]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/f2fs/data.c
Merge branch 'regulator-5.4' into regulator-next
[mirror_ubuntu-focal-kernel.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
22
23 #include "f2fs.h"
24 #include "node.h"
25 #include "segment.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 #define NUM_PREALLOC_POST_READ_CTXS 128
30
31 static struct kmem_cache *bio_post_read_ctx_cache;
32 static mempool_t *bio_post_read_ctx_pool;
33
34 static bool __is_cp_guaranteed(struct page *page)
35 {
36 struct address_space *mapping = page->mapping;
37 struct inode *inode;
38 struct f2fs_sb_info *sbi;
39
40 if (!mapping)
41 return false;
42
43 inode = mapping->host;
44 sbi = F2FS_I_SB(inode);
45
46 if (inode->i_ino == F2FS_META_INO(sbi) ||
47 inode->i_ino == F2FS_NODE_INO(sbi) ||
48 S_ISDIR(inode->i_mode) ||
49 (S_ISREG(inode->i_mode) &&
50 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
51 is_cold_data(page))
52 return true;
53 return false;
54 }
55
56 static enum count_type __read_io_type(struct page *page)
57 {
58 struct address_space *mapping = page_file_mapping(page);
59
60 if (mapping) {
61 struct inode *inode = mapping->host;
62 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
63
64 if (inode->i_ino == F2FS_META_INO(sbi))
65 return F2FS_RD_META;
66
67 if (inode->i_ino == F2FS_NODE_INO(sbi))
68 return F2FS_RD_NODE;
69 }
70 return F2FS_RD_DATA;
71 }
72
73 /* postprocessing steps for read bios */
74 enum bio_post_read_step {
75 STEP_INITIAL = 0,
76 STEP_DECRYPT,
77 };
78
79 struct bio_post_read_ctx {
80 struct bio *bio;
81 struct work_struct work;
82 unsigned int cur_step;
83 unsigned int enabled_steps;
84 };
85
86 static void __read_end_io(struct bio *bio)
87 {
88 struct page *page;
89 struct bio_vec *bv;
90 struct bvec_iter_all iter_all;
91
92 bio_for_each_segment_all(bv, bio, iter_all) {
93 page = bv->bv_page;
94
95 /* PG_error was set if any post_read step failed */
96 if (bio->bi_status || PageError(page)) {
97 ClearPageUptodate(page);
98 /* will re-read again later */
99 ClearPageError(page);
100 } else {
101 SetPageUptodate(page);
102 }
103 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
104 unlock_page(page);
105 }
106 if (bio->bi_private)
107 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
108 bio_put(bio);
109 }
110
111 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
112
113 static void decrypt_work(struct work_struct *work)
114 {
115 struct bio_post_read_ctx *ctx =
116 container_of(work, struct bio_post_read_ctx, work);
117
118 fscrypt_decrypt_bio(ctx->bio);
119
120 bio_post_read_processing(ctx);
121 }
122
123 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
124 {
125 switch (++ctx->cur_step) {
126 case STEP_DECRYPT:
127 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
128 INIT_WORK(&ctx->work, decrypt_work);
129 fscrypt_enqueue_decrypt_work(&ctx->work);
130 return;
131 }
132 ctx->cur_step++;
133 /* fall-through */
134 default:
135 __read_end_io(ctx->bio);
136 }
137 }
138
139 static bool f2fs_bio_post_read_required(struct bio *bio)
140 {
141 return bio->bi_private && !bio->bi_status;
142 }
143
144 static void f2fs_read_end_io(struct bio *bio)
145 {
146 if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)),
147 FAULT_READ_IO)) {
148 f2fs_show_injection_info(FAULT_READ_IO);
149 bio->bi_status = BLK_STS_IOERR;
150 }
151
152 if (f2fs_bio_post_read_required(bio)) {
153 struct bio_post_read_ctx *ctx = bio->bi_private;
154
155 ctx->cur_step = STEP_INITIAL;
156 bio_post_read_processing(ctx);
157 return;
158 }
159
160 __read_end_io(bio);
161 }
162
163 static void f2fs_write_end_io(struct bio *bio)
164 {
165 struct f2fs_sb_info *sbi = bio->bi_private;
166 struct bio_vec *bvec;
167 struct bvec_iter_all iter_all;
168
169 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
170 f2fs_show_injection_info(FAULT_WRITE_IO);
171 bio->bi_status = BLK_STS_IOERR;
172 }
173
174 bio_for_each_segment_all(bvec, bio, iter_all) {
175 struct page *page = bvec->bv_page;
176 enum count_type type = WB_DATA_TYPE(page);
177
178 if (IS_DUMMY_WRITTEN_PAGE(page)) {
179 set_page_private(page, (unsigned long)NULL);
180 ClearPagePrivate(page);
181 unlock_page(page);
182 mempool_free(page, sbi->write_io_dummy);
183
184 if (unlikely(bio->bi_status))
185 f2fs_stop_checkpoint(sbi, true);
186 continue;
187 }
188
189 fscrypt_finalize_bounce_page(&page);
190
191 if (unlikely(bio->bi_status)) {
192 mapping_set_error(page->mapping, -EIO);
193 if (type == F2FS_WB_CP_DATA)
194 f2fs_stop_checkpoint(sbi, true);
195 }
196
197 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
198 page->index != nid_of_node(page));
199
200 dec_page_count(sbi, type);
201 if (f2fs_in_warm_node_list(sbi, page))
202 f2fs_del_fsync_node_entry(sbi, page);
203 clear_cold_data(page);
204 end_page_writeback(page);
205 }
206 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
207 wq_has_sleeper(&sbi->cp_wait))
208 wake_up(&sbi->cp_wait);
209
210 bio_put(bio);
211 }
212
213 /*
214 * Return true, if pre_bio's bdev is same as its target device.
215 */
216 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
217 block_t blk_addr, struct bio *bio)
218 {
219 struct block_device *bdev = sbi->sb->s_bdev;
220 int i;
221
222 if (f2fs_is_multi_device(sbi)) {
223 for (i = 0; i < sbi->s_ndevs; i++) {
224 if (FDEV(i).start_blk <= blk_addr &&
225 FDEV(i).end_blk >= blk_addr) {
226 blk_addr -= FDEV(i).start_blk;
227 bdev = FDEV(i).bdev;
228 break;
229 }
230 }
231 }
232 if (bio) {
233 bio_set_dev(bio, bdev);
234 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
235 }
236 return bdev;
237 }
238
239 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
240 {
241 int i;
242
243 if (!f2fs_is_multi_device(sbi))
244 return 0;
245
246 for (i = 0; i < sbi->s_ndevs; i++)
247 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
248 return i;
249 return 0;
250 }
251
252 static bool __same_bdev(struct f2fs_sb_info *sbi,
253 block_t blk_addr, struct bio *bio)
254 {
255 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
256 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
257 }
258
259 /*
260 * Low-level block read/write IO operations.
261 */
262 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
263 struct writeback_control *wbc,
264 int npages, bool is_read,
265 enum page_type type, enum temp_type temp)
266 {
267 struct bio *bio;
268
269 bio = f2fs_bio_alloc(sbi, npages, true);
270
271 f2fs_target_device(sbi, blk_addr, bio);
272 if (is_read) {
273 bio->bi_end_io = f2fs_read_end_io;
274 bio->bi_private = NULL;
275 } else {
276 bio->bi_end_io = f2fs_write_end_io;
277 bio->bi_private = sbi;
278 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
279 }
280 if (wbc)
281 wbc_init_bio(wbc, bio);
282
283 return bio;
284 }
285
286 static inline void __submit_bio(struct f2fs_sb_info *sbi,
287 struct bio *bio, enum page_type type)
288 {
289 if (!is_read_io(bio_op(bio))) {
290 unsigned int start;
291
292 if (type != DATA && type != NODE)
293 goto submit_io;
294
295 if (test_opt(sbi, LFS) && current->plug)
296 blk_finish_plug(current->plug);
297
298 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
299 start %= F2FS_IO_SIZE(sbi);
300
301 if (start == 0)
302 goto submit_io;
303
304 /* fill dummy pages */
305 for (; start < F2FS_IO_SIZE(sbi); start++) {
306 struct page *page =
307 mempool_alloc(sbi->write_io_dummy,
308 GFP_NOIO | __GFP_NOFAIL);
309 f2fs_bug_on(sbi, !page);
310
311 zero_user_segment(page, 0, PAGE_SIZE);
312 SetPagePrivate(page);
313 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
314 lock_page(page);
315 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
316 f2fs_bug_on(sbi, 1);
317 }
318 /*
319 * In the NODE case, we lose next block address chain. So, we
320 * need to do checkpoint in f2fs_sync_file.
321 */
322 if (type == NODE)
323 set_sbi_flag(sbi, SBI_NEED_CP);
324 }
325 submit_io:
326 if (is_read_io(bio_op(bio)))
327 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
328 else
329 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
330 submit_bio(bio);
331 }
332
333 static void __submit_merged_bio(struct f2fs_bio_info *io)
334 {
335 struct f2fs_io_info *fio = &io->fio;
336
337 if (!io->bio)
338 return;
339
340 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
341
342 if (is_read_io(fio->op))
343 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
344 else
345 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
346
347 __submit_bio(io->sbi, io->bio, fio->type);
348 io->bio = NULL;
349 }
350
351 static bool __has_merged_page(struct bio *bio, struct inode *inode,
352 struct page *page, nid_t ino)
353 {
354 struct bio_vec *bvec;
355 struct page *target;
356 struct bvec_iter_all iter_all;
357
358 if (!bio)
359 return false;
360
361 if (!inode && !page && !ino)
362 return true;
363
364 bio_for_each_segment_all(bvec, bio, iter_all) {
365
366 target = bvec->bv_page;
367 if (fscrypt_is_bounce_page(target))
368 target = fscrypt_pagecache_page(target);
369
370 if (inode && inode == target->mapping->host)
371 return true;
372 if (page && page == target)
373 return true;
374 if (ino && ino == ino_of_node(target))
375 return true;
376 }
377
378 return false;
379 }
380
381 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
382 enum page_type type, enum temp_type temp)
383 {
384 enum page_type btype = PAGE_TYPE_OF_BIO(type);
385 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
386
387 down_write(&io->io_rwsem);
388
389 /* change META to META_FLUSH in the checkpoint procedure */
390 if (type >= META_FLUSH) {
391 io->fio.type = META_FLUSH;
392 io->fio.op = REQ_OP_WRITE;
393 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
394 if (!test_opt(sbi, NOBARRIER))
395 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
396 }
397 __submit_merged_bio(io);
398 up_write(&io->io_rwsem);
399 }
400
401 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
402 struct inode *inode, struct page *page,
403 nid_t ino, enum page_type type, bool force)
404 {
405 enum temp_type temp;
406 bool ret = true;
407
408 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
409 if (!force) {
410 enum page_type btype = PAGE_TYPE_OF_BIO(type);
411 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
412
413 down_read(&io->io_rwsem);
414 ret = __has_merged_page(io->bio, inode, page, ino);
415 up_read(&io->io_rwsem);
416 }
417 if (ret)
418 __f2fs_submit_merged_write(sbi, type, temp);
419
420 /* TODO: use HOT temp only for meta pages now. */
421 if (type >= META)
422 break;
423 }
424 }
425
426 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
427 {
428 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
429 }
430
431 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
432 struct inode *inode, struct page *page,
433 nid_t ino, enum page_type type)
434 {
435 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
436 }
437
438 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
439 {
440 f2fs_submit_merged_write(sbi, DATA);
441 f2fs_submit_merged_write(sbi, NODE);
442 f2fs_submit_merged_write(sbi, META);
443 }
444
445 /*
446 * Fill the locked page with data located in the block address.
