]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/data.c
f2fs: fix to avoid potential deadlock
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS 128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
39
40 int __init f2fs_init_bioset(void)
41 {
42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS))
44 return -ENOMEM;
45 return 0;
46 }
47
48 void f2fs_destroy_bioset(void)
49 {
50 bioset_exit(&f2fs_bioset);
51 }
52
53 static bool __is_cp_guaranteed(struct page *page)
54 {
55 struct address_space *mapping = page->mapping;
56 struct inode *inode;
57 struct f2fs_sb_info *sbi;
58
59 if (!mapping)
60 return false;
61
62 inode = mapping->host;
63 sbi = F2FS_I_SB(inode);
64
65 if (inode->i_ino == F2FS_META_INO(sbi) ||
66 inode->i_ino == F2FS_NODE_INO(sbi) ||
67 S_ISDIR(inode->i_mode))
68 return true;
69
70 if (f2fs_is_compressed_page(page))
71 return false;
72 if ((S_ISREG(inode->i_mode) &&
73 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
74 page_private_gcing(page))
75 return true;
76 return false;
77 }
78
79 static enum count_type __read_io_type(struct page *page)
80 {
81 struct address_space *mapping = page_file_mapping(page);
82
83 if (mapping) {
84 struct inode *inode = mapping->host;
85 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
86
87 if (inode->i_ino == F2FS_META_INO(sbi))
88 return F2FS_RD_META;
89
90 if (inode->i_ino == F2FS_NODE_INO(sbi))
91 return F2FS_RD_NODE;
92 }
93 return F2FS_RD_DATA;
94 }
95
96 /* postprocessing steps for read bios */
97 enum bio_post_read_step {
98 #ifdef CONFIG_FS_ENCRYPTION
99 STEP_DECRYPT = 1 << 0,
100 #else
101 STEP_DECRYPT = 0, /* compile out the decryption-related code */
102 #endif
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 STEP_DECOMPRESS = 1 << 1,
105 #else
106 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
107 #endif
108 #ifdef CONFIG_FS_VERITY
109 STEP_VERITY = 1 << 2,
110 #else
111 STEP_VERITY = 0, /* compile out the verity-related code */
112 #endif
113 };
114
115 struct bio_post_read_ctx {
116 struct bio *bio;
117 struct f2fs_sb_info *sbi;
118 struct work_struct work;
119 unsigned int enabled_steps;
120 block_t fs_blkaddr;
121 };
122
123 static void f2fs_finish_read_bio(struct bio *bio)
124 {
125 struct bio_vec *bv;
126 struct bvec_iter_all iter_all;
127
128 /*
129 * Update and unlock the bio's pagecache pages, and put the
130 * decompression context for any compressed pages.
131 */
132 bio_for_each_segment_all(bv, bio, iter_all) {
133 struct page *page = bv->bv_page;
134
135 if (f2fs_is_compressed_page(page)) {
136 if (bio->bi_status)
137 f2fs_end_read_compressed_page(page, true, 0);
138 f2fs_put_page_dic(page);
139 continue;
140 }
141
142 /* PG_error was set if decryption or verity failed. */
143 if (bio->bi_status || PageError(page)) {
144 ClearPageUptodate(page);
145 /* will re-read again later */
146 ClearPageError(page);
147 } else {
148 SetPageUptodate(page);
149 }
150 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
151 unlock_page(page);
152 }
153
154 if (bio->bi_private)
155 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
156 bio_put(bio);
157 }
158
159 static void f2fs_verify_bio(struct work_struct *work)
160 {
161 struct bio_post_read_ctx *ctx =
162 container_of(work, struct bio_post_read_ctx, work);
163 struct bio *bio = ctx->bio;
164 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
165
166 /*
167 * fsverity_verify_bio() may call readpages() again, and while verity
168 * will be disabled for this, decryption and/or decompression may still
169 * be needed, resulting in another bio_post_read_ctx being allocated.
170 * So to prevent deadlocks we need to release the current ctx to the
171 * mempool first. This assumes that verity is the last post-read step.
172 */
173 mempool_free(ctx, bio_post_read_ctx_pool);
174 bio->bi_private = NULL;
175
176 /*
177 * Verify the bio's pages with fs-verity. Exclude compressed pages,
178 * as those were handled separately by f2fs_end_read_compressed_page().
179 */
180 if (may_have_compressed_pages) {
181 struct bio_vec *bv;
182 struct bvec_iter_all iter_all;
183
184 bio_for_each_segment_all(bv, bio, iter_all) {
185 struct page *page = bv->bv_page;
186
187 if (!f2fs_is_compressed_page(page) &&
188 !PageError(page) && !fsverity_verify_page(page))
189 SetPageError(page);
190 }
191 } else {
192 fsverity_verify_bio(bio);
193 }
194
195 f2fs_finish_read_bio(bio);
196 }
197
198 /*
199 * If the bio's data needs to be verified with fs-verity, then enqueue the
200 * verity work for the bio. Otherwise finish the bio now.
201 *
202 * Note that to avoid deadlocks, the verity work can't be done on the
203 * decryption/decompression workqueue. This is because verifying the data pages
204 * can involve reading verity metadata pages from the file, and these verity
205 * metadata pages may be encrypted and/or compressed.
206 */
207 static void f2fs_verify_and_finish_bio(struct bio *bio)
208 {
209 struct bio_post_read_ctx *ctx = bio->bi_private;
210
211 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
212 INIT_WORK(&ctx->work, f2fs_verify_bio);
213 fsverity_enqueue_verify_work(&ctx->work);
214 } else {
215 f2fs_finish_read_bio(bio);
216 }
217 }
218
219 /*
220 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
221 * remaining page was read by @ctx->bio.
222 *
223 * Note that a bio may span clusters (even a mix of compressed and uncompressed
224 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
225 * that the bio includes at least one compressed page. The actual decompression
226 * is done on a per-cluster basis, not a per-bio basis.
227 */
228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
229 {
230 struct bio_vec *bv;
231 struct bvec_iter_all iter_all;
232 bool all_compressed = true;
233 block_t blkaddr = ctx->fs_blkaddr;
234
235 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
236 struct page *page = bv->bv_page;
237
238 /* PG_error was set if decryption failed. */
239 if (f2fs_is_compressed_page(page))
240 f2fs_end_read_compressed_page(page, PageError(page),
241 blkaddr);
242 else
243 all_compressed = false;
244
245 blkaddr++;
246 }
247
248 /*
249 * Optimization: if all the bio's pages are compressed, then scheduling
250 * the per-bio verity work is unnecessary, as verity will be fully
251 * handled at the compression cluster level.
252 */
253 if (all_compressed)
254 ctx->enabled_steps &= ~STEP_VERITY;
255 }
256
257 static void f2fs_post_read_work(struct work_struct *work)
258 {
259 struct bio_post_read_ctx *ctx =
260 container_of(work, struct bio_post_read_ctx, work);
261
262 if (ctx->enabled_steps & STEP_DECRYPT)
263 fscrypt_decrypt_bio(ctx->bio);
264
265 if (ctx->enabled_steps & STEP_DECOMPRESS)
266 f2fs_handle_step_decompress(ctx);
267
268 f2fs_verify_and_finish_bio(ctx->bio);
269 }
270
271 static void f2fs_read_end_io(struct bio *bio)
272 {
273 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
274 struct bio_post_read_ctx *ctx;
275
276 iostat_update_and_unbind_ctx(bio, 0);
277 ctx = bio->bi_private;
278
279 if (time_to_inject(sbi, FAULT_READ_IO)) {
280 f2fs_show_injection_info(sbi, FAULT_READ_IO);
281 bio->bi_status = BLK_STS_IOERR;
282 }
283
284 if (bio->bi_status) {
285 f2fs_finish_read_bio(bio);
286 return;
287 }
288
289 if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
290 INIT_WORK(&ctx->work, f2fs_post_read_work);
291 queue_work(ctx->sbi->post_read_wq, &ctx->work);
292 } else {
293 f2fs_verify_and_finish_bio(bio);
294 }
295 }
296
297 static void f2fs_write_end_io(struct bio *bio)
298 {
299 struct f2fs_sb_info *sbi;
300 struct bio_vec *bvec;
301 struct bvec_iter_all iter_all;
302
303 iostat_update_and_unbind_ctx(bio, 1);
304 sbi = bio->bi_private;
305
306 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
307 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
308 bio->bi_status = BLK_STS_IOERR;
309 }
310
311 bio_for_each_segment_all(bvec, bio, iter_all) {
312 struct page *page = bvec->bv_page;
313 enum count_type type = WB_DATA_TYPE(page);
314
315 if (page_private_dummy(page)) {
316 clear_page_private_dummy(page);
317 unlock_page(page);
318 mempool_free(page, sbi->write_io_dummy);
319
320 if (unlikely(bio->bi_status))
321 f2fs_stop_checkpoint(sbi, true);
322 continue;
323 }
324
325 fscrypt_finalize_bounce_page(&page);
326
327 #ifdef CONFIG_F2FS_FS_COMPRESSION
328 if (f2fs_is_compressed_page(page)) {
329 f2fs_compress_write_end_io(bio, page);
330 continue;
331 }
332 #endif
333
334 if (unlikely(bio->bi_status)) {
335 mapping_set_error(page->mapping, -EIO);
336 if (type == F2FS_WB_CP_DATA)
337 f2fs_stop_checkpoint(sbi, true);
338 }
339
340 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
341 page->index != nid_of_node(page));
342
343 dec_page_count(sbi, type);
344 if (f2fs_in_warm_node_list(sbi, page))
345 f2fs_del_fsync_node_entry(sbi, page);
346 clear_page_private_gcing(page);
347 end_page_writeback(page);
348 }
349 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
350 wq_has_sleeper(&sbi->cp_wait))
351 wake_up(&sbi->cp_wait);
352
353 bio_put(bio);
354 }
355
356 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
357 block_t blk_addr, struct bio *bio)
358 {
359 struct block_device *bdev = sbi->sb->s_bdev;
360 int i;
361
362 if (f2fs_is_multi_device(sbi)) {
363 for (i = 0; i < sbi->s_ndevs; i++) {
364 if (FDEV(i).start_blk <= blk_addr &&
365 FDEV(i).end_blk >= blk_addr) {
366 blk_addr -= FDEV(i).start_blk;
367 bdev = FDEV(i).bdev;
368 break;
369 }
370 }
371 }
372 if (bio) {
373 bio_set_dev(bio, bdev);
374 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
375 }
376 return bdev;
377 }
378
379 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
380 {
381 int i;
382
383 if (!f2fs_is_multi_device(sbi))
384 return 0;
385
386 for (i = 0; i < sbi->s_ndevs; i++)
387 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
388 return i;
389 return 0;
390 }
391
392 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
393 {
394 struct f2fs_sb_info *sbi = fio->sbi;
395 struct bio *bio;
396
397 bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
398
399 f2fs_target_device(sbi, fio->new_blkaddr, bio);
400 if (is_read_io(fio->op)) {
401 bio->bi_end_io = f2fs_read_end_io;
402 bio->bi_private = NULL;
403 } else {
404 bio->bi_end_io = f2fs_write_end_io;
405 bio->bi_private = sbi;
406 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
407 fio->type, fio->temp);
408 }
409 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
410
411 if (fio->io_wbc)
412 wbc_init_bio(fio->io_wbc, bio);
413
414 return bio;
415 }
416
417 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
418 pgoff_t first_idx,
419 const struct f2fs_io_info *fio,
420 gfp_t gfp_mask)
421 {
422 /*
423 * The f2fs garbage collector sets ->encrypted_page when it wants to
424 * read/write raw data without encryption.
425 */
426 if (!fio || !fio->encrypted_page)
427 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
428 }
429
430 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
431 pgoff_t next_idx,
432 const struct f2fs_io_info *fio)
433 {
434 /*
435 * The f2fs garbage collector sets ->encrypted_page when it wants to
436 * read/write raw data without encryption.
437 */
438 if (fio && fio->encrypted_page)
439 return !bio_has_crypt_ctx(bio);
440
441 return fscrypt_mergeable_bio(bio, inode, next_idx);
442 }
443
444 static inline void __submit_bio(struct f2fs_sb_info *sbi,
445 struct bio *bio, enum page_type type)
446 {
447 if (!is_read_io(bio_op(bio))) {
448 unsigned int start;
449
450 if (type != DATA && type != NODE)
451 goto submit_io;
452
453 if (f2fs_lfs_mode(sbi) && current->plug)
454 blk_finish_plug(current->plug);
455
456 if (!F2FS_IO_ALIGNED(sbi))
457 goto submit_io;
458
459 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
460 start %= F2FS_IO_SIZE(sbi);
461
462 if (start == 0)
463 goto submit_io;
464
465 /* fill dummy pages */
466 for (; start < F2FS_IO_SIZE(sbi); start++) {
467 struct page *page =
468 mempool_alloc(sbi->write_io_dummy,
469 GFP_NOIO | __GFP_NOFAIL);
470 f2fs_bug_on(sbi, !page);
471
472 lock_page(page);
473
474 zero_user_segment(page, 0, PAGE_SIZE);
475 set_page_private_dummy(page);
476
477 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
478 f2fs_bug_on(sbi, 1);
479 }
480 /*
481 * In the NODE case, we lose next block address chain. So, we
482 * need to do checkpoint in f2fs_sync_file.
