp_flags |= __GFP_NOFAIL;
1360 goto retry_encrypt;
1361 }
1362 return PTR_ERR(fio->encrypted_page);
1363 }
1364
1365 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1366 {
1367 struct inode *inode = fio->page->mapping->host;
1368
1369 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
1370 return false;
1371 if (is_cold_data(fio->page))
1372 return false;
1373 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1374 return false;
1375
1376 return need_inplace_update_policy(inode, fio);
1377 }
1378
1379 static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio)
1380 {
1381 if (fio->old_blkaddr == NEW_ADDR)
1382 return false;
1383 if (fio->old_blkaddr == NULL_ADDR)
1384 return false;
1385 return true;
1386 }
1387
1388 int do_write_data_page(struct f2fs_io_info *fio)
1389 {
1390 struct page *page = fio->page;
1391 struct inode *inode = page->mapping->host;
1392 struct dnode_of_data dn;
1393 struct extent_info ei = {0,0,0};
1394 bool ipu_force = false;
1395 int err = 0;
1396
1397 set_new_dnode(&dn, inode, NULL, NULL, 0);
1398 if (need_inplace_update(fio) &&
1399 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1400 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1401
1402 if (valid_ipu_blkaddr(fio)) {
1403 ipu_force = true;
1404 fio->need_lock = LOCK_DONE;
1405 goto got_it;
1406 }
1407 }
1408
1409 /* Deadlock due to between page->lock and f2fs_lock_op */
1410 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1411 return -EAGAIN;
1412
1413 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1414 if (err)
1415 goto out;
1416
1417 fio->old_blkaddr = dn.data_blkaddr;
1418
1419 /* This page is already truncated */
1420 if (fio->old_blkaddr == NULL_ADDR) {
1421 ClearPageUptodate(page);
1422 goto out_writepage;
1423 }
1424 got_it:
1425 /*
1426 * If current allocation needs SSR,
1427 * it had better in-place writes for updated data.
1428 */
1429 if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) {
1430 err = encrypt_one_page(fio);
1431 if (err)
1432 goto out_writepage;
1433
1434 set_page_writeback(page);
1435 f2fs_put_dnode(&dn);
1436 if (fio->need_lock == LOCK_REQ)
1437 f2fs_unlock_op(fio->sbi);
1438 err = rewrite_data_page(fio);
1439 trace_f2fs_do_write_data_page(fio->page, IPU);
1440 set_inode_flag(inode, FI_UPDATE_WRITE);
1441 return err;
1442 }
1443
1444 if (fio->need_lock == LOCK_RETRY) {
1445 if (!f2fs_trylock_op(fio->sbi)) {
1446 err = -EAGAIN;
1447 goto out_writepage;
1448 }
1449 fio->need_lock = LOCK_REQ;
1450 }
1451
1452 err = encrypt_one_page(fio);
1453 if (err)
1454 goto out_writepage;
1455
1456 set_page_writeback(page);
1457
1458 /* LFS mode write path */
1459 write_data_page(&dn, fio);
1460 trace_f2fs_do_write_data_page(page, OPU);
1461 set_inode_flag(inode, FI_APPEND_WRITE);
1462 if (page->index == 0)
1463 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1464 out_writepage:
1465 f2fs_put_dnode(&dn);
1466 out:
1467 if (fio->need_lock == LOCK_REQ)
1468 f2fs_unlock_op(fio->sbi);
1469 return err;
1470 }
1471
1472 static int __write_data_page(struct page *page, bool *submitted,
1473 struct writeback_control *wbc)
1474 {
1475 struct inode *inode = page->mapping->host;
1476 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1477 loff_t i_size = i_size_read(inode);
1478 const pgoff_t end_index = ((unsigned long long) i_size)
1479 >> PAGE_SHIFT;
1480 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1481 unsigned offset = 0;
1482 bool need_balance_fs = false;
1483 int err = 0;
1484 struct f2fs_io_info fio = {
1485 .sbi = sbi,
1486 .type = DATA,
1487 .op = REQ_OP_WRITE,
1488 .op_flags = wbc_to_write_flags(wbc),
1489 .old_blkaddr = NULL_ADDR,
1490 .page = page,
1491 .encrypted_page = NULL,
1492 .submitted = false,
1493 .need_lock = LOCK_RETRY,
1494 };
1495
1496 trace_f2fs_writepage(page, DATA);
1497
1498 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1499 goto redirty_out;
1500
1501 if (page->index < end_index)
1502 goto write;
1503
1504 /*
1505 * If the offset is out-of-range of file size,
1506 * this page does not have to be written to disk.
