]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/data.c
Merge branch 'uaccess' (batched user access infrastructure)
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
29
30 static void f2fs_read_end_io(struct bio *bio)
31 {
32 struct bio_vec *bvec;
33 int i;
34
35 if (f2fs_bio_encrypted(bio)) {
36 if (bio->bi_error) {
37 f2fs_release_crypto_ctx(bio->bi_private);
38 } else {
39 f2fs_end_io_crypto_work(bio->bi_private, bio);
40 return;
41 }
42 }
43
44 bio_for_each_segment_all(bvec, bio, i) {
45 struct page *page = bvec->bv_page;
46
47 if (!bio->bi_error) {
48 SetPageUptodate(page);
49 } else {
50 ClearPageUptodate(page);
51 SetPageError(page);
52 }
53 unlock_page(page);
54 }
55 bio_put(bio);
56 }
57
58 static void f2fs_write_end_io(struct bio *bio)
59 {
60 struct f2fs_sb_info *sbi = bio->bi_private;
61 struct bio_vec *bvec;
62 int i;
63
64 bio_for_each_segment_all(bvec, bio, i) {
65 struct page *page = bvec->bv_page;
66
67 f2fs_restore_and_release_control_page(&page);
68
69 if (unlikely(bio->bi_error)) {
70 set_page_dirty(page);
71 set_bit(AS_EIO, &page->mapping->flags);
72 f2fs_stop_checkpoint(sbi);
73 }
74 end_page_writeback(page);
75 dec_page_count(sbi, F2FS_WRITEBACK);
76 }
77
78 if (!get_pages(sbi, F2FS_WRITEBACK) &&
79 !list_empty(&sbi->cp_wait.task_list))
80 wake_up(&sbi->cp_wait);
81
82 bio_put(bio);
83 }
84
85 /*
86 * Low-level block read/write IO operations.
87 */
88 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
89 int npages, bool is_read)
90 {
91 struct bio *bio;
92
93 bio = f2fs_bio_alloc(npages);
94
95 bio->bi_bdev = sbi->sb->s_bdev;
96 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
97 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
98 bio->bi_private = is_read ? NULL : sbi;
99
100 return bio;
101 }
102
103 static void __submit_merged_bio(struct f2fs_bio_info *io)
104 {
105 struct f2fs_io_info *fio = &io->fio;
106
107 if (!io->bio)
108 return;
109
110 if (is_read_io(fio->rw))
111 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
112 else
113 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
114
115 submit_bio(fio->rw, io->bio);
116 io->bio = NULL;
117 }
118
119 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
120 enum page_type type, int rw)
121 {
122 enum page_type btype = PAGE_TYPE_OF_BIO(type);
123 struct f2fs_bio_info *io;
124
125 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
126
127 down_write(&io->io_rwsem);
128
129 /* change META to META_FLUSH in the checkpoint procedure */
130 if (type >= META_FLUSH) {
131 io->fio.type = META_FLUSH;
132 if (test_opt(sbi, NOBARRIER))
133 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
134 else
135 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
136 }
137 __submit_merged_bio(io);
138 up_write(&io->io_rwsem);
139 }
140
141 /*
142 * Fill the locked page with data located in the block address.
143 * Return unlocked page.
