]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/data.c
block: replace bi_bdev with a gendisk pointer and partitions index
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25 #include <linux/sched/signal.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
32
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35 struct address_space *mapping = page->mapping;
36 struct inode *inode;
37 struct f2fs_sb_info *sbi;
38
39 if (!mapping)
40 return false;
41
42 inode = mapping->host;
43 sbi = F2FS_I_SB(inode);
44
45 if (inode->i_ino == F2FS_META_INO(sbi) ||
46 inode->i_ino == F2FS_NODE_INO(sbi) ||
47 S_ISDIR(inode->i_mode) ||
48 is_cold_data(page))
49 return true;
50 return false;
51 }
52
53 static void f2fs_read_end_io(struct bio *bio)
54 {
55 struct bio_vec *bvec;
56 int i;
57
58 #ifdef CONFIG_F2FS_FAULT_INJECTION
59 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) {
60 f2fs_show_injection_info(FAULT_IO);
61 bio->bi_status = BLK_STS_IOERR;
62 }
63 #endif
64
65 if (f2fs_bio_encrypted(bio)) {
66 if (bio->bi_status) {
67 fscrypt_release_ctx(bio->bi_private);
68 } else {
69 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
70 return;
71 }
72 }
73
74 bio_for_each_segment_all(bvec, bio, i) {
75 struct page *page = bvec->bv_page;
76
77 if (!bio->bi_status) {
78 if (!PageUptodate(page))
79 SetPageUptodate(page);
80 } else {
81 ClearPageUptodate(page);
82 SetPageError(page);
83 }
84 unlock_page(page);
85 }
86 bio_put(bio);
87 }
88
89 static void f2fs_write_end_io(struct bio *bio)
90 {
91 struct f2fs_sb_info *sbi = bio->bi_private;
92 struct bio_vec *bvec;
93 int i;
94
95 bio_for_each_segment_all(bvec, bio, i) {
96 struct page *page = bvec->bv_page;
97 enum count_type type = WB_DATA_TYPE(page);
98
99 if (IS_DUMMY_WRITTEN_PAGE(page)) {
100 set_page_private(page, (unsigned long)NULL);
101 ClearPagePrivate(page);
102 unlock_page(page);
103 mempool_free(page, sbi->write_io_dummy);
104
105 if (unlikely(bio->bi_status))
106 f2fs_stop_checkpoint(sbi, true);
107 continue;
108 }
109
110 fscrypt_pullback_bio_page(&page, true);
111
112 if (unlikely(bio->bi_status)) {
113 mapping_set_error(page->mapping, -EIO);
114 f2fs_stop_checkpoint(sbi, true);
115 }
116 dec_page_count(sbi, type);
117 clear_cold_data(page);
118 end_page_writeback(page);
119 }
120 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
121 wq_has_sleeper(&sbi->cp_wait))
122 wake_up(&sbi->cp_wait);
123
124 bio_put(bio);
125 }
126
127 /*
128 * Return true, if pre_bio's bdev is same as its target device.
129 */
130 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
131 block_t blk_addr, struct bio *bio)
132 {
133 struct block_device *bdev = sbi->sb->s_bdev;
134 int i;
135
136 for (i = 0; i < sbi->s_ndevs; i++) {
137 if (FDEV(i).start_blk <= blk_addr &&
138 FDEV(i).end_blk >= blk_addr) {
139 blk_addr -= FDEV(i).start_blk;
140 bdev = FDEV(i).bdev;
141 break;
142 }
143 }
144 if (bio) {
145 bio_set_dev(bio, bdev);
146 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
147 }
148 return bdev;
149 }
150
151 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
152 {
153 int i;
154
155 for (i = 0; i < sbi->s_ndevs; i++)
156 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
157 return i;
158 return 0;
159 }
160
161 static bool __same_bdev(struct f2fs_sb_info *sbi,
162 block_t blk_addr, struct bio *bio)
163 {
164 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
165 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
166 }
167
168 /*
169 * Low-level block read/write IO operations.
170 */
171 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
172 int npages, bool is_read)
173 {
174 struct bio *bio;
175
176 bio = f2fs_bio_alloc(npages);
177
178 f2fs_target_device(sbi, blk_addr, bio);
179 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
180 bio->bi_private = is_read ? NULL : sbi;
181
182 return bio;
183 }
184
185 static inline void __submit_bio(struct f2fs_sb_info *sbi,
186 struct bio *bio, enum page_type type)
187 {
188 if (!is_read_io(bio_op(bio))) {
189 unsigned int start;
190
191 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
192 current->plug && (type == DATA || type == NODE))
193 blk_finish_plug(current->plug);
194
195 if (type != DATA && type != NODE)
196 goto submit_io;
197
198 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
199 start %= F2FS_IO_SIZE(sbi);
200
201 if (start == 0)
202 goto submit_io;
203
204 /* fill dummy pages */
205 for (; start < F2FS_IO_SIZE(sbi); start++) {
206 struct page *page =
207 mempool_alloc(sbi->write_io_dummy,
208 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
209 f2fs_bug_on(sbi, !page);
210
211 SetPagePrivate(page);
212 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
213 lock_page(page);
214 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
215 f2fs_bug_on(sbi, 1);
216 }
217 /*
218 * In the NODE case, we lose next block address chain. So, we
219 * need to do checkpoint in f2fs_sync_file.
220 */
221 if (type == NODE)
222 set_sbi_flag(sbi, SBI_NEED_CP);
223 }
224 submit_io:
225 if (is_read_io(bio_op(bio)))
226 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
227 else
228 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
229 submit_bio(bio);
230 }
231
232 static void __submit_merged_bio(struct f2fs_bio_info *io)
233 {
234 struct f2fs_io_info *fio = &io->fio;
235
236 if (!io->bio)
237 return;
238
239 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
240
241 if (is_read_io(fio->op))
242 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
243 else
244 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
245
246 __submit_bio(io->sbi, io->bio, fio->type);
247 io->bio = NULL;
248 }
249
250 static bool __has_merged_page(struct f2fs_bio_info *io,
251 struct inode *inode, nid_t ino, pgoff_t idx)
252 {
253 struct bio_vec *bvec;
254 struct page *target;
255 int i;
256
257 if (!io->bio)
258 return false;
259
260 if (!inode && !ino)
261 return true;
262
263 bio_for_each_segment_all(bvec, io->bio, i) {
264
265 if (bvec->bv_page->mapping)
266 target = bvec->bv_page;
267 else
268 target = fscrypt_control_page(bvec->bv_page);
269
270 if (idx != target->index)
271 continue;
272
273 if (inode && inode == target->mapping->host)
274 return true;
275 if (ino && ino == ino_of_node(target))
276 return true;
277 }
278
279 return false;
280 }
281
282 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
283 nid_t ino, pgoff_t idx, enum page_type type)
284 {
285 enum page_type btype = PAGE_TYPE_OF_BIO(type);
286 enum temp_type temp;
287 struct f2fs_bio_info *io;
288 bool ret = false;
289
290 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
291 io = sbi->write_io[btype] + temp;
292
293 down_read(&io->io_rwsem);
294 ret = __has_merged_page(io, inode, ino, idx);
295 up_read(&io->io_rwsem);
296
297 /* TODO: use HOT temp only for meta pages now. */
298 if (ret || btype == META)
299 break;
300 }
301 return ret;
302 }
303
304 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
305 enum page_type type, enum temp_type temp)
306 {
307 enum page_type btype = PAGE_TYPE_OF_BIO(type);
308 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
309
310 down_write(&io->io_rwsem);
311
312 /* change META to META_FLUSH in the checkpoint procedure */
313 if (type >= META_FLUSH) {
314 io->fio.type = META_FLUSH;
315 io->fio.op = REQ_OP_WRITE;
316 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
317 if (!test_opt(sbi, NOBARRIER))
318 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
319 }
320 __submit_merged_bio(io);
321 up_write(&io->io_rwsem);
322 }
323
324 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
325 struct inode *inode, nid_t ino, pgoff_t idx,
326 enum page_type type, bool force)
327 {
328 enum temp_type temp;
329
330 if (!force && !has_merged_page(sbi, inode, ino, idx, type))
331 return;
332
333 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
334
335 __f2fs_submit_merged_write(sbi, type, temp);
336
337 /* TODO: use HOT temp only for meta pages now. */
338 if (type >= META)
339 break;
340 }
341 }
342
343 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
344 {
345 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
346 }
347
348 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
349 struct inode *inode, nid_t ino, pgoff_t idx,
350 enum page_type type)
351 {
352 __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
353 }
354
355 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
356 {
357 f2fs_submit_merged_write(sbi, DATA);
358 f2fs_submit_merged_write(sbi, NODE);
359 f2fs_submit_merged_write(sbi, META);
360 }
361
362 /*
363 * Fill the locked page with data located in the block address.