1507 */
1508 offset = i_size & (PAGE_SIZE - 1);
1509 if ((page->index >= end_index + 1) || !offset)
1510 goto out;
1511
1512 zero_user_segment(page, offset, PAGE_SIZE);
1513 write:
1514 if (f2fs_is_drop_cache(inode))
1515 goto out;
1516 /* we should not write 0'th page having journal header */
1517 if (f2fs_is_volatile_file(inode) && (!page->index ||
1518 (!wbc->for_reclaim &&
1519 available_free_memory(sbi, BASE_CHECK))))
1520 goto redirty_out;
1521
1522 /* we should bypass data pages to proceed the kworkder jobs */
1523 if (unlikely(f2fs_cp_error(sbi))) {
1524 mapping_set_error(page->mapping, -EIO);
1525 goto out;
1526 }
1527
1528 /* Dentry blocks are controlled by checkpoint */
1529 if (S_ISDIR(inode->i_mode)) {
1530 fio.need_lock = LOCK_DONE;
1531 err = do_write_data_page(&fio);
1532 goto done;
1533 }
1534
1535 if (!wbc->for_reclaim)
1536 need_balance_fs = true;
1537 else if (has_not_enough_free_secs(sbi, 0, 0))
1538 goto redirty_out;
1539 else
1540 set_inode_flag(inode, FI_HOT_DATA);
1541
1542 err = -EAGAIN;
1543 if (f2fs_has_inline_data(inode)) {
1544 err = f2fs_write_inline_data(inode, page);
1545 if (!err)
1546 goto out;
1547 }
1548
1549 if (err == -EAGAIN) {
1550 err = do_write_data_page(&fio);
1551 if (err == -EAGAIN) {
1552 fio.need_lock = LOCK_REQ;
1553 err = do_write_data_page(&fio);
1554 }
1555 }
1556 if (F2FS_I(inode)->last_disk_size < psize)
1557 F2FS_I(inode)->last_disk_size = psize;
1558
1559 done:
1560 if (err && err != -ENOENT)
1561 goto redirty_out;
1562
1563 out:
1564 inode_dec_dirty_pages(inode);
1565 if (err)
1566 ClearPageUptodate(page);
1567
1568 if (wbc->for_reclaim) {
1569 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1570 clear_inode_flag(inode, FI_HOT_DATA);
1571 remove_dirty_inode(inode);
1572 submitted = NULL;
1573 }
1574
1575 unlock_page(page);
1576 if (!S_ISDIR(inode->i_mode))
1577 f2fs_balance_fs(sbi, need_balance_fs);
1578
1579 if (unlikely(f2fs_cp_error(sbi))) {
1580 f2fs_submit_merged_write(sbi, DATA);
1581 submitted = NULL;
1582 }
1583
1584 if (submitted)
1585 *submitted = fio.submitted;
1586
1587 return 0;
1588
1589 redirty_out:
1590 redirty_page_for_writepage(wbc, page);
1591 if (!err)
1592 return AOP_WRITEPAGE_ACTIVATE;
1593 unlock_page(page);
1594 return err;
1595 }
1596
1597 static int f2fs_write_data_page(struct page *page,
1598 struct writeback_control *wbc)
1599 {
1600 return __write_data_page(page, NULL, wbc);
1601 }
1602
1603 /*
1604 * This function was copied from write_cche_pages from mm/page-writeback.c.
1605 * The major change is making write step of cold data page separately from
1606 * warm/hot data page.
