]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/f2fs/data.c
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-zesty-kernel.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "trace.h"
30 #include <trace/events/f2fs.h>
31
32 static bool __is_cp_guaranteed(struct page *page)
33 {
34 struct address_space *mapping = page->mapping;
35 struct inode *inode;
36 struct f2fs_sb_info *sbi;
37
38 if (!mapping)
39 return false;
40
41 inode = mapping->host;
42 sbi = F2FS_I_SB(inode);
43
44 if (inode->i_ino == F2FS_META_INO(sbi) ||
45 inode->i_ino == F2FS_NODE_INO(sbi) ||
46 S_ISDIR(inode->i_mode) ||
47 is_cold_data(page))
48 return true;
49 return false;
50 }
51
52 static void f2fs_read_end_io(struct bio *bio)
53 {
54 struct bio_vec *bvec;
55 int i;
56
57 #ifdef CONFIG_F2FS_FAULT_INJECTION
58 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO))
59 bio->bi_error = -EIO;
60 #endif
61
62 if (f2fs_bio_encrypted(bio)) {
63 if (bio->bi_error) {
64 fscrypt_release_ctx(bio->bi_private);
65 } else {
66 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
67 return;
68 }
69 }
70
71 bio_for_each_segment_all(bvec, bio, i) {
72 struct page *page = bvec->bv_page;
73
74 if (!bio->bi_error) {
75 if (!PageUptodate(page))
76 SetPageUptodate(page);
77 } else {
78 ClearPageUptodate(page);
79 SetPageError(page);
80 }
81 unlock_page(page);
82 }
83 bio_put(bio);
84 }
85
86 static void f2fs_write_end_io(struct bio *bio)
87 {
88 struct f2fs_sb_info *sbi = bio->bi_private;
89 struct bio_vec *bvec;
90 int i;
91
92 bio_for_each_segment_all(bvec, bio, i) {
93 struct page *page = bvec->bv_page;
94 enum count_type type = WB_DATA_TYPE(page);
95
96 fscrypt_pullback_bio_page(&page, true);
97
98 if (unlikely(bio->bi_error)) {
99 mapping_set_error(page->mapping, -EIO);
100 f2fs_stop_checkpoint(sbi, true);
101 }
102 dec_page_count(sbi, type);
103 clear_cold_data(page);
104 end_page_writeback(page);
105 }
106 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
107 wq_has_sleeper(&sbi->cp_wait))
108 wake_up(&sbi->cp_wait);
109
110 bio_put(bio);
111 }
112
113 /*
114 * Return true, if pre_bio's bdev is same as its target device.
115 */
116 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
117 block_t blk_addr, struct bio *bio)
118 {
119 struct block_device *bdev = sbi->sb->s_bdev;
120 int i;
121
122 for (i = 0; i < sbi->s_ndevs; i++) {
123 if (FDEV(i).start_blk <= blk_addr &&
124 FDEV(i).end_blk >= blk_addr) {
125 blk_addr -= FDEV(i).start_blk;
126 bdev = FDEV(i).bdev;
127 break;
128 }
129 }
130 if (bio) {
131 bio->bi_bdev = bdev;
132 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
133 }
134 return bdev;
135 }
136
137 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
138 {
139 int i;
140
141 for (i = 0; i < sbi->s_ndevs; i++)
142 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
143 return i;
144 return 0;
145 }
146
147 static bool __same_bdev(struct f2fs_sb_info *sbi,
148 block_t blk_addr, struct bio *bio)
149 {
150 return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev;
151 }
152
153 /*
154 * Low-level block read/write IO operations.
155 */
156 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
157 int npages, bool is_read)
158 {
159 struct bio *bio;
160
161 bio = f2fs_bio_alloc(npages);
162
163 f2fs_target_device(sbi, blk_addr, bio);
164 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
165 bio->bi_private = is_read ? NULL : sbi;
166
167 return bio;
168 }
169
170 static inline void __submit_bio(struct f2fs_sb_info *sbi,
171 struct bio *bio, enum page_type type)
172 {
173 if (!is_read_io(bio_op(bio))) {
174 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
175 current->plug && (type == DATA || type == NODE))
176 blk_finish_plug(current->plug);
177 }
178 submit_bio(bio);
179 }
180
181 static void __submit_merged_bio(struct f2fs_bio_info *io)
182 {
183 struct f2fs_io_info *fio = &io->fio;
184
185 if (!io->bio)
186 return;
187
188 if (is_read_io(fio->op))
189 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
190 else
191 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
192
193 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
194
195 __submit_bio(io->sbi, io->bio, fio->type);
196 io->bio = NULL;
197 }
198
199 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
200 struct page *page, nid_t ino)
201 {
202 struct bio_vec *bvec;
203 struct page *target;
204 int i;
205
206 if (!io->bio)
207 return false;
208
209 if (!inode && !page && !ino)
210 return true;
211
212 bio_for_each_segment_all(bvec, io->bio, i) {
213
214 if (bvec->bv_page->mapping)
215 target = bvec->bv_page;
216 else
217 target = fscrypt_control_page(bvec->bv_page);
218
219 if (inode && inode == target->mapping->host)
220 return true;
221 if (page && page == target)
222 return true;
223 if (ino && ino == ino_of_node(target))
224 return true;
225 }
226
227 return false;
228 }
229
230 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
231 struct page *page, nid_t ino,
232 enum page_type type)
233 {
234 enum page_type btype = PAGE_TYPE_OF_BIO(type);
235 struct f2fs_bio_info *io = &sbi->write_io[btype];
236 bool ret;
237
238 down_read(&io->io_rwsem);
239 ret = __has_merged_page(io, inode, page, ino);
240 up_read(&io->io_rwsem);
241 return ret;
242 }
243
244 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
245 struct inode *inode, struct page *page,
246 nid_t ino, enum page_type type, int rw)
247 {
248 enum page_type btype = PAGE_TYPE_OF_BIO(type);
249 struct f2fs_bio_info *io;
250
251 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
252
253 down_write(&io->io_rwsem);
254
255 if (!__has_merged_page(io, inode, page, ino))
256 goto out;
257
258 /* change META to META_FLUSH in the checkpoint procedure */
259 if (type >= META_FLUSH) {
260 io->fio.type = META_FLUSH;
261 io->fio.op = REQ_OP_WRITE;
262 io->fio.op_flags = REQ_PREFLUSH | REQ_META | REQ_PRIO;
263 if (!test_opt(sbi, NOBARRIER))
264 io->fio.op_flags |= REQ_FUA;
265 }
266 __submit_merged_bio(io);
267 out:
268 up_write(&io->io_rwsem);
269 }
270
271 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
272 int rw)
273 {
274 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
275 }
276
277 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
278 struct inode *inode, struct page *page,
279 nid_t ino, enum page_type type, int rw)
280 {
281 if (has_merged_page(sbi, inode, page, ino, type))
282 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
283 }
284
285 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
286 {
287 f2fs_submit_merged_bio(sbi, DATA, WRITE);
288 f2fs_submit_merged_bio(sbi, NODE, WRITE);
289 f2fs_submit_merged_bio(sbi, META, WRITE);
290 }
291
292 /*
293 * Fill the locked page with data located in the block address.
294 * Return unlocked page.