364 * A caller needs to unlock the page on failure.
365 */
366 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
367 {
368 struct bio *bio;
369 struct page *page = fio->encrypted_page ?
370 fio->encrypted_page : fio->page;
371
372 trace_f2fs_submit_page_bio(page, fio);
373 f2fs_trace_ios(fio, 0);
374
375 /* Allocate a new bio */
376 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
377
378 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
379 bio_put(bio);
380 return -EFAULT;
381 }
382 bio_set_op_attrs(bio, fio->op, fio->op_flags);
383
384 __submit_bio(fio->sbi, bio, fio->type);
385
386 if (!is_read_io(fio->op))
387 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
388 return 0;
389 }
390
391 int f2fs_submit_page_write(struct f2fs_io_info *fio)
392 {
393 struct f2fs_sb_info *sbi = fio->sbi;
394 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
395 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
396 struct page *bio_page;
397 int err = 0;
398
399 f2fs_bug_on(sbi, is_read_io(fio->op));
400
401 down_write(&io->io_rwsem);
402 next:
403 if (fio->in_list) {
404 spin_lock(&io->io_lock);
405 if (list_empty(&io->io_list)) {
406 spin_unlock(&io->io_lock);
407 goto out_fail;
408 }
409 fio = list_first_entry(&io->io_list,
410 struct f2fs_io_info, list);
411 list_del(&fio->list);
412 spin_unlock(&io->io_lock);
413 }
414
415 if (fio->old_blkaddr != NEW_ADDR)
416 verify_block_addr(sbi, fio->old_blkaddr);
417 verify_block_addr(sbi, fio->new_blkaddr);
418
419 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
420
421 /* set submitted = 1 as a return value */
422 fio->submitted = 1;
423
424 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
425
426 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
427 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
428 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
429 __submit_merged_bio(io);
430 alloc_new:
431 if (io->bio == NULL) {
432 if ((fio->type == DATA || fio->type == NODE) &&
433 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
434 err = -EAGAIN;
435 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
436 goto out_fail;
437 }
438 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
439 BIO_MAX_PAGES, false);
440 io->fio = *fio;
441 }
442
443 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
444 __submit_merged_bio(io);
445 goto alloc_new;
446 }
447
448 io->last_block_in_bio = fio->new_blkaddr;
449 f2fs_trace_ios(fio, 0);
450
451 trace_f2fs_submit_page_write(fio->page, fio);
452
453 if (fio->in_list)
454 goto next;
455 out_fail:
456 up_write(&io->io_rwsem);
457 return err;
458 }
459
460 static void __set_data_blkaddr(struct dnode_of_data *dn)
461 {
462 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
463 __le32 *addr_array;
464
465 /* Get physical address of data block */
466 addr_array = blkaddr_in_node(rn);
467 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
468 }
469
470 /*
471 * Lock ordering for the change of data block address:
472 * ->data_page
473 * ->node_page
474 * update block addresses in the node page
475 */
476 void set_data_blkaddr(struct dnode_of_data *dn)
477 {
478 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
479 __set_data_blkaddr(dn);
480 if (set_page_dirty(dn->node_page))
481 dn->node_changed = true;
482 }
483
484 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
485 {
486 dn->data_blkaddr = blkaddr;
487 set_data_blkaddr(dn);
488 f2fs_update_extent_cache(dn);
489 }
490
491 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
492 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
493 {
494 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
495 int err;
496
497 if (!count)
498 return 0;
499
500 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
501 return -EPERM;
502 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
503 return err;
504
505 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
506 dn->ofs_in_node, count);
507
508 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
509
510 for (; count > 0; dn->ofs_in_node++) {
511 block_t blkaddr =
512 datablock_addr(dn->node_page, dn->ofs_in_node);
513 if (blkaddr == NULL_ADDR) {
514 dn->data_blkaddr = NEW_ADDR;
515 __set_data_blkaddr(dn);
516 count--;
517 }
518 }
519
520 if (set_page_dirty(dn->node_page))
521 dn->node_changed = true;
522 return 0;
523 }
524
525 /* Should keep dn->ofs_in_node unchanged */
526 int reserve_new_block(struct dnode_of_data *dn)
527 {
528 unsigned int ofs_in_node = dn->ofs_in_node;
529 int ret;
530
531 ret = reserve_new_blocks(dn, 1);
532 dn->ofs_in_node = ofs_in_node;
533 return ret;
534 }
535
536 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
537 {
538 bool need_put = dn->inode_page ? false : true;
539 int err;
540
541 err = get_dnode_of_data(dn, index, ALLOC_NODE);
542 if (err)
543 return err;
544
545 if (dn->data_blkaddr == NULL_ADDR)
546 err = reserve_new_block(dn);
547 if (err || need_put)
548 f2fs_put_dnode(dn);
549 return err;
550 }
551
552 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
553 {
554 struct extent_info ei = {0,0,0};
555 struct inode *inode = dn->inode;
556
557 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
558 dn->data_blkaddr = ei.blk + index - ei.fofs;
559 return 0;
560 }
561
562 return f2fs_reserve_block(dn, index);
563 }
564
565 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
566 int op_flags, bool for_write)
567 {
568 struct address_space *mapping = inode->i_mapping;
569 struct dnode_of_data dn;
570 struct page *page;
571 struct extent_info ei = {0,0,0};
572 int err;
573 struct f2fs_io_info fio = {
574 .sbi = F2FS_I_SB(inode),
575 .type = DATA,
576 .op = REQ_OP_READ,
577 .op_flags = op_flags,
578 .encrypted_page = NULL,
579 };
580
581 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
582 return read_mapping_page(mapping, index, NULL);
583
584 page = f2fs_grab_cache_page(mapping, index, for_write);
585 if (!page)
586 return ERR_PTR(-ENOMEM);
587
588 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
589 dn.data_blkaddr = ei.blk + index - ei.fofs;
590 goto got_it;
591 }
592
593 set_new_dnode(&dn, inode, NULL, NULL, 0);
594 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
595 if (err)
596 goto put_err;
597 f2fs_put_dnode(&dn);
598
599 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
600 err = -ENOENT;
601 goto put_err;
602 }
603 got_it:
604 if (PageUptodate(page)) {
605 unlock_page(page);
606 return page;
607 }
608
609 /*
610 * A new dentry page is allocated but not able to be written, since its
611 * new inode page couldn't be allocated due to -ENOSPC.
612 * In such the case, its blkaddr can be remained as NEW_ADDR.
613 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
614 */
615 if (dn.data_blkaddr == NEW_ADDR) {
616 zero_user_segment(page, 0, PAGE_SIZE);
617 if (!PageUptodate(page))
618 SetPageUptodate(page);
619 unlock_page(page);
620 return page;
621 }
622
623 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
624 fio.page = page;
625 err = f2fs_submit_page_bio(&fio);
626 if (err)
627 goto put_err;
628 return page;
629
630 put_err:
631 f2fs_put_page(page, 1);
632 return ERR_PTR(err);
633 }
634
635 struct page *find_data_page(struct inode *inode, pgoff_t index)
636 {
637 struct address_space *mapping = inode->i_mapping;
638 struct page *page;
639
640 page = find_get_page(mapping, index);
641 if (page && PageUptodate(page))
642 return page;
643 f2fs_put_page(page, 0);
644
645 page = get_read_data_page(inode, index, 0, false);
646 if (IS_ERR(page))
647 return page;
648
649 if (PageUptodate(page))
650 return page;
651
652 wait_on_page_locked(page);
653 if (unlikely(!PageUptodate(page))) {
654 f2fs_put_page(page, 0);
655 return ERR_PTR(-EIO);
656 }
657 return page;
658 }
659
660 /*
661 * If it tries to access a hole, return an error.