447 * A caller needs to unlock the page on failure.
448 */
449 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
450 {
451 struct bio *bio;
452 struct page *page = fio->encrypted_page ?
453 fio->encrypted_page : fio->page;
454
455 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
456 fio->is_por ? META_POR : (__is_meta_io(fio) ?
457 META_GENERIC : DATA_GENERIC_ENHANCE)))
458 return -EFSCORRUPTED;
459
460 trace_f2fs_submit_page_bio(page, fio);
461 f2fs_trace_ios(fio, 0);
462
463 /* Allocate a new bio */
464 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
465 1, is_read_io(fio->op), fio->type, fio->temp);
466
467 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
468 bio_put(bio);
469 return -EFAULT;
470 }
471
472 if (fio->io_wbc && !is_read_io(fio->op))
473 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
474
475 bio_set_op_attrs(bio, fio->op, fio->op_flags);
476
477 inc_page_count(fio->sbi, is_read_io(fio->op) ?
478 __read_io_type(page): WB_DATA_TYPE(fio->page));
479
480 __submit_bio(fio->sbi, bio, fio->type);
481 return 0;
482 }
483
484 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
485 {
486 struct bio *bio = *fio->bio;
487 struct page *page = fio->encrypted_page ?
488 fio->encrypted_page : fio->page;
489
490 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
491 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
492 return -EFSCORRUPTED;
493
494 trace_f2fs_submit_page_bio(page, fio);
495 f2fs_trace_ios(fio, 0);
496
497 if (bio && (*fio->last_block + 1 != fio->new_blkaddr ||
498 !__same_bdev(fio->sbi, fio->new_blkaddr, bio))) {
499 __submit_bio(fio->sbi, bio, fio->type);
500 bio = NULL;
501 }
502 alloc_new:
503 if (!bio) {
504 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
505 BIO_MAX_PAGES, false, fio->type, fio->temp);
506 bio_set_op_attrs(bio, fio->op, fio->op_flags);
507 }
508
509 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
510 __submit_bio(fio->sbi, bio, fio->type);
511 bio = NULL;
512 goto alloc_new;
513 }
514
515 if (fio->io_wbc)
516 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
517
518 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
519
520 *fio->last_block = fio->new_blkaddr;
521 *fio->bio = bio;
522
523 return 0;
524 }
525
526 static void f2fs_submit_ipu_bio(struct f2fs_sb_info *sbi, struct bio **bio,
527 struct page *page)
528 {
529 if (!bio)
530 return;
531
532 if (!__has_merged_page(*bio, NULL, page, 0))
533 return;
534
535 __submit_bio(sbi, *bio, DATA);
536 *bio = NULL;
537 }
538
539 void f2fs_submit_page_write(struct f2fs_io_info *fio)
540 {
541 struct f2fs_sb_info *sbi = fio->sbi;
542 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
543 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
544 struct page *bio_page;
545
546 f2fs_bug_on(sbi, is_read_io(fio->op));
547
548 down_write(&io->io_rwsem);
549 next:
550 if (fio->in_list) {
551 spin_lock(&io->io_lock);
552 if (list_empty(&io->io_list)) {
553 spin_unlock(&io->io_lock);
554 goto out;
555 }
556 fio = list_first_entry(&io->io_list,
557 struct f2fs_io_info, list);
558 list_del(&fio->list);
559 spin_unlock(&io->io_lock);
560 }
561
562 verify_fio_blkaddr(fio);
563
564 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
565
566 /* set submitted = true as a return value */
567 fio->submitted = true;
568
569 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
570
571 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
572 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
573 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
574 __submit_merged_bio(io);
575 alloc_new:
576 if (io->bio == NULL) {
577 if ((fio->type == DATA || fio->type == NODE) &&
578 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
579 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
580 fio->retry = true;
581 goto skip;
582 }
583 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
584 BIO_MAX_PAGES, false,
585 fio->type, fio->temp);
586 io->fio = *fio;
587 }
588
589 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
590 __submit_merged_bio(io);
591 goto alloc_new;
592 }
593
594 if (fio->io_wbc)
595 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
596
597 io->last_block_in_bio = fio->new_blkaddr;
598 f2fs_trace_ios(fio, 0);
599
600 trace_f2fs_submit_page_write(fio->page, fio);
601 skip:
602 if (fio->in_list)
603 goto next;
604 out:
605 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
606 f2fs_is_checkpoint_ready(sbi))
607 __submit_merged_bio(io);
608 up_write(&io->io_rwsem);
609 }
610
611 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
612 unsigned nr_pages, unsigned op_flag)
613 {
614 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
615 struct bio *bio;
616 struct bio_post_read_ctx *ctx;
617 unsigned int post_read_steps = 0;
618
619 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
620 if (!bio)
621 return ERR_PTR(-ENOMEM);
622 f2fs_target_device(sbi, blkaddr, bio);
623 bio->bi_end_io = f2fs_read_end_io;
624 bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
625
626 if (f2fs_encrypted_file(inode))
627 post_read_steps |= 1 << STEP_DECRYPT;
628 if (post_read_steps) {
629 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
630 if (!ctx) {
631 bio_put(bio);
632 return ERR_PTR(-ENOMEM);
633 }
634 ctx->bio = bio;
635 ctx->enabled_steps = post_read_steps;
636 bio->bi_private = ctx;
637 }
638
639 return bio;
640 }
641
642 /* This can handle encryption stuffs */
643 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
644 block_t blkaddr)
645 {
646 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
647 struct bio *bio;
648
649 bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
650 if (IS_ERR(bio))
651 return PTR_ERR(bio);
652
653 /* wait for GCed page writeback via META_MAPPING */
654 f2fs_wait_on_block_writeback(inode, blkaddr);
655
656 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
657 bio_put(bio);
658 return -EFAULT;
659 }
660 ClearPageError(page);
661 inc_page_count(sbi, F2FS_RD_DATA);
662 __submit_bio(sbi, bio, DATA);
663 return 0;
664 }
665
666 static void __set_data_blkaddr(struct dnode_of_data *dn)
667 {
668 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
669 __le32 *addr_array;
670 int base = 0;
671
672 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
673 base = get_extra_isize(dn->inode);
674
675 /* Get physical address of data block */
676 addr_array = blkaddr_in_node(rn);
677 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
678 }
679
680 /*
681 * Lock ordering for the change of data block address:
682 * ->data_page
683 * ->node_page
684 * update block addresses in the node page
685 */
686 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
687 {
688 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
689 __set_data_blkaddr(dn);
690 if (set_page_dirty(dn->node_page))
691 dn->node_changed = true;
692 }
693
694 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
695 {
696 dn->data_blkaddr = blkaddr;
697 f2fs_set_data_blkaddr(dn);
698 f2fs_update_extent_cache(dn);
699 }
700
701 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
702 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
703 {
704 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
705 int err;
706
707 if (!count)
708 return 0;
709
710 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
711 return -EPERM;
712 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
713 return err;
714
715 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
716 dn->ofs_in_node, count);
717
718 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
719
720 for (; count > 0; dn->ofs_in_node++) {
721 block_t blkaddr = datablock_addr(dn->inode,
722 dn->node_page, dn->ofs_in_node);
723 if (blkaddr == NULL_ADDR) {
724 dn->data_blkaddr = NEW_ADDR;
725 __set_data_blkaddr(dn);
726 count--;
727 }
728 }
729
730 if (set_page_dirty(dn->node_page))
731 dn->node_changed = true;
732 return 0;
733 }
734
735 /* Should keep dn->ofs_in_node unchanged */
736 int f2fs_reserve_new_block(struct dnode_of_data *dn)
737 {
738 unsigned int ofs_in_node = dn->ofs_in_node;
739 int ret;
740
741 ret = f2fs_reserve_new_blocks(dn, 1);
742 dn->ofs_in_node = ofs_in_node;
743 return ret;
744 }
745
746 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
747 {
748 bool need_put = dn->inode_page ? false : true;
749 int err;
750
751 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
752 if (err)
753 return err;
754
755 if (dn->data_blkaddr == NULL_ADDR)
756 err = f2fs_reserve_new_block(dn);
757 if (err || need_put)
758 f2fs_put_dnode(dn);
759 return err;
760 }
761
762 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
763 {
764 struct extent_info ei = {0,0,0};
765 struct inode *inode = dn->inode;
766
767 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
768 dn->data_blkaddr = ei.blk + index - ei.fofs;
769 return 0;
770 }
771
772 return f2fs_reserve_block(dn, index);
773 }
774
775 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
776 int op_flags, bool for_write)
777 {
778 struct address_space *mapping = inode->i_mapping;
779 struct dnode_of_data dn;
780 struct page *page;
781 struct extent_info ei = {0,0,0};
782 int err;
783
784 page = f2fs_grab_cache_page(mapping, index, for_write);
785 if (!page)
786 return ERR_PTR(-ENOMEM);
787
788 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
789 dn.data_blkaddr = ei.blk + index - ei.fofs;
790 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
791 DATA_GENERIC_ENHANCE_READ)) {
792 err = -EFSCORRUPTED;
793 goto put_err;
794 }
795 goto got_it;
796 }
797
798 set_new_dnode(&dn, inode, NULL, NULL, 0);
799 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
800 if (err)
801 goto put_err;
802 f2fs_put_dnode(&dn);
803
804 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
805 err = -ENOENT;
806 goto put_err;
807 }
808 if (dn.data_blkaddr != NEW_ADDR &&
809 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
810 dn.data_blkaddr,
811 DATA_GENERIC_ENHANCE)) {
812 err = -EFSCORRUPTED;
813 goto put_err;
814 }
815 got_it:
816 if (PageUptodate(page)) {
817 unlock_page(page);
818 return page;
819 }
820
821 /*
822 * A new dentry page is allocated but not able to be written, since its
823 * new inode page couldn't be allocated due to -ENOSPC.
824 * In such the case, its blkaddr can be remained as NEW_ADDR.
825 * see, f2fs_add_link -> f2fs_get_new_data_page ->
826 * f2fs_init_inode_metadata.
827 */
828 if (dn.data_blkaddr == NEW_ADDR) {
829 zero_user_segment(page, 0, PAGE_SIZE);
830 if (!PageUptodate(page))
831 SetPageUptodate(page);
832 unlock_page(page);
833 return page;
834 }
835
836 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
837 if (err)
838 goto put_err;
839 return page;
840
841 put_err:
842 f2fs_put_page(page, 1);
843 return ERR_PTR(err);
844 }
845
846 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
847 {
848 struct address_space *mapping = inode->i_mapping;
849 struct page *page;
850
851 page = find_get_page(mapping, index);
852 if (page && PageUptodate(page))
853 return page;
854 f2fs_put_page(page, 0);
855
856 page = f2fs_get_read_data_page(inode, index, 0, false);
857 if (IS_ERR(page))
858 return page;
859
860 if (PageUptodate(page))
861 return page;
862
863 wait_on_page_locked(page);
864 if (unlikely(!PageUptodate(page))) {
865 f2fs_put_page(page, 0);
866 return ERR_PTR(-EIO);
867 }
868 return page;
869 }
870
871 /*
872 * If it tries to access a hole, return an error.
873 * Because, the callers, functions in dir.c and GC, should be able to know
874 * whether this page exists or not.