483 */
484 if (type == NODE)
485 set_sbi_flag(sbi, SBI_NEED_CP);
486 }
487 submit_io:
488 if (is_read_io(bio_op(bio)))
489 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
490 else
491 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
492
493 iostat_update_submit_ctx(bio, type);
494 submit_bio(bio);
495 }
496
497 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
498 struct bio *bio, enum page_type type)
499 {
500 __submit_bio(sbi, bio, type);
501 }
502
503 static void __attach_io_flag(struct f2fs_io_info *fio)
504 {
505 struct f2fs_sb_info *sbi = fio->sbi;
506 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
507 unsigned int io_flag, fua_flag, meta_flag;
508
509 if (fio->type == DATA)
510 io_flag = sbi->data_io_flag;
511 else if (fio->type == NODE)
512 io_flag = sbi->node_io_flag;
513 else
514 return;
515
516 fua_flag = io_flag & temp_mask;
517 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
518
519 /*
520 * data/node io flag bits per temp:
521 * REQ_META | REQ_FUA |
522 * 5 | 4 | 3 | 2 | 1 | 0 |
523 * Cold | Warm | Hot | Cold | Warm | Hot |
524 */
525 if ((1 << fio->temp) & meta_flag)
526 fio->op_flags |= REQ_META;
527 if ((1 << fio->temp) & fua_flag)
528 fio->op_flags |= REQ_FUA;
529 }
530
531 static void __submit_merged_bio(struct f2fs_bio_info *io)
532 {
533 struct f2fs_io_info *fio = &io->fio;
534
535 if (!io->bio)
536 return;
537
538 __attach_io_flag(fio);
539 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
540
541 if (is_read_io(fio->op))
542 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
543 else
544 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
545
546 __submit_bio(io->sbi, io->bio, fio->type);
547 io->bio = NULL;
548 }
549
550 static bool __has_merged_page(struct bio *bio, struct inode *inode,
551 struct page *page, nid_t ino)
552 {
553 struct bio_vec *bvec;
554 struct bvec_iter_all iter_all;
555
556 if (!bio)
557 return false;
558
559 if (!inode && !page && !ino)
560 return true;
561
562 bio_for_each_segment_all(bvec, bio, iter_all) {
563 struct page *target = bvec->bv_page;
564
565 if (fscrypt_is_bounce_page(target)) {
566 target = fscrypt_pagecache_page(target);
567 if (IS_ERR(target))
568 continue;
569 }
570 if (f2fs_is_compressed_page(target)) {
571 target = f2fs_compress_control_page(target);
572 if (IS_ERR(target))
573 continue;
574 }
575
576 if (inode && inode == target->mapping->host)
577 return true;
578 if (page && page == target)
579 return true;
580 if (ino && ino == ino_of_node(target))
581 return true;
582 }
583
584 return false;
585 }
586
587 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
588 enum page_type type, enum temp_type temp)
589 {
590 enum page_type btype = PAGE_TYPE_OF_BIO(type);
591 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
592
593 down_write(&io->io_rwsem);
594
595 /* change META to META_FLUSH in the checkpoint procedure */
596 if (type >= META_FLUSH) {
597 io->fio.type = META_FLUSH;
598 io->fio.op = REQ_OP_WRITE;
599 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
600 if (!test_opt(sbi, NOBARRIER))
601 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
602 }
603 __submit_merged_bio(io);
604 up_write(&io->io_rwsem);
605 }
606
607 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
608 struct inode *inode, struct page *page,
609 nid_t ino, enum page_type type, bool force)
610 {
611 enum temp_type temp;
612 bool ret = true;
613
614 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
615 if (!force) {
616 enum page_type btype = PAGE_TYPE_OF_BIO(type);
617 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
618
619 down_read(&io->io_rwsem);
620 ret = __has_merged_page(io->bio, inode, page, ino);
621 up_read(&io->io_rwsem);
622 }
623 if (ret)
624 __f2fs_submit_merged_write(sbi, type, temp);
625
626 /* TODO: use HOT temp only for meta pages now. */
627 if (type >= META)
628 break;
629 }
630 }
631
632 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
633 {
634 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
635 }
636
637 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
638 struct inode *inode, struct page *page,
639 nid_t ino, enum page_type type)
640 {
641 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
642 }
643
644 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
645 {
646 f2fs_submit_merged_write(sbi, DATA);
647 f2fs_submit_merged_write(sbi, NODE);
648 f2fs_submit_merged_write(sbi, META);
649 }
650
651 /*
652 * Fill the locked page with data located in the block address.
653 * A caller needs to unlock the page on failure.
654 */
655 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
656 {
657 struct bio *bio;
658 struct page *page = fio->encrypted_page ?
659 fio->encrypted_page : fio->page;
660
661 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
662 fio->is_por ? META_POR : (__is_meta_io(fio) ?
663 META_GENERIC : DATA_GENERIC_ENHANCE)))
664 return -EFSCORRUPTED;
665
666 trace_f2fs_submit_page_bio(page, fio);
667
668 /* Allocate a new bio */
669 bio = __bio_alloc(fio, 1);
670
671 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
672 fio->page->index, fio, GFP_NOIO);
673
674 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
675 bio_put(bio);
676 return -EFAULT;
677 }
678
679 if (fio->io_wbc && !is_read_io(fio->op))
680 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
681
682 __attach_io_flag(fio);
683 bio_set_op_attrs(bio, fio->op, fio->op_flags);
684
685 inc_page_count(fio->sbi, is_read_io(fio->op) ?
686 __read_io_type(page): WB_DATA_TYPE(fio->page));
687
688 __submit_bio(fio->sbi, bio, fio->type);
689 return 0;
690 }
691
692 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
693 block_t last_blkaddr, block_t cur_blkaddr)
694 {
695 if (unlikely(sbi->max_io_bytes &&
696 bio->bi_iter.bi_size >= sbi->max_io_bytes))
697 return false;
698 if (last_blkaddr + 1 != cur_blkaddr)
699 return false;
700 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
701 }
702
703 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
704 struct f2fs_io_info *fio)
705 {
706 if (io->fio.op != fio->op)
707 return false;
708 return io->fio.op_flags == fio->op_flags;
709 }
710
711 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
712 struct f2fs_bio_info *io,
713 struct f2fs_io_info *fio,
714 block_t last_blkaddr,
715 block_t cur_blkaddr)
716 {
717 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
718 unsigned int filled_blocks =
719 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
720 unsigned int io_size = F2FS_IO_SIZE(sbi);
721 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
722
723 /* IOs in bio is aligned and left space of vectors is not enough */
724 if (!(filled_blocks % io_size) && left_vecs < io_size)
725 return false;
726 }
727 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
728 return false;
729 return io_type_is_mergeable(io, fio);
730 }
731
732 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
733 struct page *page, enum temp_type temp)
734 {
735 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
736 struct bio_entry *be;
737
738 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
739 be->bio = bio;
740 bio_get(bio);
741
742 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
743 f2fs_bug_on(sbi, 1);
744
745 down_write(&io->bio_list_lock);
746 list_add_tail(&be->list, &io->bio_list);
747 up_write(&io->bio_list_lock);
748 }
749
750 static void del_bio_entry(struct bio_entry *be)
751 {
752 list_del(&be->list);
753 kmem_cache_free(bio_entry_slab, be);
754 }
755
756 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
757 struct page *page)
758 {
759 struct f2fs_sb_info *sbi = fio->sbi;
760 enum temp_type temp;
761 bool found = false;
762 int ret = -EAGAIN;
763
764 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
765 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
766 struct list_head *head = &io->bio_list;
767 struct bio_entry *be;
768
769 down_write(&io->bio_list_lock);
770 list_for_each_entry(be, head, list) {
771 if (be->bio != *bio)
772 continue;
773
774 found = true;
775
776 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
777 *fio->last_block,
778 fio->new_blkaddr));
779 if (f2fs_crypt_mergeable_bio(*bio,
780 fio->page->mapping->host,
781 fio->page->index, fio) &&
782 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
783 PAGE_SIZE) {
784 ret = 0;
785 break;
786 }
787
788 /* page can't be merged into bio; submit the bio */
789 del_bio_entry(be);
790 __submit_bio(sbi, *bio, DATA);
791 break;
792 }
793 up_write(&io->bio_list_lock);
794 }
795
796 if (ret) {
797 bio_put(*bio);
798 *bio = NULL;
799 }
800
801 return ret;
802 }
803
804 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
805 struct bio **bio, struct page *page)
806 {
807 enum temp_type temp;
808 bool found = false;
809 struct bio *target = bio ? *bio : NULL;
810
811 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
812 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
813 struct list_head *head = &io->bio_list;
814 struct bio_entry *be;
815
816 if (list_empty(head))
817 continue;
818
819 down_read(&io->bio_list_lock);
820 list_for_each_entry(be, head, list) {
821 if (target)
822 found = (target == be->bio);
823 else
824 found = __has_merged_page(be->bio, NULL,
825 page, 0);
826 if (found)
827 break;
828 }
829 up_read(&io->bio_list_lock);
830
831 if (!found)
832 continue;
833
834 found = false;
835
836 down_write(&io->bio_list_lock);
837 list_for_each_entry(be, head, list) {
838 if (target)
839 found = (target == be->bio);
840 else
841 found = __has_merged_page(be->bio, NULL,
842 page, 0);
843 if (found) {
844 target = be->bio;
845 del_bio_entry(be);
846 break;
847 }
848 }
849 up_write(&io->bio_list_lock);
850 }
851
852 if (found)
853 __submit_bio(sbi, target, DATA);
854 if (bio && *bio) {
855 bio_put(*bio);
856 *bio = NULL;
857 }
858 }
859
860 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
861 {
862 struct bio *bio = *fio->bio;
863 struct page *page = fio->encrypted_page ?
864 fio->encrypted_page : fio->page;
865
866 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
867 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
868 return -EFSCORRUPTED;
869
870 trace_f2fs_submit_page_bio(page, fio);
871
872 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
873 fio->new_blkaddr))
874 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
875 alloc_new:
876 if (!bio) {
877 bio = __bio_alloc(fio, BIO_MAX_VECS);
878 __attach_io_flag(fio);
879 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
880 fio->page->index, fio, GFP_NOIO);
881 bio_set_op_attrs(bio, fio->op, fio->op_flags);
882
883 add_bio_entry(fio->sbi, bio, page, fio->temp);
884 } else {
885 if (add_ipu_page(fio, &bio, page))
886 goto alloc_new;
887 }
888
889 if (fio->io_wbc)
890 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
891
892 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
893
894 *fio->last_block = fio->new_blkaddr;
895 *fio->bio = bio;
896
897 return 0;
898 }
899
900 void f2fs_submit_page_write(struct f2fs_io_info *fio)
901 {
902 struct f2fs_sb_info *sbi = fio->sbi;
903 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
904 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
905 struct page *bio_page;
906
907 f2fs_bug_on(sbi, is_read_io(fio->op));
908
909 down_write(&io->io_rwsem);
910 next:
911 if (fio->in_list) {
912 spin_lock(&io->io_lock);
913 if (list_empty(&io->io_list)) {
914 spin_unlock(&io->io_lock);
915 goto out;
916 }
917 fio = list_first_entry(&io->io_list,
918 struct f2fs_io_info, list);
919 list_del(&fio->list);
920 spin_unlock(&io->io_lock);
921 }
922
923 verify_fio_blkaddr(fio);
924
925 if (fio->encrypted_page)
926 bio_page = fio->encrypted_page;
927 else if (fio->compressed_page)
928 bio_page = fio->compressed_page;
929 else
930 bio_page = fio->page;
931
932 /* set submitted = true as a return value */
933 fio->submitted = true;
934
935 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
936
937 if (io->bio &&
938 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
939 fio->new_blkaddr) ||
940 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
941 bio_page->index, fio)))
942 __submit_merged_bio(io);
943 alloc_new:
944 if (io->bio == NULL) {
945 if (F2FS_IO_ALIGNED(sbi) &&
946 (fio->type == DATA || fio->type == NODE) &&
947 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
948 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
949 fio->retry = true;
950 goto skip;
951 }
952 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
953 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
954 bio_page->index, fio, GFP_NOIO);
955 io->fio = *fio;
956 }
957
958 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
959 __submit_merged_bio(io);
960 goto alloc_new;
961 }
962
963 if (fio->io_wbc)
964 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
965
966 io->last_block_in_bio = fio->new_blkaddr;
967
968 trace_f2fs_submit_page_write(fio->page, fio);
969 skip:
970 if (fio->in_list)
971 goto next;
972 out:
973 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
974 !f2fs_is_checkpoint_ready(sbi))
975 __submit_merged_bio(io);
976 up_write(&io->io_rwsem);
977 }
978
979 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
980 unsigned nr_pages, unsigned op_flag,
981 pgoff_t first_idx, bool for_write)
982 {
983 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
984 struct bio *bio;
985 struct bio_post_read_ctx *ctx = NULL;
986 unsigned int post_read_steps = 0;
987
988 bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
989 bio_max_segs(nr_pages), &f2fs_bioset);
990 if (!bio)
991 return ERR_PTR(-ENOMEM);
992
993 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
994
995 f2fs_target_device(sbi, blkaddr, bio);
996 bio->bi_end_io = f2fs_read_end_io;
997 bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
998
999 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1000 post_read_steps |= STEP_DECRYPT;
1001
1002 if (f2fs_need_verity(inode, first_idx))
1003 post_read_steps |= STEP_VERITY;
1004
1005 /*
1006 * STEP_DECOMPRESS is handled specially, since a compressed file might
1007 * contain both compressed and uncompressed clusters. We'll allocate a
1008 * bio_post_read_ctx if the file is compressed, but the caller is
1009 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1010 */
1011
1012 if (post_read_steps || f2fs_compressed_file(inode)) {
1013 /* Due to the mempool, this never fails. */
1014 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1015 ctx->bio = bio;
1016 ctx->sbi = sbi;
1017 ctx->enabled_steps = post_read_steps;
1018 ctx->fs_blkaddr = blkaddr;
1019 bio->bi_private = ctx;
1020 }
1021 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1022
1023 return bio;
1024 }
1025
1026 /* This can handle encryption stuffs */
1027 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1028 block_t blkaddr, int op_flags, bool for_write)
1029 {
1030 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1031 struct bio *bio;
1032
1033 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1034 page->index, for_write);
1035 if (IS_ERR(bio))
1036 return PTR_ERR(bio);
1037
1038 /* wait for GCed page writeback via META_MAPPING */
1039 f2fs_wait_on_block_writeback(inode, blkaddr);
1040
1041 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1042 bio_put(bio);
1043 return -EFAULT;
1044 }
1045 ClearPageError(page);
1046 inc_page_count(sbi, F2FS_RD_DATA);
1047 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1048 __submit_bio(sbi, bio, DATA);
1049 return 0;
1050 }
1051
1052 static void __set_data_blkaddr(struct dnode_of_data *dn)
1053 {
1054 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1055 __le32 *addr_array;
1056 int base = 0;
1057
1058 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1059 base = get_extra_isize(dn->inode);
1060
1061 /* Get physical address of data block */
1062 addr_array = blkaddr_in_node(rn);
1063 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1064 }
1065
1066 /*
1067 * Lock ordering for the change of data block address:
1068 * ->data_page
1069 * ->node_page
1070 * update block addresses in the node page
1071 */
1072 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1073 {
1074 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1075 __set_data_blkaddr(dn);
1076 if (set_page_dirty(dn->node_page))
1077 dn->node_changed = true;
1078 }
1079
1080 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1081 {
1082 dn->data_blkaddr = blkaddr;
1083 f2fs_set_data_blkaddr(dn);
1084 f2fs_update_extent_cache(dn);
1085 }
1086
1087 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1088 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1089 {
1090 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1091 int err;
1092
1093 if (!count)
1094 return 0;
1095
1096 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1097 return -EPERM;
1098 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1099 return err;
1100
1101 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1102 dn->ofs_in_node, count);
1103
1104 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1105
1106 for (; count > 0; dn->ofs_in_node++) {
1107 block_t blkaddr = f2fs_data_blkaddr(dn);
1108
1109 if (blkaddr == NULL_ADDR) {
1110 dn->data_blkaddr = NEW_ADDR;
1111 __set_data_blkaddr(dn);
1112 count--;
1113 }
1114 }
1115
1116 if (set_page_dirty(dn->node_page))
1117 dn->node_changed = true;
1118 return 0;
1119 }
1120
1121 /* Should keep dn->ofs_in_node unchanged */
1122 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1123 {
1124 unsigned int ofs_in_node = dn->ofs_in_node;
1125 int ret;
1126
1127 ret = f2fs_reserve_new_blocks(dn, 1);
1128 dn->ofs_in_node = ofs_in_node;
1129 return ret;
1130 }
1131
1132 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1133 {
1134 bool need_put = dn->inode_page ? false : true;
1135 int err;
1136
1137 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1138 if (err)
1139 return err;
1140
1141 if (dn->data_blkaddr == NULL_ADDR)
1142 err = f2fs_reserve_new_block(dn);
1143 if (err || need_put)
1144 f2fs_put_dnode(dn);
1145 return err;
1146 }
1147
1148 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1149 {
1150 struct extent_info ei = {0, };
1151 struct inode *inode = dn->inode;
1152
1153 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1154 dn->data_blkaddr = ei.blk + index - ei.fofs;
1155 return 0;
1156 }
1157
1158 return f2fs_reserve_block(dn, index);
1159 }
1160
1161 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1162 int op_flags, bool for_write)
1163 {
1164 struct address_space *mapping = inode->i_mapping;
1165 struct dnode_of_data dn;
1166 struct page *page;
1167 struct extent_info ei = {0, };
1168 int err;
1169
1170 page = f2fs_grab_cache_page(mapping, index, for_write);
1171 if (!page)
1172 return ERR_PTR(-ENOMEM);
1173
1174 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1175 dn.data_blkaddr = ei.blk + index - ei.fofs;
1176 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1177 DATA_GENERIC_ENHANCE_READ)) {
1178 err = -EFSCORRUPTED;
1179 goto put_err;
1180 }
1181 goto got_it;
1182 }
1183
1184 set_new_dnode(&dn, inode, NULL, NULL, 0);
1185 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1186 if (err)
1187 goto put_err;
1188 f2fs_put_dnode(&dn);
1189
1190 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1191 err = -ENOENT;
1192 goto put_err;
1193 }
1194 if (dn.data_blkaddr != NEW_ADDR &&
1195 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1196 dn.data_blkaddr,
1197 DATA_GENERIC_ENHANCE)) {
1198 err = -EFSCORRUPTED;
1199 goto put_err;
1200 }
1201 got_it:
1202 if (PageUptodate(page)) {
1203 unlock_page(page);
1204 return page;
1205 }
1206
1207 /*
1208 * A new dentry page is allocated but not able to be written, since its
1209 * new inode page couldn't be allocated due to -ENOSPC.