295 */
296 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
297 {
298 struct bio *bio;
299 struct page *page = fio->encrypted_page ?
300 fio->encrypted_page : fio->page;
301
302 trace_f2fs_submit_page_bio(page, fio);
303 f2fs_trace_ios(fio, 0);
304
305 /* Allocate a new bio */
306 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
307
308 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
309 bio_put(bio);
310 return -EFAULT;
311 }
312 bio_set_op_attrs(bio, fio->op, fio->op_flags);
313
314 __submit_bio(fio->sbi, bio, fio->type);
315 return 0;
316 }
317
318 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
319 {
320 struct f2fs_sb_info *sbi = fio->sbi;
321 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
322 struct f2fs_bio_info *io;
323 bool is_read = is_read_io(fio->op);
324 struct page *bio_page;
325
326 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
327
328 if (fio->old_blkaddr != NEW_ADDR)
329 verify_block_addr(sbi, fio->old_blkaddr);
330 verify_block_addr(sbi, fio->new_blkaddr);
331
332 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
333
334 if (!is_read)
335 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
336
337 down_write(&io->io_rwsem);
338
339 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
340 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
341 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
342 __submit_merged_bio(io);
343 alloc_new:
344 if (io->bio == NULL) {
345 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
346 BIO_MAX_PAGES, is_read);
347 io->fio = *fio;
348 }
349
350 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
351 PAGE_SIZE) {
352 __submit_merged_bio(io);
353 goto alloc_new;
354 }
355
356 io->last_block_in_bio = fio->new_blkaddr;
357 f2fs_trace_ios(fio, 0);
358
359 up_write(&io->io_rwsem);
360 trace_f2fs_submit_page_mbio(fio->page, fio);
361 }
362
363 static void __set_data_blkaddr(struct dnode_of_data *dn)
364 {
365 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
366 __le32 *addr_array;
367
368 /* Get physical address of data block */
369 addr_array = blkaddr_in_node(rn);
370 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
371 }
372
373 /*
374 * Lock ordering for the change of data block address:
375 * ->data_page
376 * ->node_page
377 * update block addresses in the node page
378 */
379 void set_data_blkaddr(struct dnode_of_data *dn)
380 {
381 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
382 __set_data_blkaddr(dn);
383 if (set_page_dirty(dn->node_page))
384 dn->node_changed = true;
385 }
386
387 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
388 {
389 dn->data_blkaddr = blkaddr;
390 set_data_blkaddr(dn);
391 f2fs_update_extent_cache(dn);
392 }
393
394 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
395 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
396 {
397 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
398
399 if (!count)
400 return 0;
401
402 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
403 return -EPERM;
404 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
405 return -ENOSPC;
406
407 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
408 dn->ofs_in_node, count);
409
410 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
411
412 for (; count > 0; dn->ofs_in_node++) {
413 block_t blkaddr =
414 datablock_addr(dn->node_page, dn->ofs_in_node);
415 if (blkaddr == NULL_ADDR) {
416 dn->data_blkaddr = NEW_ADDR;
417 __set_data_blkaddr(dn);
418 count--;
419 }
420 }
421
422 if (set_page_dirty(dn->node_page))
423 dn->node_changed = true;
424 return 0;
425 }
426
427 /* Should keep dn->ofs_in_node unchanged */
428 int reserve_new_block(struct dnode_of_data *dn)
429 {
430 unsigned int ofs_in_node = dn->ofs_in_node;
431 int ret;
432
433 ret = reserve_new_blocks(dn, 1);
434 dn->ofs_in_node = ofs_in_node;
435 return ret;
436 }
437
438 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
439 {
440 bool need_put = dn->inode_page ? false : true;
441 int err;
442
443 err = get_dnode_of_data(dn, index, ALLOC_NODE);
444 if (err)
445 return err;
446
447 if (dn->data_blkaddr == NULL_ADDR)
448 err = reserve_new_block(dn);
449 if (err || need_put)
450 f2fs_put_dnode(dn);
451 return err;
452 }
453
454 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
455 {
456 struct extent_info ei;
457 struct inode *inode = dn->inode;
458
459 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
460 dn->data_blkaddr = ei.blk + index - ei.fofs;
461 return 0;
462 }
463
464 return f2fs_reserve_block(dn, index);
465 }
466
467 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
468 int op_flags, bool for_write)
469 {
470 struct address_space *mapping = inode->i_mapping;
471 struct dnode_of_data dn;
472 struct page *page;
473 struct extent_info ei;
474 int err;
475 struct f2fs_io_info fio = {
476 .sbi = F2FS_I_SB(inode),
477 .type = DATA,
478 .op = REQ_OP_READ,
479 .op_flags = op_flags,
480 .encrypted_page = NULL,
481 };
482
483 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
484 return read_mapping_page(mapping, index, NULL);
485
486 page = f2fs_grab_cache_page(mapping, index, for_write);
487 if (!page)
488 return ERR_PTR(-ENOMEM);
489
490 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
491 dn.data_blkaddr = ei.blk + index - ei.fofs;
492 goto got_it;
493 }
494
495 set_new_dnode(&dn, inode, NULL, NULL, 0);
496 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
497 if (err)
498 goto put_err;
499 f2fs_put_dnode(&dn);
500
501 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
502 err = -ENOENT;
503 goto put_err;
504 }
505 got_it:
506 if (PageUptodate(page)) {
507 unlock_page(page);
508 return page;
509 }
510
511 /*
512 * A new dentry page is allocated but not able to be written, since its
513 * new inode page couldn't be allocated due to -ENOSPC.
514 * In such the case, its blkaddr can be remained as NEW_ADDR.
515 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
516 */
517 if (dn.data_blkaddr == NEW_ADDR) {
518 zero_user_segment(page, 0, PAGE_SIZE);
519 if (!PageUptodate(page))
520 SetPageUptodate(page);
521 unlock_page(page);
522 return page;
523 }
524
525 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
526 fio.page = page;
527 err = f2fs_submit_page_bio(&fio);
528 if (err)
529 goto put_err;
530 return page;
531
532 put_err:
533 f2fs_put_page(page, 1);
534 return ERR_PTR(err);
535 }
536
537 struct page *find_data_page(struct inode *inode, pgoff_t index)
538 {
539 struct address_space *mapping = inode->i_mapping;
540 struct page *page;
541
542 page = find_get_page(mapping, index);
543 if (page && PageUptodate(page))
544 return page;
545 f2fs_put_page(page, 0);
546
547 page = get_read_data_page(inode, index, 0, false);
548 if (IS_ERR(page))
549 return page;
550
551 if (PageUptodate(page))
552 return page;
553
554 wait_on_page_locked(page);
555 if (unlikely(!PageUptodate(page))) {
556 f2fs_put_page(page, 0);
557 return ERR_PTR(-EIO);
558 }
559 return page;
560 }
561
562 /*
563 * If it tries to access a hole, return an error.
564 * Because, the callers, functions in dir.c and GC, should be able to know
565 * whether this page exists or not.