662 * Because, the callers, functions in dir.c and GC, should be able to know
663 * whether this page exists or not.
664 */
665 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
666 bool for_write)
667 {
668 struct address_space *mapping = inode->i_mapping;
669 struct page *page;
670 repeat:
671 page = get_read_data_page(inode, index, 0, for_write);
672 if (IS_ERR(page))
673 return page;
674
675 /* wait for read completion */
676 lock_page(page);
677 if (unlikely(page->mapping != mapping)) {
678 f2fs_put_page(page, 1);
679 goto repeat;
680 }
681 if (unlikely(!PageUptodate(page))) {
682 f2fs_put_page(page, 1);
683 return ERR_PTR(-EIO);
684 }
685 return page;
686 }
687
688 /*
689 * Caller ensures that this data page is never allocated.
690 * A new zero-filled data page is allocated in the page cache.
691 *
692 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
693 * f2fs_unlock_op().
694 * Note that, ipage is set only by make_empty_dir, and if any error occur,
695 * ipage should be released by this function.
696 */
697 struct page *get_new_data_page(struct inode *inode,
698 struct page *ipage, pgoff_t index, bool new_i_size)
699 {
700 struct address_space *mapping = inode->i_mapping;
701 struct page *page;
702 struct dnode_of_data dn;
703 int err;
704
705 page = f2fs_grab_cache_page(mapping, index, true);
706 if (!page) {
707 /*
708 * before exiting, we should make sure ipage will be released
709 * if any error occur.
710 */
711 f2fs_put_page(ipage, 1);
712 return ERR_PTR(-ENOMEM);
713 }
714
715 set_new_dnode(&dn, inode, ipage, NULL, 0);
716 err = f2fs_reserve_block(&dn, index);
717 if (err) {
718 f2fs_put_page(page, 1);
719 return ERR_PTR(err);
720 }
721 if (!ipage)
722 f2fs_put_dnode(&dn);
723
724 if (PageUptodate(page))
725 goto got_it;
726
727 if (dn.data_blkaddr == NEW_ADDR) {
728 zero_user_segment(page, 0, PAGE_SIZE);
729 if (!PageUptodate(page))
730 SetPageUptodate(page);
731 } else {
732 f2fs_put_page(page, 1);
733
734 /* if ipage exists, blkaddr should be NEW_ADDR */
735 f2fs_bug_on(F2FS_I_SB(inode), ipage);
736 page = get_lock_data_page(inode, index, true);
737 if (IS_ERR(page))
738 return page;
739 }
740 got_it:
741 if (new_i_size && i_size_read(inode) <
742 ((loff_t)(index + 1) << PAGE_SHIFT))
743 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
744 return page;
745 }
746
747 static int __allocate_data_block(struct dnode_of_data *dn)
748 {
749 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
750 struct f2fs_summary sum;
751 struct node_info ni;
752 pgoff_t fofs;
753 blkcnt_t count = 1;
754 int err;
755
756 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
757 return -EPERM;
758
759 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
760 if (dn->data_blkaddr == NEW_ADDR)
761 goto alloc;
762
763 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
764 return err;
765
766 alloc:
767 get_node_info(sbi, dn->nid, &ni);
768 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
769
770 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
771 &sum, CURSEG_WARM_DATA, NULL, false);
772 set_data_blkaddr(dn);
773
774 /* update i_size */
775 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
776 dn->ofs_in_node;
777 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
778 f2fs_i_size_write(dn->inode,
779 ((loff_t)(fofs + 1) << PAGE_SHIFT));
780 return 0;
781 }
782
783 static inline bool __force_buffered_io(struct inode *inode, int rw)
784 {
785 return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) ||
786 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
787 F2FS_I_SB(inode)->s_ndevs);
788 }
789
790 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
791 {
792 struct inode *inode = file_inode(iocb->ki_filp);
793 struct f2fs_map_blocks map;
794 int err = 0;
795
796 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
797 return 0;
798
799 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
800 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
801 if (map.m_len > map.m_lblk)
802 map.m_len -= map.m_lblk;
803 else
804 map.m_len = 0;
805
806 map.m_next_pgofs = NULL;
807
808 if (iocb->ki_flags & IOCB_DIRECT) {
809 err = f2fs_convert_inline_inode(inode);
810 if (err)
811 return err;
812 return f2fs_map_blocks(inode, &map, 1,
813 __force_buffered_io(inode, WRITE) ?
814 F2FS_GET_BLOCK_PRE_AIO :
815 F2FS_GET_BLOCK_PRE_DIO);
816 }
817 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
818 err = f2fs_convert_inline_inode(inode);
819 if (err)
820 return err;
821 }
822 if (!f2fs_has_inline_data(inode))
823 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
824 return err;
825 }
826
827 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
828 {
829 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
830 if (lock)
831 down_read(&sbi->node_change);
832 else
833 up_read(&sbi->node_change);
834 } else {
835 if (lock)
836 f2fs_lock_op(sbi);
837 else
838 f2fs_unlock_op(sbi);
839 }
840 }
841
842 /*
843 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
844 * f2fs_map_blocks structure.
845 * If original data blocks are allocated, then give them to blockdev.
846 * Otherwise,
847 * a. preallocate requested block addresses
848 * b. do not use extent cache for better performance
849 * c. give the block addresses to blockdev
850 */
851 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
852 int create, int flag)
853 {
854 unsigned int maxblocks = map->m_len;
855 struct dnode_of_data dn;
856 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
857 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
858 pgoff_t pgofs, end_offset, end;
859 int err = 0, ofs = 1;
860 unsigned int ofs_in_node, last_ofs_in_node;
861 blkcnt_t prealloc;
862 struct extent_info ei = {0,0,0};
863 block_t blkaddr;
864
865 if (!maxblocks)
866 return 0;
867
868 map->m_len = 0;
869 map->m_flags = 0;
870
871 /* it only supports block size == page size */
872 pgofs = (pgoff_t)map->m_lblk;
873 end = pgofs + maxblocks;
874
875 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
876 map->m_pblk = ei.blk + pgofs - ei.fofs;
877 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
878 map->m_flags = F2FS_MAP_MAPPED;
879 goto out;
880 }
881
882 next_dnode:
883 if (create)
884 __do_map_lock(sbi, flag, true);
885
886 /* When reading holes, we need its node page */
887 set_new_dnode(&dn, inode, NULL, NULL, 0);
888 err = get_dnode_of_data(&dn, pgofs, mode);
889 if (err) {
890 if (flag == F2FS_GET_BLOCK_BMAP)
891 map->m_pblk = 0;
892 if (err == -ENOENT) {
893 err = 0;
894 if (map->m_next_pgofs)
895 *map->m_next_pgofs =
896 get_next_page_offset(&dn, pgofs);
897 }
898 goto unlock_out;
899 }
900
901 prealloc = 0;
902 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
903 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
904
905 next_block:
906 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
907
908 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
909 if (create) {
910 if (unlikely(f2fs_cp_error(sbi))) {
911 err = -EIO;
912 goto sync_out;
913 }
914 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
915 if (blkaddr == NULL_ADDR) {
916 prealloc++;
917 last_ofs_in_node = dn.ofs_in_node;
918 }
919 } else {
920 err = __allocate_data_block(&dn);
921 if (!err)
922 set_inode_flag(inode, FI_APPEND_WRITE);
923 }
924 if (err)
925 goto sync_out;
926 map->m_flags |= F2FS_MAP_NEW;
927 blkaddr = dn.data_blkaddr;
928 } else {
929 if (flag == F2FS_GET_BLOCK_BMAP) {
930 map->m_pblk = 0;
931 goto sync_out;
932 }
933 if (flag == F2FS_GET_BLOCK_FIEMAP &&
934 blkaddr == NULL_ADDR) {
935 if (map->m_next_pgofs)
936 *map->m_next_pgofs = pgofs + 1;
937 }