1210 * In such the case, its blkaddr can be remained as NEW_ADDR.
1211 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1212 * f2fs_init_inode_metadata.
1213 */
1214 if (dn.data_blkaddr == NEW_ADDR) {
1215 zero_user_segment(page, 0, PAGE_SIZE);
1216 if (!PageUptodate(page))
1217 SetPageUptodate(page);
1218 unlock_page(page);
1219 return page;
1220 }
1221
1222 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1223 op_flags, for_write);
1224 if (err)
1225 goto put_err;
1226 return page;
1227
1228 put_err:
1229 f2fs_put_page(page, 1);
1230 return ERR_PTR(err);
1231 }
1232
1233 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1234 {
1235 struct address_space *mapping = inode->i_mapping;
1236 struct page *page;
1237
1238 page = find_get_page(mapping, index);
1239 if (page && PageUptodate(page))
1240 return page;
1241 f2fs_put_page(page, 0);
1242
1243 page = f2fs_get_read_data_page(inode, index, 0, false);
1244 if (IS_ERR(page))
1245 return page;
1246
1247 if (PageUptodate(page))
1248 return page;
1249
1250 wait_on_page_locked(page);
1251 if (unlikely(!PageUptodate(page))) {
1252 f2fs_put_page(page, 0);
1253 return ERR_PTR(-EIO);
1254 }
1255 return page;
1256 }
1257
1258 /*
1259 * If it tries to access a hole, return an error.
1260 * Because, the callers, functions in dir.c and GC, should be able to know
1261 * whether this page exists or not.
1262 */
1263 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1264 bool for_write)
1265 {
1266 struct address_space *mapping = inode->i_mapping;
1267 struct page *page;
1268 repeat:
1269 page = f2fs_get_read_data_page(inode, index, 0, for_write);
1270 if (IS_ERR(page))
1271 return page;
1272
1273 /* wait for read completion */
1274 lock_page(page);
1275 if (unlikely(page->mapping != mapping)) {
1276 f2fs_put_page(page, 1);
1277 goto repeat;
1278 }
1279 if (unlikely(!PageUptodate(page))) {
1280 f2fs_put_page(page, 1);
1281 return ERR_PTR(-EIO);
1282 }
1283 return page;
1284 }
1285
1286 /*
1287 * Caller ensures that this data page is never allocated.
1288 * A new zero-filled data page is allocated in the page cache.
1289 *
1290 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1291 * f2fs_unlock_op().
1292 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1293 * ipage should be released by this function.
1294 */
1295 struct page *f2fs_get_new_data_page(struct inode *inode,
1296 struct page *ipage, pgoff_t index, bool new_i_size)
1297 {
1298 struct address_space *mapping = inode->i_mapping;
1299 struct page *page;
1300 struct dnode_of_data dn;
1301 int err;
1302
1303 page = f2fs_grab_cache_page(mapping, index, true);
1304 if (!page) {
1305 /*
1306 * before exiting, we should make sure ipage will be released
1307 * if any error occur.
1308 */
1309 f2fs_put_page(ipage, 1);
1310 return ERR_PTR(-ENOMEM);
1311 }
1312
1313 set_new_dnode(&dn, inode, ipage, NULL, 0);
1314 err = f2fs_reserve_block(&dn, index);
1315 if (err) {
1316 f2fs_put_page(page, 1);
1317 return ERR_PTR(err);
1318 }
1319 if (!ipage)
1320 f2fs_put_dnode(&dn);
1321
1322 if (PageUptodate(page))
1323 goto got_it;
1324
1325 if (dn.data_blkaddr == NEW_ADDR) {
1326 zero_user_segment(page, 0, PAGE_SIZE);
1327 if (!PageUptodate(page))
1328 SetPageUptodate(page);
1329 } else {
1330 f2fs_put_page(page, 1);
1331
1332 /* if ipage exists, blkaddr should be NEW_ADDR */
1333 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1334 page = f2fs_get_lock_data_page(inode, index, true);
1335 if (IS_ERR(page))
1336 return page;
1337 }
1338 got_it:
1339 if (new_i_size && i_size_read(inode) <
1340 ((loff_t)(index + 1) << PAGE_SHIFT))
1341 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1342 return page;
1343 }
1344
1345 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1346 {
1347 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1348 struct f2fs_summary sum;
1349 struct node_info ni;
1350 block_t old_blkaddr;
1351 blkcnt_t count = 1;
1352 int err;
1353
1354 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1355 return -EPERM;
1356
1357 err = f2fs_get_node_info(sbi, dn->nid, &ni);
1358 if (err)
1359 return err;
1360
1361 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1362 if (dn->data_blkaddr != NULL_ADDR)
1363 goto alloc;
1364
1365 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1366 return err;
1367
1368 alloc:
1369 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1370 old_blkaddr = dn->data_blkaddr;
1371 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1372 &sum, seg_type, NULL);
1373 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1374 invalidate_mapping_pages(META_MAPPING(sbi),
1375 old_blkaddr, old_blkaddr);
1376 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1377 }
1378 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1379
1380 /*
1381 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1382 * data from unwritten block via dio_read.
1383 */
1384 return 0;
1385 }
1386
1387 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1388 {
1389 struct inode *inode = file_inode(iocb->ki_filp);
1390 struct f2fs_map_blocks map;
1391 int flag;
1392 int err = 0;
1393 bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1394
1395 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1396 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1397 if (map.m_len > map.m_lblk)
1398 map.m_len -= map.m_lblk;
1399 else
1400 map.m_len = 0;
1401
1402 map.m_next_pgofs = NULL;
1403 map.m_next_extent = NULL;
1404 map.m_seg_type = NO_CHECK_TYPE;
1405 map.m_may_create = true;
1406
1407 if (direct_io) {
1408 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1409 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1410 F2FS_GET_BLOCK_PRE_AIO :
1411 F2FS_GET_BLOCK_PRE_DIO;
1412 goto map_blocks;
1413 }
1414 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1415 err = f2fs_convert_inline_inode(inode);
1416 if (err)
1417 return err;
1418 }
1419 if (f2fs_has_inline_data(inode))
1420 return err;
1421
1422 flag = F2FS_GET_BLOCK_PRE_AIO;
1423
1424 map_blocks:
1425 err = f2fs_map_blocks(inode, &map, 1, flag);
1426 if (map.m_len > 0 && err == -ENOSPC) {
1427 if (!direct_io)
1428 set_inode_flag(inode, FI_NO_PREALLOC);
1429 err = 0;
1430 }
1431 return err;
1432 }
1433
1434 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1435 {
1436 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1437 if (lock)
1438 down_read(&sbi->node_change);
1439 else
1440 up_read(&sbi->node_change);
1441 } else {
1442 if (lock)
1443 f2fs_lock_op(sbi);
1444 else
1445 f2fs_unlock_op(sbi);
1446 }
1447 }
1448
1449 /*
1450 * f2fs_map_blocks() tries to find or build mapping relationship which
1451 * maps continuous logical blocks to physical blocks, and return such
1452 * info via f2fs_map_blocks structure.
1453 */
1454 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1455 int create, int flag)
1456 {
1457 unsigned int maxblocks = map->m_len;
1458 struct dnode_of_data dn;
1459 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1460 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1461 pgoff_t pgofs, end_offset, end;
1462 int err = 0, ofs = 1;
1463 unsigned int ofs_in_node, last_ofs_in_node;
1464 blkcnt_t prealloc;
1465 struct extent_info ei = {0, };
1466 block_t blkaddr;
1467 unsigned int start_pgofs;
1468
1469 if (!maxblocks)
1470 return 0;
1471
1472 map->m_len = 0;
1473 map->m_flags = 0;
1474
1475 /* it only supports block size == page size */
1476 pgofs = (pgoff_t)map->m_lblk;
1477 end = pgofs + maxblocks;
1478
1479 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1480 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1481 map->m_may_create)
1482 goto next_dnode;
1483
1484 map->m_pblk = ei.blk + pgofs - ei.fofs;
1485 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1486 map->m_flags = F2FS_MAP_MAPPED;
1487 if (map->m_next_extent)
1488 *map->m_next_extent = pgofs + map->m_len;
1489
1490 /* for hardware encryption, but to avoid potential issue in future */
1491 if (flag == F2FS_GET_BLOCK_DIO)
1492 f2fs_wait_on_block_writeback_range(inode,
1493 map->m_pblk, map->m_len);
1494 goto out;
1495 }
1496
1497 next_dnode:
1498 if (map->m_may_create)
1499 f2fs_do_map_lock(sbi, flag, true);
1500
1501 /* When reading holes, we need its node page */
1502 set_new_dnode(&dn, inode, NULL, NULL, 0);
1503 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1504 if (err) {
1505 if (flag == F2FS_GET_BLOCK_BMAP)
1506 map->m_pblk = 0;
1507
1508 if (err == -ENOENT) {
1509 /*
1510 * There is one exceptional case that read_node_page()
1511 * may return -ENOENT due to filesystem has been
1512 * shutdown or cp_error, so force to convert error
1513 * number to EIO for such case.
1514 */
1515 if (map->m_may_create &&
1516 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1517 f2fs_cp_error(sbi))) {
1518 err = -EIO;
1519 goto unlock_out;
1520 }
1521
1522 err = 0;
1523 if (map->m_next_pgofs)
1524 *map->m_next_pgofs =
1525 f2fs_get_next_page_offset(&dn, pgofs);
1526 if (map->m_next_extent)
1527 *map->m_next_extent =
1528 f2fs_get_next_page_offset(&dn, pgofs);
1529 }
1530 goto unlock_out;
1531 }
1532
1533 start_pgofs = pgofs;
1534 prealloc = 0;
1535 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1536 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1537
1538 next_block:
1539 blkaddr = f2fs_data_blkaddr(&dn);
1540
1541 if (__is_valid_data_blkaddr(blkaddr) &&
1542 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1543 err = -EFSCORRUPTED;
1544 goto sync_out;
1545 }
1546
1547 if (__is_valid_data_blkaddr(blkaddr)) {
1548 /* use out-place-update for driect IO under LFS mode */
1549 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1550 map->m_may_create) {
1551 err = __allocate_data_block(&dn, map->m_seg_type);
1552 if (err)
1553 goto sync_out;
1554 blkaddr = dn.data_blkaddr;
1555 set_inode_flag(inode, FI_APPEND_WRITE);
1556 }
1557 } else {
1558 if (create) {
1559 if (unlikely(f2fs_cp_error(sbi))) {
1560 err = -EIO;
1561 goto sync_out;
1562 }
1563 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1564 if (blkaddr == NULL_ADDR) {
1565 prealloc++;
1566 last_ofs_in_node = dn.ofs_in_node;
1567 }
1568 } else {
1569 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1570 flag != F2FS_GET_BLOCK_DIO);
1571 err = __allocate_data_block(&dn,
1572 map->m_seg_type);
1573 if (!err)
1574 set_inode_flag(inode, FI_APPEND_WRITE);
1575 }
1576 if (err)
1577 goto sync_out;
1578 map->m_flags |= F2FS_MAP_NEW;
1579 blkaddr = dn.data_blkaddr;
1580 } else {
1581 if (f2fs_compressed_file(inode) &&
1582 f2fs_sanity_check_cluster(&dn) &&
1583 (flag != F2FS_GET_BLOCK_FIEMAP ||
1584 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1585 err = -EFSCORRUPTED;
1586 goto sync_out;
1587 }
1588 if (flag == F2FS_GET_BLOCK_BMAP) {
1589 map->m_pblk = 0;
1590 goto sync_out;
1591 }
1592 if (flag == F2FS_GET_BLOCK_PRECACHE)
1593 goto sync_out;
1594 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1595 blkaddr == NULL_ADDR) {
1596 if (map->m_next_pgofs)
1597 *map->m_next_pgofs = pgofs + 1;
1598 goto sync_out;
1599 }
1600 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1601 /* for defragment case */
1602 if (map->m_next_pgofs)
1603 *map->m_next_pgofs = pgofs + 1;
1604 goto sync_out;
1605 }
1606 }
1607 }
1608
1609 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1610 goto skip;
1611
1612 if (map->m_len == 0) {
1613 /* preallocated unwritten block should be mapped for fiemap. */
1614 if (blkaddr == NEW_ADDR)
1615 map->m_flags |= F2FS_MAP_UNWRITTEN;
1616 map->m_flags |= F2FS_MAP_MAPPED;
1617
1618 map->m_pblk = blkaddr;
1619 map->m_len = 1;
1620 } else if ((map->m_pblk != NEW_ADDR &&
1621 blkaddr == (map->m_pblk + ofs)) ||
1622 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1623 flag == F2FS_GET_BLOCK_PRE_DIO) {
1624 ofs++;
1625 map->m_len++;
1626 } else {
1627 goto sync_out;
1628 }
1629
1630 skip:
1631 dn.ofs_in_node++;
1632 pgofs++;
1633
1634 /* preallocate blocks in batch for one dnode page */
1635 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1636 (pgofs == end || dn.ofs_in_node == end_offset)) {
1637
1638 dn.ofs_in_node = ofs_in_node;
1639 err = f2fs_reserve_new_blocks(&dn, prealloc);
1640 if (err)
1641 goto sync_out;
1642
1643 map->m_len += dn.ofs_in_node - ofs_in_node;
1644 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1645 err = -ENOSPC;
1646 goto sync_out;
1647 }
1648 dn.ofs_in_node = end_offset;
1649 }
1650
1651 if (pgofs >= end)
1652 goto sync_out;
1653 else if (dn.ofs_in_node < end_offset)
1654 goto next_block;
1655
1656 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1657 if (map->m_flags & F2FS_MAP_MAPPED) {
1658 unsigned int ofs = start_pgofs - map->m_lblk;
1659