144 */
145 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
146 {
147 struct bio *bio;
148 struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
149
150 trace_f2fs_submit_page_bio(page, fio);
151 f2fs_trace_ios(fio, 0);
152
153 /* Allocate a new bio */
154 bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
155
156 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
157 bio_put(bio);
158 return -EFAULT;
159 }
160
161 submit_bio(fio->rw, bio);
162 return 0;
163 }
164
165 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
166 {
167 struct f2fs_sb_info *sbi = fio->sbi;
168 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
169 struct f2fs_bio_info *io;
170 bool is_read = is_read_io(fio->rw);
171 struct page *bio_page;
172
173 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
174
175 verify_block_addr(sbi, fio->blk_addr);
176
177 down_write(&io->io_rwsem);
178
179 if (!is_read)
180 inc_page_count(sbi, F2FS_WRITEBACK);
181
182 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
183 io->fio.rw != fio->rw))
184 __submit_merged_bio(io);
185 alloc_new:
186 if (io->bio == NULL) {
187 int bio_blocks = MAX_BIO_BLOCKS(sbi);
188
189 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
190 io->fio = *fio;
191 }
192
193 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
194
195 if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
196 PAGE_CACHE_SIZE) {
197 __submit_merged_bio(io);
198 goto alloc_new;
199 }
200
201 io->last_block_in_bio = fio->blk_addr;
202 f2fs_trace_ios(fio, 0);
203
204 up_write(&io->io_rwsem);
205 trace_f2fs_submit_page_mbio(fio->page, fio);
206 }
207
208 /*
209 * Lock ordering for the change of data block address:
210 * ->data_page
211 * ->node_page
212 * update block addresses in the node page
213 */
214 void set_data_blkaddr(struct dnode_of_data *dn)
215 {
216 struct f2fs_node *rn;
217 __le32 *addr_array;
218 struct page *node_page = dn->node_page;
219 unsigned int ofs_in_node = dn->ofs_in_node;
220
221 f2fs_wait_on_page_writeback(node_page, NODE);
222
223 rn = F2FS_NODE(node_page);
224
225 /* Get physical address of data block */
226 addr_array = blkaddr_in_node(rn);
227 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
228 if (set_page_dirty(node_page))
229 dn->node_changed = true;
230 }
231
232 int reserve_new_block(struct dnode_of_data *dn)
233 {
234 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
235
236 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
237 return -EPERM;
238 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
239 return -ENOSPC;
240
241 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
242
243 dn->data_blkaddr = NEW_ADDR;
244 set_data_blkaddr(dn);
245 mark_inode_dirty(dn->inode);
246 sync_inode_page(dn);
247 return 0;
248 }
249
250 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
251 {
252 bool need_put = dn->inode_page ? false : true;
253 int err;
254
255 err = get_dnode_of_data(dn, index, ALLOC_NODE);
256 if (err)
257 return err;
258
259 if (dn->data_blkaddr == NULL_ADDR)
260 err = reserve_new_block(dn);
261 if (err || need_put)
262 f2fs_put_dnode(dn);
263 return err;
264 }
265
266 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
267 {
268 struct extent_info ei;
269 struct inode *inode = dn->inode;
270
271 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
272 dn->data_blkaddr = ei.blk + index - ei.fofs;
273 return 0;
274 }
275
276 return f2fs_reserve_block(dn, index);
277 }
278
279 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
280 int rw, bool for_write)
281 {
282 struct address_space *mapping = inode->i_mapping;
283 struct dnode_of_data dn;
284 struct page *page;
285 struct extent_info ei;
286 int err;
287 struct f2fs_io_info fio = {
288 .sbi = F2FS_I_SB(inode),
289 .type = DATA,
290 .rw = rw,
291 .encrypted_page = NULL,
292 };
293
294 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
295 return read_mapping_page(mapping, index, NULL);
296
297 page = f2fs_grab_cache_page(mapping, index, for_write);
298 if (!page)
299 return ERR_PTR(-ENOMEM);
300
301 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
302 dn.data_blkaddr = ei.blk + index - ei.fofs;
303 goto got_it;
304 }
305
306 set_new_dnode(&dn, inode, NULL, NULL, 0);
307 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
308 if (err)
309 goto put_err;
310 f2fs_put_dnode(&dn);
311
312 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
313 err = -ENOENT;
314 goto put_err;
315 }
316 got_it:
317 if (PageUptodate(page)) {
318 unlock_page(page);
319 return page;
320 }
321
322 /*
323 * A new dentry page is allocated but not able to be written, since its
324 * new inode page couldn't be allocated due to -ENOSPC.
325 * In such the case, its blkaddr can be remained as NEW_ADDR.