566 */
567 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
568 bool for_write)
569 {
570 struct address_space *mapping = inode->i_mapping;
571 struct page *page;
572 repeat:
573 page = get_read_data_page(inode, index, 0, for_write);
574 if (IS_ERR(page))
575 return page;
576
577 /* wait for read completion */
578 lock_page(page);
579 if (unlikely(page->mapping != mapping)) {
580 f2fs_put_page(page, 1);
581 goto repeat;
582 }
583 if (unlikely(!PageUptodate(page))) {
584 f2fs_put_page(page, 1);
585 return ERR_PTR(-EIO);
586 }
587 return page;
588 }
589
590 /*
591 * Caller ensures that this data page is never allocated.
592 * A new zero-filled data page is allocated in the page cache.
593 *
594 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
595 * f2fs_unlock_op().
596 * Note that, ipage is set only by make_empty_dir, and if any error occur,
597 * ipage should be released by this function.
598 */
599 struct page *get_new_data_page(struct inode *inode,
600 struct page *ipage, pgoff_t index, bool new_i_size)
601 {
602 struct address_space *mapping = inode->i_mapping;
603 struct page *page;
604 struct dnode_of_data dn;
605 int err;
606
607 page = f2fs_grab_cache_page(mapping, index, true);
608 if (!page) {
609 /*
610 * before exiting, we should make sure ipage will be released
611 * if any error occur.
612 */
613 f2fs_put_page(ipage, 1);
614 return ERR_PTR(-ENOMEM);
615 }
616
617 set_new_dnode(&dn, inode, ipage, NULL, 0);
618 err = f2fs_reserve_block(&dn, index);
619 if (err) {
620 f2fs_put_page(page, 1);
621 return ERR_PTR(err);
622 }
623 if (!ipage)
624 f2fs_put_dnode(&dn);
625
626 if (PageUptodate(page))
627 goto got_it;
628
629 if (dn.data_blkaddr == NEW_ADDR) {
630 zero_user_segment(page, 0, PAGE_SIZE);
631 if (!PageUptodate(page))
632 SetPageUptodate(page);
633 } else {
634 f2fs_put_page(page, 1);
635
636 /* if ipage exists, blkaddr should be NEW_ADDR */
637 f2fs_bug_on(F2FS_I_SB(inode), ipage);
638 page = get_lock_data_page(inode, index, true);
639 if (IS_ERR(page))
640 return page;
641 }
642 got_it:
643 if (new_i_size && i_size_read(inode) <
644 ((loff_t)(index + 1) << PAGE_SHIFT))
645 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
646 return page;
647 }
648
649 static int __allocate_data_block(struct dnode_of_data *dn)
650 {
651 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
652 struct f2fs_summary sum;
653 struct node_info ni;
654 pgoff_t fofs;
655 blkcnt_t count = 1;
656
657 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
658 return -EPERM;
659
660 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
661 if (dn->data_blkaddr == NEW_ADDR)
662 goto alloc;
663
664 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
665 return -ENOSPC;
666
667 alloc:
668 get_node_info(sbi, dn->nid, &ni);
669 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
670
671 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
672 &sum, CURSEG_WARM_DATA);
673 set_data_blkaddr(dn);
674
675 /* update i_size */
676 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
677 dn->ofs_in_node;
678 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
679 f2fs_i_size_write(dn->inode,
680 ((loff_t)(fofs + 1) << PAGE_SHIFT));
681 return 0;
682 }
683
684 static inline bool __force_buffered_io(struct inode *inode, int rw)
685 {
686 return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) ||
687 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
688 F2FS_I_SB(inode)->s_ndevs);
689 }
690
691 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
692 {
693 struct inode *inode = file_inode(iocb->ki_filp);
694 struct f2fs_map_blocks map;
695 int err = 0;
696
697 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
698 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
699 if (map.m_len > map.m_lblk)
700 map.m_len -= map.m_lblk;
701 else
702 map.m_len = 0;
703
704 map.m_next_pgofs = NULL;
705
706 if (iocb->ki_flags & IOCB_DIRECT) {
707 err = f2fs_convert_inline_inode(inode);
708 if (err)
709 return err;
710 return f2fs_map_blocks(inode, &map, 1,
711 __force_buffered_io(inode, WRITE) ?
712 F2FS_GET_BLOCK_PRE_AIO :
713 F2FS_GET_BLOCK_PRE_DIO);
714 }
715 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
716 err = f2fs_convert_inline_inode(inode);
717 if (err)
718 return err;
719 }
720 if (!f2fs_has_inline_data(inode))
721 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
722 return err;
723 }
724
725 /*
726 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
727 * f2fs_map_blocks structure.
728 * If original data blocks are allocated, then give them to blockdev.
729 * Otherwise,
730 * a. preallocate requested block addresses
731 * b. do not use extent cache for better performance
732 * c. give the block addresses to blockdev
733 */
734 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
735 int create, int flag)
736 {
737 unsigned int maxblocks = map->m_len;
738 struct dnode_of_data dn;
739 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
740 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
741 pgoff_t pgofs, end_offset, end;
742 int err = 0, ofs = 1;
743 unsigned int ofs_in_node, last_ofs_in_node;
744 blkcnt_t prealloc;
745 struct extent_info ei;
746 block_t blkaddr;
747
748 if (!maxblocks)
749 return 0;
750
751 map->m_len = 0;
752 map->m_flags = 0;
753
754 /* it only supports block size == page size */
755 pgofs = (pgoff_t)map->m_lblk;
756 end = pgofs + maxblocks;
757
758 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
759 map->m_pblk = ei.blk + pgofs - ei.fofs;
760 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
761 map->m_flags = F2FS_MAP_MAPPED;
762 goto out;
763 }
764
765 next_dnode:
766 if (create)
767 f2fs_lock_op(sbi);
768
769 /* When reading holes, we need its node page */
770 set_new_dnode(&dn, inode, NULL, NULL, 0);
771 err = get_dnode_of_data(&dn, pgofs, mode);
772 if (err) {
773 if (flag == F2FS_GET_BLOCK_BMAP)
774 map->m_pblk = 0;
775 if (err == -ENOENT) {
776 err = 0;
777 if (map->m_next_pgofs)
778 *map->m_next_pgofs =
779 get_next_page_offset(&dn, pgofs);
780 }
781 goto unlock_out;
782 }
783
784 prealloc = 0;
785 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
786 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
787
788 next_block:
789 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
790
791 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
792 if (create) {
793 if (unlikely(f2fs_cp_error(sbi))) {
794 err = -EIO;
795 goto sync_out;
796 }
797 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
798 if (blkaddr == NULL_ADDR) {
799 prealloc++;
800 last_ofs_in_node = dn.ofs_in_node;
801 }
802 } else {