1660 f2fs_update_extent_cache_range(&dn,
1661 start_pgofs, map->m_pblk + ofs,
1662 map->m_len - ofs);
1663 }
1664 }
1665
1666 f2fs_put_dnode(&dn);
1667
1668 if (map->m_may_create) {
1669 f2fs_do_map_lock(sbi, flag, false);
1670 f2fs_balance_fs(sbi, dn.node_changed);
1671 }
1672 goto next_dnode;
1673
1674 sync_out:
1675
1676 /* for hardware encryption, but to avoid potential issue in future */
1677 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1678 f2fs_wait_on_block_writeback_range(inode,
1679 map->m_pblk, map->m_len);
1680
1681 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1682 if (map->m_flags & F2FS_MAP_MAPPED) {
1683 unsigned int ofs = start_pgofs - map->m_lblk;
1684
1685 f2fs_update_extent_cache_range(&dn,
1686 start_pgofs, map->m_pblk + ofs,
1687 map->m_len - ofs);
1688 }
1689 if (map->m_next_extent)
1690 *map->m_next_extent = pgofs + 1;
1691 }
1692 f2fs_put_dnode(&dn);
1693 unlock_out:
1694 if (map->m_may_create) {
1695 f2fs_do_map_lock(sbi, flag, false);
1696 f2fs_balance_fs(sbi, dn.node_changed);
1697 }
1698 out:
1699 trace_f2fs_map_blocks(inode, map, err);
1700 return err;
1701 }
1702
1703 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1704 {
1705 struct f2fs_map_blocks map;
1706 block_t last_lblk;
1707 int err;
1708
1709 if (pos + len > i_size_read(inode))
1710 return false;
1711
1712 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1713 map.m_next_pgofs = NULL;
1714 map.m_next_extent = NULL;
1715 map.m_seg_type = NO_CHECK_TYPE;
1716 map.m_may_create = false;
1717 last_lblk = F2FS_BLK_ALIGN(pos + len);
1718
1719 while (map.m_lblk < last_lblk) {
1720 map.m_len = last_lblk - map.m_lblk;
1721 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1722 if (err || map.m_len == 0)
1723 return false;
1724 map.m_lblk += map.m_len;
1725 }
1726 return true;
1727 }
1728
1729 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1730 {
1731 return (bytes >> inode->i_blkbits);
1732 }
1733
1734 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1735 {
1736 return (blks << inode->i_blkbits);
1737 }
1738
1739 static int __get_data_block(struct inode *inode, sector_t iblock,
1740 struct buffer_head *bh, int create, int flag,
1741 pgoff_t *next_pgofs, int seg_type, bool may_write)
1742 {
1743 struct f2fs_map_blocks map;
1744 int err;
1745
1746 map.m_lblk = iblock;
1747 map.m_len = bytes_to_blks(inode, bh->b_size);
1748 map.m_next_pgofs = next_pgofs;
1749 map.m_next_extent = NULL;
1750 map.m_seg_type = seg_type;
1751 map.m_may_create = may_write;
1752
1753 err = f2fs_map_blocks(inode, &map, create, flag);
1754 if (!err) {
1755 map_bh(bh, inode->i_sb, map.m_pblk);
1756 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1757 bh->b_size = blks_to_bytes(inode, map.m_len);
1758 }
1759 return err;
1760 }
1761
1762 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1763 struct buffer_head *bh_result, int create)
1764 {
1765 return __get_data_block(inode, iblock, bh_result, create,
1766 F2FS_GET_BLOCK_DIO, NULL,
1767 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1768 true);
1769 }
1770
1771 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1772 struct buffer_head *bh_result, int create)
1773 {
1774 return __get_data_block(inode, iblock, bh_result, create,
1775 F2FS_GET_BLOCK_DIO, NULL,
1776 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1777 false);
1778 }
1779
1780 static int f2fs_xattr_fiemap(struct inode *inode,
1781 struct fiemap_extent_info *fieinfo)
1782 {
1783 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1784 struct page *page;
1785 struct node_info ni;
1786 __u64 phys = 0, len;
1787 __u32 flags;
1788 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1789 int err = 0;
1790
1791 if (f2fs_has_inline_xattr(inode)) {
1792 int offset;
1793
1794 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1795 inode->i_ino, false);
1796 if (!page)
1797 return -ENOMEM;
1798
1799 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1800 if (err) {
1801 f2fs_put_page(page, 1);
1802 return err;
1803 }
1804
1805 phys = blks_to_bytes(inode, ni.blk_addr);
1806 offset = offsetof(struct f2fs_inode, i_addr) +
1807 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1808 get_inline_xattr_addrs(inode));
1809
1810 phys += offset;
1811 len = inline_xattr_size(inode);
1812
1813 f2fs_put_page(page, 1);
1814
1815 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1816
1817 if (!xnid)
1818 flags |= FIEMAP_EXTENT_LAST;
1819
1820 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1821 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1822 if (err || err == 1)
1823 return err;
1824 }
1825
1826 if (xnid) {
1827 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1828 if (!page)
1829 return -ENOMEM;
1830
1831 err = f2fs_get_node_info(sbi, xnid, &ni);
1832 if (err) {
1833 f2fs_put_page(page, 1);
1834 return err;
1835 }
1836
1837 phys = blks_to_bytes(inode, ni.blk_addr);
1838 len = inode->i_sb->s_blocksize;
1839
1840 f2fs_put_page(page, 1);
1841
1842 flags = FIEMAP_EXTENT_LAST;
1843 }
1844
1845 if (phys) {
1846 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1847 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1848 }
1849
1850 return (err < 0 ? err : 0);
1851 }
1852
1853 static loff_t max_inode_blocks(struct inode *inode)
1854 {
1855 loff_t result = ADDRS_PER_INODE(inode);
1856 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1857
1858 /* two direct node blocks */
1859 result += (leaf_count * 2);
1860
1861 /* two indirect node blocks */
1862 leaf_count *= NIDS_PER_BLOCK;
1863 result += (leaf_count * 2);
1864
1865 /* one double indirect node block */
1866 leaf_count *= NIDS_PER_BLOCK;
1867 result += leaf_count;
1868
1869 return result;
1870 }
1871
1872 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1873 u64 start, u64 len)
1874 {
1875 struct f2fs_map_blocks map;
1876 sector_t start_blk, last_blk;
1877 pgoff_t next_pgofs;
1878 u64 logical = 0, phys = 0, size = 0;
1879 u32 flags = 0;
1880 int ret = 0;
1881 bool compr_cluster = false, compr_appended;
1882 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1883 unsigned int count_in_cluster = 0;
1884 loff_t maxbytes;
1885
1886 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1887 ret = f2fs_precache_extents(inode);
1888 if (ret)
1889 return ret;
1890 }
1891
1892 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1893 if (ret)
1894 return ret;
1895
1896 inode_lock(inode);
1897
1898 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1899 if (start > maxbytes) {
1900 ret = -EFBIG;
1901 goto out;
1902 }
1903
1904 if (len > maxbytes || (maxbytes - len) < start)
1905 len = maxbytes - start;
1906
1907 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1908 ret = f2fs_xattr_fiemap(inode, fieinfo);
1909 goto out;
1910 }
1911
1912 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1913 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1914 if (ret != -EAGAIN)
1915 goto out;
1916 }
1917
1918 if (bytes_to_blks(inode, len) == 0)
1919 len = blks_to_bytes(inode, 1);
1920
1921 start_blk = bytes_to_blks(inode, start);
1922 last_blk = bytes_to_blks(inode, start + len - 1);
1923
1924 next:
1925 memset(&map, 0, sizeof(map));
1926 map.m_lblk = start_blk;
1927 map.m_len = bytes_to_blks(inode, len);
1928 map.m_next_pgofs = &next_pgofs;
1929 map.m_seg_type = NO_CHECK_TYPE;
1930
1931 if (compr_cluster) {
1932 map.m_lblk += 1;
1933 map.m_len = cluster_size - count_in_cluster;
1934 }
1935
1936 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1937 if (ret)
1938 goto out;
1939
1940 /* HOLE */
1941 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1942 start_blk = next_pgofs;
1943
1944 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1945 max_inode_blocks(inode)))
1946 goto prep_next;
1947
1948 flags |= FIEMAP_EXTENT_LAST;
1949 }
1950
1951 compr_appended = false;
1952 /* In a case of compressed cluster, append this to the last extent */
1953 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1954 !(map.m_flags & F2FS_MAP_FLAGS))) {
1955 compr_appended = true;
1956 goto skip_fill;
1957 }
1958
1959 if (size) {
1960 flags |= FIEMAP_EXTENT_MERGED;
1961 if (IS_ENCRYPTED(inode))
1962 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1963
1964 ret = fiemap_fill_next_extent(fieinfo, logical,
1965 phys, size, flags);
1966 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1967 if (ret)
1968 goto out;
1969 size = 0;
1970 }
1971
1972 if (start_blk > last_blk)
1973 goto out;
1974
1975 skip_fill:
1976 if (map.m_pblk == COMPRESS_ADDR) {
1977 compr_cluster = true;
1978 count_in_cluster = 1;
1979 } else if (compr_appended) {
1980 unsigned int appended_blks = cluster_size -
1981 count_in_cluster + 1;
1982 size += blks_to_bytes(inode, appended_blks);
1983 start_blk += appended_blks;
1984 compr_cluster = false;
1985 } else {
1986 logical = blks_to_bytes(inode, start_blk);
1987 phys = __is_valid_data_blkaddr(map.m_pblk) ?
1988 blks_to_bytes(inode, map.m_pblk) : 0;
1989 size = blks_to_bytes(inode, map.m_len);
1990 flags = 0;
1991
1992 if (compr_cluster) {
1993 flags = FIEMAP_EXTENT_ENCODED;
1994 count_in_cluster += map.m_len;
1995 if (count_in_cluster == cluster_size) {
1996 compr_cluster = false;
1997 size += blks_to_bytes(inode, 1);
1998 }
1999 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
2000 flags = FIEMAP_EXTENT_UNWRITTEN;
2001 }
2002
2003 start_blk += bytes_to_blks(inode, size);
2004 }
2005
2006 prep_next:
2007 cond_resched();
2008 if (fatal_signal_pending(current))
2009 ret = -EINTR;
2010 else
2011 goto next;
2012 out:
2013 if (ret == 1)
2014 ret = 0;
2015
2016 inode_unlock(inode);
2017 return ret;
2018 }
2019
2020 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2021 {
2022 if (IS_ENABLED(CONFIG_FS_VERITY) &&
2023 (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2024 return inode->i_sb->s_maxbytes;
2025
2026 return i_size_read(inode);
2027 }
2028
2029 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2030 unsigned nr_pages,
2031 struct f2fs_map_blocks *map,
2032 struct bio **bio_ret,
2033 sector_t *last_block_in_bio,
2034 bool is_readahead)
2035 {
2036 struct bio *bio = *bio_ret;
2037 const unsigned blocksize = blks_to_bytes(inode, 1);
2038 sector_t block_in_file;
2039 sector_t last_block;
2040 sector_t last_block_in_file;
2041 sector_t block_nr;
2042 int ret = 0;
2043
2044 block_in_file = (sector_t)page_index(page);
2045 last_block = block_in_file + nr_pages;
2046 last_block_in_file = bytes_to_blks(inode,
2047 f2fs_readpage_limit(inode) + blocksize - 1);
2048 if (last_block > last_block_in_file)
2049 last_block = last_block_in_file;
2050
2051 /* just zeroing out page which is beyond EOF */
2052 if (block_in_file >= last_block)
2053 goto zero_out;
2054 /*
2055 * Map blocks using the previous result first.
2056 */
2057 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2058 block_in_file > map->m_lblk &&
2059 block_in_file < (map->m_lblk + map->m_len))
2060 goto got_it;
2061
2062 /*
2063 * Then do more f2fs_map_blocks() calls until we are
2064 * done with this page.
2065 */
2066 map->m_lblk = block_in_file;
2067 map->m_len = last_block - block_in_file;
2068
2069 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2070 if (ret)
2071 goto out;
2072 got_it:
2073 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2074 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2075 SetPageMappedToDisk(page);
2076
2077 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2078 !cleancache_get_page(page))) {
2079 SetPageUptodate(page);
2080 goto confused;
2081 }
2082
2083 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2084 DATA_GENERIC_ENHANCE_READ)) {
2085 ret = -EFSCORRUPTED;
2086 goto out;
2087 }
2088 } else {
2089 zero_out:
2090 zero_user_segment(page, 0, PAGE_SIZE);
2091 if (f2fs_need_verity(inode, page->index) &&
2092 !fsverity_verify_page(page)) {
2093 ret = -EIO;
2094 goto out;
2095 }
2096 if (!PageUptodate(page))
2097 SetPageUptodate(page);
2098 unlock_page(page);
2099 goto out;
2100 }
2101
2102 /*
2103 * This page will go to BIO. Do we need to send this
2104 * BIO off first?
2105 */
2106 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2107 *last_block_in_bio, block_nr) ||
2108 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2109 submit_and_realloc:
2110 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2111 bio = NULL;
2112 }
2113 if (bio == NULL) {
2114 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2115 is_readahead ? REQ_RAHEAD : 0, page->index,
2116 false);
2117 if (IS_ERR(bio)) {
2118 ret = PTR_ERR(bio);
2119 bio = NULL;
2120 goto out;
2121 }
2122 }
2123
2124 /*
2125 * If the page is under writeback, we need to wait for
2126 * its completion to see the correct decrypted data.