875 */
876 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
877 bool for_write)
878 {
879 struct address_space *mapping = inode->i_mapping;
880 struct page *page;
881 repeat:
882 page = f2fs_get_read_data_page(inode, index, 0, for_write);
883 if (IS_ERR(page))
884 return page;
885
886 /* wait for read completion */
887 lock_page(page);
888 if (unlikely(page->mapping != mapping)) {
889 f2fs_put_page(page, 1);
890 goto repeat;
891 }
892 if (unlikely(!PageUptodate(page))) {
893 f2fs_put_page(page, 1);
894 return ERR_PTR(-EIO);
895 }
896 return page;
897 }
898
899 /*
900 * Caller ensures that this data page is never allocated.
901 * A new zero-filled data page is allocated in the page cache.
902 *
903 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
904 * f2fs_unlock_op().
905 * Note that, ipage is set only by make_empty_dir, and if any error occur,
906 * ipage should be released by this function.
907 */
908 struct page *f2fs_get_new_data_page(struct inode *inode,
909 struct page *ipage, pgoff_t index, bool new_i_size)
910 {
911 struct address_space *mapping = inode->i_mapping;
912 struct page *page;
913 struct dnode_of_data dn;
914 int err;
915
916 page = f2fs_grab_cache_page(mapping, index, true);
917 if (!page) {
918 /*
919 * before exiting, we should make sure ipage will be released
920 * if any error occur.
921 */
922 f2fs_put_page(ipage, 1);
923 return ERR_PTR(-ENOMEM);
924 }
925
926 set_new_dnode(&dn, inode, ipage, NULL, 0);
927 err = f2fs_reserve_block(&dn, index);
928 if (err) {
929 f2fs_put_page(page, 1);
930 return ERR_PTR(err);
931 }
932 if (!ipage)
933 f2fs_put_dnode(&dn);
934
935 if (PageUptodate(page))
936 goto got_it;
937
938 if (dn.data_blkaddr == NEW_ADDR) {
939 zero_user_segment(page, 0, PAGE_SIZE);
940 if (!PageUptodate(page))
941 SetPageUptodate(page);
942 } else {
943 f2fs_put_page(page, 1);
944
945 /* if ipage exists, blkaddr should be NEW_ADDR */
946 f2fs_bug_on(F2FS_I_SB(inode), ipage);
947 page = f2fs_get_lock_data_page(inode, index, true);
948 if (IS_ERR(page))
949 return page;
950 }
951 got_it:
952 if (new_i_size && i_size_read(inode) <
953 ((loff_t)(index + 1) << PAGE_SHIFT))
954 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
955 return page;
956 }
957
958 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
959 {
960 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
961 struct f2fs_summary sum;
962 struct node_info ni;
963 block_t old_blkaddr;
964 blkcnt_t count = 1;
965 int err;
966
967 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
968 return -EPERM;
969
970 err = f2fs_get_node_info(sbi, dn->nid, &ni);
971 if (err)
972 return err;
973
974 dn->data_blkaddr = datablock_addr(dn->inode,
975 dn->node_page, dn->ofs_in_node);
976 if (dn->data_blkaddr != NULL_ADDR)
977 goto alloc;
978
979 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
980 return err;
981
982 alloc:
983 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
984 old_blkaddr = dn->data_blkaddr;
985 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
986 &sum, seg_type, NULL, false);
987 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
988 invalidate_mapping_pages(META_MAPPING(sbi),
989 old_blkaddr, old_blkaddr);
990 f2fs_set_data_blkaddr(dn);
991
992 /*
993 * i_size will be updated by direct_IO. Otherwise, we'll get stale
994 * data from unwritten block via dio_read.
995 */
996 return 0;
997 }
998
999 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1000 {
1001 struct inode *inode = file_inode(iocb->ki_filp);
1002 struct f2fs_map_blocks map;
1003 int flag;
1004 int err = 0;
1005 bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1006
1007 /* convert inline data for Direct I/O*/
1008 if (direct_io) {
1009 err = f2fs_convert_inline_inode(inode);
1010 if (err)
1011 return err;
1012 }
1013
1014 if (direct_io && allow_outplace_dio(inode, iocb, from))
1015 return 0;
1016
1017 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
1018 return 0;
1019
1020 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1021 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1022 if (map.m_len > map.m_lblk)
1023 map.m_len -= map.m_lblk;
1024 else
1025 map.m_len = 0;
1026
1027 map.m_next_pgofs = NULL;
1028 map.m_next_extent = NULL;
1029 map.m_seg_type = NO_CHECK_TYPE;
1030 map.m_may_create = true;
1031
1032 if (direct_io) {
1033 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1034 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1035 F2FS_GET_BLOCK_PRE_AIO :
1036 F2FS_GET_BLOCK_PRE_DIO;
1037 goto map_blocks;
1038 }
1039 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1040 err = f2fs_convert_inline_inode(inode);
1041 if (err)
1042 return err;
1043 }
1044 if (f2fs_has_inline_data(inode))
1045 return err;
1046
1047 flag = F2FS_GET_BLOCK_PRE_AIO;
1048
1049 map_blocks:
1050 err = f2fs_map_blocks(inode, &map, 1, flag);
1051 if (map.m_len > 0 && err == -ENOSPC) {
1052 if (!direct_io)
1053 set_inode_flag(inode, FI_NO_PREALLOC);
1054 err = 0;
1055 }
1056 return err;
1057 }
1058
1059 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1060 {
1061 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1062 if (lock)
1063 down_read(&sbi->node_change);
1064 else
1065 up_read(&sbi->node_change);
1066 } else {
1067 if (lock)
1068 f2fs_lock_op(sbi);
1069 else
1070 f2fs_unlock_op(sbi);
1071 }
1072 }
1073
1074 /*
1075 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1076 * f2fs_map_blocks structure.
1077 * If original data blocks are allocated, then give them to blockdev.
1078 * Otherwise,
1079 * a. preallocate requested block addresses
1080 * b. do not use extent cache for better performance
1081 * c. give the block addresses to blockdev
1082 */
1083 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1084 int create, int flag)
1085 {
1086 unsigned int maxblocks = map->m_len;
1087 struct dnode_of_data dn;
1088 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1089 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1090 pgoff_t pgofs, end_offset, end;
1091 int err = 0, ofs = 1;
1092 unsigned int ofs_in_node, last_ofs_in_node;
1093 blkcnt_t prealloc;
1094 struct extent_info ei = {0,0,0};
1095 block_t blkaddr;
1096 unsigned int start_pgofs;
1097
1098 if (!maxblocks)
1099 return 0;
1100
1101 map->m_len = 0;
1102 map->m_flags = 0;
1103
1104 /* it only supports block size == page size */
1105 pgofs = (pgoff_t)map->m_lblk;
1106 end = pgofs + maxblocks;
1107
1108 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1109 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1110 map->m_may_create)
1111 goto next_dnode;
1112
1113 map->m_pblk = ei.blk + pgofs - ei.fofs;
1114 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1115 map->m_flags = F2FS_MAP_MAPPED;
1116 if (map->m_next_extent)
1117 *map->m_next_extent = pgofs + map->m_len;
1118
1119 /* for hardware encryption, but to avoid potential issue in future */
1120 if (flag == F2FS_GET_BLOCK_DIO)
1121 f2fs_wait_on_block_writeback_range(inode,
1122 map->m_pblk, map->m_len);
1123 goto out;
1124 }
1125
1126 next_dnode:
1127 if (map->m_may_create)
1128 __do_map_lock(sbi, flag, true);
1129
1130 /* When reading holes, we need its node page */
1131 set_new_dnode(&dn, inode, NULL, NULL, 0);
1132 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1133 if (err) {
1134 if (flag == F2FS_GET_BLOCK_BMAP)
1135 map->m_pblk = 0;
1136 if (err == -ENOENT) {
1137 err = 0;
1138 if (map->m_next_pgofs)
1139 *map->m_next_pgofs =
1140 f2fs_get_next_page_offset(&dn, pgofs);
1141 if (map->m_next_extent)
1142 *map->m_next_extent =
1143 f2fs_get_next_page_offset(&dn, pgofs);
1144 }
1145 goto unlock_out;
1146 }
1147
1148 start_pgofs = pgofs;
1149 prealloc = 0;
1150 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1151 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1152
1153 next_block:
1154 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1155
1156 if (__is_valid_data_blkaddr(blkaddr) &&
1157 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1158 err = -EFSCORRUPTED;
1159 goto sync_out;
1160 }
1161
1162 if (__is_valid_data_blkaddr(blkaddr)) {
1163 /* use out-place-update for driect IO under LFS mode */
1164 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1165 map->m_may_create) {
1166 err = __allocate_data_block(&dn, map->m_seg_type);
1167 if (!err) {
1168 blkaddr = dn.data_blkaddr;
1169 set_inode_flag(inode, FI_APPEND_WRITE);
1170 }
1171 }
1172 } else {
1173 if (create) {
1174 if (unlikely(f2fs_cp_error(sbi))) {
1175 err = -EIO;
1176 goto sync_out;
1177 }
1178 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1179 if (blkaddr == NULL_ADDR) {
1180 prealloc++;
1181 last_ofs_in_node = dn.ofs_in_node;
1182 }
1183 } else {
1184 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1185 flag != F2FS_GET_BLOCK_DIO);
1186 err = __allocate_data_block(&dn,
1187 map->m_seg_type);
1188 if (!err)
1189 set_inode_flag(inode, FI_APPEND_WRITE);
1190 }
1191 if (err)
1192 goto sync_out;
1193 map->m_flags |= F2FS_MAP_NEW;
1194 blkaddr = dn.data_blkaddr;
1195 } else {
1196 if (flag == F2FS_GET_BLOCK_BMAP) {
1197 map->m_pblk = 0;
1198 goto sync_out;
1199 }
1200 if (flag == F2FS_GET_BLOCK_PRECACHE)
1201 goto sync_out;
1202 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1203 blkaddr == NULL_ADDR) {
1204 if (map->m_next_pgofs)
1205 *map->m_next_pgofs = pgofs + 1;
1206 goto sync_out;
1207 }
1208 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1209 /* for defragment case */
1210 if (map->m_next_pgofs)
1211 *map->m_next_pgofs = pgofs + 1;
1212 goto sync_out;
1213 }
1214 }
1215 }
1216
1217 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1218 goto skip;
1219
1220 if (map->m_len == 0) {
1221 /* preallocated unwritten block should be mapped for fiemap. */
1222 if (blkaddr == NEW_ADDR)
1223 map->m_flags |= F2FS_MAP_UNWRITTEN;
1224 map->m_flags |= F2FS_MAP_MAPPED;
1225
1226 map->m_pblk = blkaddr;
1227 map->m_len = 1;
1228 } else if ((map->m_pblk != NEW_ADDR &&
1229 blkaddr == (map->m_pblk + ofs)) ||
1230 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1231 flag == F2FS_GET_BLOCK_PRE_DIO) {
1232 ofs++;
1233 map->m_len++;
1234 } else {
1235 goto sync_out;
1236 }
1237
1238 skip:
1239 dn.ofs_in_node++;
1240 pgofs++;
1241
1242 /* preallocate blocks in batch for one dnode page */
1243 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1244 (pgofs == end || dn.ofs_in_node == end_offset)) {
1245
1246 dn.ofs_in_node = ofs_in_node;
1247 err = f2fs_reserve_new_blocks(&dn, prealloc);
1248 if (err)
1249 goto sync_out;
1250
1251 map->m_len += dn.ofs_in_node - ofs_in_node;