1607 */
1608 static int f2fs_write_cache_pages(struct address_space *mapping,
1609 struct writeback_control *wbc)
1610 {
1611 int ret = 0;
1612 int done = 0;
1613 struct pagevec pvec;
1614 int nr_pages;
1615 pgoff_t uninitialized_var(writeback_index);
1616 pgoff_t index;
1617 pgoff_t end; /* Inclusive */
1618 pgoff_t done_index;
1619 pgoff_t last_idx = ULONG_MAX;
1620 int cycled;
1621 int range_whole = 0;
1622 int tag;
1623
1624 pagevec_init(&pvec, 0);
1625
1626 if (get_dirty_pages(mapping->host) <=
1627 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
1628 set_inode_flag(mapping->host, FI_HOT_DATA);
1629 else
1630 clear_inode_flag(mapping->host, FI_HOT_DATA);
1631
1632 if (wbc->range_cyclic) {
1633 writeback_index = mapping->writeback_index; /* prev offset */
1634 index = writeback_index;
1635 if (index == 0)
1636 cycled = 1;
1637 else
1638 cycled = 0;
1639 end = -1;
1640 } else {
1641 index = wbc->range_start >> PAGE_SHIFT;
1642 end = wbc->range_end >> PAGE_SHIFT;
1643 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1644 range_whole = 1;
1645 cycled = 1; /* ignore range_cyclic tests */
1646 }
1647 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1648 tag = PAGECACHE_TAG_TOWRITE;
1649 else
1650 tag = PAGECACHE_TAG_DIRTY;
1651 retry:
1652 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1653 tag_pages_for_writeback(mapping, index, end);
1654 done_index = index;
1655 while (!done && (index <= end)) {
1656 int i;
1657
1658 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1659 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1660 if (nr_pages == 0)
1661 break;
1662
1663 for (i = 0; i < nr_pages; i++) {
1664 struct page *page = pvec.pages[i];
1665 bool submitted = false;
1666
1667 if (page->index > end) {
1668 done = 1;
1669 break;
1670 }
1671
1672 done_index = page->index;
1673 retry_write:
1674 lock_page(page);
1675
1676 if (unlikely(page->mapping != mapping)) {
1677 continue_unlock:
1678 unlock_page(page);
1679 continue;
1680 }
1681
1682 if (!PageDirty(page)) {
1683 /* someone wrote it for us */
1684 goto continue_unlock;
1685 }
1686
1687 if (PageWriteback(page)) {
1688 if (wbc->sync_mode != WB_SYNC_NONE)
1689 f2fs_wait_on_page_writeback(page,
1690 DATA, true);
1691 else
1692 goto continue_unlock;
1693 }
1694
1695 BUG_ON(PageWriteback(page));
1696 if (!clear_page_dirty_for_io(page))
1697 goto continue_unlock;
1698
1699 ret = __write_data_page(page, &submitted, wbc);
1700 if (unlikely(ret)) {
1701 /*
1702 * keep nr_to_write, since vfs uses this to
1703 * get # of written pages.
1704 */
1705 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1706 unlock_page(page);
1707 ret = 0;
1708 continue;
1709 } else if (ret == -EAGAIN) {
1710 ret = 0;
1711 if (wbc->sync_mode == WB_SYNC_ALL) {
1712 cond_resched();
1713 congestion_wait(BLK_RW_ASYNC,
1714 HZ/50);
1715 goto retry_write;
1716 }
1717 continue;
1718 }
1719 done_index = page->index + 1;
1720 done = 1;
1721 break;
1722 } else if (submitted) {
1723 last_idx = page->index;
1724 }
1725
1726 /* give a priority to WB_SYNC threads */
1727 if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) ||
1728 --wbc->nr_to_write <= 0) &&
1729 wbc->sync_mode == WB_SYNC_NONE) {
1730 done = 1;
1731 break;
1732 }
1733 }
1734 pagevec_release(&pvec);
1735 cond_resched();
1736 }
1737
1738 if (!cycled && !done) {
1739 cycled = 1;
1740 index = 0;
1741 end = writeback_index - 1;
1742 goto retry;
1743 }
1744 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1745 mapping->writeback_index = done_index;
1746
1747 if (last_idx != ULONG_MAX)
1748 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
1749 0, last_idx, DATA);
1750
1751 return ret;
1752 }
1753
1754 static int f2fs_write_data_pages(struct address_space *mapping,
1755 struct writeback_control *wbc)
1756 {