2127 */
2128 f2fs_wait_on_block_writeback(inode, block_nr);
2129
2130 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2131 goto submit_and_realloc;
2132
2133 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2134 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2135 ClearPageError(page);
2136 *last_block_in_bio = block_nr;
2137 goto out;
2138 confused:
2139 if (bio) {
2140 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2141 bio = NULL;
2142 }
2143 unlock_page(page);
2144 out:
2145 *bio_ret = bio;
2146 return ret;
2147 }
2148
2149 #ifdef CONFIG_F2FS_FS_COMPRESSION
2150 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2151 unsigned nr_pages, sector_t *last_block_in_bio,
2152 bool is_readahead, bool for_write)
2153 {
2154 struct dnode_of_data dn;
2155 struct inode *inode = cc->inode;
2156 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2157 struct bio *bio = *bio_ret;
2158 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2159 sector_t last_block_in_file;
2160 const unsigned blocksize = blks_to_bytes(inode, 1);
2161 struct decompress_io_ctx *dic = NULL;
2162 struct extent_info ei = {0, };
2163 bool from_dnode = true;
2164 int i;
2165 int ret = 0;
2166
2167 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2168
2169 last_block_in_file = bytes_to_blks(inode,
2170 f2fs_readpage_limit(inode) + blocksize - 1);
2171
2172 /* get rid of pages beyond EOF */
2173 for (i = 0; i < cc->cluster_size; i++) {
2174 struct page *page = cc->rpages[i];
2175
2176 if (!page)
2177 continue;
2178 if ((sector_t)page->index >= last_block_in_file) {
2179 zero_user_segment(page, 0, PAGE_SIZE);
2180 if (!PageUptodate(page))
2181 SetPageUptodate(page);
2182 } else if (!PageUptodate(page)) {
2183 continue;
2184 }
2185 unlock_page(page);
2186 if (for_write)
2187 put_page(page);
2188 cc->rpages[i] = NULL;
2189 cc->nr_rpages--;
2190 }
2191
2192 /* we are done since all pages are beyond EOF */
2193 if (f2fs_cluster_is_empty(cc))
2194 goto out;
2195
2196 if (f2fs_lookup_extent_cache(inode, start_idx, &ei))
2197 from_dnode = false;
2198
2199 if (!from_dnode)
2200 goto skip_reading_dnode;
2201
2202 set_new_dnode(&dn, inode, NULL, NULL, 0);
2203 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2204 if (ret)
2205 goto out;
2206
2207 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2208
2209 skip_reading_dnode:
2210 for (i = 1; i < cc->cluster_size; i++) {
2211 block_t blkaddr;
2212
2213 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2214 dn.ofs_in_node + i) :
2215 ei.blk + i - 1;
2216
2217 if (!__is_valid_data_blkaddr(blkaddr))
2218 break;
2219
2220 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2221 ret = -EFAULT;
2222 goto out_put_dnode;
2223 }
2224 cc->nr_cpages++;
2225
2226 if (!from_dnode && i >= ei.c_len)
2227 break;
2228 }
2229
2230 /* nothing to decompress */
2231 if (cc->nr_cpages == 0) {
2232 ret = 0;
2233 goto out_put_dnode;
2234 }
2235
2236 dic = f2fs_alloc_dic(cc);
2237 if (IS_ERR(dic)) {
2238 ret = PTR_ERR(dic);
2239 goto out_put_dnode;
2240 }
2241
2242 for (i = 0; i < cc->nr_cpages; i++) {
2243 struct page *page = dic->cpages[i];
2244 block_t blkaddr;
2245 struct bio_post_read_ctx *ctx;
2246
2247 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2248 dn.ofs_in_node + i + 1) :
2249 ei.blk + i;
2250
2251 f2fs_wait_on_block_writeback(inode, blkaddr);
2252
2253 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2254 if (atomic_dec_and_test(&dic->remaining_pages))
2255 f2fs_decompress_cluster(dic);
2256 continue;
2257 }
2258
2259 if (bio && (!page_is_mergeable(sbi, bio,
2260 *last_block_in_bio, blkaddr) ||
2261 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2262 submit_and_realloc:
2263 __submit_bio(sbi, bio, DATA);
2264 bio = NULL;
2265 }
2266
2267 if (!bio) {
2268 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2269 is_readahead ? REQ_RAHEAD : 0,
2270 page->index, for_write);
2271 if (IS_ERR(bio)) {
2272 ret = PTR_ERR(bio);
2273 f2fs_decompress_end_io(dic, ret);
2274 f2fs_put_dnode(&dn);
2275 *bio_ret = NULL;
2276 return ret;
2277 }
2278 }
2279
2280 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2281 goto submit_and_realloc;
2282
2283 ctx = get_post_read_ctx(bio);
2284 ctx->enabled_steps |= STEP_DECOMPRESS;
2285 refcount_inc(&dic->refcnt);
2286
2287 inc_page_count(sbi, F2FS_RD_DATA);
2288 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2289 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2290 ClearPageError(page);
2291 *last_block_in_bio = blkaddr;
2292 }
2293
2294 if (from_dnode)
2295 f2fs_put_dnode(&dn);
2296
2297 *bio_ret = bio;
2298 return 0;
2299
2300 out_put_dnode:
2301 if (from_dnode)
2302 f2fs_put_dnode(&dn);
2303 out:
2304 for (i = 0; i < cc->cluster_size; i++) {
2305 if (cc->rpages[i]) {
2306 ClearPageUptodate(cc->rpages[i]);
2307 ClearPageError(cc->rpages[i]);
2308 unlock_page(cc->rpages[i]);
2309 }
2310 }
2311 *bio_ret = bio;
2312 return ret;
2313 }
2314 #endif
2315
2316 /*
2317 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2318 * Major change was from block_size == page_size in f2fs by default.
2319 */
2320 static int f2fs_mpage_readpages(struct inode *inode,
2321 struct readahead_control *rac, struct page *page)
2322 {
2323 struct bio *bio = NULL;
2324 sector_t last_block_in_bio = 0;
2325 struct f2fs_map_blocks map;
2326 #ifdef CONFIG_F2FS_FS_COMPRESSION
2327 struct compress_ctx cc = {
2328 .inode = inode,
2329 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2330 .cluster_size = F2FS_I(inode)->i_cluster_size,
2331 .cluster_idx = NULL_CLUSTER,
2332 .rpages = NULL,
2333 .cpages = NULL,
2334 .nr_rpages = 0,
2335 .nr_cpages = 0,
2336 };
2337 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2338 #endif
2339 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2340 unsigned max_nr_pages = nr_pages;
2341 int ret = 0;
2342
2343 map.m_pblk = 0;
2344 map.m_lblk = 0;
2345 map.m_len = 0;
2346 map.m_flags = 0;
2347 map.m_next_pgofs = NULL;
2348 map.m_next_extent = NULL;
2349 map.m_seg_type = NO_CHECK_TYPE;
2350 map.m_may_create = false;
2351
2352 for (; nr_pages; nr_pages--) {
2353 if (rac) {
2354 page = readahead_page(rac);
2355 prefetchw(&page->flags);
2356 }
2357
2358 #ifdef CONFIG_F2FS_FS_COMPRESSION
2359 if (f2fs_compressed_file(inode)) {
2360 /* there are remained comressed pages, submit them */
2361 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2362 ret = f2fs_read_multi_pages(&cc, &bio,
2363 max_nr_pages,
2364 &last_block_in_bio,
2365 rac != NULL, false);
2366 f2fs_destroy_compress_ctx(&cc, false);
2367 if (ret)
2368 goto set_error_page;
2369 }
2370 if (cc.cluster_idx == NULL_CLUSTER) {
2371 if (nc_cluster_idx ==
2372 page->index >> cc.log_cluster_size) {
2373 goto read_single_page;
2374 }
2375
2376 ret = f2fs_is_compressed_cluster(inode, page->index);
2377 if (ret < 0)
2378 goto set_error_page;
2379 else if (!ret) {
2380 nc_cluster_idx =
2381 page->index >> cc.log_cluster_size;
2382 goto read_single_page;
2383 }
2384
2385 nc_cluster_idx = NULL_CLUSTER;
2386 }
2387 ret = f2fs_init_compress_ctx(&cc);
2388 if (ret)
2389 goto set_error_page;
2390
2391 f2fs_compress_ctx_add_page(&cc, page);
2392
2393 goto next_page;
2394 }
2395 read_single_page:
2396 #endif
2397
2398 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2399 &bio, &last_block_in_bio, rac);
2400 if (ret) {
2401 #ifdef CONFIG_F2FS_FS_COMPRESSION
2402 set_error_page:
2403 #endif
2404 SetPageError(page);
2405 zero_user_segment(page, 0, PAGE_SIZE);
2406 unlock_page(page);
2407 }
2408 #ifdef CONFIG_F2FS_FS_COMPRESSION
2409 next_page:
2410 #endif
2411 if (rac)
2412 put_page(page);
2413
2414 #ifdef CONFIG_F2FS_FS_COMPRESSION
2415 if (f2fs_compressed_file(inode)) {
2416 /* last page */
2417 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2418 ret = f2fs_read_multi_pages(&cc, &bio,
2419 max_nr_pages,
2420 &last_block_in_bio,
2421 rac != NULL, false);
2422 f2fs_destroy_compress_ctx(&cc, false);
2423 }
2424 }
2425 #endif
2426 }
2427 if (bio)
2428 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2429 return ret;
2430 }
2431
2432 static int f2fs_read_data_page(struct file *file, struct page *page)
2433 {
2434 struct inode *inode = page_file_mapping(page)->host;
2435 int ret = -EAGAIN;
2436
2437 trace_f2fs_readpage(page, DATA);
2438
2439 if (!f2fs_is_compress_backend_ready(inode)) {
2440 unlock_page(page);
2441 return -EOPNOTSUPP;
2442 }
2443
2444 /* If the file has inline data, try to read it directly */
2445 if (f2fs_has_inline_data(inode))
2446 ret = f2fs_read_inline_data(inode, page);
2447 if (ret == -EAGAIN)
2448 ret = f2fs_mpage_readpages(inode, NULL, page);
2449 return ret;
2450 }
2451
2452 static void f2fs_readahead(struct readahead_control *rac)
2453 {
2454 struct inode *inode = rac->mapping->host;
2455
2456 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2457
2458 if (!f2fs_is_compress_backend_ready(inode))
2459 return;
2460
2461 /* If the file has inline data, skip readpages */
2462 if (f2fs_has_inline_data(inode))
2463 return;
2464
2465 f2fs_mpage_readpages(inode, rac, NULL);
2466 }
2467
2468 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2469 {
2470 struct inode *inode = fio->page->mapping->host;
2471 struct page *mpage, *page;
2472 gfp_t gfp_flags = GFP_NOFS;
2473
2474 if (!f2fs_encrypted_file(inode))
2475 return 0;
2476
2477 page = fio->compressed_page ? fio->compressed_page : fio->page;
2478
2479 /* wait for GCed page writeback via META_MAPPING */
2480 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2481
2482 if (fscrypt_inode_uses_inline_crypto(inode))
2483 return 0;
2484
2485 retry_encrypt:
2486 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2487 PAGE_SIZE, 0, gfp_flags);
2488 if (IS_ERR(fio->encrypted_page)) {
2489 /* flush pending IOs and wait for a while in the ENOMEM case */
2490 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2491 f2fs_flush_merged_writes(fio->sbi);
2492 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2493 gfp_flags |= __GFP_NOFAIL;
2494 goto retry_encrypt;
2495 }
2496 return PTR_ERR(fio->encrypted_page);
2497 }
2498
2499 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2500 if (mpage) {
2501 if (PageUptodate(mpage))
2502 memcpy(page_address(mpage),
2503 page_address(fio->encrypted_page), PAGE_SIZE);
2504 f2fs_put_page(mpage, 1);
2505 }
2506 return 0;
2507 }
2508
2509 static inline bool check_inplace_update_policy(struct inode *inode,
2510 struct f2fs_io_info *fio)
2511 {
2512 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2513 unsigned int policy = SM_I(sbi)->ipu_policy;
2514
2515 if (policy & (0x1 << F2FS_IPU_FORCE))
2516 return true;
2517 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2518 return true;
2519 if (policy & (0x1 << F2FS_IPU_UTIL) &&
2520 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2521 return true;
2522 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2523 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2524 return true;
2525
2526 /*
2527 * IPU for rewrite async pages
2528 */
2529 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2530 fio && fio->op == REQ_OP_WRITE &&
2531 !(fio->op_flags & REQ_SYNC) &&
2532 !IS_ENCRYPTED(inode))
2533 return true;
2534
2535 /* this is only set during fdatasync */
2536 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2537 is_inode_flag_set(inode, FI_NEED_IPU))
2538 return true;
2539
2540 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2541 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2542 return true;
2543
2544 return false;
2545 }
2546
2547 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2548 {
2549 /* swap file is migrating in aligned write mode */
2550 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2551 return false;
2552
2553 if (f2fs_is_pinned_file(inode))
2554 return true;
2555
2556 /* if this is cold file, we should overwrite to avoid fragmentation */
2557 if (file_is_cold(inode))
2558 return true;
2559
2560 return check_inplace_update_policy(inode, fio);
2561 }
2562
2563 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2564 {
2565 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2566
2567 /* The below cases were checked when setting it. */
2568 if (f2fs_is_pinned_file(inode))
2569 return false;
2570 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2571 return true;
2572 if (f2fs_lfs_mode(sbi))
2573 return true;
2574 if (S_ISDIR(inode->i_mode))
2575 return true;
2576 if (IS_NOQUOTA(inode))
2577 return true;
2578 if (f2fs_is_atomic_file(inode))
2579 return true;
2580
2581 /* swap file is migrating in aligned write mode */
2582 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2583 return true;
2584
2585 if (fio) {
2586 if (page_private_gcing(fio->page))
2587 return true;
2588 if (page_private_dummy(fio->page))
2589 return true;
2590 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2591 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2592 return true;
2593 }
2594 return false;
2595 }
2596
2597 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2598 {
2599 struct inode *inode = fio->page->mapping->host;
2600
2601 if (f2fs_should_update_outplace(inode, fio))
2602 return false;
2603
2604 return f2fs_should_update_inplace(inode, fio);
2605 }
2606
2607 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2608 {
2609 struct page *page = fio->page;
2610 struct inode *inode = page->mapping->host;
2611 struct dnode_of_data dn;
2612 struct extent_info ei = {0, };
2613 struct node_info ni;
2614 bool ipu_force = false;
2615 int err = 0;
2616
2617 set_new_dnode(&dn, inode, NULL, NULL, 0);
2618 if (need_inplace_update(fio) &&
2619 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2620 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2621
2622 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2623 DATA_GENERIC_ENHANCE))
2624 return -EFSCORRUPTED;
2625
2626 ipu_force = true;
2627 fio->need_lock = LOCK_DONE;
2628 goto got_it;
2629 }
2630
2631 /* Deadlock due to between page->lock and f2fs_lock_op */
2632 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2633 return -EAGAIN;
2634
2635 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2636 if (err)
2637 goto out;
2638
2639 fio->old_blkaddr = dn.data_blkaddr;
2640
2641 /* This page is already truncated */
2642 if (fio->old_blkaddr == NULL_ADDR) {
2643 ClearPageUptodate(page);
2644 clear_page_private_gcing(page);
2645 goto out_writepage;
2646 }
2647 got_it:
2648 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2649 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2650 DATA_GENERIC_ENHANCE)) {
2651 err = -EFSCORRUPTED;
2652 goto out_writepage;
2653 }
2654 /*
2655 * If current allocation needs SSR,
2656 * it had better in-place writes for updated data.
2657 */
2658 if (ipu_force ||
2659 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2660 need_inplace_update(fio))) {
2661 err = f2fs_encrypt_one_page(fio);
2662 if (err)
2663 goto out_writepage;
2664
2665 set_page_writeback(page);
2666 ClearPageError(page);
2667 f2fs_put_dnode(&dn);
2668 if (fio->need_lock == LOCK_REQ)
2669 f2fs_unlock_op(fio->sbi);
2670 err = f2fs_inplace_write_data(fio);
2671 if (err) {
2672 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2673 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2674 if (PageWriteback(page))
2675 end_page_writeback(page);
2676 } else {
2677 set_inode_flag(inode, FI_UPDATE_WRITE);
2678 }
2679 trace_f2fs_do_write_data_page(fio->page, IPU);
2680 return err;
2681 }
2682
2683 if (fio->need_lock == LOCK_RETRY) {
2684 if (!f2fs_trylock_op(fio->sbi)) {
2685 err = -EAGAIN;
2686 goto out_writepage;
2687 }
2688 fio->need_lock = LOCK_REQ;
2689 }
2690
2691 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2692 if (err)
2693 goto out_writepage;
2694
2695 fio->version = ni.version;
2696
2697 err = f2fs_encrypt_one_page(fio);
2698 if (err)
2699 goto out_writepage;
2700
2701 set_page_writeback(page);
2702 ClearPageError(page);
2703
2704 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2705 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2706
2707 /* LFS mode write path */
2708 f2fs_outplace_write_data(&dn, fio);
2709 trace_f2fs_do_write_data_page(page, OPU);
2710 set_inode_flag(inode, FI_APPEND_WRITE);
2711 if (page->index == 0)
2712 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2713 out_writepage:
2714 f2fs_put_dnode(&dn);
2715 out:
2716 if (fio->need_lock == LOCK_REQ)
2717 f2fs_unlock_op(fio->sbi);
2718 return err;
2719 }
2720
2721 int f2fs_write_single_data_page(struct page *page, int *submitted,
2722 struct bio **bio,
2723 sector_t *last_block,
2724 struct writeback_control *wbc,
2725 enum iostat_type io_type,
2726 int compr_blocks,
2727 bool allow_balance)
2728 {
2729 struct inode *inode = page->mapping->host;
2730 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2731 loff_t i_size = i_size_read(inode);
2732 const pgoff_t end_index = ((unsigned long long)i_size)
2733 >> PAGE_SHIFT;
2734 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2735 unsigned offset = 0;
2736 bool need_balance_fs = false;
2737 int err = 0;
2738 struct f2fs_io_info fio = {
2739 .sbi = sbi,
2740 .ino = inode->i_ino,
2741 .type = DATA,
2742 .op = REQ_OP_WRITE,
2743 .op_flags = wbc_to_write_flags(wbc),
2744 .old_blkaddr = NULL_ADDR,
2745 .page = page,
2746 .encrypted_page = NULL,
2747 .submitted = false,
2748 .compr_blocks = compr_blocks,
2749 .need_lock = LOCK_RETRY,
2750 .io_type = io_type,
2751 .io_wbc = wbc,
2752 .bio = bio,
2753 .last_block = last_block,
2754 };
2755
2756 trace_f2fs_writepage(page, DATA);
2757
2758 /* we should bypass data pages to proceed the kworkder jobs */
2759 if (unlikely(f2fs_cp_error(sbi))) {
2760 mapping_set_error(page->mapping, -EIO);
2761 /*
2762 * don't drop any dirty dentry pages for keeping lastest
2763 * directory structure.
