]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/f2fs/data.c
blkcg, writeback: Rename wbc_account_io() to wbc_account_cgroup_owner()
[mirror_ubuntu-hirsute-kernel.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/prefetch.h>
18 #include <linux/uio.h>
19 #include <linux/cleancache.h>
20 #include <linux/sched/signal.h>
21
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "trace.h"
26 #include <trace/events/f2fs.h>
27
28 #define NUM_PREALLOC_POST_READ_CTXS 128
29
30 static struct kmem_cache *bio_post_read_ctx_cache;
31 static mempool_t *bio_post_read_ctx_pool;
32
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35 struct address_space *mapping = page->mapping;
36 struct inode *inode;
37 struct f2fs_sb_info *sbi;
38
39 if (!mapping)
40 return false;
41
42 inode = mapping->host;
43 sbi = F2FS_I_SB(inode);
44
45 if (inode->i_ino == F2FS_META_INO(sbi) ||
46 inode->i_ino == F2FS_NODE_INO(sbi) ||
47 S_ISDIR(inode->i_mode) ||
48 (S_ISREG(inode->i_mode) &&
49 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
50 is_cold_data(page))
51 return true;
52 return false;
53 }
54
55 static enum count_type __read_io_type(struct page *page)
56 {
57 struct address_space *mapping = page->mapping;
58
59 if (mapping) {
60 struct inode *inode = mapping->host;
61 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
62
63 if (inode->i_ino == F2FS_META_INO(sbi))
64 return F2FS_RD_META;
65
66 if (inode->i_ino == F2FS_NODE_INO(sbi))
67 return F2FS_RD_NODE;
68 }
69 return F2FS_RD_DATA;
70 }
71
72 /* postprocessing steps for read bios */
73 enum bio_post_read_step {
74 STEP_INITIAL = 0,
75 STEP_DECRYPT,
76 };
77
78 struct bio_post_read_ctx {
79 struct bio *bio;
80 struct work_struct work;
81 unsigned int cur_step;
82 unsigned int enabled_steps;
83 };
84
85 static void __read_end_io(struct bio *bio)
86 {
87 struct page *page;
88 struct bio_vec *bv;
89 struct bvec_iter_all iter_all;
90
91 bio_for_each_segment_all(bv, bio, iter_all) {
92 page = bv->bv_page;
93
94 /* PG_error was set if any post_read step failed */
95 if (bio->bi_status || PageError(page)) {
96 ClearPageUptodate(page);
97 /* will re-read again later */
98 ClearPageError(page);
99 } else {
100 SetPageUptodate(page);
101 }
102 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
103 unlock_page(page);
104 }
105 if (bio->bi_private)
106 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
107 bio_put(bio);
108 }
109
110 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
111
112 static void decrypt_work(struct work_struct *work)
113 {
114 struct bio_post_read_ctx *ctx =
115 container_of(work, struct bio_post_read_ctx, work);
116
117 fscrypt_decrypt_bio(ctx->bio);
118
119 bio_post_read_processing(ctx);
120 }
121
122 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
123 {
124 switch (++ctx->cur_step) {
125 case STEP_DECRYPT:
126 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
127 INIT_WORK(&ctx->work, decrypt_work);
128 fscrypt_enqueue_decrypt_work(&ctx->work);
129 return;
130 }
131 ctx->cur_step++;
132 /* fall-through */
133 default:
134 __read_end_io(ctx->bio);
135 }
136 }
137
138 static bool f2fs_bio_post_read_required(struct bio *bio)
139 {
140 return bio->bi_private && !bio->bi_status;
141 }
142
143 static void f2fs_read_end_io(struct bio *bio)
144 {
145 if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)),
146 FAULT_READ_IO)) {
147 f2fs_show_injection_info(FAULT_READ_IO);
148 bio->bi_status = BLK_STS_IOERR;
149 }
150
151 if (f2fs_bio_post_read_required(bio)) {
152 struct bio_post_read_ctx *ctx = bio->bi_private;
153
154 ctx->cur_step = STEP_INITIAL;
155 bio_post_read_processing(ctx);
156 return;
157 }
158
159 __read_end_io(bio);
160 }
161
162 static void f2fs_write_end_io(struct bio *bio)
163 {
164 struct f2fs_sb_info *sbi = bio->bi_private;
165 struct bio_vec *bvec;
166 struct bvec_iter_all iter_all;
167
168 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
169 f2fs_show_injection_info(FAULT_WRITE_IO);
170 bio->bi_status = BLK_STS_IOERR;
171 }
172
173 bio_for_each_segment_all(bvec, bio, iter_all) {
174 struct page *page = bvec->bv_page;
175 enum count_type type = WB_DATA_TYPE(page);
176
177 if (IS_DUMMY_WRITTEN_PAGE(page)) {
178 set_page_private(page, (unsigned long)NULL);
179 ClearPagePrivate(page);
180 unlock_page(page);
181 mempool_free(page, sbi->write_io_dummy);
182
183 if (unlikely(bio->bi_status))
184 f2fs_stop_checkpoint(sbi, true);
185 continue;
186 }
187
188 fscrypt_pullback_bio_page(&page, true);
189
190 if (unlikely(bio->bi_status)) {
191 mapping_set_error(page->mapping, -EIO);
192 if (type == F2FS_WB_CP_DATA)
193 f2fs_stop_checkpoint(sbi, true);
194 }
195
196 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
197 page->index != nid_of_node(page));
198
199 dec_page_count(sbi, type);
200 if (f2fs_in_warm_node_list(sbi, page))
201 f2fs_del_fsync_node_entry(sbi, page);
202 clear_cold_data(page);
203 end_page_writeback(page);
204 }
205 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
206 wq_has_sleeper(&sbi->cp_wait))
207 wake_up(&sbi->cp_wait);
208
209 bio_put(bio);
210 }
211
212 /*
213 * Return true, if pre_bio's bdev is same as its target device.
214 */
215 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
216 block_t blk_addr, struct bio *bio)
217 {
218 struct block_device *bdev = sbi->sb->s_bdev;
219 int i;
220
221 if (f2fs_is_multi_device(sbi)) {
222 for (i = 0; i < sbi->s_ndevs; i++) {
223 if (FDEV(i).start_blk <= blk_addr &&
224 FDEV(i).end_blk >= blk_addr) {
225 blk_addr -= FDEV(i).start_blk;
226 bdev = FDEV(i).bdev;
227 break;
228 }
229 }
230 }
231 if (bio) {
232 bio_set_dev(bio, bdev);
233 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
234 }
235 return bdev;
236 }
237
238 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
239 {
240 int i;
241
242 if (!f2fs_is_multi_device(sbi))
243 return 0;
244
245 for (i = 0; i < sbi->s_ndevs; i++)
246 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
247 return i;
248 return 0;
249 }
250
251 static bool __same_bdev(struct f2fs_sb_info *sbi,
252 block_t blk_addr, struct bio *bio)
253 {
254 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
255 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
256 }
257
258 /*
259 * Low-level block read/write IO operations.
260 */
261 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
262 struct writeback_control *wbc,
263 int npages, bool is_read,
264 enum page_type type, enum temp_type temp)
265 {
266 struct bio *bio;
267
268 bio = f2fs_bio_alloc(sbi, npages, true);
269
270 f2fs_target_device(sbi, blk_addr, bio);
271 if (is_read) {
272 bio->bi_end_io = f2fs_read_end_io;
273 bio->bi_private = NULL;
274 } else {
275 bio->bi_end_io = f2fs_write_end_io;
276 bio->bi_private = sbi;
277 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
278 }
279 if (wbc)
280 wbc_init_bio(wbc, bio);
281
282 return bio;
283 }
284
285 static inline void __submit_bio(struct f2fs_sb_info *sbi,
286 struct bio *bio, enum page_type type)
287 {
288 if (!is_read_io(bio_op(bio))) {
289 unsigned int start;
290
291 if (type != DATA && type != NODE)
292 goto submit_io;
293
294 if (test_opt(sbi, LFS) && current->plug)
295 blk_finish_plug(current->plug);
296
297 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
298 start %= F2FS_IO_SIZE(sbi);
299
300 if (start == 0)
301 goto submit_io;
302
303 /* fill dummy pages */
304 for (; start < F2FS_IO_SIZE(sbi); start++) {
305 struct page *page =
306 mempool_alloc(sbi->write_io_dummy,
307 GFP_NOIO | __GFP_NOFAIL);
308 f2fs_bug_on(sbi, !page);
309
310 zero_user_segment(page, 0, PAGE_SIZE);
311 SetPagePrivate(page);
312 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
313 lock_page(page);
314 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
315 f2fs_bug_on(sbi, 1);
316 }
317 /*
318 * In the NODE case, we lose next block address chain. So, we
319 * need to do checkpoint in f2fs_sync_file.
320 */
321 if (type == NODE)
322 set_sbi_flag(sbi, SBI_NEED_CP);
323 }
324 submit_io:
325 if (is_read_io(bio_op(bio)))
326 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
327 else
328 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
329 submit_bio(bio);
330 }
331
332 static void __submit_merged_bio(struct f2fs_bio_info *io)
333 {
334 struct f2fs_io_info *fio = &io->fio;
335
336 if (!io->bio)
337 return;
338
339 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
340
341 if (is_read_io(fio->op))
342 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
343 else
344 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
345
346 __submit_bio(io->sbi, io->bio, fio->type);
347 io->bio = NULL;
348 }
349
350 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
351 struct page *page, nid_t ino)
352 {
353 struct bio_vec *bvec;
354 struct page *target;
355 struct bvec_iter_all iter_all;
356
357 if (!io->bio)
358 return false;
359
360 if (!inode && !page && !ino)
361 return true;
362
363 bio_for_each_segment_all(bvec, io->bio, iter_all) {
364
365 if (bvec->bv_page->mapping)
366 target = bvec->bv_page;
367 else
368 target = fscrypt_control_page(bvec->bv_page);
369
370 if (inode && inode == target->mapping->host)
371 return true;
372 if (page && page == target)
373 return true;
374 if (ino && ino == ino_of_node(target))
375 return true;
376 }
377
378 return false;
379 }
380
381 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
382 enum page_type type, enum temp_type temp)
383 {
384 enum page_type btype = PAGE_TYPE_OF_BIO(type);
385 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
386
387 down_write(&io->io_rwsem);
388
389 /* change META to META_FLUSH in the checkpoint procedure */
390 if (type >= META_FLUSH) {
391 io->fio.type = META_FLUSH;
392 io->fio.op = REQ_OP_WRITE;
393 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
394 if (!test_opt(sbi, NOBARRIER))
395 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
396 }
397 __submit_merged_bio(io);
398 up_write(&io->io_rwsem);
399 }
400
401 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
402 struct inode *inode, struct page *page,
403 nid_t ino, enum page_type type, bool force)
404 {
405 enum temp_type temp;
406 bool ret = true;
407
408 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
409 if (!force) {
410 enum page_type btype = PAGE_TYPE_OF_BIO(type);
411 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
412
413 down_read(&io->io_rwsem);
414 ret = __has_merged_page(io, inode, page, ino);
415 up_read(&io->io_rwsem);
416 }
417 if (ret)
418 __f2fs_submit_merged_write(sbi, type, temp);
419
420 /* TODO: use HOT temp only for meta pages now. */
421 if (type >= META)
422 break;
423 }
424 }
425
426 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
427 {
428 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
429 }
430
431 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
432 struct inode *inode, struct page *page,
433 nid_t ino, enum page_type type)
434 {
435 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
436 }
437
438 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
439 {
440 f2fs_submit_merged_write(sbi, DATA);
441 f2fs_submit_merged_write(sbi, NODE);
442 f2fs_submit_merged_write(sbi, META);
443 }
444
445 /*
446 * Fill the locked page with data located in the block address.