326 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
327 */
328 if (dn.data_blkaddr == NEW_ADDR) {
329 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
330 SetPageUptodate(page);
331 unlock_page(page);
332 return page;
333 }
334
335 fio.blk_addr = dn.data_blkaddr;
336 fio.page = page;
337 err = f2fs_submit_page_bio(&fio);
338 if (err)
339 goto put_err;
340 return page;
341
342 put_err:
343 f2fs_put_page(page, 1);
344 return ERR_PTR(err);
345 }
346
347 struct page *find_data_page(struct inode *inode, pgoff_t index)
348 {
349 struct address_space *mapping = inode->i_mapping;
350 struct page *page;
351
352 page = find_get_page(mapping, index);
353 if (page && PageUptodate(page))
354 return page;
355 f2fs_put_page(page, 0);
356
357 page = get_read_data_page(inode, index, READ_SYNC, false);
358 if (IS_ERR(page))
359 return page;
360
361 if (PageUptodate(page))
362 return page;
363
364 wait_on_page_locked(page);
365 if (unlikely(!PageUptodate(page))) {
366 f2fs_put_page(page, 0);
367 return ERR_PTR(-EIO);
368 }
369 return page;
370 }
371
372 /*
373 * If it tries to access a hole, return an error.
374 * Because, the callers, functions in dir.c and GC, should be able to know
375 * whether this page exists or not.
376 */
377 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
378 bool for_write)
379 {
380 struct address_space *mapping = inode->i_mapping;
381 struct page *page;
382 repeat:
383 page = get_read_data_page(inode, index, READ_SYNC, for_write);
384 if (IS_ERR(page))
385 return page;
386
387 /* wait for read completion */
388 lock_page(page);
389 if (unlikely(!PageUptodate(page))) {
390 f2fs_put_page(page, 1);
391 return ERR_PTR(-EIO);
392 }
393 if (unlikely(page->mapping != mapping)) {
394 f2fs_put_page(page, 1);
395 goto repeat;
396 }
397 return page;
398 }
399
400 /*
401 * Caller ensures that this data page is never allocated.
402 * A new zero-filled data page is allocated in the page cache.
403 *
404 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
405 * f2fs_unlock_op().
406 * Note that, ipage is set only by make_empty_dir, and if any error occur,
407 * ipage should be released by this function.
408 */
409 struct page *get_new_data_page(struct inode *inode,
410 struct page *ipage, pgoff_t index, bool new_i_size)
411 {
412 struct address_space *mapping = inode->i_mapping;
413 struct page *page;
414 struct dnode_of_data dn;
415 int err;
416
417 page = f2fs_grab_cache_page(mapping, index, true);
418 if (!page) {
419 /*
420 * before exiting, we should make sure ipage will be released
421 * if any error occur.
422 */
423 f2fs_put_page(ipage, 1);
424 return ERR_PTR(-ENOMEM);
425 }
426
427 set_new_dnode(&dn, inode, ipage, NULL, 0);
428 err = f2fs_reserve_block(&dn, index);
429 if (err) {
430 f2fs_put_page(page, 1);
431 return ERR_PTR(err);
432 }
433 if (!ipage)
434 f2fs_put_dnode(&dn);
435
436 if (PageUptodate(page))
437 goto got_it;
438
439 if (dn.data_blkaddr == NEW_ADDR) {
440 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
441 SetPageUptodate(page);
442 } else {
443 f2fs_put_page(page, 1);
444
445 /* if ipage exists, blkaddr should be NEW_ADDR */
446 f2fs_bug_on(F2FS_I_SB(inode), ipage);
447 page = get_lock_data_page(inode, index, true);
448 if (IS_ERR(page))
449 return page;
450 }
451 got_it:
452 if (new_i_size && i_size_read(inode) <
453 ((loff_t)(index + 1) << PAGE_CACHE_SHIFT)) {
454 i_size_write(inode, ((loff_t)(index + 1) << PAGE_CACHE_SHIFT));
455 /* Only the directory inode sets new_i_size */
456 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
457 }
458 return page;
459 }
460
461 static int __allocate_data_block(struct dnode_of_data *dn)
462 {
463 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
464 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
465 struct f2fs_summary sum;
466 struct node_info ni;
467 int seg = CURSEG_WARM_DATA;
468 pgoff_t fofs;
469
470 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
471 return -EPERM;
472
473 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
474 if (dn->data_blkaddr == NEW_ADDR)