2764 */
2765 if (S_ISDIR(inode->i_mode))
2766 goto redirty_out;
2767 goto out;
2768 }
2769
2770 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2771 goto redirty_out;
2772
2773 if (page->index < end_index ||
2774 f2fs_verity_in_progress(inode) ||
2775 compr_blocks)
2776 goto write;
2777
2778 /*
2779 * If the offset is out-of-range of file size,
2780 * this page does not have to be written to disk.
2781 */
2782 offset = i_size & (PAGE_SIZE - 1);
2783 if ((page->index >= end_index + 1) || !offset)
2784 goto out;
2785
2786 zero_user_segment(page, offset, PAGE_SIZE);
2787 write:
2788 if (f2fs_is_drop_cache(inode))
2789 goto out;
2790 /* we should not write 0'th page having journal header */
2791 if (f2fs_is_volatile_file(inode) && (!page->index ||
2792 (!wbc->for_reclaim &&
2793 f2fs_available_free_memory(sbi, BASE_CHECK))))
2794 goto redirty_out;
2795
2796 /* Dentry/quota blocks are controlled by checkpoint */
2797 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2798 /*
2799 * We need to wait for node_write to avoid block allocation during
2800 * checkpoint. This can only happen to quota writes which can cause
2801 * the below discard race condition.
2802 */
2803 if (IS_NOQUOTA(inode))
2804 down_read(&sbi->node_write);
2805
2806 fio.need_lock = LOCK_DONE;
2807 err = f2fs_do_write_data_page(&fio);
2808
2809 if (IS_NOQUOTA(inode))
2810 up_read(&sbi->node_write);
2811
2812 goto done;
2813 }
2814
2815 if (!wbc->for_reclaim)
2816 need_balance_fs = true;
2817 else if (has_not_enough_free_secs(sbi, 0, 0))
2818 goto redirty_out;
2819 else
2820 set_inode_flag(inode, FI_HOT_DATA);
2821
2822 err = -EAGAIN;
2823 if (f2fs_has_inline_data(inode)) {
2824 err = f2fs_write_inline_data(inode, page);
2825 if (!err)
2826 goto out;
2827 }
2828
2829 if (err == -EAGAIN) {
2830 err = f2fs_do_write_data_page(&fio);
2831 if (err == -EAGAIN) {
2832 fio.need_lock = LOCK_REQ;
2833 err = f2fs_do_write_data_page(&fio);
2834 }
2835 }
2836
2837 if (err) {
2838 file_set_keep_isize(inode);
2839 } else {
2840 spin_lock(&F2FS_I(inode)->i_size_lock);
2841 if (F2FS_I(inode)->last_disk_size < psize)
2842 F2FS_I(inode)->last_disk_size = psize;
2843 spin_unlock(&F2FS_I(inode)->i_size_lock);
2844 }
2845
2846 done:
2847 if (err && err != -ENOENT)
2848 goto redirty_out;
2849
2850 out:
2851 inode_dec_dirty_pages(inode);
2852 if (err) {
2853 ClearPageUptodate(page);
2854 clear_page_private_gcing(page);
2855 }
2856
2857 if (wbc->for_reclaim) {
2858 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2859 clear_inode_flag(inode, FI_HOT_DATA);
2860 f2fs_remove_dirty_inode(inode);
2861 submitted = NULL;
2862 }
2863 unlock_page(page);
2864 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2865 !F2FS_I(inode)->cp_task && allow_balance)
2866 f2fs_balance_fs(sbi, need_balance_fs);
2867
2868 if (unlikely(f2fs_cp_error(sbi))) {
2869 f2fs_submit_merged_write(sbi, DATA);
2870 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2871 submitted = NULL;
2872 }
2873
2874 if (submitted)
2875 *submitted = fio.submitted ? 1 : 0;
2876
2877 return 0;
2878
2879 redirty_out:
2880 redirty_page_for_writepage(wbc, page);
2881 /*
2882 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2883 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2884 * file_write_and_wait_range() will see EIO error, which is critical
2885 * to return value of fsync() followed by atomic_write failure to user.
2886 */
2887 if (!err || wbc->for_reclaim)
2888 return AOP_WRITEPAGE_ACTIVATE;
2889 unlock_page(page);
2890 return err;
2891 }
2892
2893 static int f2fs_write_data_page(struct page *page,
2894 struct writeback_control *wbc)
2895 {
2896 #ifdef CONFIG_F2FS_FS_COMPRESSION
2897 struct inode *inode = page->mapping->host;
2898
2899 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2900 goto out;
2901
2902 if (f2fs_compressed_file(inode)) {
2903 if (f2fs_is_compressed_cluster(inode, page->index)) {
2904 redirty_page_for_writepage(wbc, page);
2905 return AOP_WRITEPAGE_ACTIVATE;
2906 }
2907 }
2908 out:
2909 #endif
2910
2911 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2912 wbc, FS_DATA_IO, 0, true);
2913 }
2914
2915 /*
2916 * This function was copied from write_cche_pages from mm/page-writeback.c.
2917 * The major change is making write step of cold data page separately from
2918 * warm/hot data page.
2919 */
2920 static int f2fs_write_cache_pages(struct address_space *mapping,
2921 struct writeback_control *wbc,
2922 enum iostat_type io_type)
2923 {
2924 int ret = 0;
2925 int done = 0, retry = 0;
2926 struct pagevec pvec;
2927 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2928 struct bio *bio = NULL;
2929 sector_t last_block;
2930 #ifdef CONFIG_F2FS_FS_COMPRESSION
2931 struct inode *inode = mapping->host;
2932 struct compress_ctx cc = {
2933 .inode = inode,
2934 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2935 .cluster_size = F2FS_I(inode)->i_cluster_size,
2936 .cluster_idx = NULL_CLUSTER,
2937 .rpages = NULL,
2938 .nr_rpages = 0,
2939 .cpages = NULL,
2940 .rbuf = NULL,
2941 .cbuf = NULL,
2942 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2943 .private = NULL,
2944 };
2945 #endif
2946 int nr_pages;
2947 pgoff_t index;
2948 pgoff_t end; /* Inclusive */
2949 pgoff_t done_index;
2950 int range_whole = 0;
2951 xa_mark_t tag;
2952 int nwritten = 0;
2953 int submitted = 0;
2954 int i;
2955
2956 pagevec_init(&pvec);
2957
2958 if (get_dirty_pages(mapping->host) <=
2959 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2960 set_inode_flag(mapping->host, FI_HOT_DATA);
2961 else
2962 clear_inode_flag(mapping->host, FI_HOT_DATA);
2963
2964 if (wbc->range_cyclic) {
2965 index = mapping->writeback_index; /* prev offset */
2966 end = -1;
2967 } else {
2968 index = wbc->range_start >> PAGE_SHIFT;
2969 end = wbc->range_end >> PAGE_SHIFT;
2970 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2971 range_whole = 1;
2972 }
2973 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2974 tag = PAGECACHE_TAG_TOWRITE;
2975 else
2976 tag = PAGECACHE_TAG_DIRTY;
2977 retry:
2978 retry = 0;
2979 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2980 tag_pages_for_writeback(mapping, index, end);
2981 done_index = index;
2982 while (!done && !retry && (index <= end)) {
2983 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2984 tag);
2985 if (nr_pages == 0)
2986 break;
2987
2988 for (i = 0; i < nr_pages; i++) {
2989 struct page *page = pvec.pages[i];
2990 bool need_readd;
2991 readd:
2992 need_readd = false;
2993 #ifdef CONFIG_F2FS_FS_COMPRESSION
2994 if (f2fs_compressed_file(inode)) {
2995 ret = f2fs_init_compress_ctx(&cc);
2996 if (ret) {
2997 done = 1;
2998 break;
2999 }
3000
3001 if (!f2fs_cluster_can_merge_page(&cc,
3002 page->index)) {
3003 ret = f2fs_write_multi_pages(&cc,
3004 &submitted, wbc, io_type);
3005 if (!ret)
3006 need_readd = true;
3007 goto result;
3008 }
3009
3010 if (unlikely(f2fs_cp_error(sbi)))
3011 goto lock_page;
3012
3013 if (f2fs_cluster_is_empty(&cc)) {
3014 void *fsdata = NULL;
3015 struct page *pagep;
3016 int ret2;
3017
3018 ret2 = f2fs_prepare_compress_overwrite(
3019 inode, &pagep,
3020 page->index, &fsdata);
3021 if (ret2 < 0) {
3022 ret = ret2;
3023 done = 1;
3024 break;
3025 } else if (ret2 &&
3026 !f2fs_compress_write_end(inode,
3027 fsdata, page->index,
3028 1)) {
3029 retry = 1;
3030 break;
3031 }
3032 } else {
3033 goto lock_page;
3034 }
3035 }
3036 #endif
3037 /* give a priority to WB_SYNC threads */
3038 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3039 wbc->sync_mode == WB_SYNC_NONE) {
3040 done = 1;
3041 break;
3042 }
3043 #ifdef CONFIG_F2FS_FS_COMPRESSION
3044 lock_page:
3045 #endif
3046 done_index = page->index;
3047 retry_write:
3048 lock_page(page);
3049
3050 if (unlikely(page->mapping != mapping)) {
3051 continue_unlock:
3052 unlock_page(page);
3053 continue;
3054 }
3055
3056 if (!PageDirty(page)) {
3057 /* someone wrote it for us */
3058 goto continue_unlock;
3059 }
3060
3061 if (PageWriteback(page)) {
3062 if (wbc->sync_mode != WB_SYNC_NONE)
3063 f2fs_wait_on_page_writeback(page,
3064 DATA, true, true);
3065 else
3066 goto continue_unlock;
3067 }
3068
3069 if (!clear_page_dirty_for_io(page))
3070 goto continue_unlock;
3071
3072 #ifdef CONFIG_F2FS_FS_COMPRESSION
3073 if (f2fs_compressed_file(inode)) {
3074 get_page(page);
3075 f2fs_compress_ctx_add_page(&cc, page);
3076 continue;
3077 }
3078 #endif
3079 ret = f2fs_write_single_data_page(page, &submitted,
3080 &bio, &last_block, wbc, io_type,
3081 0, true);
3082 if (ret == AOP_WRITEPAGE_ACTIVATE)
3083 unlock_page(page);
3084 #ifdef CONFIG_F2FS_FS_COMPRESSION
3085 result:
3086 #endif
3087 nwritten += submitted;
3088 wbc->nr_to_write -= submitted;
3089
3090 if (unlikely(ret)) {
3091 /*
3092 * keep nr_to_write, since vfs uses this to
3093 * get # of written pages.
3094 */
3095 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3096 ret = 0;
3097 goto next;
3098 } else if (ret == -EAGAIN) {
3099 ret = 0;
3100 if (wbc->sync_mode == WB_SYNC_ALL) {
3101 cond_resched();
3102 congestion_wait(BLK_RW_ASYNC,
3103 DEFAULT_IO_TIMEOUT);
3104 goto retry_write;
3105 }
3106 goto next;
3107 }
3108 done_index = page->index + 1;
3109 done = 1;
3110 break;
3111 }
3112
3113 if (wbc->nr_to_write <= 0 &&
3114 wbc->sync_mode == WB_SYNC_NONE) {
3115 done = 1;
3116 break;
3117 }
3118 next:
3119 if (need_readd)
3120 goto readd;
3121 }
3122 pagevec_release(&pvec);
3123 cond_resched();
3124 }
3125 #ifdef CONFIG_F2FS_FS_COMPRESSION
3126 /* flush remained pages in compress cluster */
3127 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3128 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3129 nwritten += submitted;
3130 wbc->nr_to_write -= submitted;
3131 if (ret) {
3132 done = 1;
3133 retry = 0;
3134 }
3135 }
3136 if (f2fs_compressed_file(inode))
3137 f2fs_destroy_compress_ctx(&cc, false);
3138 #endif
3139 if (retry) {
3140 index = 0;
3141 end = -1;
3142 goto retry;
3143 }
3144 if (wbc->range_cyclic && !done)
3145 done_index = 0;
3146 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3147 mapping->writeback_index = done_index;
3148
3149 if (nwritten)
3150 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3151 NULL, 0, DATA);
3152 /* submit cached bio of IPU write */
3153 if (bio)
3154 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3155
3156 return ret;
3157 }
3158
3159 static inline bool __should_serialize_io(struct inode *inode,
3160 struct writeback_control *wbc)
3161 {
3162 /* to avoid deadlock in path of data flush */
3163 if (F2FS_I(inode)->cp_task)
3164 return false;
3165
3166 if (!S_ISREG(inode->i_mode))
3167 return false;
3168 if (IS_NOQUOTA(inode))
3169 return false;
3170
3171 if (f2fs_need_compress_data(inode))
3172 return true;
3173 if (wbc->sync_mode != WB_SYNC_ALL)
3174 return true;
3175 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3176 return true;
3177 return false;
3178 }
3179
3180 static int __f2fs_write_data_pages(struct address_space *mapping,
3181 struct writeback_control *wbc,
3182 enum iostat_type io_type)
3183 {
3184 struct inode *inode = mapping->host;
3185 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3186 struct blk_plug plug;
3187 int ret;
3188 bool locked = false;
3189
3190 /* deal with chardevs and other special file */
3191 if (!mapping->a_ops->writepage)
3192 return 0;
3193
3194 /* skip writing if there is no dirty page in this inode */
3195 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3196 return 0;
3197
3198 /* during POR, we don't need to trigger writepage at all. */
3199 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3200 goto skip_write;
3201
3202 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3203 wbc->sync_mode == WB_SYNC_NONE &&
3204 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3205 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3206 goto skip_write;
3207
3208 /* skip writing during file defragment */
3209 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3210 goto skip_write;
3211
3212 trace_f2fs_writepages(mapping->host, wbc, DATA);
3213
3214 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3215 if (wbc->sync_mode == WB_SYNC_ALL)
3216 atomic_inc(&sbi->wb_sync_req[DATA]);
3217 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3218 /* to avoid potential deadlock */
3219 if (current->plug)
3220 blk_finish_plug(current->plug);
3221 goto skip_write;
3222 }
3223
3224 if (__should_serialize_io(inode, wbc)) {
3225 mutex_lock(&sbi->writepages);
3226 locked = true;
3227 }
3228
3229 blk_start_plug(&plug);
3230 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3231 blk_finish_plug(&plug);
3232
3233 if (locked)
3234 mutex_unlock(&sbi->writepages);
3235
3236 if (wbc->sync_mode == WB_SYNC_ALL)
3237 atomic_dec(&sbi->wb_sync_req[DATA]);
3238 /*
3239 * if some pages were truncated, we cannot guarantee its mapping->host
3240 * to detect pending bios.