447 * A caller needs to unlock the page on failure.
448 */
449 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
450 {
451 struct bio *bio;
452 struct page *page = fio->encrypted_page ?
453 fio->encrypted_page : fio->page;
454
455 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
456 fio->is_por ? META_POR : (__is_meta_io(fio) ?
457 META_GENERIC : DATA_GENERIC_ENHANCE)))
458 return -EFAULT;
459
460 trace_f2fs_submit_page_bio(page, fio);
461 f2fs_trace_ios(fio, 0);
462
463 /* Allocate a new bio */
464 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
465 1, is_read_io(fio->op), fio->type, fio->temp);
466
467 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
468 bio_put(bio);
469 return -EFAULT;
470 }
471
472 if (fio->io_wbc && !is_read_io(fio->op))
473 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
474
475 bio_set_op_attrs(bio, fio->op, fio->op_flags);
476
477 inc_page_count(fio->sbi, is_read_io(fio->op) ?
478 __read_io_type(page): WB_DATA_TYPE(fio->page));
479
480 __submit_bio(fio->sbi, bio, fio->type);
481 return 0;
482 }
483
484 void f2fs_submit_page_write(struct f2fs_io_info *fio)
485 {
486 struct f2fs_sb_info *sbi = fio->sbi;
487 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
488 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
489 struct page *bio_page;
490
491 f2fs_bug_on(sbi, is_read_io(fio->op));
492
493 down_write(&io->io_rwsem);
494 next:
495 if (fio->in_list) {
496 spin_lock(&io->io_lock);
497 if (list_empty(&io->io_list)) {
498 spin_unlock(&io->io_lock);
499 goto out;
500 }
501 fio = list_first_entry(&io->io_list,
502 struct f2fs_io_info, list);
503 list_del(&fio->list);
504 spin_unlock(&io->io_lock);
505 }
506
507 verify_fio_blkaddr(fio);
508
509 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
510
511 /* set submitted = true as a return value */
512 fio->submitted = true;
513
514 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
515
516 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
517 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
518 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
519 __submit_merged_bio(io);
520 alloc_new:
521 if (io->bio == NULL) {
522 if ((fio->type == DATA || fio->type == NODE) &&
523 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
524 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
525 fio->retry = true;
526 goto skip;
527 }
528 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
529 BIO_MAX_PAGES, false,
530 fio->type, fio->temp);
531 io->fio = *fio;
532 }
533
534 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
535 __submit_merged_bio(io);
536 goto alloc_new;
537 }
538
539 if (fio->io_wbc)
540 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
541
542 io->last_block_in_bio = fio->new_blkaddr;
543 f2fs_trace_ios(fio, 0);
544
545 trace_f2fs_submit_page_write(fio->page, fio);
546 skip:
547 if (fio->in_list)
548 goto next;
549 out:
550 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
551 f2fs_is_checkpoint_ready(sbi))
552 __submit_merged_bio(io);
553 up_write(&io->io_rwsem);
554 }
555
556 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
557 unsigned nr_pages, unsigned op_flag)
558 {
559 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
560 struct bio *bio;
561 struct bio_post_read_ctx *ctx;
562 unsigned int post_read_steps = 0;
563
564 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
565 if (!bio)
566 return ERR_PTR(-ENOMEM);
567 f2fs_target_device(sbi, blkaddr, bio);
568 bio->bi_end_io = f2fs_read_end_io;
569 bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
570
571 if (f2fs_encrypted_file(inode))
572 post_read_steps |= 1 << STEP_DECRYPT;
573 if (post_read_steps) {
574 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
575 if (!ctx) {
576 bio_put(bio);
577 return ERR_PTR(-ENOMEM);
578 }
579 ctx->bio = bio;
580 ctx->enabled_steps = post_read_steps;
581 bio->bi_private = ctx;
582 }
583
584 return bio;
585 }
586
587 /* This can handle encryption stuffs */
588 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
589 block_t blkaddr)
590 {
591 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
592 struct bio *bio;
593
594 bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
595 if (IS_ERR(bio))
596 return PTR_ERR(bio);
597
598 /* wait for GCed page writeback via META_MAPPING */
599 f2fs_wait_on_block_writeback(inode, blkaddr);
600
601 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
602 bio_put(bio);
603 return -EFAULT;
604 }
605 ClearPageError(page);
606 inc_page_count(sbi, F2FS_RD_DATA);
607 __submit_bio(sbi, bio, DATA);
608 return 0;
609 }
610
611 static void __set_data_blkaddr(struct dnode_of_data *dn)
612 {
613 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
614 __le32 *addr_array;
615 int base = 0;
616
617 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
618 base = get_extra_isize(dn->inode);
619
620 /* Get physical address of data block */
621 addr_array = blkaddr_in_node(rn);
622 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
623 }
624
625 /*
626 * Lock ordering for the change of data block address:
627 * ->data_page
628 * ->node_page
629 * update block addresses in the node page
630 */
631 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
632 {
633 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
634 __set_data_blkaddr(dn);
635 if (set_page_dirty(dn->node_page))
636 dn->node_changed = true;
637 }
638
639 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
640 {
641 dn->data_blkaddr = blkaddr;
642 f2fs_set_data_blkaddr(dn);
643 f2fs_update_extent_cache(dn);
644 }
645
646 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
647 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
648 {
649 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
650 int err;
651
652 if (!count)
653 return 0;
654
655 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
656 return -EPERM;
657 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
658 return err;
659
660 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
661 dn->ofs_in_node, count);
662
663 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
664
665 for (; count > 0; dn->ofs_in_node++) {
666 block_t blkaddr = datablock_addr(dn->inode,
667 dn->node_page, dn->ofs_in_node);
668 if (blkaddr == NULL_ADDR) {
669 dn->data_blkaddr = NEW_ADDR;
670 __set_data_blkaddr(dn);
671 count--;
672 }
673 }
674
675 if (set_page_dirty(dn->node_page))
676 dn->node_changed = true;
677 return 0;
678 }
679
680 /* Should keep dn->ofs_in_node unchanged */
681 int f2fs_reserve_new_block(struct dnode_of_data *dn)
682 {
683 unsigned int ofs_in_node = dn->ofs_in_node;
684 int ret;
685
686 ret = f2fs_reserve_new_blocks(dn, 1);
687 dn->ofs_in_node = ofs_in_node;
688 return ret;
689 }
690
691 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
692 {
693 bool need_put = dn->inode_page ? false : true;
694 int err;
695
696 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
697 if (err)
698 return err;
699
700 if (dn->data_blkaddr == NULL_ADDR)
701 err = f2fs_reserve_new_block(dn);
702 if (err || need_put)
703 f2fs_put_dnode(dn);
704 return err;
705 }
706
707 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
708 {
709 struct extent_info ei = {0,0,0};
710 struct inode *inode = dn->inode;
711
712 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
713 dn->data_blkaddr = ei.blk + index - ei.fofs;
714 return 0;
715 }
716
717 return f2fs_reserve_block(dn, index);
718 }
719
720 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
721 int op_flags, bool for_write)
722 {
723 struct address_space *mapping = inode->i_mapping;
724 struct dnode_of_data dn;
725 struct page *page;
726 struct extent_info ei = {0,0,0};
727 int err;
728
729 page = f2fs_grab_cache_page(mapping, index, for_write);
730 if (!page)
731 return ERR_PTR(-ENOMEM);
732
733 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
734 dn.data_blkaddr = ei.blk + index - ei.fofs;
735 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
736 DATA_GENERIC_ENHANCE_READ)) {
737 err = -EFAULT;
738 goto put_err;
739 }
740 goto got_it;
741 }
742
743 set_new_dnode(&dn, inode, NULL, NULL, 0);
744 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
745 if (err)
746 goto put_err;
747 f2fs_put_dnode(&dn);
748
749 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
750 err = -ENOENT;
751 goto put_err;
752 }
753 if (dn.data_blkaddr != NEW_ADDR &&
754 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
755 dn.data_blkaddr,
756 DATA_GENERIC_ENHANCE)) {
757 err = -EFAULT;
758 goto put_err;
759 }
760 got_it:
761 if (PageUptodate(page)) {
762 unlock_page(page);
763 return page;
764 }
765
766 /*
767 * A new dentry page is allocated but not able to be written, since its
768 * new inode page couldn't be allocated due to -ENOSPC.
769 * In such the case, its blkaddr can be remained as NEW_ADDR.
770 * see, f2fs_add_link -> f2fs_get_new_data_page ->
771 * f2fs_init_inode_metadata.
772 */
773 if (dn.data_blkaddr == NEW_ADDR) {
774 zero_user_segment(page, 0, PAGE_SIZE);
775 if (!PageUptodate(page))
776 SetPageUptodate(page);
777 unlock_page(page);
778 return page;
779 }
780
781 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
782 if (err)
783 goto put_err;
784 return page;
785
786 put_err:
787 f2fs_put_page(page, 1);
788 return ERR_PTR(err);
789 }
790
791 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
792 {
793 struct address_space *mapping = inode->i_mapping;
794 struct page *page;
795
796 page = find_get_page(mapping, index);
797 if (page && PageUptodate(page))
798 return page;
799 f2fs_put_page(page, 0);
800
801 page = f2fs_get_read_data_page(inode, index, 0, false);
802 if (IS_ERR(page))
803 return page;
804
805 if (PageUptodate(page))
806 return page;
807
808 wait_on_page_locked(page);
809 if (unlikely(!PageUptodate(page))) {
810 f2fs_put_page(page, 0);
811 return ERR_PTR(-EIO);
812 }
813 return page;
814 }
815
816 /*
817 * If it tries to access a hole, return an error.
818 * Because, the callers, functions in dir.c and GC, should be able to know
819 * whether this page exists or not.