938 if (flag != F2FS_GET_BLOCK_FIEMAP ||
939 blkaddr != NEW_ADDR)
940 goto sync_out;
941 }
942 }
943
944 if (flag == F2FS_GET_BLOCK_PRE_AIO)
945 goto skip;
946
947 if (map->m_len == 0) {
948 /* preallocated unwritten block should be mapped for fiemap. */
949 if (blkaddr == NEW_ADDR)
950 map->m_flags |= F2FS_MAP_UNWRITTEN;
951 map->m_flags |= F2FS_MAP_MAPPED;
952
953 map->m_pblk = blkaddr;
954 map->m_len = 1;
955 } else if ((map->m_pblk != NEW_ADDR &&
956 blkaddr == (map->m_pblk + ofs)) ||
957 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
958 flag == F2FS_GET_BLOCK_PRE_DIO) {
959 ofs++;
960 map->m_len++;
961 } else {
962 goto sync_out;
963 }
964
965 skip:
966 dn.ofs_in_node++;
967 pgofs++;
968
969 /* preallocate blocks in batch for one dnode page */
970 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
971 (pgofs == end || dn.ofs_in_node == end_offset)) {
972
973 dn.ofs_in_node = ofs_in_node;
974 err = reserve_new_blocks(&dn, prealloc);
975 if (err)
976 goto sync_out;
977
978 map->m_len += dn.ofs_in_node - ofs_in_node;
979 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
980 err = -ENOSPC;
981 goto sync_out;
982 }
983 dn.ofs_in_node = end_offset;
984 }
985
986 if (pgofs >= end)
987 goto sync_out;
988 else if (dn.ofs_in_node < end_offset)
989 goto next_block;
990
991 f2fs_put_dnode(&dn);
992
993 if (create) {
994 __do_map_lock(sbi, flag, false);
995 f2fs_balance_fs(sbi, dn.node_changed);
996 }
997 goto next_dnode;
998
999 sync_out:
1000 f2fs_put_dnode(&dn);
1001 unlock_out:
1002 if (create) {
1003 __do_map_lock(sbi, flag, false);
1004 f2fs_balance_fs(sbi, dn.node_changed);
1005 }
1006 out:
1007 trace_f2fs_map_blocks(inode, map, err);
1008 return err;
1009 }
1010
1011 static int __get_data_block(struct inode *inode, sector_t iblock,
1012 struct buffer_head *bh, int create, int flag,
1013 pgoff_t *next_pgofs)
1014 {
1015 struct f2fs_map_blocks map;
1016 int err;
1017
1018 map.m_lblk = iblock;
1019 map.m_len = bh->b_size >> inode->i_blkbits;
1020 map.m_next_pgofs = next_pgofs;
1021
1022 err = f2fs_map_blocks(inode, &map, create, flag);
1023 if (!err) {
1024 map_bh(bh, inode->i_sb, map.m_pblk);
1025 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1026 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1027 }
1028 return err;
1029 }
1030
1031 static int get_data_block(struct inode *inode, sector_t iblock,
1032 struct buffer_head *bh_result, int create, int flag,
1033 pgoff_t *next_pgofs)
1034 {
1035 return __get_data_block(inode, iblock, bh_result, create,
1036 flag, next_pgofs);
1037 }
1038
1039 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1040 struct buffer_head *bh_result, int create)
1041 {
1042 return __get_data_block(inode, iblock, bh_result, create,
1043 F2FS_GET_BLOCK_DIO, NULL);
1044 }
1045
1046 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1047 struct buffer_head *bh_result, int create)
1048 {
1049 /* Block number less than F2FS MAX BLOCKS */
1050 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1051 return -EFBIG;
1052
1053 return __get_data_block(inode, iblock, bh_result, create,
1054 F2FS_GET_BLOCK_BMAP, NULL);
1055 }
1056
1057 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1058 {
1059 return (offset >> inode->i_blkbits);
1060 }
1061
1062 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1063 {
1064 return (blk << inode->i_blkbits);
1065 }
1066
1067 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1068 u64 start, u64 len)
1069 {
1070 struct buffer_head map_bh;
1071 sector_t start_blk, last_blk;
1072 pgoff_t next_pgofs;
1073 u64 logical = 0, phys = 0, size = 0;
1074 u32 flags = 0;
1075 int ret = 0;
1076
1077 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1078 if (ret)
1079 return ret;
1080
1081 if (f2fs_has_inline_data(inode)) {
1082 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1083 if (ret != -EAGAIN)
1084 return ret;
1085 }
1086
1087 inode_lock(inode);
1088
1089 if (logical_to_blk(inode, len) == 0)
1090 len = blk_to_logical(inode, 1);
1091
1092 start_blk = logical_to_blk(inode, start);
1093 last_blk = logical_to_blk(inode, start + len - 1);
1094
1095 next:
1096 memset(&map_bh, 0, sizeof(struct buffer_head));
1097 map_bh.b_size = len;
1098
1099 ret = get_data_block(inode, start_blk, &map_bh, 0,
1100 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1101 if (ret)
1102 goto out;
1103
1104 /* HOLE */
1105 if (!buffer_mapped(&map_bh)) {
1106 start_blk = next_pgofs;
1107
1108 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1109 F2FS_I_SB(inode)->max_file_blocks))
1110 goto prep_next;
1111
1112 flags |= FIEMAP_EXTENT_LAST;
1113 }
1114
1115 if (size) {
1116 if (f2fs_encrypted_inode(inode))
1117 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1118
1119 ret = fiemap_fill_next_extent(fieinfo, logical,
1120 phys, size, flags);
1121 }
1122
1123 if (start_blk > last_blk || ret)
1124 goto out;
1125
1126 logical = blk_to_logical(inode, start_blk);
1127 phys = blk_to_logical(inode, map_bh.b_blocknr);
1128 size = map_bh.b_size;
1129 flags = 0;
1130 if (buffer_unwritten(&map_bh))
1131 flags = FIEMAP_EXTENT_UNWRITTEN;
1132
1133 start_blk += logical_to_blk(inode, size);
1134
1135 prep_next:
1136 cond_resched();
1137 if (fatal_signal_pending(current))
1138 ret = -EINTR;
1139 else
1140 goto next;
1141 out:
1142 if (ret == 1)
1143 ret = 0;
1144
1145 inode_unlock(inode);
1146 return ret;
1147 }
1148
1149 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
1150 unsigned nr_pages)
1151 {
1152 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1153 struct fscrypt_ctx *ctx = NULL;
1154 struct bio *bio;
1155
1156 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1157 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1158 if (IS_ERR(ctx))
1159 return ERR_CAST(ctx);
1160
1161 /* wait the page to be moved by cleaning */
1162 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1163 }
1164
1165 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1166 if (!bio) {
1167 if (ctx)
1168 fscrypt_release_ctx(ctx);
1169 return ERR_PTR(-ENOMEM);
1170 }
1171 f2fs_target_device(sbi, blkaddr, bio);
1172 bio->bi_end_io = f2fs_read_end_io;
1173 bio->bi_private = ctx;
1174
1175 return bio;
1176 }
1177
1178 /*
1179 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1180 * Major change was from block_size == page_size in f2fs by default.
1181 */
1182 static int f2fs_mpage_readpages(struct address_space *mapping,
1183 struct list_head *pages, struct page *page,
1184 unsigned nr_pages)
1185 {
1186 struct bio *bio = NULL;
1187 unsigned page_idx;
1188 sector_t last_block_in_bio = 0;
1189 struct inode *inode = mapping->host;
1190 const unsigned blkbits = inode->i_blkbits;
1191 const unsigned blocksize = 1 << blkbits;
1192 sector_t block_in_file;
1193 sector_t last_block;
1194 sector_t last_block_in_file;
1195 sector_t block_nr;
1196 struct f2fs_map_blocks map;
1197
1198 map.m_pblk = 0;
1199 map.m_lblk = 0;
1200 map.m_len = 0;
1201 map.m_flags = 0;
1202 map.m_next_pgofs = NULL;
1203
1204 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1205
1206 if (pages) {
1207 page = list_last_entry(pages, struct page, lru);
1208
1209 prefetchw(&page->flags);
1210 list_del(&page->lru);
1211 if (add_to_page_cache_lru(page, mapping,
1212 page->index,
1213 readahead_gfp_mask(mapping)))
1214 goto next_page;
1215 }
1216
1217 block_in_file = (sector_t)page->index;
1218 last_block = block_in_file + nr_pages;
1219 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1220 blkbits;
1221 if (last_block > last_block_in_file)
1222 last_block = last_block_in_file;
1223
1224 /*
1225 * Map blocks using the previous result first.