475 goto alloc;
476
477 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
478 return -ENOSPC;
479
480 alloc:
481 get_node_info(sbi, dn->nid, &ni);
482 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
483
484 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
485 seg = CURSEG_DIRECT_IO;
486
487 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
488 &sum, seg);
489 set_data_blkaddr(dn);
490
491 /* update i_size */
492 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
493 dn->ofs_in_node;
494 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT))
495 i_size_write(dn->inode,
496 ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT));
497 return 0;
498 }
499
500 static int __allocate_data_blocks(struct inode *inode, loff_t offset,
501 size_t count)
502 {
503 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
504 struct dnode_of_data dn;
505 u64 start = F2FS_BYTES_TO_BLK(offset);
506 u64 len = F2FS_BYTES_TO_BLK(count);
507 bool allocated;
508 u64 end_offset;
509 int err = 0;
510
511 while (len) {
512 f2fs_lock_op(sbi);
513
514 /* When reading holes, we need its node page */
515 set_new_dnode(&dn, inode, NULL, NULL, 0);
516 err = get_dnode_of_data(&dn, start, ALLOC_NODE);
517 if (err)
518 goto out;
519
520 allocated = false;
521 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
522
523 while (dn.ofs_in_node < end_offset && len) {
524 block_t blkaddr;
525
526 if (unlikely(f2fs_cp_error(sbi))) {
527 err = -EIO;
528 goto sync_out;
529 }
530
531 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
532 if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
533 err = __allocate_data_block(&dn);
534 if (err)
535 goto sync_out;
536 allocated = true;
537 }
538 len--;
539 start++;
540 dn.ofs_in_node++;
541 }
542
543 if (allocated)
544 sync_inode_page(&dn);
545
546 f2fs_put_dnode(&dn);
547 f2fs_unlock_op(sbi);
548
549 f2fs_balance_fs(sbi, dn.node_changed);
550 }
551 return err;
552
553 sync_out:
554 if (allocated)
555 sync_inode_page(&dn);
556 f2fs_put_dnode(&dn);
557 out:
558 f2fs_unlock_op(sbi);
559 f2fs_balance_fs(sbi, dn.node_changed);
560 return err;
561 }
562
563 /*
564 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
565 * f2fs_map_blocks structure.
566 * If original data blocks are allocated, then give them to blockdev.
567 * Otherwise,
568 * a. preallocate requested block addresses
569 * b. do not use extent cache for better performance
570 * c. give the block addresses to blockdev
571 */
572 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
573 int create, int flag)
574 {
575 unsigned int maxblocks = map->m_len;
576 struct dnode_of_data dn;
577 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
578 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
579 pgoff_t pgofs, end_offset;
580 int err = 0, ofs = 1;
581 struct extent_info ei;
582 bool allocated = false;
583 block_t blkaddr;
584
585 map->m_len = 0;
586 map->m_flags = 0;
587
588 /* it only supports block size == page size */
589 pgofs = (pgoff_t)map->m_lblk;
590
591 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
592 map->m_pblk = ei.blk + pgofs - ei.fofs;
593 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
594 map->m_flags = F2FS_MAP_MAPPED;
595 goto out;
596 }
597
598 if (create)
599 f2fs_lock_op(sbi);
600
601 /* When reading holes, we need its node page */
602 set_new_dnode(&dn, inode, NULL, NULL, 0);
603 err = get_dnode_of_data(&dn, pgofs, mode);
604 if (err) {
605 if (err == -ENOENT)
606 err = 0;
607 goto unlock_out;
608 }
609
610 if (dn.data_blkaddr == NEW_ADDR || dn.data_blkaddr == NULL_ADDR) {
611 if (create) {
612 if (unlikely(f2fs_cp_error(sbi))) {
613 err = -EIO;
614 goto put_out;
615 }
616 err = __allocate_data_block(&dn);
617 if (err)
618 goto put_out;
619 allocated = true;
620 map->m_flags = F2FS_MAP_NEW;
621 } else {
622 if (flag != F2FS_GET_BLOCK_FIEMAP ||
623 dn.data_blkaddr != NEW_ADDR) {
624 if (flag == F2FS_GET_BLOCK_BMAP)
625 err = -ENOENT;
626 goto put_out;
627 }
628
629 /*
630 * preallocated unwritten block should be mapped
631 * for fiemap.