1252 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1253 err = -ENOSPC;
1254 goto sync_out;
1255 }
1256 dn.ofs_in_node = end_offset;
1257 }
1258
1259 if (pgofs >= end)
1260 goto sync_out;
1261 else if (dn.ofs_in_node < end_offset)
1262 goto next_block;
1263
1264 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1265 if (map->m_flags & F2FS_MAP_MAPPED) {
1266 unsigned int ofs = start_pgofs - map->m_lblk;
1267
1268 f2fs_update_extent_cache_range(&dn,
1269 start_pgofs, map->m_pblk + ofs,
1270 map->m_len - ofs);
1271 }
1272 }
1273
1274 f2fs_put_dnode(&dn);
1275
1276 if (map->m_may_create) {
1277 __do_map_lock(sbi, flag, false);
1278 f2fs_balance_fs(sbi, dn.node_changed);
1279 }
1280 goto next_dnode;
1281
1282 sync_out:
1283
1284 /* for hardware encryption, but to avoid potential issue in future */
1285 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1286 f2fs_wait_on_block_writeback_range(inode,
1287 map->m_pblk, map->m_len);
1288
1289 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1290 if (map->m_flags & F2FS_MAP_MAPPED) {
1291 unsigned int ofs = start_pgofs - map->m_lblk;
1292
1293 f2fs_update_extent_cache_range(&dn,
1294 start_pgofs, map->m_pblk + ofs,
1295 map->m_len - ofs);
1296 }
1297 if (map->m_next_extent)
1298 *map->m_next_extent = pgofs + 1;
1299 }
1300 f2fs_put_dnode(&dn);
1301 unlock_out:
1302 if (map->m_may_create) {
1303 __do_map_lock(sbi, flag, false);
1304 f2fs_balance_fs(sbi, dn.node_changed);
1305 }
1306 out:
1307 trace_f2fs_map_blocks(inode, map, err);
1308 return err;
1309 }
1310
1311 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1312 {
1313 struct f2fs_map_blocks map;
1314 block_t last_lblk;
1315 int err;
1316
1317 if (pos + len > i_size_read(inode))
1318 return false;
1319
1320 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1321 map.m_next_pgofs = NULL;
1322 map.m_next_extent = NULL;
1323 map.m_seg_type = NO_CHECK_TYPE;
1324 map.m_may_create = false;
1325 last_lblk = F2FS_BLK_ALIGN(pos + len);
1326
1327 while (map.m_lblk < last_lblk) {
1328 map.m_len = last_lblk - map.m_lblk;
1329 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1330 if (err || map.m_len == 0)
1331 return false;
1332 map.m_lblk += map.m_len;
1333 }
1334 return true;
1335 }
1336
1337 static int __get_data_block(struct inode *inode, sector_t iblock,
1338 struct buffer_head *bh, int create, int flag,
1339 pgoff_t *next_pgofs, int seg_type, bool may_write)
1340 {
1341 struct f2fs_map_blocks map;
1342 int err;
1343
1344 map.m_lblk = iblock;
1345 map.m_len = bh->b_size >> inode->i_blkbits;
1346 map.m_next_pgofs = next_pgofs;
1347 map.m_next_extent = NULL;
1348 map.m_seg_type = seg_type;
1349 map.m_may_create = may_write;
1350
1351 err = f2fs_map_blocks(inode, &map, create, flag);
1352 if (!err) {
1353 map_bh(bh, inode->i_sb, map.m_pblk);
1354 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1355 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1356 }
1357 return err;
1358 }
1359
1360 static int get_data_block(struct inode *inode, sector_t iblock,
1361 struct buffer_head *bh_result, int create, int flag,
1362 pgoff_t *next_pgofs)
1363 {
1364 return __get_data_block(inode, iblock, bh_result, create,
1365 flag, next_pgofs,
1366 NO_CHECK_TYPE, create);
1367 }
1368
1369 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1370 struct buffer_head *bh_result, int create)
1371 {
1372 return __get_data_block(inode, iblock, bh_result, create,
1373 F2FS_GET_BLOCK_DIO, NULL,
1374 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1375 true);
1376 }
1377
1378 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1379 struct buffer_head *bh_result, int create)
1380 {
1381 return __get_data_block(inode, iblock, bh_result, create,
1382 F2FS_GET_BLOCK_DIO, NULL,
1383 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1384 false);
1385 }
1386
1387 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1388 struct buffer_head *bh_result, int create)
1389 {
1390 /* Block number less than F2FS MAX BLOCKS */
1391 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1392 return -EFBIG;
1393
1394 return __get_data_block(inode, iblock, bh_result, create,
1395 F2FS_GET_BLOCK_BMAP, NULL,
1396 NO_CHECK_TYPE, create);
1397 }
1398
1399 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1400 {
1401 return (offset >> inode->i_blkbits);
1402 }
1403
1404 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1405 {
1406 return (blk << inode->i_blkbits);
1407 }
1408
1409 static int f2fs_xattr_fiemap(struct inode *inode,
1410 struct fiemap_extent_info *fieinfo)
1411 {
1412 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1413 struct page *page;
1414 struct node_info ni;
1415 __u64 phys = 0, len;
1416 __u32 flags;
1417 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1418 int err = 0;
1419
1420 if (f2fs_has_inline_xattr(inode)) {
1421 int offset;
1422
1423 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1424 inode->i_ino, false);
1425 if (!page)
1426 return -ENOMEM;
1427
1428 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1429 if (err) {
1430 f2fs_put_page(page, 1);
1431 return err;
1432 }
1433
1434 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1435 offset = offsetof(struct f2fs_inode, i_addr) +
1436 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1437 get_inline_xattr_addrs(inode));
1438
1439 phys += offset;
1440 len = inline_xattr_size(inode);
1441
1442 f2fs_put_page(page, 1);
1443
1444 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1445
1446 if (!xnid)
1447 flags |= FIEMAP_EXTENT_LAST;
1448
1449 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1450 if (err || err == 1)
1451 return err;
1452 }
1453
1454 if (xnid) {
1455 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1456 if (!page)
1457 return -ENOMEM;
1458
1459 err = f2fs_get_node_info(sbi, xnid, &ni);
1460 if (err) {
1461 f2fs_put_page(page, 1);
1462 return err;
1463 }
1464
1465 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1466 len = inode->i_sb->s_blocksize;
1467
1468 f2fs_put_page(page, 1);
1469
1470 flags = FIEMAP_EXTENT_LAST;
1471 }
1472
1473 if (phys)
1474 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1475
1476 return (err < 0 ? err : 0);
1477 }
1478
1479 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1480 u64 start, u64 len)
1481 {
1482 struct buffer_head map_bh;
1483 sector_t start_blk, last_blk;
1484 pgoff_t next_pgofs;
1485 u64 logical = 0, phys = 0, size = 0;
1486 u32 flags = 0;
1487 int ret = 0;
1488
1489 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1490 ret = f2fs_precache_extents(inode);
1491 if (ret)
1492 return ret;
1493 }
1494
1495 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1496 if (ret)
1497 return ret;
1498
1499 inode_lock(inode);
1500
1501 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1502 ret = f2fs_xattr_fiemap(inode, fieinfo);
1503 goto out;
1504 }
1505
1506 if (f2fs_has_inline_data(inode)) {
1507 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1508 if (ret != -EAGAIN)
1509 goto out;
1510 }
1511
1512 if (logical_to_blk(inode, len) == 0)
1513 len = blk_to_logical(inode, 1);
1514
1515 start_blk = logical_to_blk(inode, start);
1516 last_blk = logical_to_blk(inode, start + len - 1);
1517
1518 next:
1519 memset(&map_bh, 0, sizeof(struct buffer_head));
1520 map_bh.b_size = len;
1521
1522 ret = get_data_block(inode, start_blk, &map_bh, 0,
1523 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1524 if (ret)
1525 goto out;
1526
1527 /* HOLE */
1528 if (!buffer_mapped(&map_bh)) {
1529 start_blk = next_pgofs;
1530
1531 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1532 F2FS_I_SB(inode)->max_file_blocks))
1533 goto prep_next;
1534
1535 flags |= FIEMAP_EXTENT_LAST;
1536 }
1537
1538 if (size) {
1539 if (IS_ENCRYPTED(inode))
1540 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1541
1542 ret = fiemap_fill_next_extent(fieinfo, logical,
1543 phys, size, flags);
1544 }
1545
1546 if (start_blk > last_blk || ret)
1547 goto out;
1548
1549 logical = blk_to_logical(inode, start_blk);
1550 phys = blk_to_logical(inode, map_bh.b_blocknr);
1551 size = map_bh.b_size;
1552 flags = 0;
1553 if (buffer_unwritten(&map_bh))
1554 flags = FIEMAP_EXTENT_UNWRITTEN;
1555
1556 start_blk += logical_to_blk(inode, size);
1557
1558 prep_next:
1559 cond_resched();
1560 if (fatal_signal_pending(current))
1561 ret = -EINTR;
1562 else
1563 goto next;
1564 out:
1565 if (ret == 1)
1566 ret = 0;
1567
1568 inode_unlock(inode);
1569 return ret;
1570 }
1571
1572 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1573 unsigned nr_pages,
1574 struct f2fs_map_blocks *map,
1575 struct bio **bio_ret,
1576 sector_t *last_block_in_bio,
1577 bool is_readahead)
1578 {
1579 struct bio *bio = *bio_ret;
1580 const unsigned blkbits = inode->i_blkbits;
1581 const unsigned blocksize = 1 << blkbits;
1582 sector_t block_in_file;
1583 sector_t last_block;
1584 sector_t last_block_in_file;
1585 sector_t block_nr;
1586 int ret = 0;
1587
1588 block_in_file = (sector_t)page_index(page);
1589 last_block = block_in_file + nr_pages;
1590 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1591 blkbits;
1592 if (last_block > last_block_in_file)
1593 last_block = last_block_in_file;
1594
1595 /* just zeroing out page which is beyond EOF */
1596 if (block_in_file >= last_block)
1597 goto zero_out;
1598 /*
1599 * Map blocks using the previous result first.
1600 */
1601 if ((map->m_flags & F2FS_MAP_MAPPED) &&
1602 block_in_file > map->m_lblk &&
1603 block_in_file < (map->m_lblk + map->m_len))
1604 goto got_it;
1605
1606 /*
1607 * Then do more f2fs_map_blocks() calls until we are
1608 * done with this page.
1609 */
1610 map->m_lblk = block_in_file;
1611 map->m_len = last_block - block_in_file;
1612
1613 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1614 if (ret)
1615 goto out;
1616 got_it:
1617 if ((map->m_flags & F2FS_MAP_MAPPED)) {
1618 block_nr = map->m_pblk + block_in_file - map->m_lblk;
1619 SetPageMappedToDisk(page);
1620
1621 if (!PageUptodate(page) && (!PageSwapCache(page) &&
1622 !cleancache_get_page(page))) {
1623 SetPageUptodate(page);
1624 goto confused;
1625 }
1626
1627 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1628 DATA_GENERIC_ENHANCE_READ)) {
1629 ret = -EFSCORRUPTED;
1630 goto out;
1631 }
1632 } else {
1633 zero_out:
1634 zero_user_segment(page, 0, PAGE_SIZE);
1635 if (!PageUptodate(page))
1636 SetPageUptodate(page);
1637 unlock_page(page);
1638 goto out;
1639 }
1640
1641 /*
1642 * This page will go to BIO. Do we need to send this
1643 * BIO off first?