1226 */
1227 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1228 block_in_file > map.m_lblk &&
1229 block_in_file < (map.m_lblk + map.m_len))
1230 goto got_it;
1231
1232 /*
1233 * Then do more f2fs_map_blocks() calls until we are
1234 * done with this page.
1235 */
1236 map.m_flags = 0;
1237
1238 if (block_in_file < last_block) {
1239 map.m_lblk = block_in_file;
1240 map.m_len = last_block - block_in_file;
1241
1242 if (f2fs_map_blocks(inode, &map, 0,
1243 F2FS_GET_BLOCK_READ))
1244 goto set_error_page;
1245 }
1246 got_it:
1247 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1248 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1249 SetPageMappedToDisk(page);
1250
1251 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1252 SetPageUptodate(page);
1253 goto confused;
1254 }
1255 } else {
1256 zero_user_segment(page, 0, PAGE_SIZE);
1257 if (!PageUptodate(page))
1258 SetPageUptodate(page);
1259 unlock_page(page);
1260 goto next_page;
1261 }
1262
1263 /*
1264 * This page will go to BIO. Do we need to send this
1265 * BIO off first?
1266 */
1267 if (bio && (last_block_in_bio != block_nr - 1 ||
1268 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1269 submit_and_realloc:
1270 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1271 bio = NULL;
1272 }
1273 if (bio == NULL) {
1274 bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1275 if (IS_ERR(bio)) {
1276 bio = NULL;
1277 goto set_error_page;
1278 }
1279 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1280 }
1281
1282 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1283 goto submit_and_realloc;
1284
1285 last_block_in_bio = block_nr;
1286 goto next_page;
1287 set_error_page:
1288 SetPageError(page);
1289 zero_user_segment(page, 0, PAGE_SIZE);
1290 unlock_page(page);
1291 goto next_page;
1292 confused:
1293 if (bio) {
1294 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1295 bio = NULL;
1296 }
1297 unlock_page(page);
1298 next_page:
1299 if (pages)
1300 put_page(page);
1301 }
1302 BUG_ON(pages && !list_empty(pages));
1303 if (bio)
1304 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1305 return 0;
1306 }
1307
1308 static int f2fs_read_data_page(struct file *file, struct page *page)
1309 {
1310 struct inode *inode = page->mapping->host;
1311 int ret = -EAGAIN;
1312
1313 trace_f2fs_readpage(page, DATA);
1314
1315 /* If the file has inline data, try to read it directly */
1316 if (f2fs_has_inline_data(inode))
1317 ret = f2fs_read_inline_data(inode, page);
1318 if (ret == -EAGAIN)
1319 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1320 return ret;
1321 }
1322
1323 static int f2fs_read_data_pages(struct file *file,
1324 struct address_space *mapping,
1325 struct list_head *pages, unsigned nr_pages)
1326 {
1327 struct inode *inode = file->f_mapping->host;
1328 struct page *page = list_last_entry(pages, struct page, lru);
1329
1330 trace_f2fs_readpages(inode, page, nr_pages);
1331
1332 /* If the file has inline data, skip readpages */
1333 if (f2fs_has_inline_data(inode))
1334 return 0;
1335
1336 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1337 }
1338
1339 static int encrypt_one_page(struct f2fs_io_info *fio)
1340 {
1341 struct inode *inode = fio->page->mapping->host;
1342 gfp_t gfp_flags = GFP_NOFS;
1343
1344 if (!f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
1345 return 0;
1346
1347 /* wait for GCed encrypted page writeback */
1348 f2fs_wait_on_encrypted_page_writeback(fio->sbi, fio->old_blkaddr);
1349
1350 retry_encrypt:
1351 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1352 PAGE_SIZE, 0, fio->page->index, gfp_flags);
1353 if (!IS_ERR(fio->encrypted_page))
1354 return 0;
1355
1356 /* flush pending IOs and wait for a while in the ENOMEM case */
1357 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1358 f2fs_flush_merged_writes(fio->sbi);
1359 congestion_wait(BLK_RW_ASYNC, HZ/50);
1360 gfp_flags |= __GFP_NOFAIL;
1361 goto retry_encrypt;
1362 }
1363 return PTR_ERR(fio->encrypted_page);
1364 }
1365
1366 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1367 {
1368 struct inode *inode = fio->page->mapping->host;
1369
1370 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
1371 return false;
1372 if (is_cold_data(fio->page))
1373 return false;
1374 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1375 return false;
1376
1377 return need_inplace_update_policy(inode, fio);
1378 }
1379
1380 static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio)
1381 {
1382 if (fio->old_blkaddr == NEW_ADDR)
1383 return false;
1384 if (fio->old_blkaddr == NULL_ADDR)
1385 return false;
1386 return true;
1387 }
1388
1389 int do_write_data_page(struct f2fs_io_info *fio)
1390 {
1391 struct page *page = fio->page;
1392 struct inode *inode = page->mapping->host;
1393 struct dnode_of_data dn;
1394 struct extent_info ei = {0,0,0};
1395 bool ipu_force = false;
1396 int err = 0;
1397
1398 set_new_dnode(&dn, inode, NULL, NULL, 0);
1399 if (need_inplace_update(fio) &&
1400 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1401 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1402
1403 if (valid_ipu_blkaddr(fio)) {
1404 ipu_force = true;
1405 fio->need_lock = LOCK_DONE;
1406 goto got_it;
1407 }
1408 }
1409
1410 /* Deadlock due to between page->lock and f2fs_lock_op */
1411 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1412 return -EAGAIN;
1413
1414 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1415 if (err)
1416 goto out;
1417
1418 fio->old_blkaddr = dn.data_blkaddr;
1419
1420 /* This page is already truncated */
1421 if (fio->old_blkaddr == NULL_ADDR) {
1422 ClearPageUptodate(page);
1423 goto out_writepage;
1424 }
1425 got_it:
1426 /*
1427 * If current allocation needs SSR,
1428 * it had better in-place writes for updated data.
1429 */
1430 if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) {
1431 err = encrypt_one_page(fio);
1432 if (err)
1433 goto out_writepage;
1434
1435 set_page_writeback(page);
1436 f2fs_put_dnode(&dn);
1437 if (fio->need_lock == LOCK_REQ)
1438 f2fs_unlock_op(fio->sbi);
1439 err = rewrite_data_page(fio);
1440 trace_f2fs_do_write_data_page(fio->page, IPU);
1441 set_inode_flag(inode, FI_UPDATE_WRITE);
1442 return err;
1443 }
1444
1445 if (fio->need_lock == LOCK_RETRY) {
1446 if (!f2fs_trylock_op(fio->sbi)) {
1447 err = -EAGAIN;
1448 goto out_writepage;
1449 }
1450 fio->need_lock = LOCK_REQ;
1451 }
1452
1453 err = encrypt_one_page(fio);
1454 if (err)
1455 goto out_writepage;
1456
1457 set_page_writeback(page);
1458
1459 /* LFS mode write path */
1460 write_data_page(&dn, fio);
1461 trace_f2fs_do_write_data_page(page, OPU);
1462 set_inode_flag(inode, FI_APPEND_WRITE);
1463 if (page->index == 0)
1464 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1465 out_writepage:
1466 f2fs_put_dnode(&dn);
1467 out:
1468 if (fio->need_lock == LOCK_REQ)
1469 f2fs_unlock_op(fio->sbi);
1470 return err;
1471 }
1472
1473 static int __write_data_page(struct page *page, bool *submitted,
1474 struct writeback_control *wbc)
1475 {
1476 struct inode *inode = page->mapping->host;
1477 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1478 loff_t i_size = i_size_read(inode);
1479 const pgoff_t end_index = ((unsigned long long) i_size)
1480 >> PAGE_SHIFT;
1481 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1482 unsigned offset = 0;
1483 bool need_balance_fs = false;
1484 int err = 0;
1485 struct f2fs_io_info fio = {
1486 .sbi = sbi,
1487 .type = DATA,
1488 .op = REQ_OP_WRITE,
1489 .op_flags = wbc_to_write_flags(wbc),
1490 .old_blkaddr = NULL_ADDR,
1491 .page = page,
1492 .encrypted_page = NULL,
1493 .submitted = false,
1494 .need_lock = LOCK_RETRY,
1495 };
1496
1497 trace_f2fs_writepage(page, DATA);
1498
1499 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1500 goto redirty_out;
1501
1502 if (page->index < end_index)
1503 goto write;
1504
1505 /*
1506 * If the offset is out-of-range of file size,
1507 * this page does not have to be written to disk.