820 */
821 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
822 bool for_write)
823 {
824 struct address_space *mapping = inode->i_mapping;
825 struct page *page;
826 repeat:
827 page = f2fs_get_read_data_page(inode, index, 0, for_write);
828 if (IS_ERR(page))
829 return page;
830
831 /* wait for read completion */
832 lock_page(page);
833 if (unlikely(page->mapping != mapping)) {
834 f2fs_put_page(page, 1);
835 goto repeat;
836 }
837 if (unlikely(!PageUptodate(page))) {
838 f2fs_put_page(page, 1);
839 return ERR_PTR(-EIO);
840 }
841 return page;
842 }
843
844 /*
845 * Caller ensures that this data page is never allocated.
846 * A new zero-filled data page is allocated in the page cache.
847 *
848 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
849 * f2fs_unlock_op().
850 * Note that, ipage is set only by make_empty_dir, and if any error occur,
851 * ipage should be released by this function.
852 */
853 struct page *f2fs_get_new_data_page(struct inode *inode,
854 struct page *ipage, pgoff_t index, bool new_i_size)
855 {
856 struct address_space *mapping = inode->i_mapping;
857 struct page *page;
858 struct dnode_of_data dn;
859 int err;
860
861 page = f2fs_grab_cache_page(mapping, index, true);
862 if (!page) {
863 /*
864 * before exiting, we should make sure ipage will be released
865 * if any error occur.
866 */
867 f2fs_put_page(ipage, 1);
868 return ERR_PTR(-ENOMEM);
869 }
870
871 set_new_dnode(&dn, inode, ipage, NULL, 0);
872 err = f2fs_reserve_block(&dn, index);
873 if (err) {
874 f2fs_put_page(page, 1);
875 return ERR_PTR(err);
876 }
877 if (!ipage)
878 f2fs_put_dnode(&dn);
879
880 if (PageUptodate(page))
881 goto got_it;
882
883 if (dn.data_blkaddr == NEW_ADDR) {
884 zero_user_segment(page, 0, PAGE_SIZE);
885 if (!PageUptodate(page))
886 SetPageUptodate(page);
887 } else {
888 f2fs_put_page(page, 1);
889
890 /* if ipage exists, blkaddr should be NEW_ADDR */
891 f2fs_bug_on(F2FS_I_SB(inode), ipage);
892 page = f2fs_get_lock_data_page(inode, index, true);
893 if (IS_ERR(page))
894 return page;
895 }
896 got_it:
897 if (new_i_size && i_size_read(inode) <
898 ((loff_t)(index + 1) << PAGE_SHIFT))
899 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
900 return page;
901 }
902
903 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
904 {
905 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
906 struct f2fs_summary sum;
907 struct node_info ni;
908 block_t old_blkaddr;
909 blkcnt_t count = 1;
910 int err;
911
912 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
913 return -EPERM;
914
915 err = f2fs_get_node_info(sbi, dn->nid, &ni);
916 if (err)
917 return err;
918
919 dn->data_blkaddr = datablock_addr(dn->inode,
920 dn->node_page, dn->ofs_in_node);
921 if (dn->data_blkaddr != NULL_ADDR)
922 goto alloc;
923
924 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
925 return err;
926
927 alloc:
928 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
929 old_blkaddr = dn->data_blkaddr;
930 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
931 &sum, seg_type, NULL, false);
932 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
933 invalidate_mapping_pages(META_MAPPING(sbi),
934 old_blkaddr, old_blkaddr);
935 f2fs_set_data_blkaddr(dn);
936
937 /*
938 * i_size will be updated by direct_IO. Otherwise, we'll get stale
939 * data from unwritten block via dio_read.
940 */
941 return 0;
942 }
943
944 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
945 {
946 struct inode *inode = file_inode(iocb->ki_filp);
947 struct f2fs_map_blocks map;
948 int flag;
949 int err = 0;
950 bool direct_io = iocb->ki_flags & IOCB_DIRECT;
951
952 /* convert inline data for Direct I/O*/
953 if (direct_io) {
954 err = f2fs_convert_inline_inode(inode);
955 if (err)
956 return err;
957 }
958
959 if (direct_io && allow_outplace_dio(inode, iocb, from))
960 return 0;
961
962 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
963 return 0;
964
965 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
966 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
967 if (map.m_len > map.m_lblk)
968 map.m_len -= map.m_lblk;
969 else
970 map.m_len = 0;
971
972 map.m_next_pgofs = NULL;
973 map.m_next_extent = NULL;
974 map.m_seg_type = NO_CHECK_TYPE;
975 map.m_may_create = true;
976
977 if (direct_io) {
978 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
979 flag = f2fs_force_buffered_io(inode, iocb, from) ?
980 F2FS_GET_BLOCK_PRE_AIO :
981 F2FS_GET_BLOCK_PRE_DIO;
982 goto map_blocks;
983 }
984 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
985 err = f2fs_convert_inline_inode(inode);
986 if (err)
987 return err;
988 }
989 if (f2fs_has_inline_data(inode))
990 return err;
991
992 flag = F2FS_GET_BLOCK_PRE_AIO;
993
994 map_blocks:
995 err = f2fs_map_blocks(inode, &map, 1, flag);
996 if (map.m_len > 0 && err == -ENOSPC) {
997 if (!direct_io)
998 set_inode_flag(inode, FI_NO_PREALLOC);
999 err = 0;
1000 }
1001 return err;
1002 }
1003
1004 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1005 {
1006 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1007 if (lock)
1008 down_read(&sbi->node_change);
1009 else
1010 up_read(&sbi->node_change);
1011 } else {
1012 if (lock)
1013 f2fs_lock_op(sbi);
1014 else
1015 f2fs_unlock_op(sbi);
1016 }
1017 }
1018
1019 /*
1020 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1021 * f2fs_map_blocks structure.
1022 * If original data blocks are allocated, then give them to blockdev.
1023 * Otherwise,
1024 * a. preallocate requested block addresses
1025 * b. do not use extent cache for better performance
1026 * c. give the block addresses to blockdev
1027 */
1028 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1029 int create, int flag)
1030 {
1031 unsigned int maxblocks = map->m_len;
1032 struct dnode_of_data dn;
1033 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1034 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1035 pgoff_t pgofs, end_offset, end;
1036 int err = 0, ofs = 1;
1037 unsigned int ofs_in_node, last_ofs_in_node;
1038 blkcnt_t prealloc;
1039 struct extent_info ei = {0,0,0};
1040 block_t blkaddr;
1041 unsigned int start_pgofs;
1042
1043 if (!maxblocks)
1044 return 0;
1045
1046 map->m_len = 0;
1047 map->m_flags = 0;
1048
1049 /* it only supports block size == page size */
1050 pgofs = (pgoff_t)map->m_lblk;
1051 end = pgofs + maxblocks;
1052
1053 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1054 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1055 map->m_may_create)
1056 goto next_dnode;
1057
1058 map->m_pblk = ei.blk + pgofs - ei.fofs;
1059 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1060 map->m_flags = F2FS_MAP_MAPPED;
1061 if (map->m_next_extent)
1062 *map->m_next_extent = pgofs + map->m_len;
1063
1064 /* for hardware encryption, but to avoid potential issue in future */
1065 if (flag == F2FS_GET_BLOCK_DIO)
1066 f2fs_wait_on_block_writeback_range(inode,
1067 map->m_pblk, map->m_len);
1068 goto out;
1069 }
1070
1071 next_dnode:
1072 if (map->m_may_create)
1073 __do_map_lock(sbi, flag, true);
1074
1075 /* When reading holes, we need its node page */
1076 set_new_dnode(&dn, inode, NULL, NULL, 0);
1077 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1078 if (err) {
1079 if (flag == F2FS_GET_BLOCK_BMAP)
1080 map->m_pblk = 0;
1081 if (err == -ENOENT) {
1082 err = 0;
1083 if (map->m_next_pgofs)
1084 *map->m_next_pgofs =
1085 f2fs_get_next_page_offset(&dn, pgofs);
1086 if (map->m_next_extent)
1087 *map->m_next_extent =
1088 f2fs_get_next_page_offset(&dn, pgofs);
1089 }
1090 goto unlock_out;
1091 }
1092
1093 start_pgofs = pgofs;
1094 prealloc = 0;
1095 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1096 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1097
1098 next_block:
1099 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1100
1101 if (__is_valid_data_blkaddr(blkaddr) &&
1102 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1103 err = -EFAULT;
1104 goto sync_out;
1105 }
1106
1107 if (__is_valid_data_blkaddr(blkaddr)) {
1108 /* use out-place-update for driect IO under LFS mode */
1109 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1110 map->m_may_create) {
1111 err = __allocate_data_block(&dn, map->m_seg_type);
1112 if (!err) {
1113 blkaddr = dn.data_blkaddr;
1114 set_inode_flag(inode, FI_APPEND_WRITE);
1115 }
1116 }
1117 } else {
1118 if (create) {
1119 if (unlikely(f2fs_cp_error(sbi))) {
1120 err = -EIO;
1121 goto sync_out;
1122 }
1123 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1124 if (blkaddr == NULL_ADDR) {
1125 prealloc++;
1126 last_ofs_in_node = dn.ofs_in_node;
1127 }
1128 } else {
1129 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1130 flag != F2FS_GET_BLOCK_DIO);
1131 err = __allocate_data_block(&dn,
1132 map->m_seg_type);
1133 if (!err)
1134 set_inode_flag(inode, FI_APPEND_WRITE);
1135 }
1136 if (err)
1137 goto sync_out;
1138 map->m_flags |= F2FS_MAP_NEW;
1139 blkaddr = dn.data_blkaddr;
1140 } else {
1141 if (flag == F2FS_GET_BLOCK_BMAP) {
1142 map->m_pblk = 0;
1143 goto sync_out;
1144 }
1145 if (flag == F2FS_GET_BLOCK_PRECACHE)
1146 goto sync_out;
1147 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1148 blkaddr == NULL_ADDR) {
1149 if (map->m_next_pgofs)
1150 *map->m_next_pgofs = pgofs + 1;
1151 goto sync_out;
1152 }
1153 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1154 /* for defragment case */
1155 if (map->m_next_pgofs)
1156 *map->m_next_pgofs = pgofs + 1;
1157 goto sync_out;
1158 }
1159 }
1160 }
1161
1162 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1163 goto skip;
1164
1165 if (map->m_len == 0) {
1166 /* preallocated unwritten block should be mapped for fiemap. */
1167 if (blkaddr == NEW_ADDR)
1168 map->m_flags |= F2FS_MAP_UNWRITTEN;
1169 map->m_flags |= F2FS_MAP_MAPPED;
1170
1171 map->m_pblk = blkaddr;
1172 map->m_len = 1;
1173 } else if ((map->m_pblk != NEW_ADDR &&
1174 blkaddr == (map->m_pblk + ofs)) ||