1757 struct inode *inode = mapping->host;
1758 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1759 struct blk_plug plug;
1760 int ret;
1761
1762 /* deal with chardevs and other special file */
1763 if (!mapping->a_ops->writepage)
1764 return 0;
1765
1766 /* skip writing if there is no dirty page in this inode */
1767 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1768 return 0;
1769
1770 /* during POR, we don't need to trigger writepage at all. */
1771 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1772 goto skip_write;
1773
1774 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1775 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1776 available_free_memory(sbi, DIRTY_DENTS))
1777 goto skip_write;
1778
1779 /* skip writing during file defragment */
1780 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1781 goto skip_write;
1782
1783 trace_f2fs_writepages(mapping->host, wbc, DATA);
1784
1785 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
1786 if (wbc->sync_mode == WB_SYNC_ALL)
1787 atomic_inc(&sbi->wb_sync_req);
1788 else if (atomic_read(&sbi->wb_sync_req))
1789 goto skip_write;
1790
1791 blk_start_plug(&plug);
1792 ret = f2fs_write_cache_pages(mapping, wbc);
1793 blk_finish_plug(&plug);
1794
1795 if (wbc->sync_mode == WB_SYNC_ALL)
1796 atomic_dec(&sbi->wb_sync_req);
1797 /*
1798 * if some pages were truncated, we cannot guarantee its mapping->host
1799 * to detect pending bios.
1800 */
1801
1802 remove_dirty_inode(inode);
1803 return ret;
1804
1805 skip_write:
1806 wbc->pages_skipped += get_dirty_pages(inode);
1807 trace_f2fs_writepages(mapping->host, wbc, DATA);
1808 return 0;
1809 }
1810
1811 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1812 {
1813 struct inode *inode = mapping->host;
1814 loff_t i_size = i_size_read(inode);
1815
1816 if (to > i_size) {
1817 down_write(&F2FS_I(inode)->i_mmap_sem);
1818 truncate_pagecache(inode, i_size);
1819 truncate_blocks(inode, i_size, true);
1820 up_write(&F2FS_I(inode)->i_mmap_sem);
1821 }
1822 }
1823
1824 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1825 struct page *page, loff_t pos, unsigned len,
1826 block_t *blk_addr, bool *node_changed)
1827 {
1828 struct inode *inode = page->mapping->host;
1829 pgoff_t index = page->index;
1830 struct dnode_of_data dn;
1831 struct page *ipage;
1832 bool locked = false;
1833 struct extent_info ei = {0,0,0};
1834 int err = 0;
1835
1836 /*
1837 * we already allocated all the blocks, so we don't need to get
1838 * the block addresses when there is no need to fill the page.
1839 */
1840 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
1841 !is_inode_flag_set(inode, FI_NO_PREALLOC))
1842 return 0;
1843
1844 if (f2fs_has_inline_data(inode) ||
1845 (pos & PAGE_MASK) >= i_size_read(inode)) {
1846 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
1847 locked = true;
1848 }
1849 restart:
1850 /* check inline_data */
1851 ipage = get_node_page(sbi, inode->i_ino);
1852 if (IS_ERR(ipage)) {
1853 err = PTR_ERR(ipage);
1854 goto unlock_out;
1855 }
1856
1857 set_new_dnode(&dn, inode, ipage, ipage, 0);
1858
1859 if (f2fs_has_inline_data(inode)) {
1860 if (pos + len <= MAX_INLINE_DATA) {
1861 read_inline_data(page, ipage);
1862 set_inode_flag(inode, FI_DATA_EXIST);
1863 if (inode->i_nlink)
1864 set_inline_node(ipage);
1865 } else {
1866 err = f2fs_convert_inline_page(&dn, page);
1867 if (err)
1868 goto out;
1869 if (dn.data_blkaddr == NULL_ADDR)
1870 err = f2fs_get_block(&dn, index);
1871 }
1872 } else if (locked) {
1873 err = f2fs_get_block(&dn, index);
1874 } else {
1875 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1876 dn.data_blkaddr = ei.blk + index - ei.fofs;
1877 } else {
1878 /* hole case */
1879 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1880 if (err || dn.data_blkaddr == NULL_ADDR) {