1508 */
1509 offset = i_size & (PAGE_SIZE - 1);
1510 if ((page->index >= end_index + 1) || !offset)
1511 goto out;
1512
1513 zero_user_segment(page, offset, PAGE_SIZE);
1514 write:
1515 if (f2fs_is_drop_cache(inode))
1516 goto out;
1517 /* we should not write 0'th page having journal header */
1518 if (f2fs_is_volatile_file(inode) && (!page->index ||
1519 (!wbc->for_reclaim &&
1520 available_free_memory(sbi, BASE_CHECK))))
1521 goto redirty_out;
1522
1523 /* we should bypass data pages to proceed the kworkder jobs */
1524 if (unlikely(f2fs_cp_error(sbi))) {
1525 mapping_set_error(page->mapping, -EIO);
1526 goto out;
1527 }
1528
1529 /* Dentry blocks are controlled by checkpoint */
1530 if (S_ISDIR(inode->i_mode)) {
1531 fio.need_lock = LOCK_DONE;
1532 err = do_write_data_page(&fio);
1533 goto done;
1534 }
1535
1536 if (!wbc->for_reclaim)
1537 need_balance_fs = true;
1538 else if (has_not_enough_free_secs(sbi, 0, 0))
1539 goto redirty_out;
1540 else
1541 set_inode_flag(inode, FI_HOT_DATA);
1542
1543 err = -EAGAIN;
1544 if (f2fs_has_inline_data(inode)) {
1545 err = f2fs_write_inline_data(inode, page);
1546 if (!err)
1547 goto out;
1548 }
1549
1550 if (err == -EAGAIN) {
1551 err = do_write_data_page(&fio);
1552 if (err == -EAGAIN) {
1553 fio.need_lock = LOCK_REQ;
1554 err = do_write_data_page(&fio);
1555 }
1556 }
1557 if (F2FS_I(inode)->last_disk_size < psize)
1558 F2FS_I(inode)->last_disk_size = psize;
1559
1560 done:
1561 if (err && err != -ENOENT)
1562 goto redirty_out;
1563
1564 out:
1565 inode_dec_dirty_pages(inode);
1566 if (err)
1567 ClearPageUptodate(page);
1568
1569 if (wbc->for_reclaim) {
1570 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1571 clear_inode_flag(inode, FI_HOT_DATA);
1572 remove_dirty_inode(inode);
1573 submitted = NULL;
1574 }
1575
1576 unlock_page(page);
1577 if (!S_ISDIR(inode->i_mode))
1578 f2fs_balance_fs(sbi, need_balance_fs);
1579
1580 if (unlikely(f2fs_cp_error(sbi))) {
1581 f2fs_submit_merged_write(sbi, DATA);
1582 submitted = NULL;
1583 }
1584
1585 if (submitted)
1586 *submitted = fio.submitted;
1587
1588 return 0;
1589
1590 redirty_out:
1591 redirty_page_for_writepage(wbc, page);
1592 if (!err)
1593 return AOP_WRITEPAGE_ACTIVATE;
1594 unlock_page(page);
1595 return err;
1596 }
1597
1598 static int f2fs_write_data_page(struct page *page,
1599 struct writeback_control *wbc)
1600 {
1601 return __write_data_page(page, NULL, wbc);
1602 }
1603
1604 /*
1605 * This function was copied from write_cche_pages from mm/page-writeback.c.
1606 * The major change is making write step of cold data page separately from
1607 * warm/hot data page.
1608 */
1609 static int f2fs_write_cache_pages(struct address_space *mapping,
1610 struct writeback_control *wbc)
1611 {
1612 int ret = 0;
1613 int done = 0;
1614 struct pagevec pvec;
1615 int nr_pages;
1616 pgoff_t uninitialized_var(writeback_index);
1617 pgoff_t index;
1618 pgoff_t end; /* Inclusive */
1619 pgoff_t done_index;
1620 pgoff_t last_idx = ULONG_MAX;
1621 int cycled;
1622 int range_whole = 0;
1623 int tag;
1624
1625 pagevec_init(&pvec, 0);
1626
1627 if (get_dirty_pages(mapping->host) <=
1628 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
1629 set_inode_flag(mapping->host, FI_HOT_DATA);
1630 else
1631 clear_inode_flag(mapping->host, FI_HOT_DATA);
1632
1633 if (wbc->range_cyclic) {
1634 writeback_index = mapping->writeback_index; /* prev offset */
1635 index = writeback_index;
1636 if (index == 0)
1637 cycled = 1;
1638 else
1639 cycled = 0;
1640 end = -1;
1641 } else {
1642 index = wbc->range_start >> PAGE_SHIFT;
1643 end = wbc->range_end >> PAGE_SHIFT;
1644 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1645 range_whole = 1;
1646 cycled = 1; /* ignore range_cyclic tests */
1647 }
1648 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1649 tag = PAGECACHE_TAG_TOWRITE;
1650 else
1651 tag = PAGECACHE_TAG_DIRTY;
1652 retry:
1653 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1654 tag_pages_for_writeback(mapping, index, end);
1655 done_index = index;
1656 while (!done && (index <= end)) {
1657 int i;
1658
1659 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1660 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1661 if (nr_pages == 0)
1662 break;
1663
1664 for (i = 0; i < nr_pages; i++) {
1665 struct page *page = pvec.pages[i];
1666 bool submitted = false;
1667
1668 if (page->index > end) {
1669 done = 1;
1670 break;
1671 }
1672
1673 done_index = page->index;
1674 retry_write:
1675 lock_page(page);
1676
1677 if (unlikely(page->mapping != mapping)) {
1678 continue_unlock:
1679 unlock_page(page);
1680 continue;
1681 }
1682
1683 if (!PageDirty(page)) {
1684 /* someone wrote it for us */
1685 goto continue_unlock;
1686 }
1687
1688 if (PageWriteback(page)) {
1689 if (wbc->sync_mode != WB_SYNC_NONE)
1690 f2fs_wait_on_page_writeback(page,
1691 DATA, true);
1692 else
1693 goto continue_unlock;
1694 }
1695
1696 BUG_ON(PageWriteback(page));
1697 if (!clear_page_dirty_for_io(page))
1698 goto continue_unlock;
1699
1700 ret = __write_data_page(page, &submitted, wbc);
1701 if (unlikely(ret)) {
1702 /*
1703 * keep nr_to_write, since vfs uses this to
1704 * get # of written pages.