3241 */
3242
3243 f2fs_remove_dirty_inode(inode);
3244 return ret;
3245
3246 skip_write:
3247 wbc->pages_skipped += get_dirty_pages(inode);
3248 trace_f2fs_writepages(mapping->host, wbc, DATA);
3249 return 0;
3250 }
3251
3252 static int f2fs_write_data_pages(struct address_space *mapping,
3253 struct writeback_control *wbc)
3254 {
3255 struct inode *inode = mapping->host;
3256
3257 return __f2fs_write_data_pages(mapping, wbc,
3258 F2FS_I(inode)->cp_task == current ?
3259 FS_CP_DATA_IO : FS_DATA_IO);
3260 }
3261
3262 static void f2fs_write_failed(struct inode *inode, loff_t to)
3263 {
3264 loff_t i_size = i_size_read(inode);
3265
3266 if (IS_NOQUOTA(inode))
3267 return;
3268
3269 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3270 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3271 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3272 filemap_invalidate_lock(inode->i_mapping);
3273
3274 truncate_pagecache(inode, i_size);
3275 f2fs_truncate_blocks(inode, i_size, true);
3276
3277 filemap_invalidate_unlock(inode->i_mapping);
3278 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3279 }
3280 }
3281
3282 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3283 struct page *page, loff_t pos, unsigned len,
3284 block_t *blk_addr, bool *node_changed)
3285 {
3286 struct inode *inode = page->mapping->host;
3287 pgoff_t index = page->index;
3288 struct dnode_of_data dn;
3289 struct page *ipage;
3290 bool locked = false;
3291 struct extent_info ei = {0, };
3292 int err = 0;
3293 int flag;
3294
3295 /*
3296 * we already allocated all the blocks, so we don't need to get
3297 * the block addresses when there is no need to fill the page.
3298 */
3299 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3300 !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3301 !f2fs_verity_in_progress(inode))
3302 return 0;
3303
3304 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3305 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3306 flag = F2FS_GET_BLOCK_DEFAULT;
3307 else
3308 flag = F2FS_GET_BLOCK_PRE_AIO;
3309
3310 if (f2fs_has_inline_data(inode) ||
3311 (pos & PAGE_MASK) >= i_size_read(inode)) {
3312 f2fs_do_map_lock(sbi, flag, true);
3313 locked = true;
3314 }
3315
3316 restart:
3317 /* check inline_data */
3318 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3319 if (IS_ERR(ipage)) {
3320 err = PTR_ERR(ipage);
3321 goto unlock_out;
3322 }
3323
3324 set_new_dnode(&dn, inode, ipage, ipage, 0);
3325
3326 if (f2fs_has_inline_data(inode)) {
3327 if (pos + len <= MAX_INLINE_DATA(inode)) {
3328 f2fs_do_read_inline_data(page, ipage);
3329 set_inode_flag(inode, FI_DATA_EXIST);
3330 if (inode->i_nlink)
3331 set_page_private_inline(ipage);
3332 } else {
3333 err = f2fs_convert_inline_page(&dn, page);
3334 if (err)
3335 goto out;
3336 if (dn.data_blkaddr == NULL_ADDR)
3337 err = f2fs_get_block(&dn, index);
3338 }
3339 } else if (locked) {
3340 err = f2fs_get_block(&dn, index);
3341 } else {
3342 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3343 dn.data_blkaddr = ei.blk + index - ei.fofs;
3344 } else {
3345 /* hole case */
3346 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3347 if (err || dn.data_blkaddr == NULL_ADDR) {
3348 f2fs_put_dnode(&dn);
3349 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3350 true);
3351 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3352 locked = true;
3353 goto restart;
3354 }
3355 }
3356 }
3357
3358 /* convert_inline_page can make node_changed */
3359 *blk_addr = dn.data_blkaddr;
3360 *node_changed = dn.node_changed;
3361 out:
3362 f2fs_put_dnode(&dn);
3363 unlock_out:
3364 if (locked)
3365 f2fs_do_map_lock(sbi, flag, false);
3366 return err;
3367 }
3368
3369 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3370 loff_t pos, unsigned len, unsigned flags,
3371 struct page **pagep, void **fsdata)
3372 {
3373 struct inode *inode = mapping->host;
3374 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3375 struct page *page = NULL;
3376 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3377 bool need_balance = false, drop_atomic = false;
3378 block_t blkaddr = NULL_ADDR;
3379 int err = 0;
3380
3381 trace_f2fs_write_begin(inode, pos, len, flags);
3382
3383 if (!f2fs_is_checkpoint_ready(sbi)) {
3384 err = -ENOSPC;
3385 goto fail;
3386 }
3387
3388 if ((f2fs_is_atomic_file(inode) &&
3389 !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3390 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3391 err = -ENOMEM;
3392 drop_atomic = true;
3393 goto fail;
3394 }
3395
3396 /*
3397 * We should check this at this moment to avoid deadlock on inode page
3398 * and #0 page. The locking rule for inline_data conversion should be:
3399 * lock_page(page #0) -> lock_page(inode_page)
3400 */
3401 if (index != 0) {
3402 err = f2fs_convert_inline_inode(inode);
3403 if (err)
3404 goto fail;
3405 }
3406
3407 #ifdef CONFIG_F2FS_FS_COMPRESSION
3408 if (f2fs_compressed_file(inode)) {
3409 int ret;
3410
3411 *fsdata = NULL;
3412
3413 if (len == PAGE_SIZE)
3414 goto repeat;
3415
3416 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3417 index, fsdata);
3418 if (ret < 0) {
3419 err = ret;
3420 goto fail;
3421 } else if (ret) {
3422 return 0;
3423 }
3424 }
3425 #endif
3426
3427 repeat:
3428 /*
3429 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3430 * wait_for_stable_page. Will wait that below with our IO control.
3431 */
3432 page = f2fs_pagecache_get_page(mapping, index,
3433 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3434 if (!page) {
3435 err = -ENOMEM;
3436 goto fail;
3437 }
3438
3439 /* TODO: cluster can be compressed due to race with .writepage */
3440
3441 *pagep = page;
3442
3443 err = prepare_write_begin(sbi, page, pos, len,
3444 &blkaddr, &need_balance);
3445 if (err)
3446 goto fail;
3447
3448 if (need_balance && !IS_NOQUOTA(inode) &&
3449 has_not_enough_free_secs(sbi, 0, 0)) {
3450 unlock_page(page);
3451 f2fs_balance_fs(sbi, true);
3452 lock_page(page);
3453 if (page->mapping != mapping) {
3454 /* The page got truncated from under us */
3455 f2fs_put_page(page, 1);
3456 goto repeat;
3457 }
3458 }
3459
3460 f2fs_wait_on_page_writeback(page, DATA, false, true);
3461
3462 if (len == PAGE_SIZE || PageUptodate(page))
3463 return 0;
3464
3465 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3466 !f2fs_verity_in_progress(inode)) {
3467 zero_user_segment(page, len, PAGE_SIZE);
3468 return 0;
3469 }
3470
3471 if (blkaddr == NEW_ADDR) {
3472 zero_user_segment(page, 0, PAGE_SIZE);
3473 SetPageUptodate(page);
3474 } else {
3475 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3476 DATA_GENERIC_ENHANCE_READ)) {
3477 err = -EFSCORRUPTED;
3478 goto fail;
3479 }
3480 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3481 if (err)
3482 goto fail;
3483
3484 lock_page(page);
3485 if (unlikely(page->mapping != mapping)) {
3486 f2fs_put_page(page, 1);
3487 goto repeat;
3488 }
3489 if (unlikely(!PageUptodate(page))) {
3490 err = -EIO;
3491 goto fail;
3492 }
3493 }
3494 return 0;
3495
3496 fail:
3497 f2fs_put_page(page, 1);
3498 f2fs_write_failed(inode, pos + len);
3499 if (drop_atomic)
3500 f2fs_drop_inmem_pages_all(sbi, false);
3501 return err;
3502 }
3503
3504 static int f2fs_write_end(struct file *file,
3505 struct address_space *mapping,
3506 loff_t pos, unsigned len, unsigned copied,
3507 struct page *page, void *fsdata)
3508 {
3509 struct inode *inode = page->mapping->host;
3510
3511 trace_f2fs_write_end(inode, pos, len, copied);
3512
3513 /*
3514 * This should be come from len == PAGE_SIZE, and we expect copied
3515 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3516 * let generic_perform_write() try to copy data again through copied=0.
3517 */
3518 if (!PageUptodate(page)) {
3519 if (unlikely(copied != len))
3520 copied = 0;
3521 else
3522 SetPageUptodate(page);
3523 }
3524
3525 #ifdef CONFIG_F2FS_FS_COMPRESSION
3526 /* overwrite compressed file */
3527 if (f2fs_compressed_file(inode) && fsdata) {
3528 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3529 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3530
3531 if (pos + copied > i_size_read(inode) &&
3532 !f2fs_verity_in_progress(inode))
3533 f2fs_i_size_write(inode, pos + copied);
3534 return copied;
3535 }
3536 #endif
3537
3538 if (!copied)
3539 goto unlock_out;
3540
3541 set_page_dirty(page);
3542
3543 if (pos + copied > i_size_read(inode) &&
3544 !f2fs_verity_in_progress(inode))
3545 f2fs_i_size_write(inode, pos + copied);
3546 unlock_out:
3547 f2fs_put_page(page, 1);
3548 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3549 return copied;
3550 }
3551
3552 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3553 loff_t offset)
3554 {
3555 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3556 unsigned blkbits = i_blkbits;
3557 unsigned blocksize_mask = (1 << blkbits) - 1;
3558 unsigned long align = offset | iov_iter_alignment(iter);
3559 struct block_device *bdev = inode->i_sb->s_bdev;
3560
3561 if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3562 return 1;
3563
3564 if (align & blocksize_mask) {
3565 if (bdev)
3566 blkbits = blksize_bits(bdev_logical_block_size(bdev));
3567 blocksize_mask = (1 << blkbits) - 1;
3568 if (align & blocksize_mask)
3569 return -EINVAL;
3570 return 1;
3571 }
3572 return 0;
3573 }
3574
3575 static void f2fs_dio_end_io(struct bio *bio)
3576 {
3577 struct f2fs_private_dio *dio = bio->bi_private;
3578
3579 dec_page_count(F2FS_I_SB(dio->inode),
3580 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3581
3582 bio->bi_private = dio->orig_private;
3583 bio->bi_end_io = dio->orig_end_io;
3584
3585 kfree(dio);
3586
3587 bio_endio(bio);
3588 }
3589
3590 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3591 loff_t file_offset)
3592 {
3593 struct f2fs_private_dio *dio;
3594 bool write = (bio_op(bio) == REQ_OP_WRITE);
3595
3596 dio = f2fs_kzalloc(F2FS_I_SB(inode),
3597 sizeof(struct f2fs_private_dio), GFP_NOFS);
3598 if (!dio)
3599 goto out;
3600
3601 dio->inode = inode;
3602 dio->orig_end_io = bio->bi_end_io;
3603 dio->orig_private = bio->bi_private;
3604 dio->write = write;
3605
3606 bio->bi_end_io = f2fs_dio_end_io;
3607 bio->bi_private = dio;
3608
3609 inc_page_count(F2FS_I_SB(inode),
3610 write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3611
3612 submit_bio(bio);
3613 return;
3614 out:
3615 bio->bi_status = BLK_STS_IOERR;
3616 bio_endio(bio);
3617 }
3618
3619 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3620 {
3621 struct address_space *mapping = iocb->ki_filp->f_mapping;
3622 struct inode *inode = mapping->host;
3623 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3624 struct f2fs_inode_info *fi = F2FS_I(inode);
3625 size_t count = iov_iter_count(iter);
3626 loff_t offset = iocb->ki_pos;
3627 int rw = iov_iter_rw(iter);
3628 int err;
3629 enum rw_hint hint = iocb->ki_hint;
3630 int whint_mode = F2FS_OPTION(sbi).whint_mode;
3631 bool do_opu;
3632
3633 err = check_direct_IO(inode, iter, offset);
3634 if (err)
3635 return err < 0 ? err : 0;
3636
3637 if (f2fs_force_buffered_io(inode, iocb, iter))
3638 return 0;
3639
3640 do_opu = rw == WRITE && f2fs_lfs_mode(sbi);
3641
3642 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3643
3644 if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3645 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3646
3647 if (iocb->ki_flags & IOCB_NOWAIT) {
3648 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3649 iocb->ki_hint = hint;
3650 err = -EAGAIN;
3651 goto out;
3652 }
3653 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3654 up_read(&fi->i_gc_rwsem[rw]);
3655 iocb->ki_hint = hint;
3656 err = -EAGAIN;
3657 goto out;
3658 }
3659 } else {
3660 down_read(&fi->i_gc_rwsem[rw]);
3661 if (do_opu)
3662 down_read(&fi->i_gc_rwsem[READ]);
3663 }
3664
3665 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3666 iter, rw == WRITE ? get_data_block_dio_write :
3667 get_data_block_dio, NULL, f2fs_dio_submit_bio,
3668 rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3669 DIO_SKIP_HOLES);
3670
3671 if (do_opu)
3672 up_read(&fi->i_gc_rwsem[READ]);
3673
3674 up_read(&fi->i_gc_rwsem[rw]);
3675
3676 if (rw == WRITE) {
3677 if (whint_mode == WHINT_MODE_OFF)
3678 iocb->ki_hint = hint;
3679 if (err > 0) {
3680 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3681 err);
3682 if (!do_opu)
3683 set_inode_flag(inode, FI_UPDATE_WRITE);
3684 } else if (err == -EIOCBQUEUED) {
3685 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3686 count - iov_iter_count(iter));
3687 } else if (err < 0) {
3688 f2fs_write_failed(inode, offset + count);
3689 }
3690 } else {
3691 if (err > 0)
3692 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3693 else if (err == -EIOCBQUEUED)
3694 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3695 count - iov_iter_count(iter));
3696 }
3697
3698 out:
3699 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3700
3701 return err;
3702 }
3703
3704 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3705 unsigned int length)
3706 {
3707 struct inode *inode = page->mapping->host;
3708 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3709
3710 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3711 (offset % PAGE_SIZE || length != PAGE_SIZE))
3712 return;
3713
3714 if (PageDirty(page)) {
3715 if (inode->i_ino == F2FS_META_INO(sbi)) {
3716 dec_page_count(sbi, F2FS_DIRTY_META);
3717 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3718 dec_page_count(sbi, F2FS_DIRTY_NODES);
3719 } else {
3720 inode_dec_dirty_pages(inode);
3721 f2fs_remove_dirty_inode(inode);
3722 }
3723 }
3724
3725 clear_page_private_gcing(page);
3726
3727 if (test_opt(sbi, COMPRESS_CACHE)) {
3728 if (f2fs_compressed_file(inode))
3729 f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3730 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3731 clear_page_private_data(page);
3732 }
3733
3734 if (page_private_atomic(page))
3735 return f2fs_drop_inmem_page(inode, page);
3736
3737 detach_page_private(page);
3738 set_page_private(page, 0);
3739 }
3740
3741 int f2fs_release_page(struct page *page, gfp_t wait)
3742 {
3743 /* If this is dirty page, keep PagePrivate */
3744 if (PageDirty(page))
3745 return 0;
3746
3747 /* This is atomic written page, keep Private */
3748 if (page_private_atomic(page))
3749 return 0;
3750
3751 if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) {
3752 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3753 struct inode *inode = page->mapping->host;
3754
3755 if (f2fs_compressed_file(inode))
3756 f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3757 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3758 clear_page_private_data(page);
3759 }
3760
3761 clear_page_private_gcing(page);
3762
3763 detach_page_private(page);
3764 set_page_private(page, 0);
3765 return 1;
3766 }
3767
3768 static int f2fs_set_data_page_dirty(struct page *page)
3769 {
3770 struct inode *inode = page_file_mapping(page)->host;
3771
3772 trace_f2fs_set_page_dirty(page, DATA);
3773
3774 if (!PageUptodate(page))
3775 SetPageUptodate(page);
3776 if (PageSwapCache(page))
3777 return __set_page_dirty_nobuffers(page);
3778
3779 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3780 if (!page_private_atomic(page)) {
3781 f2fs_register_inmem_page(inode, page);
3782 return 1;
3783 }
3784 /*
3785 * Previously, this page has been registered, we just
3786 * return here.