1644 */
1645 if (bio && (*last_block_in_bio != block_nr - 1 ||
1646 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1647 submit_and_realloc:
1648 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1649 bio = NULL;
1650 }
1651 if (bio == NULL) {
1652 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1653 is_readahead ? REQ_RAHEAD : 0);
1654 if (IS_ERR(bio)) {
1655 ret = PTR_ERR(bio);
1656 bio = NULL;
1657 goto out;
1658 }
1659 }
1660
1661 /*
1662 * If the page is under writeback, we need to wait for
1663 * its completion to see the correct decrypted data.
1664 */
1665 f2fs_wait_on_block_writeback(inode, block_nr);
1666
1667 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1668 goto submit_and_realloc;
1669
1670 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1671 ClearPageError(page);
1672 *last_block_in_bio = block_nr;
1673 goto out;
1674 confused:
1675 if (bio) {
1676 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1677 bio = NULL;
1678 }
1679 unlock_page(page);
1680 out:
1681 *bio_ret = bio;
1682 return ret;
1683 }
1684
1685 /*
1686 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1687 * Major change was from block_size == page_size in f2fs by default.
1688 *
1689 * Note that the aops->readpages() function is ONLY used for read-ahead. If
1690 * this function ever deviates from doing just read-ahead, it should either
1691 * use ->readpage() or do the necessary surgery to decouple ->readpages()
1692 * from read-ahead.
1693 */
1694 static int f2fs_mpage_readpages(struct address_space *mapping,
1695 struct list_head *pages, struct page *page,
1696 unsigned nr_pages, bool is_readahead)
1697 {
1698 struct bio *bio = NULL;
1699 sector_t last_block_in_bio = 0;
1700 struct inode *inode = mapping->host;
1701 struct f2fs_map_blocks map;
1702 int ret = 0;
1703
1704 map.m_pblk = 0;
1705 map.m_lblk = 0;
1706 map.m_len = 0;
1707 map.m_flags = 0;
1708 map.m_next_pgofs = NULL;
1709 map.m_next_extent = NULL;
1710 map.m_seg_type = NO_CHECK_TYPE;
1711 map.m_may_create = false;
1712
1713 for (; nr_pages; nr_pages--) {
1714 if (pages) {
1715 page = list_last_entry(pages, struct page, lru);
1716
1717 prefetchw(&page->flags);
1718 list_del(&page->lru);
1719 if (add_to_page_cache_lru(page, mapping,
1720 page_index(page),
1721 readahead_gfp_mask(mapping)))
1722 goto next_page;
1723 }
1724
1725 ret = f2fs_read_single_page(inode, page, nr_pages, &map, &bio,
1726 &last_block_in_bio, is_readahead);
1727 if (ret) {
1728 SetPageError(page);
1729 zero_user_segment(page, 0, PAGE_SIZE);
1730 unlock_page(page);
1731 }
1732 next_page:
1733 if (pages)
1734 put_page(page);
1735 }
1736 BUG_ON(pages && !list_empty(pages));
1737 if (bio)
1738 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1739 return pages ? 0 : ret;
1740 }
1741
1742 static int f2fs_read_data_page(struct file *file, struct page *page)
1743 {
1744 struct inode *inode = page_file_mapping(page)->host;
1745 int ret = -EAGAIN;
1746
1747 trace_f2fs_readpage(page, DATA);
1748
1749 /* If the file has inline data, try to read it directly */
1750 if (f2fs_has_inline_data(inode))
1751 ret = f2fs_read_inline_data(inode, page);
1752 if (ret == -EAGAIN)
1753 ret = f2fs_mpage_readpages(page_file_mapping(page),
1754 NULL, page, 1, false);
1755 return ret;
1756 }
1757
1758 static int f2fs_read_data_pages(struct file *file,
1759 struct address_space *mapping,
1760 struct list_head *pages, unsigned nr_pages)
1761 {
1762 struct inode *inode = mapping->host;
1763 struct page *page = list_last_entry(pages, struct page, lru);
1764
1765 trace_f2fs_readpages(inode, page, nr_pages);
1766
1767 /* If the file has inline data, skip readpages */
1768 if (f2fs_has_inline_data(inode))
1769 return 0;
1770
1771 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1772 }
1773
1774 static int encrypt_one_page(struct f2fs_io_info *fio)
1775 {
1776 struct inode *inode = fio->page->mapping->host;
1777 struct page *mpage;
1778 gfp_t gfp_flags = GFP_NOFS;
1779
1780 if (!f2fs_encrypted_file(inode))
1781 return 0;
1782
1783 /* wait for GCed page writeback via META_MAPPING */
1784 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1785
1786 retry_encrypt:
1787 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(fio->page,
1788 PAGE_SIZE, 0,
1789 gfp_flags);
1790 if (IS_ERR(fio->encrypted_page)) {
1791 /* flush pending IOs and wait for a while in the ENOMEM case */
1792 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1793 f2fs_flush_merged_writes(fio->sbi);
1794 congestion_wait(BLK_RW_ASYNC, HZ/50);
1795 gfp_flags |= __GFP_NOFAIL;
1796 goto retry_encrypt;
1797 }
1798 return PTR_ERR(fio->encrypted_page);
1799 }
1800
1801 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1802 if (mpage) {
1803 if (PageUptodate(mpage))
1804 memcpy(page_address(mpage),
1805 page_address(fio->encrypted_page), PAGE_SIZE);
1806 f2fs_put_page(mpage, 1);
1807 }
1808 return 0;
1809 }
1810
1811 static inline bool check_inplace_update_policy(struct inode *inode,
1812 struct f2fs_io_info *fio)
1813 {
1814 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1815 unsigned int policy = SM_I(sbi)->ipu_policy;
1816
1817 if (policy & (0x1 << F2FS_IPU_FORCE))
1818 return true;
1819 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1820 return true;
1821 if (policy & (0x1 << F2FS_IPU_UTIL) &&
1822 utilization(sbi) > SM_I(sbi)->min_ipu_util)
1823 return true;
1824 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1825 utilization(sbi) > SM_I(sbi)->min_ipu_util)
1826 return true;
1827
1828 /*
1829 * IPU for rewrite async pages
1830 */
1831 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1832 fio && fio->op == REQ_OP_WRITE &&
1833 !(fio->op_flags & REQ_SYNC) &&
1834 !IS_ENCRYPTED(inode))
1835 return true;
1836
1837 /* this is only set during fdatasync */
1838 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1839 is_inode_flag_set(inode, FI_NEED_IPU))
1840 return true;
1841
1842 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1843 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1844 return true;
1845
1846 return false;
1847 }
1848
1849 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1850 {
1851 if (f2fs_is_pinned_file(inode))
1852 return true;
1853
1854 /* if this is cold file, we should overwrite to avoid fragmentation */
1855 if (file_is_cold(inode))
1856 return true;
1857
1858 return check_inplace_update_policy(inode, fio);
1859 }
1860
1861 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1862 {
1863 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1864
1865 if (test_opt(sbi, LFS))
1866 return true;
1867 if (S_ISDIR(inode->i_mode))
1868 return true;
1869 if (IS_NOQUOTA(inode))
1870 return true;
1871 if (f2fs_is_atomic_file(inode))
1872 return true;
1873 if (fio) {
1874 if (is_cold_data(fio->page))
1875 return true;
1876 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1877 return true;
1878 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1879 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1880 return true;
1881 }
1882 return false;
1883 }
1884
1885 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1886 {
1887 struct inode *inode = fio->page->mapping->host;
1888
1889 if (f2fs_should_update_outplace(inode, fio))
1890 return false;
1891
1892 return f2fs_should_update_inplace(inode, fio);
1893 }
1894
1895 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1896 {
1897 struct page *page = fio->page;
1898 struct inode *inode = page->mapping->host;
1899 struct dnode_of_data dn;
1900 struct extent_info ei = {0,0,0};
1901 struct node_info ni;
1902 bool ipu_force = false;
1903 int err = 0;
1904
1905 set_new_dnode(&dn, inode, NULL, NULL, 0);
1906 if (need_inplace_update(fio) &&
1907 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1908 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1909
1910 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1911 DATA_GENERIC_ENHANCE))
1912 return -EFSCORRUPTED;
1913
1914 ipu_force = true;
1915 fio->need_lock = LOCK_DONE;
1916 goto got_it;
1917 }
1918
1919 /* Deadlock due to between page->lock and f2fs_lock_op */
1920 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1921 return -EAGAIN;
1922
1923 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1924 if (err)
1925 goto out;
1926
1927 fio->old_blkaddr = dn.data_blkaddr;
1928
1929 /* This page is already truncated */
1930 if (fio->old_blkaddr == NULL_ADDR) {
1931 ClearPageUptodate(page);
1932 clear_cold_data(page);
1933 goto out_writepage;
1934 }
1935 got_it:
1936 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1937 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1938 DATA_GENERIC_ENHANCE)) {
1939 err = -EFSCORRUPTED;
1940 goto out_writepage;
1941 }
1942 /*
1943 * If current allocation needs SSR,
1944 * it had better in-place writes for updated data.
1945 */
1946 if (ipu_force ||
1947 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1948 need_inplace_update(fio))) {
1949 err = encrypt_one_page(fio);
1950 if (err)
1951 goto out_writepage;
1952
1953 set_page_writeback(page);
1954 ClearPageError(page);
1955 f2fs_put_dnode(&dn);
1956 if (fio->need_lock == LOCK_REQ)
1957 f2fs_unlock_op(fio->sbi);
1958 err = f2fs_inplace_write_data(fio);
1959 if (err) {
1960 if (f2fs_encrypted_file(inode))
1961 fscrypt_finalize_bounce_page(&fio->encrypted_page);
1962 if (PageWriteback(page))
1963 end_page_writeback(page);
1964 } else {
1965 set_inode_flag(inode, FI_UPDATE_WRITE);
1966 }
1967 trace_f2fs_do_write_data_page(fio->page, IPU);
1968 return err;
1969 }
1970
1971 if (fio->need_lock == LOCK_RETRY) {
1972 if (!f2fs_trylock_op(fio->sbi)) {
1973 err = -EAGAIN;
1974 goto out_writepage;
1975 }
1976 fio->need_lock = LOCK_REQ;
1977 }
1978
1979 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1980 if (err)
1981 goto out_writepage;
1982
1983 fio->version = ni.version;
1984
1985 err = encrypt_one_page(fio);
1986 if (err)
1987 goto out_writepage;
1988
1989 set_page_writeback(page);
1990 ClearPageError(page);
1991
1992 /* LFS mode write path */
1993 f2fs_outplace_write_data(&dn, fio);
1994 trace_f2fs_do_write_data_page(page, OPU);
1995 set_inode_flag(inode, FI_APPEND_WRITE);
1996 if (page->index == 0)
1997 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1998 out_writepage:
1999 f2fs_put_dnode(&dn);
2000 out:
2001 if (fio->need_lock == LOCK_REQ)
2002 f2fs_unlock_op(fio->sbi);
2003 return err;
2004 }
2005
2006 static int __write_data_page(struct page *page, bool *submitted,
2007 struct bio **bio,
2008 sector_t *last_block,
2009 struct writeback_control *wbc,
2010 enum iostat_type io_type)
2011 {
2012 struct inode *inode = page->mapping->host;
2013 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2014 loff_t i_size = i_size_read(inode);
2015 const pgoff_t end_index = ((unsigned long long) i_size)
2016 >> PAGE_SHIFT;
2017 loff_t psize = (page->index + 1) << PAGE_SHIFT;
2018 unsigned offset = 0;
2019 bool need_balance_fs = false;
2020 int err = 0;
2021 struct f2fs_io_info fio = {
2022 .sbi = sbi,
2023 .ino = inode->i_ino,
2024 .type = DATA,
2025 .op = REQ_OP_WRITE,
2026 .op_flags = wbc_to_write_flags(wbc),
2027 .old_blkaddr = NULL_ADDR,
2028 .page = page,
2029 .encrypted_page = NULL,
2030 .submitted = false,
2031 .need_lock = LOCK_RETRY,
2032 .io_type = io_type,
2033 .io_wbc = wbc,
2034 .bio = bio,
2035 .last_block = last_block,
2036 };
2037
2038 trace_f2fs_writepage(page, DATA);
2039
2040 /* we should bypass data pages to proceed the kworkder jobs */
2041 if (unlikely(f2fs_cp_error(sbi))) {
2042 mapping_set_error(page->mapping, -EIO);
2043 /*
2044 * don't drop any dirty dentry pages for keeping lastest
2045 * directory structure.