1705 */
1706 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1707 unlock_page(page);
1708 ret = 0;
1709 continue;
1710 } else if (ret == -EAGAIN) {
1711 ret = 0;
1712 if (wbc->sync_mode == WB_SYNC_ALL) {
1713 cond_resched();
1714 congestion_wait(BLK_RW_ASYNC,
1715 HZ/50);
1716 goto retry_write;
1717 }
1718 continue;
1719 }
1720 done_index = page->index + 1;
1721 done = 1;
1722 break;
1723 } else if (submitted) {
1724 last_idx = page->index;
1725 }
1726
1727 /* give a priority to WB_SYNC threads */
1728 if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) ||
1729 --wbc->nr_to_write <= 0) &&
1730 wbc->sync_mode == WB_SYNC_NONE) {
1731 done = 1;
1732 break;
1733 }
1734 }
1735 pagevec_release(&pvec);
1736 cond_resched();
1737 }
1738
1739 if (!cycled && !done) {
1740 cycled = 1;
1741 index = 0;
1742 end = writeback_index - 1;
1743 goto retry;
1744 }
1745 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1746 mapping->writeback_index = done_index;
1747
1748 if (last_idx != ULONG_MAX)
1749 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
1750 0, last_idx, DATA);
1751
1752 return ret;
1753 }
1754
1755 static int f2fs_write_data_pages(struct address_space *mapping,
1756 struct writeback_control *wbc)
1757 {
1758 struct inode *inode = mapping->host;
1759 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1760 struct blk_plug plug;
1761 int ret;
1762
1763 /* deal with chardevs and other special file */
1764 if (!mapping->a_ops->writepage)
1765 return 0;
1766
1767 /* skip writing if there is no dirty page in this inode */
1768 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1769 return 0;
1770
1771 /* during POR, we don't need to trigger writepage at all. */
1772 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1773 goto skip_write;
1774
1775 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1776 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1777 available_free_memory(sbi, DIRTY_DENTS))
1778 goto skip_write;
1779
1780 /* skip writing during file defragment */
1781 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1782 goto skip_write;
1783
1784 trace_f2fs_writepages(mapping->host, wbc, DATA);
1785
1786 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
1787 if (wbc->sync_mode == WB_SYNC_ALL)
1788 atomic_inc(&sbi->wb_sync_req);
1789 else if (atomic_read(&sbi->wb_sync_req))
1790 goto skip_write;
1791
1792 blk_start_plug(&plug);
1793 ret = f2fs_write_cache_pages(mapping, wbc);
1794 blk_finish_plug(&plug);
1795
1796 if (wbc->sync_mode == WB_SYNC_ALL)
1797 atomic_dec(&sbi->wb_sync_req);
1798 /*
1799 * if some pages were truncated, we cannot guarantee its mapping->host
1800 * to detect pending bios.
1801 */
1802
1803 remove_dirty_inode(inode);
1804 return ret;
1805
1806 skip_write:
1807 wbc->pages_skipped += get_dirty_pages(inode);
1808 trace_f2fs_writepages(mapping->host, wbc, DATA);
1809 return 0;
1810 }
1811
1812 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1813 {
1814 struct inode *inode = mapping->host;
1815 loff_t i_size = i_size_read(inode);
1816
1817 if (to > i_size) {
1818 down_write(&F2FS_I(inode)->i_mmap_sem);
1819 truncate_pagecache(inode, i_size);
1820 truncate_blocks(inode, i_size, true);
1821 up_write(&F2FS_I(inode)->i_mmap_sem);
1822 }
1823 }
1824
1825 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1826 struct page *page, loff_t pos, unsigned len,
1827 block_t *blk_addr, bool *node_changed)
1828 {
1829 struct inode *inode = page->mapping->host;
1830 pgoff_t index = page->index;
1831 struct dnode_of_data dn;
1832 struct page *ipage;
1833 bool locked = false;
1834 struct extent_info ei = {0,0,0};
1835 int err = 0;
1836
1837 /*
1838 * we already allocated all the blocks, so we don't need to get
1839 * the block addresses when there is no need to fill the page.
1840 */
1841 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
1842 !is_inode_flag_set(inode, FI_NO_PREALLOC))
1843 return 0;
1844
1845 if (f2fs_has_inline_data(inode) ||
1846 (pos & PAGE_MASK) >= i_size_read(inode)) {
1847 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
1848 locked = true;
1849 }
1850 restart:
1851 /* check inline_data */
1852 ipage = get_node_page(sbi, inode->i_ino);
1853 if (IS_ERR(ipage)) {
1854 err = PTR_ERR(ipage);
1855 goto unlock_out;
1856 }
1857
1858 set_new_dnode(&dn, inode, ipage, ipage, 0);
1859
1860 if (f2fs_has_inline_data(inode)) {
1861 if (pos + len <= MAX_INLINE_DATA) {
1862 read_inline_data(page, ipage);
1863 set_inode_flag(inode, FI_DATA_EXIST);
1864 if (inode->i_nlink)
1865 set_inline_node(ipage);
1866 } else {
1867 err = f2fs_convert_inline_page(&dn, page);
1868 if (err)
1869 goto out;
1870 if (dn.data_blkaddr == NULL_ADDR)
1871 err = f2fs_get_block(&dn, index);
1872 }
1873 } else if (locked) {
1874 err = f2fs_get_block(&dn, index);
1875 } else {
1876 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1877 dn.data_blkaddr = ei.blk + index - ei.fofs;
1878 } else {
1879 /* hole case */
1880 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1881 if (err || dn.data_blkaddr == NULL_ADDR) {
1882 f2fs_put_dnode(&dn);
1883 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
1884 true);
1885 locked = true;
1886 goto restart;
1887 }
1888 }
1889 }
1890
1891 /* convert_inline_page can make node_changed */
1892 *blk_addr = dn.data_blkaddr;
1893 *node_changed = dn.node_changed;
1894 out:
1895 f2fs_put_dnode(&dn);
1896 unlock_out:
1897 if (locked)
1898 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
1899 return err;
1900 }
1901
1902 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1903 loff_t pos, unsigned len, unsigned flags,
1904 struct page **pagep, void **fsdata)
1905 {
1906 struct inode *inode = mapping->host;
1907 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1908 struct page *page = NULL;
1909 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1910 bool need_balance = false;
1911 block_t blkaddr = NULL_ADDR;
1912 int err = 0;
1913
1914 trace_f2fs_write_begin(inode, pos, len, flags);
1915
1916 /*
1917 * We should check this at this moment to avoid deadlock on inode page
1918 * and #0 page. The locking rule for inline_data conversion should be:
1919 * lock_page(page #0) -> lock_page(inode_page)
1920 */
1921 if (index != 0) {
1922 err = f2fs_convert_inline_inode(inode);
1923 if (err)
1924 goto fail;
1925 }
1926 repeat:
1927 /*
1928 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
1929 * wait_for_stable_page. Will wait that below with our IO control.
1930 */
1931 page = pagecache_get_page(mapping, index,
1932 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
1933 if (!page) {
1934 err = -ENOMEM;
1935 goto fail;
1936 }
1937
1938 *pagep = page;
1939
1940 err = prepare_write_begin(sbi, page, pos, len,
1941 &blkaddr, &need_balance);
1942 if (err)
1943 goto fail;
1944
1945 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1946 unlock_page(page);
1947 f2fs_balance_fs(sbi, true);
1948 lock_page(page);
1949 if (page->mapping != mapping) {
1950 /* The page got truncated from under us */
1951 f2fs_put_page(page, 1);
1952 goto repeat;
1953 }
1954 }
1955
1956 f2fs_wait_on_page_writeback(page, DATA, false);
1957
1958 /* wait for GCed encrypted page writeback */
1959 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1960 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1961
1962 if (len == PAGE_SIZE || PageUptodate(page))
1963 return 0;
1964
1965 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
1966 zero_user_segment(page, len, PAGE_SIZE);
1967 return 0;
1968 }
1969
1970 if (blkaddr == NEW_ADDR) {
1971 zero_user_segment(page, 0, PAGE_SIZE);
1972 SetPageUptodate(page);
1973 } else {
1974 struct bio *bio;
1975
1976 bio = f2fs_grab_bio(inode, blkaddr, 1);
1977 if (IS_ERR(bio)) {
1978 err = PTR_ERR(bio);
1979 goto fail;
1980 }
1981 bio->bi_opf = REQ_OP_READ;
1982 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1983 bio_put(bio);
1984 err = -EFAULT;
1985 goto fail;
1986 }
1987
1988 __submit_bio(sbi, bio, DATA);
1989
1990 lock_page(page);
1991 if (unlikely(page->mapping != mapping)) {
1992 f2fs_put_page(page, 1);
1993 goto repeat;
1994 }
1995 if (unlikely(!PageUptodate(page))) {
1996 err = -EIO;
1997 goto fail;
1998 }
1999 }
2000 return 0;
2001
2002 fail:
2003 f2fs_put_page(page, 1);
2004 f2fs_write_failed(mapping, pos + len);
2005 return err;
2006 }
2007
2008 static int f2fs_write_end(struct file *file,
2009 struct address_space *mapping,
2010 loff_t pos, unsigned len, unsigned copied,
2011 struct page *page, void *fsdata)
2012 {
2013 struct inode *inode = page->mapping->host;
2014
2015 trace_f2fs_write_end(inode, pos, len, copied);
2016
2017 /*
2018 * This should be come from len == PAGE_SIZE, and we expect copied
2019 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2020 * let generic_perform_write() try to copy data again through copied=0.