803 err = __allocate_data_block(&dn);
804 if (!err)
805 set_inode_flag(inode, FI_APPEND_WRITE);
806 }
807 if (err)
808 goto sync_out;
809 map->m_flags = F2FS_MAP_NEW;
810 blkaddr = dn.data_blkaddr;
811 } else {
812 if (flag == F2FS_GET_BLOCK_BMAP) {
813 map->m_pblk = 0;
814 goto sync_out;
815 }
816 if (flag == F2FS_GET_BLOCK_FIEMAP &&
817 blkaddr == NULL_ADDR) {
818 if (map->m_next_pgofs)
819 *map->m_next_pgofs = pgofs + 1;
820 }
821 if (flag != F2FS_GET_BLOCK_FIEMAP ||
822 blkaddr != NEW_ADDR)
823 goto sync_out;
824 }
825 }
826
827 if (flag == F2FS_GET_BLOCK_PRE_AIO)
828 goto skip;
829
830 if (map->m_len == 0) {
831 /* preallocated unwritten block should be mapped for fiemap. */
832 if (blkaddr == NEW_ADDR)
833 map->m_flags |= F2FS_MAP_UNWRITTEN;
834 map->m_flags |= F2FS_MAP_MAPPED;
835
836 map->m_pblk = blkaddr;
837 map->m_len = 1;
838 } else if ((map->m_pblk != NEW_ADDR &&
839 blkaddr == (map->m_pblk + ofs)) ||
840 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
841 flag == F2FS_GET_BLOCK_PRE_DIO) {
842 ofs++;
843 map->m_len++;
844 } else {
845 goto sync_out;
846 }
847
848 skip:
849 dn.ofs_in_node++;
850 pgofs++;
851
852 /* preallocate blocks in batch for one dnode page */
853 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
854 (pgofs == end || dn.ofs_in_node == end_offset)) {
855
856 dn.ofs_in_node = ofs_in_node;
857 err = reserve_new_blocks(&dn, prealloc);
858 if (err)
859 goto sync_out;
860
861 map->m_len += dn.ofs_in_node - ofs_in_node;
862 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
863 err = -ENOSPC;
864 goto sync_out;
865 }
866 dn.ofs_in_node = end_offset;
867 }
868
869 if (pgofs >= end)
870 goto sync_out;
871 else if (dn.ofs_in_node < end_offset)
872 goto next_block;
873
874 f2fs_put_dnode(&dn);
875
876 if (create) {
877 f2fs_unlock_op(sbi);
878 f2fs_balance_fs(sbi, dn.node_changed);
879 }
880 goto next_dnode;
881
882 sync_out:
883 f2fs_put_dnode(&dn);
884 unlock_out:
885 if (create) {
886 f2fs_unlock_op(sbi);
887 f2fs_balance_fs(sbi, dn.node_changed);
888 }
889 out:
890 trace_f2fs_map_blocks(inode, map, err);
891 return err;
892 }
893
894 static int __get_data_block(struct inode *inode, sector_t iblock,
895 struct buffer_head *bh, int create, int flag,
896 pgoff_t *next_pgofs)
897 {
898 struct f2fs_map_blocks map;
899 int err;
900
901 map.m_lblk = iblock;
902 map.m_len = bh->b_size >> inode->i_blkbits;
903 map.m_next_pgofs = next_pgofs;
904
905 err = f2fs_map_blocks(inode, &map, create, flag);
906 if (!err) {
907 map_bh(bh, inode->i_sb, map.m_pblk);
908 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
909 bh->b_size = map.m_len << inode->i_blkbits;
910 }
911 return err;
912 }
913
914 static int get_data_block(struct inode *inode, sector_t iblock,
915 struct buffer_head *bh_result, int create, int flag,
916 pgoff_t *next_pgofs)
917 {
918 return __get_data_block(inode, iblock, bh_result, create,
919 flag, next_pgofs);
920 }
921
922 static int get_data_block_dio(struct inode *inode, sector_t iblock,
923 struct buffer_head *bh_result, int create)
924 {
925 return __get_data_block(inode, iblock, bh_result, create,
926 F2FS_GET_BLOCK_DIO, NULL);
927 }
928
929 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
930 struct buffer_head *bh_result, int create)
931 {
932 /* Block number less than F2FS MAX BLOCKS */
933 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
934 return -EFBIG;
935
936 return __get_data_block(inode, iblock, bh_result, create,
937 F2FS_GET_BLOCK_BMAP, NULL);
938 }
939
940 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
941 {
942 return (offset >> inode->i_blkbits);
943 }
944
945 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
946 {
947 return (blk << inode->i_blkbits);
948 }
949
950 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
951 u64 start, u64 len)
952 {
953 struct buffer_head map_bh;
954 sector_t start_blk, last_blk;
955 pgoff_t next_pgofs;
956 u64 logical = 0, phys = 0, size = 0;
957 u32 flags = 0;
958 int ret = 0;
959
960 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
961 if (ret)
962 return ret;
963
964 if (f2fs_has_inline_data(inode)) {
965 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
966 if (ret != -EAGAIN)
967 return ret;
968 }
969
970 inode_lock(inode);
971
972 if (logical_to_blk(inode, len) == 0)
973 len = blk_to_logical(inode, 1);
974
975 start_blk = logical_to_blk(inode, start);
976 last_blk = logical_to_blk(inode, start + len - 1);
977
978 next:
979 memset(&map_bh, 0, sizeof(struct buffer_head));
980 map_bh.b_size = len;
981
982 ret = get_data_block(inode, start_blk, &map_bh, 0,
983 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
984 if (ret)
985 goto out;
986
987 /* HOLE */
988 if (!buffer_mapped(&map_bh)) {
989 start_blk = next_pgofs;
990
991 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
992 F2FS_I_SB(inode)->max_file_blocks))
993 goto prep_next;
994
995 flags |= FIEMAP_EXTENT_LAST;
996 }
997
998 if (size) {
999 if (f2fs_encrypted_inode(inode))
1000 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1001
1002 ret = fiemap_fill_next_extent(fieinfo, logical,
1003 phys, size, flags);
1004 }
1005
1006 if (start_blk > last_blk || ret)
1007 goto out;
1008
1009 logical = blk_to_logical(inode, start_blk);
1010 phys = blk_to_logical(inode, map_bh.b_blocknr);
1011 size = map_bh.b_size;
1012 flags = 0;
1013 if (buffer_unwritten(&map_bh))
1014 flags = FIEMAP_EXTENT_UNWRITTEN;
1015
1016 start_blk += logical_to_blk(inode, size);
1017
1018 prep_next:
1019 cond_resched();
1020 if (fatal_signal_pending(current))
1021 ret = -EINTR;
1022 else
1023 goto next;
1024 out:
1025 if (ret == 1)
1026 ret = 0;
1027
1028 inode_unlock(inode);
1029 return ret;
1030 }
1031
1032 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
1033 unsigned nr_pages)
1034 {
1035 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1036 struct fscrypt_ctx *ctx = NULL;
1037 struct bio *bio;
1038
1039 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1040 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1041 if (IS_ERR(ctx))
1042 return ERR_CAST(ctx);
1043
1044 /* wait the page to be moved by cleaning */
1045 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1046 }
1047
1048 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1049 if (!bio) {
1050 if (ctx)
1051 fscrypt_release_ctx(ctx);
1052 return ERR_PTR(-ENOMEM);
1053 }
1054 f2fs_target_device(sbi, blkaddr, bio);
1055 bio->bi_end_io = f2fs_read_end_io;
1056 bio->bi_private = ctx;
1057
1058 return bio;
1059 }
1060
1061 /*
1062 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1063 * Major change was from block_size == page_size in f2fs by default.