1175 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1176 flag == F2FS_GET_BLOCK_PRE_DIO) {
1177 ofs++;
1178 map->m_len++;
1179 } else {
1180 goto sync_out;
1181 }
1182
1183 skip:
1184 dn.ofs_in_node++;
1185 pgofs++;
1186
1187 /* preallocate blocks in batch for one dnode page */
1188 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1189 (pgofs == end || dn.ofs_in_node == end_offset)) {
1190
1191 dn.ofs_in_node = ofs_in_node;
1192 err = f2fs_reserve_new_blocks(&dn, prealloc);
1193 if (err)
1194 goto sync_out;
1195
1196 map->m_len += dn.ofs_in_node - ofs_in_node;
1197 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1198 err = -ENOSPC;
1199 goto sync_out;
1200 }
1201 dn.ofs_in_node = end_offset;
1202 }
1203
1204 if (pgofs >= end)
1205 goto sync_out;
1206 else if (dn.ofs_in_node < end_offset)
1207 goto next_block;
1208
1209 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1210 if (map->m_flags & F2FS_MAP_MAPPED) {
1211 unsigned int ofs = start_pgofs - map->m_lblk;
1212
1213 f2fs_update_extent_cache_range(&dn,
1214 start_pgofs, map->m_pblk + ofs,
1215 map->m_len - ofs);
1216 }
1217 }
1218
1219 f2fs_put_dnode(&dn);
1220
1221 if (map->m_may_create) {
1222 __do_map_lock(sbi, flag, false);
1223 f2fs_balance_fs(sbi, dn.node_changed);
1224 }
1225 goto next_dnode;
1226
1227 sync_out:
1228
1229 /* for hardware encryption, but to avoid potential issue in future */
1230 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1231 f2fs_wait_on_block_writeback_range(inode,
1232 map->m_pblk, map->m_len);
1233
1234 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1235 if (map->m_flags & F2FS_MAP_MAPPED) {
1236 unsigned int ofs = start_pgofs - map->m_lblk;
1237
1238 f2fs_update_extent_cache_range(&dn,
1239 start_pgofs, map->m_pblk + ofs,
1240 map->m_len - ofs);
1241 }
1242 if (map->m_next_extent)
1243 *map->m_next_extent = pgofs + 1;
1244 }
1245 f2fs_put_dnode(&dn);
1246 unlock_out:
1247 if (map->m_may_create) {
1248 __do_map_lock(sbi, flag, false);
1249 f2fs_balance_fs(sbi, dn.node_changed);
1250 }
1251 out:
1252 trace_f2fs_map_blocks(inode, map, err);
1253 return err;
1254 }
1255
1256 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1257 {
1258 struct f2fs_map_blocks map;
1259 block_t last_lblk;
1260 int err;
1261
1262 if (pos + len > i_size_read(inode))
1263 return false;
1264
1265 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1266 map.m_next_pgofs = NULL;
1267 map.m_next_extent = NULL;
1268 map.m_seg_type = NO_CHECK_TYPE;
1269 map.m_may_create = false;
1270 last_lblk = F2FS_BLK_ALIGN(pos + len);
1271
1272 while (map.m_lblk < last_lblk) {
1273 map.m_len = last_lblk - map.m_lblk;
1274 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1275 if (err || map.m_len == 0)
1276 return false;
1277 map.m_lblk += map.m_len;
1278 }
1279 return true;
1280 }
1281
1282 static int __get_data_block(struct inode *inode, sector_t iblock,
1283 struct buffer_head *bh, int create, int flag,
1284 pgoff_t *next_pgofs, int seg_type, bool may_write)
1285 {
1286 struct f2fs_map_blocks map;
1287 int err;
1288
1289 map.m_lblk = iblock;
1290 map.m_len = bh->b_size >> inode->i_blkbits;
1291 map.m_next_pgofs = next_pgofs;
1292 map.m_next_extent = NULL;
1293 map.m_seg_type = seg_type;
1294 map.m_may_create = may_write;
1295
1296 err = f2fs_map_blocks(inode, &map, create, flag);
1297 if (!err) {
1298 map_bh(bh, inode->i_sb, map.m_pblk);
1299 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1300 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1301 }
1302 return err;
1303 }
1304
1305 static int get_data_block(struct inode *inode, sector_t iblock,
1306 struct buffer_head *bh_result, int create, int flag,
1307 pgoff_t *next_pgofs)
1308 {
1309 return __get_data_block(inode, iblock, bh_result, create,
1310 flag, next_pgofs,
1311 NO_CHECK_TYPE, create);
1312 }
1313
1314 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1315 struct buffer_head *bh_result, int create)
1316 {
1317 return __get_data_block(inode, iblock, bh_result, create,
1318 F2FS_GET_BLOCK_DIO, NULL,
1319 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1320 true);
1321 }
1322
1323 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1324 struct buffer_head *bh_result, int create)
1325 {
1326 return __get_data_block(inode, iblock, bh_result, create,
1327 F2FS_GET_BLOCK_DIO, NULL,
1328 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1329 false);
1330 }
1331
1332 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1333 struct buffer_head *bh_result, int create)
1334 {
1335 /* Block number less than F2FS MAX BLOCKS */
1336 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1337 return -EFBIG;
1338
1339 return __get_data_block(inode, iblock, bh_result, create,
1340 F2FS_GET_BLOCK_BMAP, NULL,
1341 NO_CHECK_TYPE, create);
1342 }
1343
1344 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1345 {
1346 return (offset >> inode->i_blkbits);
1347 }
1348
1349 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1350 {
1351 return (blk << inode->i_blkbits);
1352 }
1353
1354 static int f2fs_xattr_fiemap(struct inode *inode,
1355 struct fiemap_extent_info *fieinfo)
1356 {
1357 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1358 struct page *page;
1359 struct node_info ni;
1360 __u64 phys = 0, len;
1361 __u32 flags;
1362 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1363 int err = 0;
1364
1365 if (f2fs_has_inline_xattr(inode)) {
1366 int offset;
1367
1368 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1369 inode->i_ino, false);
1370 if (!page)
1371 return -ENOMEM;
1372
1373 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1374 if (err) {
1375 f2fs_put_page(page, 1);
1376 return err;
1377 }
1378
1379 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1380 offset = offsetof(struct f2fs_inode, i_addr) +
1381 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1382 get_inline_xattr_addrs(inode));
1383
1384 phys += offset;
1385 len = inline_xattr_size(inode);
1386
1387 f2fs_put_page(page, 1);
1388
1389 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1390
1391 if (!xnid)
1392 flags |= FIEMAP_EXTENT_LAST;
1393
1394 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1395 if (err || err == 1)
1396 return err;
1397 }
1398
1399 if (xnid) {
1400 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1401 if (!page)
1402 return -ENOMEM;
1403
1404 err = f2fs_get_node_info(sbi, xnid, &ni);
1405 if (err) {
1406 f2fs_put_page(page, 1);
1407 return err;
1408 }
1409
1410 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1411 len = inode->i_sb->s_blocksize;
1412
1413 f2fs_put_page(page, 1);
1414
1415 flags = FIEMAP_EXTENT_LAST;
1416 }
1417
1418 if (phys)
1419 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1420
1421 return (err < 0 ? err : 0);
1422 }
1423
1424 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1425 u64 start, u64 len)
1426 {
1427 struct buffer_head map_bh;
1428 sector_t start_blk, last_blk;
1429 pgoff_t next_pgofs;
1430 u64 logical = 0, phys = 0, size = 0;
1431 u32 flags = 0;
1432 int ret = 0;
1433
1434 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1435 ret = f2fs_precache_extents(inode);
1436 if (ret)
1437 return ret;
1438 }
1439
1440 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1441 if (ret)
1442 return ret;
1443
1444 inode_lock(inode);
1445
1446 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1447 ret = f2fs_xattr_fiemap(inode, fieinfo);
1448 goto out;
1449 }
1450
1451 if (f2fs_has_inline_data(inode)) {
1452 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1453 if (ret != -EAGAIN)
1454 goto out;
1455 }
1456
1457 if (logical_to_blk(inode, len) == 0)
1458 len = blk_to_logical(inode, 1);
1459
1460 start_blk = logical_to_blk(inode, start);
1461 last_blk = logical_to_blk(inode, start + len - 1);
1462
1463 next:
1464 memset(&map_bh, 0, sizeof(struct buffer_head));
1465 map_bh.b_size = len;
1466
1467 ret = get_data_block(inode, start_blk, &map_bh, 0,
1468 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1469 if (ret)
1470 goto out;
1471
1472 /* HOLE */
1473 if (!buffer_mapped(&map_bh)) {
1474 start_blk = next_pgofs;
1475
1476 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1477 F2FS_I_SB(inode)->max_file_blocks))
1478 goto prep_next;
1479
1480 flags |= FIEMAP_EXTENT_LAST;
1481 }
1482
1483 if (size) {
1484 if (IS_ENCRYPTED(inode))
1485 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1486
1487 ret = fiemap_fill_next_extent(fieinfo, logical,
1488 phys, size, flags);
1489 }
1490
1491 if (start_blk > last_blk || ret)
1492 goto out;
1493
1494 logical = blk_to_logical(inode, start_blk);
1495 phys = blk_to_logical(inode, map_bh.b_blocknr);
1496 size = map_bh.b_size;
1497 flags = 0;
1498 if (buffer_unwritten(&map_bh))
1499 flags = FIEMAP_EXTENT_UNWRITTEN;
1500
1501 start_blk += logical_to_blk(inode, size);
1502
1503 prep_next:
1504 cond_resched();
1505 if (fatal_signal_pending(current))
1506 ret = -EINTR;
1507 else
1508 goto next;
1509 out:
1510 if (ret == 1)
1511 ret = 0;
1512
1513 inode_unlock(inode);
1514 return ret;
1515 }
1516
1517 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1518 unsigned nr_pages,
1519 struct f2fs_map_blocks *map,
1520 struct bio **bio_ret,
1521 sector_t *last_block_in_bio,
1522 bool is_readahead)
1523 {
1524 struct bio *bio = *bio_ret;
1525 const unsigned blkbits = inode->i_blkbits;
1526 const unsigned blocksize = 1 << blkbits;
1527 sector_t block_in_file;
1528 sector_t last_block;
1529 sector_t last_block_in_file;
1530 sector_t block_nr;
1531 int ret = 0;
1532
1533 block_in_file = (sector_t)page->index;
1534 last_block = block_in_file + nr_pages;
1535 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1536 blkbits;
1537 if (last_block > last_block_in_file)
1538 last_block = last_block_in_file;
1539
1540 /* just zeroing out page which is beyond EOF */
1541 if (block_in_file >= last_block)
1542 goto zero_out;
1543 /*
1544 * Map blocks using the previous result first.