1881 f2fs_put_dnode(&dn);
1882 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
1883 true);
1884 locked = true;
1885 goto restart;
1886 }
1887 }
1888 }
1889
1890 /* convert_inline_page can make node_changed */
1891 *blk_addr = dn.data_blkaddr;
1892 *node_changed = dn.node_changed;
1893 out:
1894 f2fs_put_dnode(&dn);
1895 unlock_out:
1896 if (locked)
1897 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
1898 return err;
1899 }
1900
1901 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1902 loff_t pos, unsigned len, unsigned flags,
1903 struct page **pagep, void **fsdata)
1904 {
1905 struct inode *inode = mapping->host;
1906 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1907 struct page *page = NULL;
1908 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1909 bool need_balance = false;
1910 block_t blkaddr = NULL_ADDR;
1911 int err = 0;
1912
1913 trace_f2fs_write_begin(inode, pos, len, flags);
1914
1915 /*
1916 * We should check this at this moment to avoid deadlock on inode page
1917 * and #0 page. The locking rule for inline_data conversion should be:
1918 * lock_page(page #0) -> lock_page(inode_page)
1919 */
1920 if (index != 0) {
1921 err = f2fs_convert_inline_inode(inode);
1922 if (err)
1923 goto fail;
1924 }
1925 repeat:
1926 /*
1927 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
1928 * wait_for_stable_page. Will wait that below with our IO control.
1929 */
1930 page = pagecache_get_page(mapping, index,
1931 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
1932 if (!page) {
1933 err = -ENOMEM;
1934 goto fail;
1935 }
1936
1937 *pagep = page;
1938
1939 err = prepare_write_begin(sbi, page, pos, len,
1940 &blkaddr, &need_balance);
1941 if (err)
1942 goto fail;
1943
1944 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1945 unlock_page(page);
1946 f2fs_balance_fs(sbi, true);
1947 lock_page(page);
1948 if (page->mapping != mapping) {
1949 /* The page got truncated from under us */
1950 f2fs_put_page(page, 1);
1951 goto repeat;
1952 }
1953 }
1954
1955 f2fs_wait_on_page_writeback(page, DATA, false);
1956
1957 /* wait for GCed encrypted page writeback */
1958 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1959 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1960
1961 if (len == PAGE_SIZE || PageUptodate(page))
1962 return 0;
1963
1964 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
1965 zero_user_segment(page, len, PAGE_SIZE);
1966 return 0;
1967 }
1968
1969 if (blkaddr == NEW_ADDR) {
1970 zero_user_segment(page, 0, PAGE_SIZE);
1971 SetPageUptodate(page);
1972 } else {
1973 struct bio *bio;
1974
1975 bio = f2fs_grab_bio(inode, blkaddr, 1);
1976 if (IS_ERR(bio)) {
1977 err = PTR_ERR(bio);
1978 goto fail;
1979 }
1980 bio->bi_opf = REQ_OP_READ;
1981 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1982 bio_put(bio);
1983 err = -EFAULT;
1984 goto fail;
1985 }
1986
1987 __submit_bio(sbi, bio, DATA);
1988
1989 lock_page(page);
1990 if (unlikely(page->mapping != mapping)) {
1991 f2fs_put_page(page, 1);
1992 goto repeat;
1993 }
1994 if (unlikely(!PageUptodate(page))) {
1995 err = -EIO;
1996 goto fail;
1997 }
1998 }
1999 return 0;
2000
2001 fail:
2002 f2fs_put_page(page, 1);
2003 f2fs_write_failed(mapping, pos + len);
2004 return err;
2005 }
2006
2007 static int f2fs_write_end(struct file *file,
2008 struct address_space *mapping,
2009 loff_t pos, unsigned len, unsigned copied,
2010 struct page *page, void *fsdata)
2011 {
2012 struct inode *inode = page->mapping->host;
2013
2014 trace_f2fs_write_end(inode, pos, len, copied);
2015
2016 /*
2017 * This should be come from len == PAGE_SIZE, and we expect copied
2018 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2019 * let generic_perform_write() try to copy data again through copied=0.