2046 */
2047 if (S_ISDIR(inode->i_mode))
2048 goto redirty_out;
2049 goto out;
2050 }
2051
2052 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2053 goto redirty_out;
2054
2055 if (page->index < end_index)
2056 goto write;
2057
2058 /*
2059 * If the offset is out-of-range of file size,
2060 * this page does not have to be written to disk.
2061 */
2062 offset = i_size & (PAGE_SIZE - 1);
2063 if ((page->index >= end_index + 1) || !offset)
2064 goto out;
2065
2066 zero_user_segment(page, offset, PAGE_SIZE);
2067 write:
2068 if (f2fs_is_drop_cache(inode))
2069 goto out;
2070 /* we should not write 0'th page having journal header */
2071 if (f2fs_is_volatile_file(inode) && (!page->index ||
2072 (!wbc->for_reclaim &&
2073 f2fs_available_free_memory(sbi, BASE_CHECK))))
2074 goto redirty_out;
2075
2076 /* Dentry blocks are controlled by checkpoint */
2077 if (S_ISDIR(inode->i_mode)) {
2078 fio.need_lock = LOCK_DONE;
2079 err = f2fs_do_write_data_page(&fio);
2080 goto done;
2081 }
2082
2083 if (!wbc->for_reclaim)
2084 need_balance_fs = true;
2085 else if (has_not_enough_free_secs(sbi, 0, 0))
2086 goto redirty_out;
2087 else
2088 set_inode_flag(inode, FI_HOT_DATA);
2089
2090 err = -EAGAIN;
2091 if (f2fs_has_inline_data(inode)) {
2092 err = f2fs_write_inline_data(inode, page);
2093 if (!err)
2094 goto out;
2095 }
2096
2097 if (err == -EAGAIN) {
2098 err = f2fs_do_write_data_page(&fio);
2099 if (err == -EAGAIN) {
2100 fio.need_lock = LOCK_REQ;
2101 err = f2fs_do_write_data_page(&fio);
2102 }
2103 }
2104
2105 if (err) {
2106 file_set_keep_isize(inode);
2107 } else {
2108 down_write(&F2FS_I(inode)->i_sem);
2109 if (F2FS_I(inode)->last_disk_size < psize)
2110 F2FS_I(inode)->last_disk_size = psize;
2111 up_write(&F2FS_I(inode)->i_sem);
2112 }
2113
2114 done:
2115 if (err && err != -ENOENT)
2116 goto redirty_out;
2117
2118 out:
2119 inode_dec_dirty_pages(inode);
2120 if (err) {
2121 ClearPageUptodate(page);
2122 clear_cold_data(page);
2123 }
2124
2125 if (wbc->for_reclaim) {
2126 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2127 clear_inode_flag(inode, FI_HOT_DATA);
2128 f2fs_remove_dirty_inode(inode);
2129 submitted = NULL;
2130 }
2131
2132 unlock_page(page);
2133 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2134 !F2FS_I(inode)->cp_task) {
2135 f2fs_submit_ipu_bio(sbi, bio, page);
2136 f2fs_balance_fs(sbi, need_balance_fs);
2137 }
2138
2139 if (unlikely(f2fs_cp_error(sbi))) {
2140 f2fs_submit_ipu_bio(sbi, bio, page);
2141 f2fs_submit_merged_write(sbi, DATA);
2142 submitted = NULL;
2143 }
2144
2145 if (submitted)
2146 *submitted = fio.submitted;
2147
2148 return 0;
2149
2150 redirty_out:
2151 redirty_page_for_writepage(wbc, page);
2152 /*
2153 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2154 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2155 * file_write_and_wait_range() will see EIO error, which is critical
2156 * to return value of fsync() followed by atomic_write failure to user.
2157 */
2158 if (!err || wbc->for_reclaim)
2159 return AOP_WRITEPAGE_ACTIVATE;
2160 unlock_page(page);
2161 return err;
2162 }
2163
2164 static int f2fs_write_data_page(struct page *page,
2165 struct writeback_control *wbc)
2166 {
2167 return __write_data_page(page, NULL, NULL, NULL, wbc, FS_DATA_IO);
2168 }
2169
2170 /*
2171 * This function was copied from write_cche_pages from mm/page-writeback.c.
2172 * The major change is making write step of cold data page separately from
2173 * warm/hot data page.
2174 */
2175 static int f2fs_write_cache_pages(struct address_space *mapping,
2176 struct writeback_control *wbc,
2177 enum iostat_type io_type)
2178 {
2179 int ret = 0;
2180 int done = 0;
2181 struct pagevec pvec;
2182 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2183 struct bio *bio = NULL;
2184 sector_t last_block;
2185 int nr_pages;
2186 pgoff_t uninitialized_var(writeback_index);
2187 pgoff_t index;
2188 pgoff_t end; /* Inclusive */
2189 pgoff_t done_index;
2190 int cycled;
2191 int range_whole = 0;
2192 xa_mark_t tag;
2193 int nwritten = 0;
2194
2195 pagevec_init(&pvec);
2196
2197 if (get_dirty_pages(mapping->host) <=
2198 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2199 set_inode_flag(mapping->host, FI_HOT_DATA);
2200 else
2201 clear_inode_flag(mapping->host, FI_HOT_DATA);
2202
2203 if (wbc->range_cyclic) {
2204 writeback_index = mapping->writeback_index; /* prev offset */
2205 index = writeback_index;
2206 if (index == 0)
2207 cycled = 1;
2208 else
2209 cycled = 0;
2210 end = -1;
2211 } else {
2212 index = wbc->range_start >> PAGE_SHIFT;
2213 end = wbc->range_end >> PAGE_SHIFT;
2214 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2215 range_whole = 1;
2216 cycled = 1; /* ignore range_cyclic tests */
2217 }
2218 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2219 tag = PAGECACHE_TAG_TOWRITE;
2220 else
2221 tag = PAGECACHE_TAG_DIRTY;
2222 retry:
2223 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2224 tag_pages_for_writeback(mapping, index, end);
2225 done_index = index;
2226 while (!done && (index <= end)) {
2227 int i;
2228
2229 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2230 tag);
2231 if (nr_pages == 0)
2232 break;
2233
2234 for (i = 0; i < nr_pages; i++) {
2235 struct page *page = pvec.pages[i];
2236 bool submitted = false;
2237
2238 /* give a priority to WB_SYNC threads */
2239 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2240 wbc->sync_mode == WB_SYNC_NONE) {
2241 done = 1;
2242 break;
2243 }
2244
2245 done_index = page->index;
2246 retry_write:
2247 lock_page(page);
2248
2249 if (unlikely(page->mapping != mapping)) {
2250 continue_unlock:
2251 unlock_page(page);
2252 continue;
2253 }
2254
2255 if (!PageDirty(page)) {
2256 /* someone wrote it for us */
2257 goto continue_unlock;
2258 }
2259
2260 if (PageWriteback(page)) {
2261 if (wbc->sync_mode != WB_SYNC_NONE) {
2262 f2fs_wait_on_page_writeback(page,
2263 DATA, true, true);
2264 f2fs_submit_ipu_bio(sbi, &bio, page);
2265 } else {
2266 goto continue_unlock;
2267 }
2268 }
2269
2270 if (!clear_page_dirty_for_io(page))
2271 goto continue_unlock;
2272
2273 ret = __write_data_page(page, &submitted, &bio,
2274 &last_block, wbc, io_type);
2275 if (unlikely(ret)) {
2276 /*
2277 * keep nr_to_write, since vfs uses this to
2278 * get # of written pages.
2279 */
2280 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2281 unlock_page(page);
2282 ret = 0;
2283 continue;
2284 } else if (ret == -EAGAIN) {
2285 ret = 0;
2286 if (wbc->sync_mode == WB_SYNC_ALL) {
2287 cond_resched();
2288 congestion_wait(BLK_RW_ASYNC,
2289 HZ/50);
2290 goto retry_write;
2291 }
2292 continue;
2293 }
2294 done_index = page->index + 1;
2295 done = 1;
2296 break;
2297 } else if (submitted) {
2298 nwritten++;
2299 }
2300
2301 if (--wbc->nr_to_write <= 0 &&
2302 wbc->sync_mode == WB_SYNC_NONE) {
2303 done = 1;
2304 break;
2305 }
2306 }
2307 pagevec_release(&pvec);
2308 cond_resched();
2309 }
2310
2311 if (!cycled && !done) {
2312 cycled = 1;
2313 index = 0;
2314 end = writeback_index - 1;
2315 goto retry;
2316 }
2317 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2318 mapping->writeback_index = done_index;
2319
2320 if (nwritten)
2321 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2322 NULL, 0, DATA);
2323 /* submit cached bio of IPU write */
2324 if (bio)
2325 __submit_bio(sbi, bio, DATA);
2326
2327 return ret;
2328 }
2329
2330 static inline bool __should_serialize_io(struct inode *inode,
2331 struct writeback_control *wbc)
2332 {
2333 if (!S_ISREG(inode->i_mode))
2334 return false;
2335 if (IS_NOQUOTA(inode))
2336 return false;
2337 /* to avoid deadlock in path of data flush */
2338 if (F2FS_I(inode)->cp_task)
2339 return false;
2340 if (wbc->sync_mode != WB_SYNC_ALL)
2341 return true;
2342 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2343 return true;
2344 return false;
2345 }
2346
2347 static int __f2fs_write_data_pages(struct address_space *mapping,
2348 struct writeback_control *wbc,
2349 enum iostat_type io_type)
2350 {
2351 struct inode *inode = mapping->host;
2352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2353 struct blk_plug plug;
2354 int ret;
2355 bool locked = false;
2356
2357 /* deal with chardevs and other special file */
2358 if (!mapping->a_ops->writepage)
2359 return 0;
2360
2361 /* skip writing if there is no dirty page in this inode */
2362 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2363 return 0;
2364
2365 /* during POR, we don't need to trigger writepage at all. */
2366 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2367 goto skip_write;
2368
2369 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2370 wbc->sync_mode == WB_SYNC_NONE &&
2371 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2372 f2fs_available_free_memory(sbi, DIRTY_DENTS))
2373 goto skip_write;
2374
2375 /* skip writing during file defragment */
2376 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2377 goto skip_write;
2378
2379 trace_f2fs_writepages(mapping->host, wbc, DATA);
2380
2381 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2382 if (wbc->sync_mode == WB_SYNC_ALL)
2383 atomic_inc(&sbi->wb_sync_req[DATA]);
2384 else if (atomic_read(&sbi->wb_sync_req[DATA]))
2385 goto skip_write;
2386
2387 if (__should_serialize_io(inode, wbc)) {
2388 mutex_lock(&sbi->writepages);
2389 locked = true;
2390 }
2391
2392 blk_start_plug(&plug);
2393 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2394 blk_finish_plug(&plug);
2395
2396 if (locked)
2397 mutex_unlock(&sbi->writepages);
2398
2399 if (wbc->sync_mode == WB_SYNC_ALL)
2400 atomic_dec(&sbi->wb_sync_req[DATA]);
2401 /*
2402 * if some pages were truncated, we cannot guarantee its mapping->host
2403 * to detect pending bios.