3787 */
3788 return 0;
3789 }
3790
3791 if (!PageDirty(page)) {
3792 __set_page_dirty_nobuffers(page);
3793 f2fs_update_dirty_page(inode, page);
3794 return 1;
3795 }
3796 return 0;
3797 }
3798
3799
3800 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3801 {
3802 #ifdef CONFIG_F2FS_FS_COMPRESSION
3803 struct dnode_of_data dn;
3804 sector_t start_idx, blknr = 0;
3805 int ret;
3806
3807 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3808
3809 set_new_dnode(&dn, inode, NULL, NULL, 0);
3810 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3811 if (ret)
3812 return 0;
3813
3814 if (dn.data_blkaddr != COMPRESS_ADDR) {
3815 dn.ofs_in_node += block - start_idx;
3816 blknr = f2fs_data_blkaddr(&dn);
3817 if (!__is_valid_data_blkaddr(blknr))
3818 blknr = 0;
3819 }
3820
3821 f2fs_put_dnode(&dn);
3822 return blknr;
3823 #else
3824 return 0;
3825 #endif
3826 }
3827
3828
3829 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3830 {
3831 struct inode *inode = mapping->host;
3832 sector_t blknr = 0;
3833
3834 if (f2fs_has_inline_data(inode))
3835 goto out;
3836
3837 /* make sure allocating whole blocks */
3838 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3839 filemap_write_and_wait(mapping);
3840
3841 /* Block number less than F2FS MAX BLOCKS */
3842 if (unlikely(block >= max_file_blocks(inode)))
3843 goto out;
3844
3845 if (f2fs_compressed_file(inode)) {
3846 blknr = f2fs_bmap_compress(inode, block);
3847 } else {
3848 struct f2fs_map_blocks map;
3849
3850 memset(&map, 0, sizeof(map));
3851 map.m_lblk = block;
3852 map.m_len = 1;
3853 map.m_next_pgofs = NULL;
3854 map.m_seg_type = NO_CHECK_TYPE;
3855
3856 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3857 blknr = map.m_pblk;
3858 }
3859 out:
3860 trace_f2fs_bmap(inode, block, blknr);
3861 return blknr;
3862 }
3863
3864 #ifdef CONFIG_MIGRATION
3865 #include <linux/migrate.h>
3866
3867 int f2fs_migrate_page(struct address_space *mapping,
3868 struct page *newpage, struct page *page, enum migrate_mode mode)
3869 {
3870 int rc, extra_count;
3871 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3872 bool atomic_written = page_private_atomic(page);
3873
3874 BUG_ON(PageWriteback(page));
3875
3876 /* migrating an atomic written page is safe with the inmem_lock hold */
3877 if (atomic_written) {
3878 if (mode != MIGRATE_SYNC)
3879 return -EBUSY;
3880 if (!mutex_trylock(&fi->inmem_lock))
3881 return -EAGAIN;
3882 }
3883
3884 /* one extra reference was held for atomic_write page */
3885 extra_count = atomic_written ? 1 : 0;
3886 rc = migrate_page_move_mapping(mapping, newpage,
3887 page, extra_count);
3888 if (rc != MIGRATEPAGE_SUCCESS) {
3889 if (atomic_written)
3890 mutex_unlock(&fi->inmem_lock);
3891 return rc;
3892 }
3893
3894 if (atomic_written) {
3895 struct inmem_pages *cur;
3896
3897 list_for_each_entry(cur, &fi->inmem_pages, list)
3898 if (cur->page == page) {
3899 cur->page = newpage;
3900 break;
3901 }
3902 mutex_unlock(&fi->inmem_lock);
3903 put_page(page);
3904 get_page(newpage);
3905 }
3906
3907 /* guarantee to start from no stale private field */
3908 set_page_private(newpage, 0);
3909 if (PagePrivate(page)) {
3910 set_page_private(newpage, page_private(page));
3911 SetPagePrivate(newpage);
3912 get_page(newpage);
3913
3914 set_page_private(page, 0);
3915 ClearPagePrivate(page);
3916 put_page(page);
3917 }
3918
3919 if (mode != MIGRATE_SYNC_NO_COPY)
3920 migrate_page_copy(newpage, page);
3921 else
3922 migrate_page_states(newpage, page);
3923
3924 return MIGRATEPAGE_SUCCESS;
3925 }
3926 #endif
3927
3928 #ifdef CONFIG_SWAP
3929 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3930 unsigned int blkcnt)
3931 {
3932 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3933 unsigned int blkofs;
3934 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3935 unsigned int secidx = start_blk / blk_per_sec;
3936 unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3937 int ret = 0;
3938
3939 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3940 filemap_invalidate_lock(inode->i_mapping);
3941
3942 set_inode_flag(inode, FI_ALIGNED_WRITE);
3943
3944 for (; secidx < end_sec; secidx++) {
3945 down_write(&sbi->pin_sem);
3946
3947 f2fs_lock_op(sbi);
3948 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3949 f2fs_unlock_op(sbi);
3950
3951 set_inode_flag(inode, FI_DO_DEFRAG);
3952
3953 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3954 struct page *page;
3955 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3956
3957 page = f2fs_get_lock_data_page(inode, blkidx, true);
3958 if (IS_ERR(page)) {
3959 up_write(&sbi->pin_sem);
3960 ret = PTR_ERR(page);
3961 goto done;
3962 }
3963
3964 set_page_dirty(page);
3965 f2fs_put_page(page, 1);
3966 }
3967
3968 clear_inode_flag(inode, FI_DO_DEFRAG);
3969
3970 ret = filemap_fdatawrite(inode->i_mapping);
3971
3972 up_write(&sbi->pin_sem);
3973
3974 if (ret)
3975 break;
3976 }
3977
3978 done:
3979 clear_inode_flag(inode, FI_DO_DEFRAG);
3980 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3981
3982 filemap_invalidate_unlock(inode->i_mapping);
3983 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3984
3985 return ret;
3986 }
3987
3988 static int check_swap_activate(struct swap_info_struct *sis,
3989 struct file *swap_file, sector_t *span)
3990 {
3991 struct address_space *mapping = swap_file->f_mapping;
3992 struct inode *inode = mapping->host;
3993 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3994 sector_t cur_lblock;
3995 sector_t last_lblock;
3996 sector_t pblock;
3997 sector_t lowest_pblock = -1;
3998 sector_t highest_pblock = 0;
3999 int nr_extents = 0;
4000 unsigned long nr_pblocks;
4001 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
4002 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
4003 unsigned int not_aligned = 0;
4004 int ret = 0;
4005
4006 /*
4007 * Map all the blocks into the extent list. This code doesn't try
4008 * to be very smart.
4009 */
4010 cur_lblock = 0;
4011 last_lblock = bytes_to_blks(inode, i_size_read(inode));
4012
4013 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
4014 struct f2fs_map_blocks map;
4015 retry:
4016 cond_resched();
4017
4018 memset(&map, 0, sizeof(map));
4019 map.m_lblk = cur_lblock;
4020 map.m_len = last_lblock - cur_lblock;
4021 map.m_next_pgofs = NULL;
4022 map.m_next_extent = NULL;
4023 map.m_seg_type = NO_CHECK_TYPE;
4024 map.m_may_create = false;
4025
4026 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
4027 if (ret)
4028 goto out;
4029
4030 /* hole */
4031 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
4032 f2fs_err(sbi, "Swapfile has holes");
4033 ret = -EINVAL;
4034 goto out;
4035 }
4036
4037 pblock = map.m_pblk;
4038 nr_pblocks = map.m_len;
4039
4040 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
4041 nr_pblocks & sec_blks_mask) {
4042 not_aligned++;
4043
4044 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4045 if (cur_lblock + nr_pblocks > sis->max)
4046 nr_pblocks -= blks_per_sec;
4047
4048 if (!nr_pblocks) {
4049 /* this extent is last one */
4050 nr_pblocks = map.m_len;
4051 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4052 goto next;
4053 }
4054
4055 ret = f2fs_migrate_blocks(inode, cur_lblock,
4056 nr_pblocks);
4057 if (ret)
4058 goto out;
4059 goto retry;
4060 }
4061 next:
4062 if (cur_lblock + nr_pblocks >= sis->max)
4063 nr_pblocks = sis->max - cur_lblock;
4064
4065 if (cur_lblock) { /* exclude the header page */
4066 if (pblock < lowest_pblock)
4067 lowest_pblock = pblock;
4068 if (pblock + nr_pblocks - 1 > highest_pblock)
4069 highest_pblock = pblock + nr_pblocks - 1;
4070 }
4071
4072 /*
4073 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4074 */
4075 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4076 if (ret < 0)
4077 goto out;
4078 nr_extents += ret;
4079 cur_lblock += nr_pblocks;
4080 }
4081 ret = nr_extents;
4082 *span = 1 + highest_pblock - lowest_pblock;
4083 if (cur_lblock == 0)
4084 cur_lblock = 1; /* force Empty message */
4085 sis->max = cur_lblock;
4086 sis->pages = cur_lblock - 1;
4087 sis->highest_bit = cur_lblock - 1;
4088 out:
4089 if (not_aligned)
4090 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4091 not_aligned, blks_per_sec * F2FS_BLKSIZE);
4092 return ret;
4093 }
4094
4095 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4096 sector_t *span)
4097 {
4098 struct inode *inode = file_inode(file);
4099 int ret;
4100
4101 if (!S_ISREG(inode->i_mode))
4102 return -EINVAL;
4103
4104 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4105 return -EROFS;
4106
4107 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4108 f2fs_err(F2FS_I_SB(inode),
4109 "Swapfile not supported in LFS mode");
4110 return -EINVAL;
4111 }
4112
4113 ret = f2fs_convert_inline_inode(inode);
4114 if (ret)
4115 return ret;
4116
4117 if (!f2fs_disable_compressed_file(inode))
4118 return -EINVAL;
4119
4120 f2fs_precache_extents(inode);
4121
4122 ret = check_swap_activate(sis, file, span);
4123 if (ret < 0)
4124 return ret;
4125
4126 set_inode_flag(inode, FI_PIN_FILE);
4127 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4128 return ret;
4129 }
4130
4131 static void f2fs_swap_deactivate(struct file *file)
4132 {
4133 struct inode *inode = file_inode(file);
4134
4135 clear_inode_flag(inode, FI_PIN_FILE);
4136 }
4137 #else
4138 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4139 sector_t *span)
4140 {
4141 return -EOPNOTSUPP;
4142 }
4143
4144 static void f2fs_swap_deactivate(struct file *file)
4145 {
4146 }
4147 #endif
4148
4149 const struct address_space_operations f2fs_dblock_aops = {
4150 .readpage = f2fs_read_data_page,
4151 .readahead = f2fs_readahead,
4152 .writepage = f2fs_write_data_page,
4153 .writepages = f2fs_write_data_pages,
4154 .write_begin = f2fs_write_begin,
4155 .write_end = f2fs_write_end,
4156 .set_page_dirty = f2fs_set_data_page_dirty,
4157 .invalidatepage = f2fs_invalidate_page,
4158 .releasepage = f2fs_release_page,
4159 .direct_IO = f2fs_direct_IO,
4160 .bmap = f2fs_bmap,
4161 .swap_activate = f2fs_swap_activate,
4162 .swap_deactivate = f2fs_swap_deactivate,
4163 #ifdef CONFIG_MIGRATION
4164 .migratepage = f2fs_migrate_page,
4165 #endif
4166 };
4167
4168 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4169 {
4170 struct address_space *mapping = page_mapping(page);
4171 unsigned long flags;
4172
4173 xa_lock_irqsave(&mapping->i_pages, flags);
4174 __xa_clear_mark(&mapping->i_pages, page_index(page),
4175 PAGECACHE_TAG_DIRTY);
4176 xa_unlock_irqrestore(&mapping->i_pages, flags);
4177 }
4178
4179 int __init f2fs_init_post_read_processing(void)
4180 {
4181 bio_post_read_ctx_cache =
4182 kmem_cache_create("f2fs_bio_post_read_ctx",
4183 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4184 if (!bio_post_read_ctx_cache)
4185 goto fail;
4186 bio_post_read_ctx_pool =
4187 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4188 bio_post_read_ctx_cache);
4189 if (!bio_post_read_ctx_pool)
4190 goto fail_free_cache;
4191 return 0;
4192
4193 fail_free_cache:
4194 kmem_cache_destroy(bio_post_read_ctx_cache);
4195 fail:
4196 return -ENOMEM;
4197 }
4198
4199 void f2fs_destroy_post_read_processing(void)
4200 {
4201 mempool_destroy(bio_post_read_ctx_pool);
4202 kmem_cache_destroy(bio_post_read_ctx_cache);
4203 }
4204
4205 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4206 {
4207 if (!f2fs_sb_has_encrypt(sbi) &&
4208 !f2fs_sb_has_verity(sbi) &&
4209 !f2fs_sb_has_compression(sbi))
4210 return 0;
4211
4212 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4213 WQ_UNBOUND | WQ_HIGHPRI,
4214 num_online_cpus());
4215 if (!sbi->post_read_wq)
4216 return -ENOMEM;
4217 return 0;
4218 }
4219
4220 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4221 {
4222 if (sbi->post_read_wq)
4223 destroy_workqueue(sbi->post_read_wq);
4224 }
4225
4226 int __init f2fs_init_bio_entry_cache(void)
4227 {
4228 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4229 sizeof(struct bio_entry));
4230 if (!bio_entry_slab)
4231 return -ENOMEM;
4232 return 0;
4233 }
4234
4235 void f2fs_destroy_bio_entry_cache(void)
4236 {
4237 kmem_cache_destroy(bio_entry_slab);
4238 }