2020 */
2021 if (!PageUptodate(page)) {
2022 if (unlikely(copied != len))
2023 copied = 0;
2024 else
2025 SetPageUptodate(page);
2026 }
2027 if (!copied)
2028 goto unlock_out;
2029
2030 set_page_dirty(page);
2031
2032 if (pos + copied > i_size_read(inode))
2033 f2fs_i_size_write(inode, pos + copied);
2034 unlock_out:
2035 f2fs_put_page(page, 1);
2036 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2037 return copied;
2038 }
2039
2040 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2041 loff_t offset)
2042 {
2043 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
2044
2045 if (offset & blocksize_mask)
2046 return -EINVAL;
2047
2048 if (iov_iter_alignment(iter) & blocksize_mask)
2049 return -EINVAL;
2050
2051 return 0;
2052 }
2053
2054 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2055 {
2056 struct address_space *mapping = iocb->ki_filp->f_mapping;
2057 struct inode *inode = mapping->host;
2058 size_t count = iov_iter_count(iter);
2059 loff_t offset = iocb->ki_pos;
2060 int rw = iov_iter_rw(iter);
2061 int err;
2062
2063 err = check_direct_IO(inode, iter, offset);
2064 if (err)
2065 return err;
2066
2067 if (__force_buffered_io(inode, rw))
2068 return 0;
2069
2070 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2071
2072 down_read(&F2FS_I(inode)->dio_rwsem[rw]);
2073 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2074 up_read(&F2FS_I(inode)->dio_rwsem[rw]);
2075
2076 if (rw == WRITE) {
2077 if (err > 0)
2078 set_inode_flag(inode, FI_UPDATE_WRITE);
2079 else if (err < 0)
2080 f2fs_write_failed(mapping, offset + count);
2081 }
2082
2083 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2084
2085 return err;
2086 }
2087
2088 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2089 unsigned int length)
2090 {
2091 struct inode *inode = page->mapping->host;
2092 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2093
2094 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2095 (offset % PAGE_SIZE || length != PAGE_SIZE))
2096 return;
2097
2098 if (PageDirty(page)) {
2099 if (inode->i_ino == F2FS_META_INO(sbi)) {
2100 dec_page_count(sbi, F2FS_DIRTY_META);
2101 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2102 dec_page_count(sbi, F2FS_DIRTY_NODES);
2103 } else {
2104 inode_dec_dirty_pages(inode);
2105 remove_dirty_inode(inode);
2106 }
2107 }
2108
2109 /* This is atomic written page, keep Private */
2110 if (IS_ATOMIC_WRITTEN_PAGE(page))
2111 return drop_inmem_page(inode, page);
2112
2113 set_page_private(page, 0);
2114 ClearPagePrivate(page);
2115 }
2116
2117 int f2fs_release_page(struct page *page, gfp_t wait)
2118 {
2119 /* If this is dirty page, keep PagePrivate */
2120 if (PageDirty(page))
2121 return 0;
2122
2123 /* This is atomic written page, keep Private */
2124 if (IS_ATOMIC_WRITTEN_PAGE(page))
2125 return 0;
2126
2127 set_page_private(page, 0);
2128 ClearPagePrivate(page);
2129 return 1;
2130 }
2131
2132 /*
2133 * This was copied from __set_page_dirty_buffers which gives higher performance
2134 * in very high speed storages. (e.g., pmem)
2135 */
2136 void f2fs_set_page_dirty_nobuffers(struct page *page)
2137 {
2138 struct address_space *mapping = page->mapping;
2139 unsigned long flags;
2140
2141 if (unlikely(!mapping))
2142 return;
2143
2144 spin_lock(&mapping->private_lock);
2145 lock_page_memcg(page);
2146 SetPageDirty(page);
2147 spin_unlock(&mapping->private_lock);
2148
2149 spin_lock_irqsave(&mapping->tree_lock, flags);
2150 WARN_ON_ONCE(!PageUptodate(page));
2151 account_page_dirtied(page, mapping);
2152 radix_tree_tag_set(&mapping->page_tree,
2153 page_index(page), PAGECACHE_TAG_DIRTY);
2154 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2155 unlock_page_memcg(page);
2156
2157 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2158 return;
2159 }
2160
2161 static int f2fs_set_data_page_dirty(struct page *page)
2162 {
2163 struct address_space *mapping = page->mapping;
2164 struct inode *inode = mapping->host;
2165
2166 trace_f2fs_set_page_dirty(page, DATA);
2167
2168 if (!PageUptodate(page))
2169 SetPageUptodate(page);
2170
2171 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2172 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2173 register_inmem_page(inode, page);
2174 return 1;
2175 }
2176 /*
2177 * Previously, this page has been registered, we just
2178 * return here.