1545 */
1546 if ((map->m_flags & F2FS_MAP_MAPPED) &&
1547 block_in_file > map->m_lblk &&
1548 block_in_file < (map->m_lblk + map->m_len))
1549 goto got_it;
1550
1551 /*
1552 * Then do more f2fs_map_blocks() calls until we are
1553 * done with this page.
1554 */
1555 map->m_lblk = block_in_file;
1556 map->m_len = last_block - block_in_file;
1557
1558 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1559 if (ret)
1560 goto out;
1561 got_it:
1562 if ((map->m_flags & F2FS_MAP_MAPPED)) {
1563 block_nr = map->m_pblk + block_in_file - map->m_lblk;
1564 SetPageMappedToDisk(page);
1565
1566 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1567 SetPageUptodate(page);
1568 goto confused;
1569 }
1570
1571 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1572 DATA_GENERIC_ENHANCE_READ)) {
1573 ret = -EFAULT;
1574 goto out;
1575 }
1576 } else {
1577 zero_out:
1578 zero_user_segment(page, 0, PAGE_SIZE);
1579 if (!PageUptodate(page))
1580 SetPageUptodate(page);
1581 unlock_page(page);
1582 goto out;
1583 }
1584
1585 /*
1586 * This page will go to BIO. Do we need to send this
1587 * BIO off first?
1588 */
1589 if (bio && (*last_block_in_bio != block_nr - 1 ||
1590 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1591 submit_and_realloc:
1592 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1593 bio = NULL;
1594 }
1595 if (bio == NULL) {
1596 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1597 is_readahead ? REQ_RAHEAD : 0);
1598 if (IS_ERR(bio)) {
1599 ret = PTR_ERR(bio);
1600 bio = NULL;
1601 goto out;
1602 }
1603 }
1604
1605 /*
1606 * If the page is under writeback, we need to wait for
1607 * its completion to see the correct decrypted data.
1608 */
1609 f2fs_wait_on_block_writeback(inode, block_nr);
1610
1611 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1612 goto submit_and_realloc;
1613
1614 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1615 ClearPageError(page);
1616 *last_block_in_bio = block_nr;
1617 goto out;
1618 confused:
1619 if (bio) {
1620 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1621 bio = NULL;
1622 }
1623 unlock_page(page);
1624 out:
1625 *bio_ret = bio;
1626 return ret;
1627 }
1628
1629 /*
1630 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1631 * Major change was from block_size == page_size in f2fs by default.
1632 *
1633 * Note that the aops->readpages() function is ONLY used for read-ahead. If
1634 * this function ever deviates from doing just read-ahead, it should either
1635 * use ->readpage() or do the necessary surgery to decouple ->readpages()
1636 * from read-ahead.
1637 */
1638 static int f2fs_mpage_readpages(struct address_space *mapping,
1639 struct list_head *pages, struct page *page,
1640 unsigned nr_pages, bool is_readahead)
1641 {
1642 struct bio *bio = NULL;
1643 sector_t last_block_in_bio = 0;
1644 struct inode *inode = mapping->host;
1645 struct f2fs_map_blocks map;
1646 int ret = 0;
1647
1648 map.m_pblk = 0;
1649 map.m_lblk = 0;
1650 map.m_len = 0;
1651 map.m_flags = 0;
1652 map.m_next_pgofs = NULL;
1653 map.m_next_extent = NULL;
1654 map.m_seg_type = NO_CHECK_TYPE;
1655 map.m_may_create = false;
1656
1657 for (; nr_pages; nr_pages--) {
1658 if (pages) {
1659 page = list_last_entry(pages, struct page, lru);
1660
1661 prefetchw(&page->flags);
1662 list_del(&page->lru);
1663 if (add_to_page_cache_lru(page, mapping,
1664 page->index,
1665 readahead_gfp_mask(mapping)))
1666 goto next_page;
1667 }
1668
1669 ret = f2fs_read_single_page(inode, page, nr_pages, &map, &bio,
1670 &last_block_in_bio, is_readahead);
1671 if (ret) {
1672 SetPageError(page);
1673 zero_user_segment(page, 0, PAGE_SIZE);
1674 unlock_page(page);
1675 }
1676 next_page:
1677 if (pages)
1678 put_page(page);
1679 }
1680 BUG_ON(pages && !list_empty(pages));
1681 if (bio)
1682 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1683 return pages ? 0 : ret;
1684 }
1685
1686 static int f2fs_read_data_page(struct file *file, struct page *page)
1687 {
1688 struct inode *inode = page->mapping->host;
1689 int ret = -EAGAIN;
1690
1691 trace_f2fs_readpage(page, DATA);
1692
1693 /* If the file has inline data, try to read it directly */
1694 if (f2fs_has_inline_data(inode))
1695 ret = f2fs_read_inline_data(inode, page);
1696 if (ret == -EAGAIN)
1697 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false);
1698 return ret;
1699 }
1700
1701 static int f2fs_read_data_pages(struct file *file,
1702 struct address_space *mapping,
1703 struct list_head *pages, unsigned nr_pages)
1704 {
1705 struct inode *inode = mapping->host;
1706 struct page *page = list_last_entry(pages, struct page, lru);
1707
1708 trace_f2fs_readpages(inode, page, nr_pages);
1709
1710 /* If the file has inline data, skip readpages */
1711 if (f2fs_has_inline_data(inode))
1712 return 0;
1713
1714 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1715 }
1716
1717 static int encrypt_one_page(struct f2fs_io_info *fio)
1718 {
1719 struct inode *inode = fio->page->mapping->host;
1720 struct page *mpage;
1721 gfp_t gfp_flags = GFP_NOFS;
1722
1723 if (!f2fs_encrypted_file(inode))
1724 return 0;
1725
1726 /* wait for GCed page writeback via META_MAPPING */
1727 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1728
1729 retry_encrypt:
1730 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1731 PAGE_SIZE, 0, fio->page->index, gfp_flags);
1732 if (IS_ERR(fio->encrypted_page)) {
1733 /* flush pending IOs and wait for a while in the ENOMEM case */
1734 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1735 f2fs_flush_merged_writes(fio->sbi);
1736 congestion_wait(BLK_RW_ASYNC, HZ/50);
1737 gfp_flags |= __GFP_NOFAIL;
1738 goto retry_encrypt;
1739 }
1740 return PTR_ERR(fio->encrypted_page);
1741 }
1742
1743 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1744 if (mpage) {
1745 if (PageUptodate(mpage))
1746 memcpy(page_address(mpage),
1747 page_address(fio->encrypted_page), PAGE_SIZE);
1748 f2fs_put_page(mpage, 1);
1749 }
1750 return 0;
1751 }
1752
1753 static inline bool check_inplace_update_policy(struct inode *inode,
1754 struct f2fs_io_info *fio)
1755 {
1756 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1757 unsigned int policy = SM_I(sbi)->ipu_policy;
1758
1759 if (policy & (0x1 << F2FS_IPU_FORCE))
1760 return true;
1761 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1762 return true;
1763 if (policy & (0x1 << F2FS_IPU_UTIL) &&
1764 utilization(sbi) > SM_I(sbi)->min_ipu_util)
1765 return true;
1766 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1767 utilization(sbi) > SM_I(sbi)->min_ipu_util)
1768 return true;
1769
1770 /*
1771 * IPU for rewrite async pages
1772 */
1773 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1774 fio && fio->op == REQ_OP_WRITE &&
1775 !(fio->op_flags & REQ_SYNC) &&
1776 !IS_ENCRYPTED(inode))
1777 return true;
1778
1779 /* this is only set during fdatasync */
1780 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1781 is_inode_flag_set(inode, FI_NEED_IPU))
1782 return true;
1783
1784 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1785 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1786 return true;
1787
1788 return false;
1789 }
1790
1791 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1792 {
1793 if (f2fs_is_pinned_file(inode))
1794 return true;
1795
1796 /* if this is cold file, we should overwrite to avoid fragmentation */
1797 if (file_is_cold(inode))
1798 return true;
1799
1800 return check_inplace_update_policy(inode, fio);
1801 }
1802
1803 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1804 {
1805 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1806
1807 if (test_opt(sbi, LFS))
1808 return true;
1809 if (S_ISDIR(inode->i_mode))
1810 return true;
1811 if (IS_NOQUOTA(inode))
1812 return true;
1813 if (f2fs_is_atomic_file(inode))
1814 return true;
1815 if (fio) {
1816 if (is_cold_data(fio->page))
1817 return true;
1818 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1819 return true;
1820 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1821 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1822 return true;
1823 }
1824 return false;
1825 }
1826
1827 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1828 {
1829 struct inode *inode = fio->page->mapping->host;
1830
1831 if (f2fs_should_update_outplace(inode, fio))
1832 return false;
1833
1834 return f2fs_should_update_inplace(inode, fio);
1835 }
1836
1837 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1838 {
1839 struct page *page = fio->page;
1840 struct inode *inode = page->mapping->host;
1841 struct dnode_of_data dn;
1842 struct extent_info ei = {0,0,0};
1843 struct node_info ni;
1844 bool ipu_force = false;
1845 int err = 0;
1846
1847 set_new_dnode(&dn, inode, NULL, NULL, 0);
1848 if (need_inplace_update(fio) &&
1849 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1850 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1851
1852 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1853 DATA_GENERIC_ENHANCE))
1854 return -EFAULT;
1855
1856 ipu_force = true;
1857 fio->need_lock = LOCK_DONE;
1858 goto got_it;
1859 }
1860
1861 /* Deadlock due to between page->lock and f2fs_lock_op */
1862 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1863 return -EAGAIN;
1864
1865 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1866 if (err)
1867 goto out;
1868
1869 fio->old_blkaddr = dn.data_blkaddr;
1870
1871 /* This page is already truncated */
1872 if (fio->old_blkaddr == NULL_ADDR) {
1873 ClearPageUptodate(page);
1874 clear_cold_data(page);
1875 goto out_writepage;
1876 }
1877 got_it:
1878 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1879 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1880 DATA_GENERIC_ENHANCE)) {
1881 err = -EFAULT;
1882 goto out_writepage;
1883 }
1884 /*
1885 * If current allocation needs SSR,
1886 * it had better in-place writes for updated data.