1064 */
1065 static int f2fs_mpage_readpages(struct address_space *mapping,
1066 struct list_head *pages, struct page *page,
1067 unsigned nr_pages)
1068 {
1069 struct bio *bio = NULL;
1070 unsigned page_idx;
1071 sector_t last_block_in_bio = 0;
1072 struct inode *inode = mapping->host;
1073 const unsigned blkbits = inode->i_blkbits;
1074 const unsigned blocksize = 1 << blkbits;
1075 sector_t block_in_file;
1076 sector_t last_block;
1077 sector_t last_block_in_file;
1078 sector_t block_nr;
1079 struct f2fs_map_blocks map;
1080
1081 map.m_pblk = 0;
1082 map.m_lblk = 0;
1083 map.m_len = 0;
1084 map.m_flags = 0;
1085 map.m_next_pgofs = NULL;
1086
1087 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1088
1089 prefetchw(&page->flags);
1090 if (pages) {
1091 page = list_entry(pages->prev, struct page, lru);
1092 list_del(&page->lru);
1093 if (add_to_page_cache_lru(page, mapping,
1094 page->index,
1095 readahead_gfp_mask(mapping)))
1096 goto next_page;
1097 }
1098
1099 block_in_file = (sector_t)page->index;
1100 last_block = block_in_file + nr_pages;
1101 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1102 blkbits;
1103 if (last_block > last_block_in_file)
1104 last_block = last_block_in_file;
1105
1106 /*
1107 * Map blocks using the previous result first.
1108 */
1109 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1110 block_in_file > map.m_lblk &&
1111 block_in_file < (map.m_lblk + map.m_len))
1112 goto got_it;
1113
1114 /*
1115 * Then do more f2fs_map_blocks() calls until we are
1116 * done with this page.
1117 */
1118 map.m_flags = 0;
1119
1120 if (block_in_file < last_block) {
1121 map.m_lblk = block_in_file;
1122 map.m_len = last_block - block_in_file;
1123
1124 if (f2fs_map_blocks(inode, &map, 0,
1125 F2FS_GET_BLOCK_READ))
1126 goto set_error_page;
1127 }
1128 got_it:
1129 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1130 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1131 SetPageMappedToDisk(page);
1132
1133 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1134 SetPageUptodate(page);
1135 goto confused;
1136 }
1137 } else {
1138 zero_user_segment(page, 0, PAGE_SIZE);
1139 if (!PageUptodate(page))
1140 SetPageUptodate(page);
1141 unlock_page(page);
1142 goto next_page;
1143 }
1144
1145 /*
1146 * This page will go to BIO. Do we need to send this
1147 * BIO off first?
1148 */
1149 if (bio && (last_block_in_bio != block_nr - 1 ||
1150 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1151 submit_and_realloc:
1152 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1153 bio = NULL;
1154 }
1155 if (bio == NULL) {
1156 bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1157 if (IS_ERR(bio)) {
1158 bio = NULL;
1159 goto set_error_page;
1160 }
1161 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1162 }
1163
1164 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1165 goto submit_and_realloc;
1166
1167 last_block_in_bio = block_nr;
1168 goto next_page;
1169 set_error_page:
1170 SetPageError(page);
1171 zero_user_segment(page, 0, PAGE_SIZE);
1172 unlock_page(page);
1173 goto next_page;
1174 confused:
1175 if (bio) {
1176 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1177 bio = NULL;
1178 }
1179 unlock_page(page);
1180 next_page:
1181 if (pages)
1182 put_page(page);
1183 }
1184 BUG_ON(pages && !list_empty(pages));
1185 if (bio)
1186 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1187 return 0;
1188 }
1189
1190 static int f2fs_read_data_page(struct file *file, struct page *page)
1191 {
1192 struct inode *inode = page->mapping->host;
1193 int ret = -EAGAIN;
1194
1195 trace_f2fs_readpage(page, DATA);
1196
1197 /* If the file has inline data, try to read it directly */
1198 if (f2fs_has_inline_data(inode))
1199 ret = f2fs_read_inline_data(inode, page);
1200 if (ret == -EAGAIN)
1201 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1202 return ret;
1203 }
1204
1205 static int f2fs_read_data_pages(struct file *file,
1206 struct address_space *mapping,
1207 struct list_head *pages, unsigned nr_pages)
1208 {
1209 struct inode *inode = file->f_mapping->host;
1210 struct page *page = list_entry(pages->prev, struct page, lru);
1211
1212 trace_f2fs_readpages(inode, page, nr_pages);
1213
1214 /* If the file has inline data, skip readpages */
1215 if (f2fs_has_inline_data(inode))
1216 return 0;
1217
1218 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1219 }
1220
1221 int do_write_data_page(struct f2fs_io_info *fio)
1222 {
1223 struct page *page = fio->page;
1224 struct inode *inode = page->mapping->host;
1225 struct dnode_of_data dn;
1226 int err = 0;
1227
1228 set_new_dnode(&dn, inode, NULL, NULL, 0);
1229 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1230 if (err)
1231 return err;
1232
1233 fio->old_blkaddr = dn.data_blkaddr;
1234
1235 /* This page is already truncated */
1236 if (fio->old_blkaddr == NULL_ADDR) {
1237 ClearPageUptodate(page);
1238 goto out_writepage;
1239 }
1240
1241 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1242 gfp_t gfp_flags = GFP_NOFS;
1243
1244 /* wait for GCed encrypted page writeback */
1245 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1246 fio->old_blkaddr);
1247 retry_encrypt:
1248 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1249 PAGE_SIZE, 0,
1250 fio->page->index,
1251 gfp_flags);
1252 if (IS_ERR(fio->encrypted_page)) {
1253 err = PTR_ERR(fio->encrypted_page);
1254 if (err == -ENOMEM) {
1255 /* flush pending ios and wait for a while */
1256 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1257 congestion_wait(BLK_RW_ASYNC, HZ/50);
1258 gfp_flags |= __GFP_NOFAIL;
1259 err = 0;
1260 goto retry_encrypt;
1261 }
1262 goto out_writepage;
1263 }
1264 }
1265
1266 set_page_writeback(page);
1267
1268 /*
1269 * If current allocation needs SSR,
1270 * it had better in-place writes for updated data.
1271 */
1272 if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1273 !is_cold_data(page) &&
1274 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1275 need_inplace_update(inode))) {
1276 rewrite_data_page(fio);
1277 set_inode_flag(inode, FI_UPDATE_WRITE);
1278 trace_f2fs_do_write_data_page(page, IPU);
1279 } else {
1280 write_data_page(&dn, fio);
1281 trace_f2fs_do_write_data_page(page, OPU);
1282 set_inode_flag(inode, FI_APPEND_WRITE);
1283 if (page->index == 0)
1284 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1285 }
1286 out_writepage:
1287 f2fs_put_dnode(&dn);
1288 return err;
1289 }
1290
1291 static int f2fs_write_data_page(struct page *page,
1292 struct writeback_control *wbc)
1293 {
1294 struct inode *inode = page->mapping->host;
1295 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1296 loff_t i_size = i_size_read(inode);
1297 const pgoff_t end_index = ((unsigned long long) i_size)
1298 >> PAGE_SHIFT;
1299 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1300 unsigned offset = 0;
1301 bool need_balance_fs = false;
1302 int err = 0;
1303 struct f2fs_io_info fio = {
1304 .sbi = sbi,
1305 .type = DATA,
1306 .op = REQ_OP_WRITE,
1307 .op_flags = wbc_to_write_flags(wbc),
1308 .page = page,
1309 .encrypted_page = NULL,
1310 };
1311
1312 trace_f2fs_writepage(page, DATA);
1313
1314 if (page->index < end_index)
1315 goto write;
1316
1317 /*
1318 * If the offset is out-of-range of file size,
1319 * this page does not have to be written to disk.