2179 */
2180 return 0;
2181 }
2182
2183 if (!PageDirty(page)) {
2184 f2fs_set_page_dirty_nobuffers(page);
2185 update_dirty_page(inode, page);
2186 return 1;
2187 }
2188 return 0;
2189 }
2190
2191 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2192 {
2193 struct inode *inode = mapping->host;
2194
2195 if (f2fs_has_inline_data(inode))
2196 return 0;
2197
2198 /* make sure allocating whole blocks */
2199 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2200 filemap_write_and_wait(mapping);
2201
2202 return generic_block_bmap(mapping, block, get_data_block_bmap);
2203 }
2204
2205 #ifdef CONFIG_MIGRATION
2206 #include <linux/migrate.h>
2207
2208 int f2fs_migrate_page(struct address_space *mapping,
2209 struct page *newpage, struct page *page, enum migrate_mode mode)
2210 {
2211 int rc, extra_count;
2212 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2213 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2214
2215 BUG_ON(PageWriteback(page));
2216
2217 /* migrating an atomic written page is safe with the inmem_lock hold */
2218 if (atomic_written) {
2219 if (mode != MIGRATE_SYNC)
2220 return -EBUSY;
2221 if (!mutex_trylock(&fi->inmem_lock))
2222 return -EAGAIN;
2223 }
2224
2225 /*
2226 * A reference is expected if PagePrivate set when move mapping,
2227 * however F2FS breaks this for maintaining dirty page counts when
2228 * truncating pages. So here adjusting the 'extra_count' make it work.
2229 */
2230 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2231 rc = migrate_page_move_mapping(mapping, newpage,
2232 page, NULL, mode, extra_count);
2233 if (rc != MIGRATEPAGE_SUCCESS) {
2234 if (atomic_written)
2235 mutex_unlock(&fi->inmem_lock);
2236 return rc;
2237 }
2238
2239 if (atomic_written) {
2240 struct inmem_pages *cur;
2241 list_for_each_entry(cur, &fi->inmem_pages, list)
2242 if (cur->page == page) {
2243 cur->page = newpage;
2244 break;
2245 }
2246 mutex_unlock(&fi->inmem_lock);
2247 put_page(page);
2248 get_page(newpage);
2249 }
2250
2251 if (PagePrivate(page))
2252 SetPagePrivate(newpage);
2253 set_page_private(newpage, page_private(page));
2254
2255 migrate_page_copy(newpage, page);
2256
2257 return MIGRATEPAGE_SUCCESS;
2258 }
2259 #endif
2260
2261 const struct address_space_operations f2fs_dblock_aops = {
2262 .readpage = f2fs_read_data_page,
2263 .readpages = f2fs_read_data_pages,
2264 .writepage = f2fs_write_data_page,
2265 .writepages = f2fs_write_data_pages,
2266 .write_begin = f2fs_write_begin,
2267 .write_end = f2fs_write_end,
2268 .set_page_dirty = f2fs_set_data_page_dirty,
2269 .invalidatepage = f2fs_invalidate_page,
2270 .releasepage = f2fs_release_page,
2271 .direct_IO = f2fs_direct_IO,
2272 .bmap = f2fs_bmap,
2273 #ifdef CONFIG_MIGRATION
2274 .migratepage = f2fs_migrate_page,
2275 #endif
2276 };