1887 */
1888 if (ipu_force ||
1889 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1890 need_inplace_update(fio))) {
1891 err = encrypt_one_page(fio);
1892 if (err)
1893 goto out_writepage;
1894
1895 set_page_writeback(page);
1896 ClearPageError(page);
1897 f2fs_put_dnode(&dn);
1898 if (fio->need_lock == LOCK_REQ)
1899 f2fs_unlock_op(fio->sbi);
1900 err = f2fs_inplace_write_data(fio);
1901 if (err) {
1902 if (f2fs_encrypted_file(inode))
1903 fscrypt_pullback_bio_page(&fio->encrypted_page,
1904 true);
1905 if (PageWriteback(page))
1906 end_page_writeback(page);
1907 } else {
1908 set_inode_flag(inode, FI_UPDATE_WRITE);
1909 }
1910 trace_f2fs_do_write_data_page(fio->page, IPU);
1911 return err;
1912 }
1913
1914 if (fio->need_lock == LOCK_RETRY) {
1915 if (!f2fs_trylock_op(fio->sbi)) {
1916 err = -EAGAIN;
1917 goto out_writepage;
1918 }
1919 fio->need_lock = LOCK_REQ;
1920 }
1921
1922 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1923 if (err)
1924 goto out_writepage;
1925
1926 fio->version = ni.version;
1927
1928 err = encrypt_one_page(fio);
1929 if (err)
1930 goto out_writepage;
1931
1932 set_page_writeback(page);
1933 ClearPageError(page);
1934
1935 /* LFS mode write path */
1936 f2fs_outplace_write_data(&dn, fio);
1937 trace_f2fs_do_write_data_page(page, OPU);
1938 set_inode_flag(inode, FI_APPEND_WRITE);
1939 if (page->index == 0)
1940 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1941 out_writepage:
1942 f2fs_put_dnode(&dn);
1943 out:
1944 if (fio->need_lock == LOCK_REQ)
1945 f2fs_unlock_op(fio->sbi);
1946 return err;
1947 }
1948
1949 static int __write_data_page(struct page *page, bool *submitted,
1950 struct writeback_control *wbc,
1951 enum iostat_type io_type)
1952 {
1953 struct inode *inode = page->mapping->host;
1954 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1955 loff_t i_size = i_size_read(inode);
1956 const pgoff_t end_index = ((unsigned long long) i_size)
1957 >> PAGE_SHIFT;
1958 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1959 unsigned offset = 0;
1960 bool need_balance_fs = false;
1961 int err = 0;
1962 struct f2fs_io_info fio = {
1963 .sbi = sbi,
1964 .ino = inode->i_ino,
1965 .type = DATA,
1966 .op = REQ_OP_WRITE,
1967 .op_flags = wbc_to_write_flags(wbc),
1968 .old_blkaddr = NULL_ADDR,
1969 .page = page,
1970 .encrypted_page = NULL,
1971 .submitted = false,
1972 .need_lock = LOCK_RETRY,
1973 .io_type = io_type,
1974 .io_wbc = wbc,
1975 };
1976
1977 trace_f2fs_writepage(page, DATA);
1978
1979 /* we should bypass data pages to proceed the kworkder jobs */
1980 if (unlikely(f2fs_cp_error(sbi))) {
1981 mapping_set_error(page->mapping, -EIO);
1982 /*
1983 * don't drop any dirty dentry pages for keeping lastest
1984 * directory structure.
1985 */
1986 if (S_ISDIR(inode->i_mode))
1987 goto redirty_out;
1988 goto out;
1989 }
1990
1991 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1992 goto redirty_out;
1993
1994 if (page->index < end_index)
1995 goto write;
1996
1997 /*
1998 * If the offset is out-of-range of file size,
1999 * this page does not have to be written to disk.
2000 */
2001 offset = i_size & (PAGE_SIZE - 1);
2002 if ((page->index >= end_index + 1) || !offset)
2003 goto out;
2004
2005 zero_user_segment(page, offset, PAGE_SIZE);
2006 write:
2007 if (f2fs_is_drop_cache(inode))
2008 goto out;
2009 /* we should not write 0'th page having journal header */
2010 if (f2fs_is_volatile_file(inode) && (!page->index ||
2011 (!wbc->for_reclaim &&
2012 f2fs_available_free_memory(sbi, BASE_CHECK))))
2013 goto redirty_out;
2014
2015 /* Dentry blocks are controlled by checkpoint */
2016 if (S_ISDIR(inode->i_mode)) {
2017 fio.need_lock = LOCK_DONE;
2018 err = f2fs_do_write_data_page(&fio);
2019 goto done;
2020 }
2021
2022 if (!wbc->for_reclaim)
2023 need_balance_fs = true;
2024 else if (has_not_enough_free_secs(sbi, 0, 0))
2025 goto redirty_out;
2026 else
2027 set_inode_flag(inode, FI_HOT_DATA);
2028
2029 err = -EAGAIN;
2030 if (f2fs_has_inline_data(inode)) {
2031 err = f2fs_write_inline_data(inode, page);
2032 if (!err)
2033 goto out;
2034 }
2035
2036 if (err == -EAGAIN) {
2037 err = f2fs_do_write_data_page(&fio);
2038 if (err == -EAGAIN) {
2039 fio.need_lock = LOCK_REQ;
2040 err = f2fs_do_write_data_page(&fio);
2041 }
2042 }
2043
2044 if (err) {
2045 file_set_keep_isize(inode);
2046 } else {
2047 down_write(&F2FS_I(inode)->i_sem);
2048 if (F2FS_I(inode)->last_disk_size < psize)
2049 F2FS_I(inode)->last_disk_size = psize;
2050 up_write(&F2FS_I(inode)->i_sem);
2051 }
2052
2053 done:
2054 if (err && err != -ENOENT)
2055 goto redirty_out;
2056
2057 out:
2058 inode_dec_dirty_pages(inode);
2059 if (err) {
2060 ClearPageUptodate(page);
2061 clear_cold_data(page);
2062 }
2063
2064 if (wbc->for_reclaim) {
2065 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2066 clear_inode_flag(inode, FI_HOT_DATA);
2067 f2fs_remove_dirty_inode(inode);
2068 submitted = NULL;
2069 }
2070
2071 unlock_page(page);
2072 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2073 !F2FS_I(inode)->cp_task)
2074 f2fs_balance_fs(sbi, need_balance_fs);
2075
2076 if (unlikely(f2fs_cp_error(sbi))) {
2077 f2fs_submit_merged_write(sbi, DATA);
2078 submitted = NULL;
2079 }
2080
2081 if (submitted)
2082 *submitted = fio.submitted;
2083
2084 return 0;
2085
2086 redirty_out:
2087 redirty_page_for_writepage(wbc, page);
2088 /*
2089 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2090 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2091 * file_write_and_wait_range() will see EIO error, which is critical
2092 * to return value of fsync() followed by atomic_write failure to user.
2093 */
2094 if (!err || wbc->for_reclaim)
2095 return AOP_WRITEPAGE_ACTIVATE;
2096 unlock_page(page);
2097 return err;
2098 }
2099
2100 static int f2fs_write_data_page(struct page *page,
2101 struct writeback_control *wbc)
2102 {
2103 return __write_data_page(page, NULL, wbc, FS_DATA_IO);
2104 }
2105
2106 /*
2107 * This function was copied from write_cche_pages from mm/page-writeback.c.
2108 * The major change is making write step of cold data page separately from
2109 * warm/hot data page.
2110 */
2111 static int f2fs_write_cache_pages(struct address_space *mapping,
2112 struct writeback_control *wbc,
2113 enum iostat_type io_type)
2114 {
2115 int ret = 0;
2116 int done = 0;
2117 struct pagevec pvec;
2118 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2119 int nr_pages;
2120 pgoff_t uninitialized_var(writeback_index);
2121 pgoff_t index;
2122 pgoff_t end; /* Inclusive */
2123 pgoff_t done_index;
2124 int cycled;
2125 int range_whole = 0;
2126 xa_mark_t tag;
2127 int nwritten = 0;
2128
2129 pagevec_init(&pvec);
2130
2131 if (get_dirty_pages(mapping->host) <=
2132 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2133 set_inode_flag(mapping->host, FI_HOT_DATA);
2134 else
2135 clear_inode_flag(mapping->host, FI_HOT_DATA);
2136
2137 if (wbc->range_cyclic) {
2138 writeback_index = mapping->writeback_index; /* prev offset */
2139 index = writeback_index;
2140 if (index == 0)
2141 cycled = 1;
2142 else
2143 cycled = 0;
2144 end = -1;
2145 } else {
2146 index = wbc->range_start >> PAGE_SHIFT;
2147 end = wbc->range_end >> PAGE_SHIFT;
2148 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2149 range_whole = 1;
2150 cycled = 1; /* ignore range_cyclic tests */
2151 }
2152 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2153 tag = PAGECACHE_TAG_TOWRITE;
2154 else
2155 tag = PAGECACHE_TAG_DIRTY;
2156 retry:
2157 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2158 tag_pages_for_writeback(mapping, index, end);
2159 done_index = index;
2160 while (!done && (index <= end)) {
2161 int i;
2162
2163 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2164 tag);
2165 if (nr_pages == 0)
2166 break;
2167
2168 for (i = 0; i < nr_pages; i++) {
2169 struct page *page = pvec.pages[i];
2170 bool submitted = false;
2171
2172 /* give a priority to WB_SYNC threads */
2173 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2174 wbc->sync_mode == WB_SYNC_NONE) {
2175 done = 1;
2176 break;
2177 }
2178
2179 done_index = page->index;
2180 retry_write:
2181 lock_page(page);
2182
2183 if (unlikely(page->mapping != mapping)) {
2184 continue_unlock:
2185 unlock_page(page);
2186 continue;
2187 }
2188
2189 if (!PageDirty(page)) {
2190 /* someone wrote it for us */
2191 goto continue_unlock;
2192 }
2193
2194 if (PageWriteback(page)) {
2195 if (wbc->sync_mode != WB_SYNC_NONE)
2196 f2fs_wait_on_page_writeback(page,
2197 DATA, true, true);
2198 else
2199 goto continue_unlock;
2200 }
2201
2202 if (!clear_page_dirty_for_io(page))
2203 goto continue_unlock;
2204
2205 ret = __write_data_page(page, &submitted, wbc, io_type);
2206 if (unlikely(ret)) {
2207 /*
2208 * keep nr_to_write, since vfs uses this to
2209 * get # of written pages.