1320 */
1321 offset = i_size & (PAGE_SIZE - 1);
1322 if ((page->index >= end_index + 1) || !offset)
1323 goto out;
1324
1325 zero_user_segment(page, offset, PAGE_SIZE);
1326 write:
1327 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1328 goto redirty_out;
1329 if (f2fs_is_drop_cache(inode))
1330 goto out;
1331 /* we should not write 0'th page having journal header */
1332 if (f2fs_is_volatile_file(inode) && (!page->index ||
1333 (!wbc->for_reclaim &&
1334 available_free_memory(sbi, BASE_CHECK))))
1335 goto redirty_out;
1336
1337 /* we should bypass data pages to proceed the kworkder jobs */
1338 if (unlikely(f2fs_cp_error(sbi))) {
1339 mapping_set_error(page->mapping, -EIO);
1340 goto out;
1341 }
1342
1343 /* Dentry blocks are controlled by checkpoint */
1344 if (S_ISDIR(inode->i_mode)) {
1345 err = do_write_data_page(&fio);
1346 goto done;
1347 }
1348
1349 if (!wbc->for_reclaim)
1350 need_balance_fs = true;
1351 else if (has_not_enough_free_secs(sbi, 0, 0))
1352 goto redirty_out;
1353
1354 err = -EAGAIN;
1355 f2fs_lock_op(sbi);
1356 if (f2fs_has_inline_data(inode))
1357 err = f2fs_write_inline_data(inode, page);
1358 if (err == -EAGAIN)
1359 err = do_write_data_page(&fio);
1360 if (F2FS_I(inode)->last_disk_size < psize)
1361 F2FS_I(inode)->last_disk_size = psize;
1362 f2fs_unlock_op(sbi);
1363 done:
1364 if (err && err != -ENOENT)
1365 goto redirty_out;
1366
1367 out:
1368 inode_dec_dirty_pages(inode);
1369 if (err)
1370 ClearPageUptodate(page);
1371
1372 if (wbc->for_reclaim) {
1373 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1374 remove_dirty_inode(inode);
1375 }
1376
1377 unlock_page(page);
1378 f2fs_balance_fs(sbi, need_balance_fs);
1379
1380 if (unlikely(f2fs_cp_error(sbi)))
1381 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1382
1383 return 0;
1384
1385 redirty_out:
1386 redirty_page_for_writepage(wbc, page);
1387 if (!err)
1388 return AOP_WRITEPAGE_ACTIVATE;
1389 unlock_page(page);
1390 return err;
1391 }
1392
1393 /*
1394 * This function was copied from write_cche_pages from mm/page-writeback.c.
1395 * The major change is making write step of cold data page separately from
1396 * warm/hot data page.
1397 */
1398 static int f2fs_write_cache_pages(struct address_space *mapping,
1399 struct writeback_control *wbc)
1400 {
1401 int ret = 0;
1402 int done = 0;
1403 struct pagevec pvec;
1404 int nr_pages;
1405 pgoff_t uninitialized_var(writeback_index);
1406 pgoff_t index;
1407 pgoff_t end; /* Inclusive */
1408 pgoff_t done_index;
1409 int cycled;
1410 int range_whole = 0;
1411 int tag;
1412 int nwritten = 0;
1413
1414 pagevec_init(&pvec, 0);
1415
1416 if (wbc->range_cyclic) {
1417 writeback_index = mapping->writeback_index; /* prev offset */
1418 index = writeback_index;
1419 if (index == 0)
1420 cycled = 1;
1421 else
1422 cycled = 0;
1423 end = -1;
1424 } else {
1425 index = wbc->range_start >> PAGE_SHIFT;
1426 end = wbc->range_end >> PAGE_SHIFT;
1427 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1428 range_whole = 1;
1429 cycled = 1; /* ignore range_cyclic tests */
1430 }
1431 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1432 tag = PAGECACHE_TAG_TOWRITE;
1433 else
1434 tag = PAGECACHE_TAG_DIRTY;
1435 retry:
1436 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1437 tag_pages_for_writeback(mapping, index, end);
1438 done_index = index;
1439 while (!done && (index <= end)) {
1440 int i;
1441
1442 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1443 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1444 if (nr_pages == 0)
1445 break;
1446
1447 for (i = 0; i < nr_pages; i++) {
1448 struct page *page = pvec.pages[i];
1449
1450 if (page->index > end) {
1451 done = 1;
1452 break;
1453 }
1454
1455 done_index = page->index;
1456
1457 lock_page(page);
1458
1459 if (unlikely(page->mapping != mapping)) {
1460 continue_unlock:
1461 unlock_page(page);
1462 continue;
1463 }
1464
1465 if (!PageDirty(page)) {
1466 /* someone wrote it for us */
1467 goto continue_unlock;
1468 }
1469
1470 if (PageWriteback(page)) {
1471 if (wbc->sync_mode != WB_SYNC_NONE)
1472 f2fs_wait_on_page_writeback(page,
1473 DATA, true);
1474 else
1475 goto continue_unlock;
1476 }
1477
1478 BUG_ON(PageWriteback(page));
1479 if (!clear_page_dirty_for_io(page))
1480 goto continue_unlock;
1481
1482 ret = mapping->a_ops->writepage(page, wbc);
1483 if (unlikely(ret)) {
1484 /*
1485 * keep nr_to_write, since vfs uses this to
1486 * get # of written pages.
1487 */
1488 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1489 unlock_page(page);
1490 ret = 0;
1491 continue;
1492 }
1493 done_index = page->index + 1;
1494 done = 1;
1495 break;
1496 } else {
1497 nwritten++;
1498 }
1499
1500 if (--wbc->nr_to_write <= 0 &&
1501 wbc->sync_mode == WB_SYNC_NONE) {
1502 done = 1;
1503 break;
1504 }
1505 }
1506 pagevec_release(&pvec);
1507 cond_resched();
1508 }
1509
1510 if (!cycled && !done) {
1511 cycled = 1;
1512 index = 0;
1513 end = writeback_index - 1;
1514 goto retry;
1515 }
1516 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1517 mapping->writeback_index = done_index;
1518
1519 if (nwritten)
1520 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host,
1521 NULL, 0, DATA, WRITE);
1522
1523 return ret;
1524 }
1525
1526 static int f2fs_write_data_pages(struct address_space *mapping,
1527 struct writeback_control *wbc)
1528 {
1529 struct inode *inode = mapping->host;
1530 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1531 struct blk_plug plug;
1532 int ret;
1533
1534 /* deal with chardevs and other special file */
1535 if (!mapping->a_ops->writepage)
1536 return 0;
1537
1538 /* skip writing if there is no dirty page in this inode */
1539 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1540 return 0;
1541
1542 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1543 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1544 available_free_memory(sbi, DIRTY_DENTS))
1545 goto skip_write;
1546
1547 /* skip writing during file defragment */
1548 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1549 goto skip_write;
1550
1551 /* during POR, we don't need to trigger writepage at all. */
1552 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1553 goto skip_write;
1554
1555 trace_f2fs_writepages(mapping->host, wbc, DATA);
1556
1557 blk_start_plug(&plug);
1558 ret = f2fs_write_cache_pages(mapping, wbc);
1559 blk_finish_plug(&plug);
1560 /*
1561 * if some pages were truncated, we cannot guarantee its mapping->host
1562 * to detect pending bios.