2021 */
2022 if (!PageUptodate(page)) {
2023 if (unlikely(copied != len))
2024 copied = 0;
2025 else
2026 SetPageUptodate(page);
2027 }
2028 if (!copied)
2029 goto unlock_out;
2030
2031 set_page_dirty(page);
2032
2033 if (pos + copied > i_size_read(inode))
2034 f2fs_i_size_write(inode, pos + copied);
2035 unlock_out:
2036 f2fs_put_page(page, 1);
2037 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2038 return copied;
2039 }
2040
2041 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2042 loff_t offset)
2043 {
2044 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
2045
2046 if (offset & blocksize_mask)
2047 return -EINVAL;
2048
2049 if (iov_iter_alignment(iter) & blocksize_mask)
2050 return -EINVAL;
2051
2052 return 0;
2053 }
2054
2055 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2056 {
2057 struct address_space *mapping = iocb->ki_filp->f_mapping;
2058 struct inode *inode = mapping->host;
2059 size_t count = iov_iter_count(iter);
2060 loff_t offset = iocb->ki_pos;
2061 int rw = iov_iter_rw(iter);
2062 int err;
2063
2064 err = check_direct_IO(inode, iter, offset);
2065 if (err)
2066 return err;
2067
2068 if (__force_buffered_io(inode, rw))
2069 return 0;
2070
2071 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2072
2073 down_read(&F2FS_I(inode)->dio_rwsem[rw]);
2074 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2075 up_read(&F2FS_I(inode)->dio_rwsem[rw]);
2076
2077 if (rw == WRITE) {
2078 if (err > 0)
2079 set_inode_flag(inode, FI_UPDATE_WRITE);
2080 else if (err < 0)
2081 f2fs_write_failed(mapping, offset + count);
2082 }
2083
2084 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2085
2086 return err;
2087 }
2088
2089 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2090 unsigned int length)
2091 {
2092 struct inode *inode = page->mapping->host;
2093 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2094
2095 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2096 (offset % PAGE_SIZE || length != PAGE_SIZE))
2097 return;
2098
2099 if (PageDirty(page)) {
2100 if (inode->i_ino == F2FS_META_INO(sbi)) {
2101 dec_page_count(sbi, F2FS_DIRTY_META);
2102 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2103 dec_page_count(sbi, F2FS_DIRTY_NODES);
2104 } else {
2105 inode_dec_dirty_pages(inode);
2106 remove_dirty_inode(inode);
2107 }
2108 }
2109
2110 /* This is atomic written page, keep Private */
2111 if (IS_ATOMIC_WRITTEN_PAGE(page))
2112 return drop_inmem_page(inode, page);
2113
2114 set_page_private(page, 0);
2115 ClearPagePrivate(page);
2116 }
2117
2118 int f2fs_release_page(struct page *page, gfp_t wait)
2119 {
2120 /* If this is dirty page, keep PagePrivate */
2121 if (PageDirty(page))
2122 return 0;
2123
2124 /* This is atomic written page, keep Private */
2125 if (IS_ATOMIC_WRITTEN_PAGE(page))
2126 return 0;
2127
2128 set_page_private(page, 0);
2129 ClearPagePrivate(page);
2130 return 1;
2131 }
2132
2133 /*
2134 * This was copied from __set_page_dirty_buffers which gives higher performance
2135 * in very high speed storages. (e.g., pmem)
2136 */
2137 void f2fs_set_page_dirty_nobuffers(struct page *page)
2138 {
2139 struct address_space *mapping = page->mapping;
2140 unsigned long flags;
2141
2142 if (unlikely(!mapping))
2143 return;
2144
2145 spin_lock(&mapping->private_lock);
2146 lock_page_memcg(page);
2147 SetPageDirty(page);
2148 spin_unlock(&mapping->private_lock);
2149
2150 spin_lock_irqsave(&mapping->tree_lock, flags);
2151 WARN_ON_ONCE(!PageUptodate(page));
2152 account_page_dirtied(page, mapping);
2153 radix_tree_tag_set(&mapping->page_tree,
2154 page_index(page), PAGECACHE_TAG_DIRTY);
2155 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2156 unlock_page_memcg(page);
2157
2158 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2159 return;
2160 }
2161
2162 static int f2fs_set_data_page_dirty(struct page *page)
2163 {
2164 struct address_space *mapping = page->mapping;
2165 struct inode *inode = mapping->host;
2166
2167 trace_f2fs_set_page_dirty(page, DATA);
2168
2169 if (!PageUptodate(page))
2170 SetPageUptodate(page);
2171
2172 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2173 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2174 register_inmem_page(inode, page);
2175 return 1;
2176 }
2177 /*
2178 * Previously, this page has been registered, we just
2179 * return here.
2180 */
2181 return 0;
2182 }
2183
2184 if (!PageDirty(page)) {
2185 f2fs_set_page_dirty_nobuffers(page);
2186 update_dirty_page(inode, page);
2187 return 1;
2188 }
2189 return 0;
2190 }
2191
2192 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2193 {
2194 struct inode *inode = mapping->host;
2195
2196 if (f2fs_has_inline_data(inode))
2197 return 0;
2198
2199 /* make sure allocating whole blocks */
2200 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2201 filemap_write_and_wait(mapping);
2202
2203 return generic_block_bmap(mapping, block, get_data_block_bmap);
2204 }
2205
2206 #ifdef CONFIG_MIGRATION
2207 #include <linux/migrate.h>
2208
2209 int f2fs_migrate_page(struct address_space *mapping,
2210 struct page *newpage, struct page *page, enum migrate_mode mode)
2211 {
2212 int rc, extra_count;
2213 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2214 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2215
2216 BUG_ON(PageWriteback(page));
2217
2218 /* migrating an atomic written page is safe with the inmem_lock hold */
2219 if (atomic_written) {
2220 if (mode != MIGRATE_SYNC)
2221 return -EBUSY;
2222 if (!mutex_trylock(&fi->inmem_lock))
2223 return -EAGAIN;
2224 }
2225
2226 /*
2227 * A reference is expected if PagePrivate set when move mapping,
2228 * however F2FS breaks this for maintaining dirty page counts when
2229 * truncating pages. So here adjusting the 'extra_count' make it work.
2230 */
2231 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2232 rc = migrate_page_move_mapping(mapping, newpage,
2233 page, NULL, mode, extra_count);
2234 if (rc != MIGRATEPAGE_SUCCESS) {
2235 if (atomic_written)
2236 mutex_unlock(&fi->inmem_lock);
2237 return rc;
2238 }
2239
2240 if (atomic_written) {
2241 struct inmem_pages *cur;
2242 list_for_each_entry(cur, &fi->inmem_pages, list)
2243 if (cur->page == page) {
2244 cur->page = newpage;
2245 break;
2246 }
2247 mutex_unlock(&fi->inmem_lock);
2248 put_page(page);
2249 get_page(newpage);
2250 }
2251
2252 if (PagePrivate(page))
2253 SetPagePrivate(newpage);
2254 set_page_private(newpage, page_private(page));
2255
2256 migrate_page_copy(newpage, page);
2257
2258 return MIGRATEPAGE_SUCCESS;
2259 }
2260 #endif
2261
2262 const struct address_space_operations f2fs_dblock_aops = {
2263 .readpage = f2fs_read_data_page,
2264 .readpages = f2fs_read_data_pages,
2265 .writepage = f2fs_write_data_page,
2266 .writepages = f2fs_write_data_pages,
2267 .write_begin = f2fs_write_begin,
2268 .write_end = f2fs_write_end,
2269 .set_page_dirty = f2fs_set_data_page_dirty,
2270 .invalidatepage = f2fs_invalidate_page,
2271 .releasepage = f2fs_release_page,
2272 .direct_IO = f2fs_direct_IO,
2273 .bmap = f2fs_bmap,
2274 #ifdef CONFIG_MIGRATION
2275 .migratepage = f2fs_migrate_page,
2276 #endif
2277 };