2210 */
2211 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2212 unlock_page(page);
2213 ret = 0;
2214 continue;
2215 } else if (ret == -EAGAIN) {
2216 ret = 0;
2217 if (wbc->sync_mode == WB_SYNC_ALL) {
2218 cond_resched();
2219 congestion_wait(BLK_RW_ASYNC,
2220 HZ/50);
2221 goto retry_write;
2222 }
2223 continue;
2224 }
2225 done_index = page->index + 1;
2226 done = 1;
2227 break;
2228 } else if (submitted) {
2229 nwritten++;
2230 }
2231
2232 if (--wbc->nr_to_write <= 0 &&
2233 wbc->sync_mode == WB_SYNC_NONE) {
2234 done = 1;
2235 break;
2236 }
2237 }
2238 pagevec_release(&pvec);
2239 cond_resched();
2240 }
2241
2242 if (!cycled && !done) {
2243 cycled = 1;
2244 index = 0;
2245 end = writeback_index - 1;
2246 goto retry;
2247 }
2248 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2249 mapping->writeback_index = done_index;
2250
2251 if (nwritten)
2252 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2253 NULL, 0, DATA);
2254
2255 return ret;
2256 }
2257
2258 static inline bool __should_serialize_io(struct inode *inode,
2259 struct writeback_control *wbc)
2260 {
2261 if (!S_ISREG(inode->i_mode))
2262 return false;
2263 if (IS_NOQUOTA(inode))
2264 return false;
2265 if (wbc->sync_mode != WB_SYNC_ALL)
2266 return true;
2267 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2268 return true;
2269 return false;
2270 }
2271
2272 static int __f2fs_write_data_pages(struct address_space *mapping,
2273 struct writeback_control *wbc,
2274 enum iostat_type io_type)
2275 {
2276 struct inode *inode = mapping->host;
2277 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2278 struct blk_plug plug;
2279 int ret;
2280 bool locked = false;
2281
2282 /* deal with chardevs and other special file */
2283 if (!mapping->a_ops->writepage)
2284 return 0;
2285
2286 /* skip writing if there is no dirty page in this inode */
2287 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2288 return 0;
2289
2290 /* during POR, we don't need to trigger writepage at all. */
2291 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2292 goto skip_write;
2293
2294 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2295 wbc->sync_mode == WB_SYNC_NONE &&
2296 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2297 f2fs_available_free_memory(sbi, DIRTY_DENTS))
2298 goto skip_write;
2299
2300 /* skip writing during file defragment */
2301 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2302 goto skip_write;
2303
2304 trace_f2fs_writepages(mapping->host, wbc, DATA);
2305
2306 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2307 if (wbc->sync_mode == WB_SYNC_ALL)
2308 atomic_inc(&sbi->wb_sync_req[DATA]);
2309 else if (atomic_read(&sbi->wb_sync_req[DATA]))
2310 goto skip_write;
2311
2312 if (__should_serialize_io(inode, wbc)) {
2313 mutex_lock(&sbi->writepages);
2314 locked = true;
2315 }
2316
2317 blk_start_plug(&plug);
2318 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2319 blk_finish_plug(&plug);
2320
2321 if (locked)
2322 mutex_unlock(&sbi->writepages);
2323
2324 if (wbc->sync_mode == WB_SYNC_ALL)
2325 atomic_dec(&sbi->wb_sync_req[DATA]);
2326 /*
2327 * if some pages were truncated, we cannot guarantee its mapping->host
2328 * to detect pending bios.
2329 */
2330
2331 f2fs_remove_dirty_inode(inode);
2332 return ret;
2333
2334 skip_write:
2335 wbc->pages_skipped += get_dirty_pages(inode);
2336 trace_f2fs_writepages(mapping->host, wbc, DATA);
2337 return 0;
2338 }
2339
2340 static int f2fs_write_data_pages(struct address_space *mapping,
2341 struct writeback_control *wbc)
2342 {
2343 struct inode *inode = mapping->host;
2344
2345 return __f2fs_write_data_pages(mapping, wbc,
2346 F2FS_I(inode)->cp_task == current ?
2347 FS_CP_DATA_IO : FS_DATA_IO);
2348 }
2349
2350 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2351 {
2352 struct inode *inode = mapping->host;
2353 loff_t i_size = i_size_read(inode);
2354
2355 if (to > i_size) {
2356 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2357 down_write(&F2FS_I(inode)->i_mmap_sem);
2358
2359 truncate_pagecache(inode, i_size);
2360 if (!IS_NOQUOTA(inode))
2361 f2fs_truncate_blocks(inode, i_size, true);
2362
2363 up_write(&F2FS_I(inode)->i_mmap_sem);
2364 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2365 }
2366 }
2367
2368 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2369 struct page *page, loff_t pos, unsigned len,
2370 block_t *blk_addr, bool *node_changed)
2371 {
2372 struct inode *inode = page->mapping->host;
2373 pgoff_t index = page->index;
2374 struct dnode_of_data dn;
2375 struct page *ipage;
2376 bool locked = false;
2377 struct extent_info ei = {0,0,0};
2378 int err = 0;
2379 int flag;
2380
2381 /*
2382 * we already allocated all the blocks, so we don't need to get
2383 * the block addresses when there is no need to fill the page.
2384 */
2385 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2386 !is_inode_flag_set(inode, FI_NO_PREALLOC))
2387 return 0;
2388
2389 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
2390 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2391 flag = F2FS_GET_BLOCK_DEFAULT;
2392 else
2393 flag = F2FS_GET_BLOCK_PRE_AIO;
2394
2395 if (f2fs_has_inline_data(inode) ||
2396 (pos & PAGE_MASK) >= i_size_read(inode)) {
2397 __do_map_lock(sbi, flag, true);
2398 locked = true;
2399 }
2400 restart:
2401 /* check inline_data */
2402 ipage = f2fs_get_node_page(sbi, inode->i_ino);
2403 if (IS_ERR(ipage)) {
2404 err = PTR_ERR(ipage);
2405 goto unlock_out;
2406 }
2407
2408 set_new_dnode(&dn, inode, ipage, ipage, 0);
2409
2410 if (f2fs_has_inline_data(inode)) {
2411 if (pos + len <= MAX_INLINE_DATA(inode)) {
2412 f2fs_do_read_inline_data(page, ipage);
2413 set_inode_flag(inode, FI_DATA_EXIST);
2414 if (inode->i_nlink)
2415 set_inline_node(ipage);
2416 } else {
2417 err = f2fs_convert_inline_page(&dn, page);
2418 if (err)
2419 goto out;
2420 if (dn.data_blkaddr == NULL_ADDR)
2421 err = f2fs_get_block(&dn, index);
2422 }
2423 } else if (locked) {
2424 err = f2fs_get_block(&dn, index);
2425 } else {
2426 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2427 dn.data_blkaddr = ei.blk + index - ei.fofs;
2428 } else {
2429 /* hole case */
2430 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2431 if (err || dn.data_blkaddr == NULL_ADDR) {
2432 f2fs_put_dnode(&dn);
2433 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2434 true);
2435 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2436 locked = true;
2437 goto restart;
2438 }
2439 }
2440 }
2441
2442 /* convert_inline_page can make node_changed */
2443 *blk_addr = dn.data_blkaddr;
2444 *node_changed = dn.node_changed;
2445 out:
2446 f2fs_put_dnode(&dn);
2447 unlock_out:
2448 if (locked)
2449 __do_map_lock(sbi, flag, false);
2450 return err;
2451 }
2452
2453 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2454 loff_t pos, unsigned len, unsigned flags,
2455 struct page **pagep, void **fsdata)
2456 {
2457 struct inode *inode = mapping->host;
2458 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2459 struct page *page = NULL;
2460 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2461 bool need_balance = false, drop_atomic = false;
2462 block_t blkaddr = NULL_ADDR;
2463 int err = 0;
2464
2465 trace_f2fs_write_begin(inode, pos, len, flags);
2466
2467 err = f2fs_is_checkpoint_ready(sbi);
2468 if (err)
2469 goto fail;
2470
2471 if ((f2fs_is_atomic_file(inode) &&
2472 !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2473 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2474 err = -ENOMEM;
2475 drop_atomic = true;
2476 goto fail;
2477 }
2478
2479 /*
2480 * We should check this at this moment to avoid deadlock on inode page
2481 * and #0 page. The locking rule for inline_data conversion should be:
2482 * lock_page(page #0) -> lock_page(inode_page)
2483 */
2484 if (index != 0) {
2485 err = f2fs_convert_inline_inode(inode);
2486 if (err)
2487 goto fail;
2488 }
2489 repeat:
2490 /*
2491 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2492 * wait_for_stable_page. Will wait that below with our IO control.
2493 */
2494 page = f2fs_pagecache_get_page(mapping, index,
2495 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2496 if (!page) {
2497 err = -ENOMEM;
2498 goto fail;
2499 }
2500
2501 *pagep = page;
2502
2503 err = prepare_write_begin(sbi, page, pos, len,
2504 &blkaddr, &need_balance);
2505 if (err)
2506 goto fail;
2507
2508 if (need_balance && !IS_NOQUOTA(inode) &&
2509 has_not_enough_free_secs(sbi, 0, 0)) {
2510 unlock_page(page);
2511 f2fs_balance_fs(sbi, true);
2512 lock_page(page);
2513 if (page->mapping != mapping) {
2514 /* The page got truncated from under us */
2515 f2fs_put_page(page, 1);
2516 goto repeat;
2517 }
2518 }
2519
2520 f2fs_wait_on_page_writeback(page, DATA, false, true);
2521
2522 if (len == PAGE_SIZE || PageUptodate(page))
2523 return 0;
2524
2525 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2526 zero_user_segment(page, len, PAGE_SIZE);
2527 return 0;
2528 }
2529
2530 if (blkaddr == NEW_ADDR) {
2531 zero_user_segment(page, 0, PAGE_SIZE);
2532 SetPageUptodate(page);
2533 } else {
2534 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
2535 DATA_GENERIC_ENHANCE_READ)) {
2536 err = -EFAULT;
2537 goto fail;
2538 }
2539 err = f2fs_submit_page_read(inode, page, blkaddr);
2540 if (err)
2541 goto fail;
2542
2543 lock_page(page);
2544 if (unlikely(page->mapping != mapping)) {
2545 f2fs_put_page(page, 1);
2546 goto repeat;
2547 }
2548 if (unlikely(!PageUptodate(page))) {
2549 err = -EIO;
2550 goto fail;
2551 }
2552 }
2553 return 0;
2554
2555 fail:
2556 f2fs_put_page(page, 1);
2557 f2fs_write_failed(mapping, pos + len);
2558 if (drop_atomic)
2559 f2fs_drop_inmem_pages_all(sbi, false);
2560 return err;
2561 }
2562
2563 static int f2fs_write_end(struct file *file,
2564 struct address_space *mapping,
2565 loff_t pos, unsigned len, unsigned copied,
2566 struct page *page, void *fsdata)
2567 {
2568 struct inode *inode = page->mapping->host;
2569
2570 trace_f2fs_write_end(inode, pos, len, copied);
2571
2572 /*
2573 * This should be come from len == PAGE_SIZE, and we expect copied
2574 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2575 * let generic_perform_write() try to copy data again through copied=0.