1563 */
1564
1565 remove_dirty_inode(inode);
1566 return ret;
1567
1568 skip_write:
1569 wbc->pages_skipped += get_dirty_pages(inode);
1570 trace_f2fs_writepages(mapping->host, wbc, DATA);
1571 return 0;
1572 }
1573
1574 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1575 {
1576 struct inode *inode = mapping->host;
1577 loff_t i_size = i_size_read(inode);
1578
1579 if (to > i_size) {
1580 truncate_pagecache(inode, i_size);
1581 truncate_blocks(inode, i_size, true);
1582 }
1583 }
1584
1585 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1586 struct page *page, loff_t pos, unsigned len,
1587 block_t *blk_addr, bool *node_changed)
1588 {
1589 struct inode *inode = page->mapping->host;
1590 pgoff_t index = page->index;
1591 struct dnode_of_data dn;
1592 struct page *ipage;
1593 bool locked = false;
1594 struct extent_info ei;
1595 int err = 0;
1596
1597 /*
1598 * we already allocated all the blocks, so we don't need to get
1599 * the block addresses when there is no need to fill the page.
1600 */
1601 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE)
1602 return 0;
1603
1604 if (f2fs_has_inline_data(inode) ||
1605 (pos & PAGE_MASK) >= i_size_read(inode)) {
1606 f2fs_lock_op(sbi);
1607 locked = true;
1608 }
1609 restart:
1610 /* check inline_data */
1611 ipage = get_node_page(sbi, inode->i_ino);
1612 if (IS_ERR(ipage)) {
1613 err = PTR_ERR(ipage);
1614 goto unlock_out;
1615 }
1616
1617 set_new_dnode(&dn, inode, ipage, ipage, 0);
1618
1619 if (f2fs_has_inline_data(inode)) {
1620 if (pos + len <= MAX_INLINE_DATA) {
1621 read_inline_data(page, ipage);
1622 set_inode_flag(inode, FI_DATA_EXIST);
1623 if (inode->i_nlink)
1624 set_inline_node(ipage);
1625 } else {
1626 err = f2fs_convert_inline_page(&dn, page);
1627 if (err)
1628 goto out;
1629 if (dn.data_blkaddr == NULL_ADDR)
1630 err = f2fs_get_block(&dn, index);
1631 }
1632 } else if (locked) {
1633 err = f2fs_get_block(&dn, index);
1634 } else {
1635 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1636 dn.data_blkaddr = ei.blk + index - ei.fofs;
1637 } else {
1638 /* hole case */
1639 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1640 if (err || dn.data_blkaddr == NULL_ADDR) {
1641 f2fs_put_dnode(&dn);
1642 f2fs_lock_op(sbi);
1643 locked = true;
1644 goto restart;
1645 }
1646 }
1647 }
1648
1649 /* convert_inline_page can make node_changed */
1650 *blk_addr = dn.data_blkaddr;
1651 *node_changed = dn.node_changed;
1652 out:
1653 f2fs_put_dnode(&dn);
1654 unlock_out:
1655 if (locked)
1656 f2fs_unlock_op(sbi);
1657 return err;
1658 }
1659
1660 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1661 loff_t pos, unsigned len, unsigned flags,
1662 struct page **pagep, void **fsdata)
1663 {
1664 struct inode *inode = mapping->host;
1665 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1666 struct page *page = NULL;
1667 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1668 bool need_balance = false;
1669 block_t blkaddr = NULL_ADDR;
1670 int err = 0;
1671
1672 trace_f2fs_write_begin(inode, pos, len, flags);
1673
1674 /*
1675 * We should check this at this moment to avoid deadlock on inode page
1676 * and #0 page. The locking rule for inline_data conversion should be:
1677 * lock_page(page #0) -> lock_page(inode_page)
1678 */
1679 if (index != 0) {
1680 err = f2fs_convert_inline_inode(inode);
1681 if (err)
1682 goto fail;
1683 }
1684 repeat:
1685 page = grab_cache_page_write_begin(mapping, index, flags);
1686 if (!page) {
1687 err = -ENOMEM;
1688 goto fail;
1689 }
1690
1691 *pagep = page;
1692
1693 err = prepare_write_begin(sbi, page, pos, len,
1694 &blkaddr, &need_balance);
1695 if (err)
1696 goto fail;
1697
1698 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1699 unlock_page(page);
1700 f2fs_balance_fs(sbi, true);
1701 lock_page(page);
1702 if (page->mapping != mapping) {
1703 /* The page got truncated from under us */
1704 f2fs_put_page(page, 1);
1705 goto repeat;
1706 }
1707 }
1708
1709 f2fs_wait_on_page_writeback(page, DATA, false);
1710
1711 /* wait for GCed encrypted page writeback */
1712 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1713 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1714
1715 if (len == PAGE_SIZE || PageUptodate(page))
1716 return 0;
1717
1718 if (blkaddr == NEW_ADDR) {
1719 zero_user_segment(page, 0, PAGE_SIZE);
1720 SetPageUptodate(page);
1721 } else {
1722 struct bio *bio;
1723
1724 bio = f2fs_grab_bio(inode, blkaddr, 1);
1725 if (IS_ERR(bio)) {
1726 err = PTR_ERR(bio);
1727 goto fail;
1728 }
1729 bio->bi_opf = REQ_OP_READ;
1730 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1731 bio_put(bio);
1732 err = -EFAULT;
1733 goto fail;
1734 }
1735
1736 __submit_bio(sbi, bio, DATA);
1737
1738 lock_page(page);
1739 if (unlikely(page->mapping != mapping)) {
1740 f2fs_put_page(page, 1);
1741 goto repeat;
1742 }
1743 if (unlikely(!PageUptodate(page))) {
1744 err = -EIO;
1745 goto fail;
1746 }
1747 }
1748 return 0;
1749
1750 fail:
1751 f2fs_put_page(page, 1);
1752 f2fs_write_failed(mapping, pos + len);
1753 return err;
1754 }
1755
1756 static int f2fs_write_end(struct file *file,
1757 struct address_space *mapping,
1758 loff_t pos, unsigned len, unsigned copied,
1759 struct page *page, void *fsdata)
1760 {
1761 struct inode *inode = page->mapping->host;
1762
1763 trace_f2fs_write_end(inode, pos, len, copied);
1764
1765 /*
1766 * This should be come from len == PAGE_SIZE, and we expect copied
1767 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
1768 * let generic_perform_write() try to copy data again through copied=0.