2404 */
2405
2406 f2fs_remove_dirty_inode(inode);
2407 return ret;
2408
2409 skip_write:
2410 wbc->pages_skipped += get_dirty_pages(inode);
2411 trace_f2fs_writepages(mapping->host, wbc, DATA);
2412 return 0;
2413 }
2414
2415 static int f2fs_write_data_pages(struct address_space *mapping,
2416 struct writeback_control *wbc)
2417 {
2418 struct inode *inode = mapping->host;
2419
2420 return __f2fs_write_data_pages(mapping, wbc,
2421 F2FS_I(inode)->cp_task == current ?
2422 FS_CP_DATA_IO : FS_DATA_IO);
2423 }
2424
2425 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2426 {
2427 struct inode *inode = mapping->host;
2428 loff_t i_size = i_size_read(inode);
2429
2430 if (to > i_size) {
2431 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2432 down_write(&F2FS_I(inode)->i_mmap_sem);
2433
2434 truncate_pagecache(inode, i_size);
2435 if (!IS_NOQUOTA(inode))
2436 f2fs_truncate_blocks(inode, i_size, true);
2437
2438 up_write(&F2FS_I(inode)->i_mmap_sem);
2439 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2440 }
2441 }
2442
2443 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2444 struct page *page, loff_t pos, unsigned len,
2445 block_t *blk_addr, bool *node_changed)
2446 {
2447 struct inode *inode = page->mapping->host;
2448 pgoff_t index = page->index;
2449 struct dnode_of_data dn;
2450 struct page *ipage;
2451 bool locked = false;
2452 struct extent_info ei = {0,0,0};
2453 int err = 0;
2454 int flag;
2455
2456 /*
2457 * we already allocated all the blocks, so we don't need to get
2458 * the block addresses when there is no need to fill the page.
2459 */
2460 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2461 !is_inode_flag_set(inode, FI_NO_PREALLOC))
2462 return 0;
2463
2464 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
2465 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2466 flag = F2FS_GET_BLOCK_DEFAULT;
2467 else
2468 flag = F2FS_GET_BLOCK_PRE_AIO;
2469
2470 if (f2fs_has_inline_data(inode) ||
2471 (pos & PAGE_MASK) >= i_size_read(inode)) {
2472 __do_map_lock(sbi, flag, true);
2473 locked = true;
2474 }
2475 restart:
2476 /* check inline_data */
2477 ipage = f2fs_get_node_page(sbi, inode->i_ino);
2478 if (IS_ERR(ipage)) {
2479 err = PTR_ERR(ipage);
2480 goto unlock_out;
2481 }
2482
2483 set_new_dnode(&dn, inode, ipage, ipage, 0);
2484
2485 if (f2fs_has_inline_data(inode)) {
2486 if (pos + len <= MAX_INLINE_DATA(inode)) {
2487 f2fs_do_read_inline_data(page, ipage);
2488 set_inode_flag(inode, FI_DATA_EXIST);
2489 if (inode->i_nlink)
2490 set_inline_node(ipage);
2491 } else {
2492 err = f2fs_convert_inline_page(&dn, page);
2493 if (err)
2494 goto out;
2495 if (dn.data_blkaddr == NULL_ADDR)
2496 err = f2fs_get_block(&dn, index);
2497 }
2498 } else if (locked) {
2499 err = f2fs_get_block(&dn, index);
2500 } else {
2501 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2502 dn.data_blkaddr = ei.blk + index - ei.fofs;
2503 } else {
2504 /* hole case */
2505 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2506 if (err || dn.data_blkaddr == NULL_ADDR) {
2507 f2fs_put_dnode(&dn);
2508 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2509 true);
2510 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2511 locked = true;
2512 goto restart;
2513 }
2514 }
2515 }
2516
2517 /* convert_inline_page can make node_changed */
2518 *blk_addr = dn.data_blkaddr;
2519 *node_changed = dn.node_changed;
2520 out:
2521 f2fs_put_dnode(&dn);
2522 unlock_out:
2523 if (locked)
2524 __do_map_lock(sbi, flag, false);
2525 return err;
2526 }
2527
2528 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2529 loff_t pos, unsigned len, unsigned flags,
2530 struct page **pagep, void **fsdata)
2531 {
2532 struct inode *inode = mapping->host;
2533 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2534 struct page *page = NULL;
2535 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2536 bool need_balance = false, drop_atomic = false;
2537 block_t blkaddr = NULL_ADDR;
2538 int err = 0;
2539
2540 trace_f2fs_write_begin(inode, pos, len, flags);
2541
2542 err = f2fs_is_checkpoint_ready(sbi);
2543 if (err)
2544 goto fail;
2545
2546 if ((f2fs_is_atomic_file(inode) &&
2547 !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2548 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2549 err = -ENOMEM;
2550 drop_atomic = true;
2551 goto fail;
2552 }
2553
2554 /*
2555 * We should check this at this moment to avoid deadlock on inode page
2556 * and #0 page. The locking rule for inline_data conversion should be:
2557 * lock_page(page #0) -> lock_page(inode_page)
2558 */
2559 if (index != 0) {
2560 err = f2fs_convert_inline_inode(inode);
2561 if (err)
2562 goto fail;
2563 }
2564 repeat:
2565 /*
2566 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2567 * wait_for_stable_page. Will wait that below with our IO control.
2568 */
2569 page = f2fs_pagecache_get_page(mapping, index,
2570 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2571 if (!page) {
2572 err = -ENOMEM;
2573 goto fail;
2574 }
2575
2576 *pagep = page;
2577
2578 err = prepare_write_begin(sbi, page, pos, len,
2579 &blkaddr, &need_balance);
2580 if (err)
2581 goto fail;
2582
2583 if (need_balance && !IS_NOQUOTA(inode) &&
2584 has_not_enough_free_secs(sbi, 0, 0)) {
2585 unlock_page(page);
2586 f2fs_balance_fs(sbi, true);
2587 lock_page(page);
2588 if (page->mapping != mapping) {
2589 /* The page got truncated from under us */
2590 f2fs_put_page(page, 1);
2591 goto repeat;
2592 }
2593 }
2594
2595 f2fs_wait_on_page_writeback(page, DATA, false, true);
2596
2597 if (len == PAGE_SIZE || PageUptodate(page))
2598 return 0;
2599
2600 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2601 zero_user_segment(page, len, PAGE_SIZE);
2602 return 0;
2603 }
2604
2605 if (blkaddr == NEW_ADDR) {
2606 zero_user_segment(page, 0, PAGE_SIZE);
2607 SetPageUptodate(page);
2608 } else {
2609 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
2610 DATA_GENERIC_ENHANCE_READ)) {
2611 err = -EFSCORRUPTED;
2612 goto fail;
2613 }
2614 err = f2fs_submit_page_read(inode, page, blkaddr);
2615 if (err)
2616 goto fail;
2617
2618 lock_page(page);
2619 if (unlikely(page->mapping != mapping)) {
2620 f2fs_put_page(page, 1);
2621 goto repeat;
2622 }
2623 if (unlikely(!PageUptodate(page))) {
2624 err = -EIO;
2625 goto fail;
2626 }
2627 }
2628 return 0;
2629
2630 fail:
2631 f2fs_put_page(page, 1);
2632 f2fs_write_failed(mapping, pos + len);
2633 if (drop_atomic)
2634 f2fs_drop_inmem_pages_all(sbi, false);
2635 return err;
2636 }
2637
2638 static int f2fs_write_end(struct file *file,
2639 struct address_space *mapping,
2640 loff_t pos, unsigned len, unsigned copied,
2641 struct page *page, void *fsdata)
2642 {
2643 struct inode *inode = page->mapping->host;
2644
2645 trace_f2fs_write_end(inode, pos, len, copied);
2646
2647 /*
2648 * This should be come from len == PAGE_SIZE, and we expect copied
2649 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2650 * let generic_perform_write() try to copy data again through copied=0.