2576 */
2577 if (!PageUptodate(page)) {
2578 if (unlikely(copied != len))
2579 copied = 0;
2580 else
2581 SetPageUptodate(page);
2582 }
2583 if (!copied)
2584 goto unlock_out;
2585
2586 set_page_dirty(page);
2587
2588 if (pos + copied > i_size_read(inode))
2589 f2fs_i_size_write(inode, pos + copied);
2590 unlock_out:
2591 f2fs_put_page(page, 1);
2592 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2593 return copied;
2594 }
2595
2596 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2597 loff_t offset)
2598 {
2599 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2600 unsigned blkbits = i_blkbits;
2601 unsigned blocksize_mask = (1 << blkbits) - 1;
2602 unsigned long align = offset | iov_iter_alignment(iter);
2603 struct block_device *bdev = inode->i_sb->s_bdev;
2604
2605 if (align & blocksize_mask) {
2606 if (bdev)
2607 blkbits = blksize_bits(bdev_logical_block_size(bdev));
2608 blocksize_mask = (1 << blkbits) - 1;
2609 if (align & blocksize_mask)
2610 return -EINVAL;
2611 return 1;
2612 }
2613 return 0;
2614 }
2615
2616 static void f2fs_dio_end_io(struct bio *bio)
2617 {
2618 struct f2fs_private_dio *dio = bio->bi_private;
2619
2620 dec_page_count(F2FS_I_SB(dio->inode),
2621 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2622
2623 bio->bi_private = dio->orig_private;
2624 bio->bi_end_io = dio->orig_end_io;
2625
2626 kvfree(dio);
2627
2628 bio_endio(bio);
2629 }
2630
2631 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2632 loff_t file_offset)
2633 {
2634 struct f2fs_private_dio *dio;
2635 bool write = (bio_op(bio) == REQ_OP_WRITE);
2636
2637 dio = f2fs_kzalloc(F2FS_I_SB(inode),
2638 sizeof(struct f2fs_private_dio), GFP_NOFS);
2639 if (!dio)
2640 goto out;
2641
2642 dio->inode = inode;
2643 dio->orig_end_io = bio->bi_end_io;
2644 dio->orig_private = bio->bi_private;
2645 dio->write = write;
2646
2647 bio->bi_end_io = f2fs_dio_end_io;
2648 bio->bi_private = dio;
2649
2650 inc_page_count(F2FS_I_SB(inode),
2651 write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2652
2653 submit_bio(bio);
2654 return;
2655 out:
2656 bio->bi_status = BLK_STS_IOERR;
2657 bio_endio(bio);
2658 }
2659
2660 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2661 {
2662 struct address_space *mapping = iocb->ki_filp->f_mapping;
2663 struct inode *inode = mapping->host;
2664 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2665 struct f2fs_inode_info *fi = F2FS_I(inode);
2666 size_t count = iov_iter_count(iter);
2667 loff_t offset = iocb->ki_pos;
2668 int rw = iov_iter_rw(iter);
2669 int err;
2670 enum rw_hint hint = iocb->ki_hint;
2671 int whint_mode = F2FS_OPTION(sbi).whint_mode;
2672 bool do_opu;
2673
2674 err = check_direct_IO(inode, iter, offset);
2675 if (err)
2676 return err < 0 ? err : 0;
2677
2678 if (f2fs_force_buffered_io(inode, iocb, iter))
2679 return 0;
2680
2681 do_opu = allow_outplace_dio(inode, iocb, iter);
2682
2683 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2684
2685 if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2686 iocb->ki_hint = WRITE_LIFE_NOT_SET;
2687
2688 if (iocb->ki_flags & IOCB_NOWAIT) {
2689 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2690 iocb->ki_hint = hint;
2691 err = -EAGAIN;
2692 goto out;
2693 }
2694 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2695 up_read(&fi->i_gc_rwsem[rw]);
2696 iocb->ki_hint = hint;
2697 err = -EAGAIN;
2698 goto out;
2699 }
2700 } else {
2701 down_read(&fi->i_gc_rwsem[rw]);
2702 if (do_opu)
2703 down_read(&fi->i_gc_rwsem[READ]);
2704 }
2705
2706 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2707 iter, rw == WRITE ? get_data_block_dio_write :
2708 get_data_block_dio, NULL, f2fs_dio_submit_bio,
2709 DIO_LOCKING | DIO_SKIP_HOLES);
2710
2711 if (do_opu)
2712 up_read(&fi->i_gc_rwsem[READ]);
2713
2714 up_read(&fi->i_gc_rwsem[rw]);
2715
2716 if (rw == WRITE) {
2717 if (whint_mode == WHINT_MODE_OFF)
2718 iocb->ki_hint = hint;
2719 if (err > 0) {
2720 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2721 err);
2722 if (!do_opu)
2723 set_inode_flag(inode, FI_UPDATE_WRITE);
2724 } else if (err < 0) {
2725 f2fs_write_failed(mapping, offset + count);
2726 }
2727 }
2728
2729 out:
2730 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2731
2732 return err;
2733 }
2734
2735 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2736 unsigned int length)
2737 {
2738 struct inode *inode = page->mapping->host;
2739 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2740
2741 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2742 (offset % PAGE_SIZE || length != PAGE_SIZE))
2743 return;
2744
2745 if (PageDirty(page)) {
2746 if (inode->i_ino == F2FS_META_INO(sbi)) {
2747 dec_page_count(sbi, F2FS_DIRTY_META);
2748 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2749 dec_page_count(sbi, F2FS_DIRTY_NODES);
2750 } else {
2751 inode_dec_dirty_pages(inode);
2752 f2fs_remove_dirty_inode(inode);
2753 }
2754 }
2755
2756 clear_cold_data(page);
2757
2758 if (IS_ATOMIC_WRITTEN_PAGE(page))
2759 return f2fs_drop_inmem_page(inode, page);
2760
2761 f2fs_clear_page_private(page);
2762 }
2763
2764 int f2fs_release_page(struct page *page, gfp_t wait)
2765 {
2766 /* If this is dirty page, keep PagePrivate */
2767 if (PageDirty(page))
2768 return 0;
2769
2770 /* This is atomic written page, keep Private */
2771 if (IS_ATOMIC_WRITTEN_PAGE(page))
2772 return 0;
2773
2774 clear_cold_data(page);
2775 f2fs_clear_page_private(page);
2776 return 1;
2777 }
2778
2779 static int f2fs_set_data_page_dirty(struct page *page)
2780 {
2781 struct address_space *mapping = page->mapping;
2782 struct inode *inode = mapping->host;
2783
2784 trace_f2fs_set_page_dirty(page, DATA);
2785
2786 if (!PageUptodate(page))
2787 SetPageUptodate(page);
2788
2789 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2790 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2791 f2fs_register_inmem_page(inode, page);
2792 return 1;
2793 }
2794 /*
2795 * Previously, this page has been registered, we just
2796 * return here.
2797 */
2798 return 0;
2799 }
2800
2801 if (!PageDirty(page)) {
2802 __set_page_dirty_nobuffers(page);
2803 f2fs_update_dirty_page(inode, page);
2804 return 1;
2805 }
2806 return 0;
2807 }
2808
2809 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2810 {
2811 struct inode *inode = mapping->host;
2812
2813 if (f2fs_has_inline_data(inode))
2814 return 0;
2815
2816 /* make sure allocating whole blocks */
2817 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2818 filemap_write_and_wait(mapping);
2819
2820 return generic_block_bmap(mapping, block, get_data_block_bmap);
2821 }
2822
2823 #ifdef CONFIG_MIGRATION
2824 #include <linux/migrate.h>
2825
2826 int f2fs_migrate_page(struct address_space *mapping,
2827 struct page *newpage, struct page *page, enum migrate_mode mode)
2828 {
2829 int rc, extra_count;
2830 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2831 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2832
2833 BUG_ON(PageWriteback(page));
2834
2835 /* migrating an atomic written page is safe with the inmem_lock hold */
2836 if (atomic_written) {
2837 if (mode != MIGRATE_SYNC)
2838 return -EBUSY;
2839 if (!mutex_trylock(&fi->inmem_lock))
2840 return -EAGAIN;
2841 }
2842
2843 /* one extra reference was held for atomic_write page */
2844 extra_count = atomic_written ? 1 : 0;
2845 rc = migrate_page_move_mapping(mapping, newpage,
2846 page, mode, extra_count);
2847 if (rc != MIGRATEPAGE_SUCCESS) {
2848 if (atomic_written)
2849 mutex_unlock(&fi->inmem_lock);
2850 return rc;
2851 }
2852
2853 if (atomic_written) {
2854 struct inmem_pages *cur;
2855 list_for_each_entry(cur, &fi->inmem_pages, list)
2856 if (cur->page == page) {
2857 cur->page = newpage;
2858 break;
2859 }
2860 mutex_unlock(&fi->inmem_lock);
2861 put_page(page);
2862 get_page(newpage);
2863 }
2864
2865 if (PagePrivate(page)) {
2866 f2fs_set_page_private(newpage, page_private(page));
2867 f2fs_clear_page_private(page);
2868 }
2869
2870 if (mode != MIGRATE_SYNC_NO_COPY)
2871 migrate_page_copy(newpage, page);
2872 else
2873 migrate_page_states(newpage, page);
2874
2875 return MIGRATEPAGE_SUCCESS;
2876 }
2877 #endif
2878
2879 const struct address_space_operations f2fs_dblock_aops = {
2880 .readpage = f2fs_read_data_page,
2881 .readpages = f2fs_read_data_pages,
2882 .writepage = f2fs_write_data_page,
2883 .writepages = f2fs_write_data_pages,
2884 .write_begin = f2fs_write_begin,
2885 .write_end = f2fs_write_end,
2886 .set_page_dirty = f2fs_set_data_page_dirty,
2887 .invalidatepage = f2fs_invalidate_page,
2888 .releasepage = f2fs_release_page,
2889 .direct_IO = f2fs_direct_IO,
2890 .bmap = f2fs_bmap,
2891 #ifdef CONFIG_MIGRATION
2892 .migratepage = f2fs_migrate_page,
2893 #endif
2894 };
2895
2896 void f2fs_clear_page_cache_dirty_tag(struct page *page)
2897 {
2898 struct address_space *mapping = page_mapping(page);
2899 unsigned long flags;
2900
2901 xa_lock_irqsave(&mapping->i_pages, flags);
2902 __xa_clear_mark(&mapping->i_pages, page_index(page),
2903 PAGECACHE_TAG_DIRTY);
2904 xa_unlock_irqrestore(&mapping->i_pages, flags);
2905 }
2906
2907 int __init f2fs_init_post_read_processing(void)
2908 {
2909 bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
2910 if (!bio_post_read_ctx_cache)
2911 goto fail;
2912 bio_post_read_ctx_pool =
2913 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
2914 bio_post_read_ctx_cache);
2915 if (!bio_post_read_ctx_pool)
2916 goto fail_free_cache;
2917 return 0;
2918
2919 fail_free_cache:
2920 kmem_cache_destroy(bio_post_read_ctx_cache);
2921 fail:
2922 return -ENOMEM;
2923 }
2924
2925 void __exit f2fs_destroy_post_read_processing(void)
2926 {
2927 mempool_destroy(bio_post_read_ctx_pool);
2928 kmem_cache_destroy(bio_post_read_ctx_cache);
2929 }