1769 */
1770 if (!PageUptodate(page)) {
1771 if (unlikely(copied != PAGE_SIZE))
1772 copied = 0;
1773 else
1774 SetPageUptodate(page);
1775 }
1776 if (!copied)
1777 goto unlock_out;
1778
1779 set_page_dirty(page);
1780
1781 if (pos + copied > i_size_read(inode))
1782 f2fs_i_size_write(inode, pos + copied);
1783 unlock_out:
1784 f2fs_put_page(page, 1);
1785 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1786 return copied;
1787 }
1788
1789 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1790 loff_t offset)
1791 {
1792 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1793
1794 if (offset & blocksize_mask)
1795 return -EINVAL;
1796
1797 if (iov_iter_alignment(iter) & blocksize_mask)
1798 return -EINVAL;
1799
1800 return 0;
1801 }
1802
1803 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1804 {
1805 struct address_space *mapping = iocb->ki_filp->f_mapping;
1806 struct inode *inode = mapping->host;
1807 size_t count = iov_iter_count(iter);
1808 loff_t offset = iocb->ki_pos;
1809 int rw = iov_iter_rw(iter);
1810 int err;
1811
1812 err = check_direct_IO(inode, iter, offset);
1813 if (err)
1814 return err;
1815
1816 if (__force_buffered_io(inode, rw))
1817 return 0;
1818
1819 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1820
1821 down_read(&F2FS_I(inode)->dio_rwsem[rw]);
1822 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1823 up_read(&F2FS_I(inode)->dio_rwsem[rw]);
1824
1825 if (rw == WRITE) {
1826 if (err > 0)
1827 set_inode_flag(inode, FI_UPDATE_WRITE);
1828 else if (err < 0)
1829 f2fs_write_failed(mapping, offset + count);
1830 }
1831
1832 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1833
1834 return err;
1835 }
1836
1837 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1838 unsigned int length)
1839 {
1840 struct inode *inode = page->mapping->host;
1841 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1842
1843 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1844 (offset % PAGE_SIZE || length != PAGE_SIZE))
1845 return;
1846
1847 if (PageDirty(page)) {
1848 if (inode->i_ino == F2FS_META_INO(sbi)) {
1849 dec_page_count(sbi, F2FS_DIRTY_META);
1850 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
1851 dec_page_count(sbi, F2FS_DIRTY_NODES);
1852 } else {
1853 inode_dec_dirty_pages(inode);
1854 remove_dirty_inode(inode);
1855 }
1856 }
1857
1858 /* This is atomic written page, keep Private */
1859 if (IS_ATOMIC_WRITTEN_PAGE(page))
1860 return;
1861
1862 set_page_private(page, 0);
1863 ClearPagePrivate(page);
1864 }
1865
1866 int f2fs_release_page(struct page *page, gfp_t wait)
1867 {
1868 /* If this is dirty page, keep PagePrivate */
1869 if (PageDirty(page))
1870 return 0;
1871
1872 /* This is atomic written page, keep Private */
1873 if (IS_ATOMIC_WRITTEN_PAGE(page))
1874 return 0;
1875
1876 set_page_private(page, 0);
1877 ClearPagePrivate(page);
1878 return 1;
1879 }
1880
1881 /*
1882 * This was copied from __set_page_dirty_buffers which gives higher performance
1883 * in very high speed storages. (e.g., pmem)
1884 */
1885 void f2fs_set_page_dirty_nobuffers(struct page *page)
1886 {
1887 struct address_space *mapping = page->mapping;
1888 unsigned long flags;
1889
1890 if (unlikely(!mapping))
1891 return;
1892
1893 spin_lock(&mapping->private_lock);
1894 lock_page_memcg(page);
1895 SetPageDirty(page);
1896 spin_unlock(&mapping->private_lock);
1897
1898 spin_lock_irqsave(&mapping->tree_lock, flags);
1899 WARN_ON_ONCE(!PageUptodate(page));
1900 account_page_dirtied(page, mapping);
1901 radix_tree_tag_set(&mapping->page_tree,
1902 page_index(page), PAGECACHE_TAG_DIRTY);
1903 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1904 unlock_page_memcg(page);
1905
1906 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1907 return;
1908 }
1909
1910 static int f2fs_set_data_page_dirty(struct page *page)
1911 {
1912 struct address_space *mapping = page->mapping;
1913 struct inode *inode = mapping->host;
1914
1915 trace_f2fs_set_page_dirty(page, DATA);
1916
1917 if (!PageUptodate(page))
1918 SetPageUptodate(page);
1919
1920 if (f2fs_is_atomic_file(inode)) {
1921 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1922 register_inmem_page(inode, page);
1923 return 1;
1924 }
1925 /*
1926 * Previously, this page has been registered, we just
1927 * return here.
1928 */
1929 return 0;
1930 }
1931
1932 if (!PageDirty(page)) {
1933 f2fs_set_page_dirty_nobuffers(page);
1934 update_dirty_page(inode, page);
1935 return 1;
1936 }
1937 return 0;
1938 }
1939
1940 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1941 {
1942 struct inode *inode = mapping->host;
1943
1944 if (f2fs_has_inline_data(inode))
1945 return 0;
1946
1947 /* make sure allocating whole blocks */
1948 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1949 filemap_write_and_wait(mapping);
1950
1951 return generic_block_bmap(mapping, block, get_data_block_bmap);
1952 }
1953
1954 #ifdef CONFIG_MIGRATION
1955 #include <linux/migrate.h>
1956
1957 int f2fs_migrate_page(struct address_space *mapping,
1958 struct page *newpage, struct page *page, enum migrate_mode mode)
1959 {
1960 int rc, extra_count;
1961 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
1962 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
1963
1964 BUG_ON(PageWriteback(page));
1965
1966 /* migrating an atomic written page is safe with the inmem_lock hold */
1967 if (atomic_written && !mutex_trylock(&fi->inmem_lock))
1968 return -EAGAIN;
1969
1970 /*
1971 * A reference is expected if PagePrivate set when move mapping,
1972 * however F2FS breaks this for maintaining dirty page counts when
1973 * truncating pages. So here adjusting the 'extra_count' make it work.
1974 */
1975 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
1976 rc = migrate_page_move_mapping(mapping, newpage,
1977 page, NULL, mode, extra_count);
1978 if (rc != MIGRATEPAGE_SUCCESS) {
1979 if (atomic_written)
1980 mutex_unlock(&fi->inmem_lock);
1981 return rc;
1982 }
1983
1984 if (atomic_written) {
1985 struct inmem_pages *cur;
1986 list_for_each_entry(cur, &fi->inmem_pages, list)
1987 if (cur->page == page) {
1988 cur->page = newpage;
1989 break;
1990 }
1991 mutex_unlock(&fi->inmem_lock);
1992 put_page(page);
1993 get_page(newpage);
1994 }
1995
1996 if (PagePrivate(page))
1997 SetPagePrivate(newpage);
1998 set_page_private(newpage, page_private(page));
1999
2000 migrate_page_copy(newpage, page);
2001
2002 return MIGRATEPAGE_SUCCESS;
2003 }
2004 #endif
2005
2006 const struct address_space_operations f2fs_dblock_aops = {
2007 .readpage = f2fs_read_data_page,
2008 .readpages = f2fs_read_data_pages,
2009 .writepage = f2fs_write_data_page,
2010 .writepages = f2fs_write_data_pages,
2011 .write_begin = f2fs_write_begin,
2012 .write_end = f2fs_write_end,
2013 .set_page_dirty = f2fs_set_data_page_dirty,
2014 .invalidatepage = f2fs_invalidate_page,
2015 .releasepage = f2fs_release_page,
2016 .direct_IO = f2fs_direct_IO,
2017 .bmap = f2fs_bmap,
2018 #ifdef CONFIG_MIGRATION
2019 .migratepage = f2fs_migrate_page,
2020 #endif
2021 };