2651 */
2652 if (!PageUptodate(page)) {
2653 if (unlikely(copied != len))
2654 copied = 0;
2655 else
2656 SetPageUptodate(page);
2657 }
2658 if (!copied)
2659 goto unlock_out;
2660
2661 set_page_dirty(page);
2662
2663 if (pos + copied > i_size_read(inode))
2664 f2fs_i_size_write(inode, pos + copied);
2665 unlock_out:
2666 f2fs_put_page(page, 1);
2667 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2668 return copied;
2669 }
2670
2671 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2672 loff_t offset)
2673 {
2674 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2675 unsigned blkbits = i_blkbits;
2676 unsigned blocksize_mask = (1 << blkbits) - 1;
2677 unsigned long align = offset | iov_iter_alignment(iter);
2678 struct block_device *bdev = inode->i_sb->s_bdev;
2679
2680 if (align & blocksize_mask) {
2681 if (bdev)
2682 blkbits = blksize_bits(bdev_logical_block_size(bdev));
2683 blocksize_mask = (1 << blkbits) - 1;
2684 if (align & blocksize_mask)
2685 return -EINVAL;
2686 return 1;
2687 }
2688 return 0;
2689 }
2690
2691 static void f2fs_dio_end_io(struct bio *bio)
2692 {
2693 struct f2fs_private_dio *dio = bio->bi_private;
2694
2695 dec_page_count(F2FS_I_SB(dio->inode),
2696 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2697
2698 bio->bi_private = dio->orig_private;
2699 bio->bi_end_io = dio->orig_end_io;
2700
2701 kvfree(dio);
2702
2703 bio_endio(bio);
2704 }
2705
2706 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2707 loff_t file_offset)
2708 {
2709 struct f2fs_private_dio *dio;
2710 bool write = (bio_op(bio) == REQ_OP_WRITE);
2711
2712 dio = f2fs_kzalloc(F2FS_I_SB(inode),
2713 sizeof(struct f2fs_private_dio), GFP_NOFS);
2714 if (!dio)
2715 goto out;
2716
2717 dio->inode = inode;
2718 dio->orig_end_io = bio->bi_end_io;
2719 dio->orig_private = bio->bi_private;
2720 dio->write = write;
2721
2722 bio->bi_end_io = f2fs_dio_end_io;
2723 bio->bi_private = dio;
2724
2725 inc_page_count(F2FS_I_SB(inode),
2726 write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2727
2728 submit_bio(bio);
2729 return;
2730 out:
2731 bio->bi_status = BLK_STS_IOERR;
2732 bio_endio(bio);
2733 }
2734
2735 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2736 {
2737 struct address_space *mapping = iocb->ki_filp->f_mapping;
2738 struct inode *inode = mapping->host;
2739 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2740 struct f2fs_inode_info *fi = F2FS_I(inode);
2741 size_t count = iov_iter_count(iter);
2742 loff_t offset = iocb->ki_pos;
2743 int rw = iov_iter_rw(iter);
2744 int err;
2745 enum rw_hint hint = iocb->ki_hint;
2746 int whint_mode = F2FS_OPTION(sbi).whint_mode;
2747 bool do_opu;
2748
2749 err = check_direct_IO(inode, iter, offset);
2750 if (err)
2751 return err < 0 ? err : 0;
2752
2753 if (f2fs_force_buffered_io(inode, iocb, iter))
2754 return 0;
2755
2756 do_opu = allow_outplace_dio(inode, iocb, iter);
2757
2758 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2759
2760 if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2761 iocb->ki_hint = WRITE_LIFE_NOT_SET;
2762
2763 if (iocb->ki_flags & IOCB_NOWAIT) {
2764 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2765 iocb->ki_hint = hint;
2766 err = -EAGAIN;
2767 goto out;
2768 }
2769 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2770 up_read(&fi->i_gc_rwsem[rw]);
2771 iocb->ki_hint = hint;
2772 err = -EAGAIN;
2773 goto out;
2774 }
2775 } else {
2776 down_read(&fi->i_gc_rwsem[rw]);
2777 if (do_opu)
2778 down_read(&fi->i_gc_rwsem[READ]);
2779 }
2780
2781 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2782 iter, rw == WRITE ? get_data_block_dio_write :
2783 get_data_block_dio, NULL, f2fs_dio_submit_bio,
2784 DIO_LOCKING | DIO_SKIP_HOLES);
2785
2786 if (do_opu)
2787 up_read(&fi->i_gc_rwsem[READ]);
2788
2789 up_read(&fi->i_gc_rwsem[rw]);
2790
2791 if (rw == WRITE) {
2792 if (whint_mode == WHINT_MODE_OFF)
2793 iocb->ki_hint = hint;
2794 if (err > 0) {
2795 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2796 err);
2797 if (!do_opu)
2798 set_inode_flag(inode, FI_UPDATE_WRITE);
2799 } else if (err < 0) {
2800 f2fs_write_failed(mapping, offset + count);
2801 }
2802 }
2803
2804 out:
2805 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2806
2807 return err;
2808 }
2809
2810 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2811 unsigned int length)
2812 {
2813 struct inode *inode = page->mapping->host;
2814 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2815
2816 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2817 (offset % PAGE_SIZE || length != PAGE_SIZE))
2818 return;
2819
2820 if (PageDirty(page)) {
2821 if (inode->i_ino == F2FS_META_INO(sbi)) {
2822 dec_page_count(sbi, F2FS_DIRTY_META);
2823 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2824 dec_page_count(sbi, F2FS_DIRTY_NODES);
2825 } else {
2826 inode_dec_dirty_pages(inode);
2827 f2fs_remove_dirty_inode(inode);
2828 }
2829 }
2830
2831 clear_cold_data(page);
2832
2833 if (IS_ATOMIC_WRITTEN_PAGE(page))
2834 return f2fs_drop_inmem_page(inode, page);
2835
2836 f2fs_clear_page_private(page);
2837 }
2838
2839 int f2fs_release_page(struct page *page, gfp_t wait)
2840 {
2841 /* If this is dirty page, keep PagePrivate */
2842 if (PageDirty(page))
2843 return 0;
2844
2845 /* This is atomic written page, keep Private */
2846 if (IS_ATOMIC_WRITTEN_PAGE(page))
2847 return 0;
2848
2849 clear_cold_data(page);
2850 f2fs_clear_page_private(page);
2851 return 1;
2852 }
2853
2854 static int f2fs_set_data_page_dirty(struct page *page)
2855 {
2856 struct inode *inode = page_file_mapping(page)->host;
2857
2858 trace_f2fs_set_page_dirty(page, DATA);
2859
2860 if (!PageUptodate(page))
2861 SetPageUptodate(page);
2862 if (PageSwapCache(page))
2863 return __set_page_dirty_nobuffers(page);
2864
2865 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2866 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2867 f2fs_register_inmem_page(inode, page);
2868 return 1;
2869 }
2870 /*
2871 * Previously, this page has been registered, we just
2872 * return here.
2873 */
2874 return 0;
2875 }
2876
2877 if (!PageDirty(page)) {
2878 __set_page_dirty_nobuffers(page);
2879 f2fs_update_dirty_page(inode, page);
2880 return 1;
2881 }
2882 return 0;
2883 }
2884
2885 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2886 {
2887 struct inode *inode = mapping->host;
2888
2889 if (f2fs_has_inline_data(inode))
2890 return 0;
2891
2892 /* make sure allocating whole blocks */
2893 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2894 filemap_write_and_wait(mapping);
2895
2896 return generic_block_bmap(mapping, block, get_data_block_bmap);
2897 }
2898
2899 #ifdef CONFIG_MIGRATION
2900 #include <linux/migrate.h>
2901
2902 int f2fs_migrate_page(struct address_space *mapping,
2903 struct page *newpage, struct page *page, enum migrate_mode mode)
2904 {
2905 int rc, extra_count;
2906 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2907 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2908
2909 BUG_ON(PageWriteback(page));
2910
2911 /* migrating an atomic written page is safe with the inmem_lock hold */
2912 if (atomic_written) {
2913 if (mode != MIGRATE_SYNC)
2914 return -EBUSY;
2915 if (!mutex_trylock(&fi->inmem_lock))
2916 return -EAGAIN;
2917 }
2918
2919 /* one extra reference was held for atomic_write page */
2920 extra_count = atomic_written ? 1 : 0;
2921 rc = migrate_page_move_mapping(mapping, newpage,
2922 page, extra_count);
2923 if (rc != MIGRATEPAGE_SUCCESS) {
2924 if (atomic_written)
2925 mutex_unlock(&fi->inmem_lock);
2926 return rc;
2927 }
2928
2929 if (atomic_written) {
2930 struct inmem_pages *cur;
2931 list_for_each_entry(cur, &fi->inmem_pages, list)
2932 if (cur->page == page) {
2933 cur->page = newpage;
2934 break;
2935 }
2936 mutex_unlock(&fi->inmem_lock);
2937 put_page(page);
2938 get_page(newpage);
2939 }
2940
2941 if (PagePrivate(page)) {
2942 f2fs_set_page_private(newpage, page_private(page));
2943 f2fs_clear_page_private(page);
2944 }
2945
2946 if (mode != MIGRATE_SYNC_NO_COPY)
2947 migrate_page_copy(newpage, page);
2948 else
2949 migrate_page_states(newpage, page);
2950
2951 return MIGRATEPAGE_SUCCESS;
2952 }
2953 #endif
2954
2955 #ifdef CONFIG_SWAP
2956 /* Copied from generic_swapfile_activate() to check any holes */
2957 static int check_swap_activate(struct file *swap_file, unsigned int max)
2958 {
2959 struct address_space *mapping = swap_file->f_mapping;
2960 struct inode *inode = mapping->host;
2961 unsigned blocks_per_page;
2962 unsigned long page_no;
2963 unsigned blkbits;
2964 sector_t probe_block;
2965 sector_t last_block;
2966 sector_t lowest_block = -1;
2967 sector_t highest_block = 0;
2968
2969 blkbits = inode->i_blkbits;
2970 blocks_per_page = PAGE_SIZE >> blkbits;
2971
2972 /*
2973 * Map all the blocks into the extent list. This code doesn't try
2974 * to be very smart.
2975 */
2976 probe_block = 0;
2977 page_no = 0;
2978 last_block = i_size_read(inode) >> blkbits;
2979 while ((probe_block + blocks_per_page) <= last_block && page_no < max) {
2980 unsigned block_in_page;
2981 sector_t first_block;
2982
2983 cond_resched();
2984
2985 first_block = bmap(inode, probe_block);
2986 if (first_block == 0)
2987 goto bad_bmap;
2988
2989 /*
2990 * It must be PAGE_SIZE aligned on-disk
2991 */
2992 if (first_block & (blocks_per_page - 1)) {
2993 probe_block++;
2994 goto reprobe;
2995 }
2996
2997 for (block_in_page = 1; block_in_page < blocks_per_page;
2998 block_in_page++) {
2999 sector_t block;
3000
3001 block = bmap(inode, probe_block + block_in_page);
3002 if (block == 0)
3003 goto bad_bmap;
3004 if (block != first_block + block_in_page) {
3005 /* Discontiguity */
3006 probe_block++;
3007 goto reprobe;
3008 }
3009 }
3010
3011 first_block >>= (PAGE_SHIFT - blkbits);
3012 if (page_no) { /* exclude the header page */
3013 if (first_block < lowest_block)
3014 lowest_block = first_block;
3015 if (first_block > highest_block)
3016 highest_block = first_block;
3017 }
3018
3019 page_no++;
3020 probe_block += blocks_per_page;
3021 reprobe:
3022 continue;
3023 }
3024 return 0;
3025
3026 bad_bmap:
3027 pr_err("swapon: swapfile has holes\n");
3028 return -EINVAL;
3029 }
3030
3031 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3032 sector_t *span)
3033 {
3034 struct inode *inode = file_inode(file);
3035 int ret;
3036
3037 if (!S_ISREG(inode->i_mode))
3038 return -EINVAL;
3039
3040 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3041 return -EROFS;
3042
3043 ret = f2fs_convert_inline_inode(inode);
3044 if (ret)
3045 return ret;
3046
3047 ret = check_swap_activate(file, sis->max);
3048 if (ret)
3049 return ret;
3050
3051 set_inode_flag(inode, FI_PIN_FILE);
3052 f2fs_precache_extents(inode);
3053 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3054 return 0;
3055 }
3056
3057 static void f2fs_swap_deactivate(struct file *file)
3058 {
3059 struct inode *inode = file_inode(file);
3060
3061 clear_inode_flag(inode, FI_PIN_FILE);
3062 }
3063 #else
3064 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3065 sector_t *span)
3066 {
3067 return -EOPNOTSUPP;
3068 }
3069
3070 static void f2fs_swap_deactivate(struct file *file)
3071 {
3072 }
3073 #endif
3074
3075 const struct address_space_operations f2fs_dblock_aops = {
3076 .readpage = f2fs_read_data_page,
3077 .readpages = f2fs_read_data_pages,
3078 .writepage = f2fs_write_data_page,
3079 .writepages = f2fs_write_data_pages,
3080 .write_begin = f2fs_write_begin,
3081 .write_end = f2fs_write_end,
3082 .set_page_dirty = f2fs_set_data_page_dirty,
3083 .invalidatepage = f2fs_invalidate_page,
3084 .releasepage = f2fs_release_page,
3085 .direct_IO = f2fs_direct_IO,
3086 .bmap = f2fs_bmap,
3087 .swap_activate = f2fs_swap_activate,
3088 .swap_deactivate = f2fs_swap_deactivate,
3089 #ifdef CONFIG_MIGRATION
3090 .migratepage = f2fs_migrate_page,
3091 #endif
3092 };
3093
3094 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3095 {
3096 struct address_space *mapping = page_mapping(page);
3097 unsigned long flags;
3098
3099 xa_lock_irqsave(&mapping->i_pages, flags);
3100 __xa_clear_mark(&mapping->i_pages, page_index(page),
3101 PAGECACHE_TAG_DIRTY);
3102 xa_unlock_irqrestore(&mapping->i_pages, flags);
3103 }
3104
3105 int __init f2fs_init_post_read_processing(void)
3106 {
3107 bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
3108 if (!bio_post_read_ctx_cache)
3109 goto fail;
3110 bio_post_read_ctx_pool =
3111 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3112 bio_post_read_ctx_cache);
3113 if (!bio_post_read_ctx_pool)
3114 goto fail_free_cache;
3115 return 0;
3116
3117 fail_free_cache:
3118 kmem_cache_destroy(bio_post_read_ctx_cache);
3119 fail:
3120 return -ENOMEM;
3121 }
3122
3123 void __exit f2fs_destroy_post_read_processing(void)
3124 {
3125 mempool_destroy(bio_post_read_ctx_pool);
3126 kmem_cache_destroy(bio_post_read_ctx_cache);
3127 }