632 */
633 if (dn.data_blkaddr == NEW_ADDR)
634 map->m_flags = F2FS_MAP_UNWRITTEN;
635 }
636 }
637
638 map->m_flags |= F2FS_MAP_MAPPED;
639 map->m_pblk = dn.data_blkaddr;
640 map->m_len = 1;
641
642 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
643 dn.ofs_in_node++;
644 pgofs++;
645
646 get_next:
647 if (map->m_len >= maxblocks)
648 goto sync_out;
649
650 if (dn.ofs_in_node >= end_offset) {
651 if (allocated)
652 sync_inode_page(&dn);
653 allocated = false;
654 f2fs_put_dnode(&dn);
655
656 if (create) {
657 f2fs_unlock_op(sbi);
658 f2fs_balance_fs(sbi, dn.node_changed);
659 f2fs_lock_op(sbi);
660 }
661
662 set_new_dnode(&dn, inode, NULL, NULL, 0);
663 err = get_dnode_of_data(&dn, pgofs, mode);
664 if (err) {
665 if (err == -ENOENT)
666 err = 0;
667 goto unlock_out;
668 }
669
670 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
671 }
672
673 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
674
675 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
676 if (create) {
677 if (unlikely(f2fs_cp_error(sbi))) {
678 err = -EIO;
679 goto sync_out;
680 }
681 err = __allocate_data_block(&dn);
682 if (err)
683 goto sync_out;
684 allocated = true;
685 map->m_flags |= F2FS_MAP_NEW;
686 blkaddr = dn.data_blkaddr;
687 } else {
688 /*
689 * we only merge preallocated unwritten blocks
690 * for fiemap.
691 */
692 if (flag != F2FS_GET_BLOCK_FIEMAP ||
693 blkaddr != NEW_ADDR)
694 goto sync_out;
695 }
696 }
697
698 /* Give more consecutive addresses for the readahead */
699 if ((map->m_pblk != NEW_ADDR &&
700 blkaddr == (map->m_pblk + ofs)) ||
701 (map->m_pblk == NEW_ADDR &&
702 blkaddr == NEW_ADDR)) {
703 ofs++;
704 dn.ofs_in_node++;
705 pgofs++;
706 map->m_len++;
707 goto get_next;
708 }
709
710 sync_out:
711 if (allocated)
712 sync_inode_page(&dn);
713 put_out:
714 f2fs_put_dnode(&dn);
715 unlock_out:
716 if (create) {
717 f2fs_unlock_op(sbi);
718 f2fs_balance_fs(sbi, dn.node_changed);
719 }
720 out:
721 trace_f2fs_map_blocks(inode, map, err);
722 return err;
723 }
724
725 static int __get_data_block(struct inode *inode, sector_t iblock,
726 struct buffer_head *bh, int create, int flag)
727 {
728 struct f2fs_map_blocks map;
729 int ret;
730
731 map.m_lblk = iblock;
732 map.m_len = bh->b_size >> inode->i_blkbits;
733
734 ret = f2fs_map_blocks(inode, &map, create, flag);
735 if (!ret) {
736 map_bh(bh, inode->i_sb, map.m_pblk);
737 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
738 bh->b_size = map.m_len << inode->i_blkbits;
739 }
740 return ret;
741 }
742
743 static int get_data_block(struct inode *inode, sector_t iblock,
744 struct buffer_head *bh_result, int create, int flag)
745 {
746 return __get_data_block(inode, iblock, bh_result, create, flag);
747 }
748
749 static int get_data_block_dio(struct inode *inode, sector_t iblock,
750 struct buffer_head *bh_result, int create)
751 {
752 return __get_data_block(inode, iblock, bh_result, create,
753 F2FS_GET_BLOCK_DIO);
754 }
755
756 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
757 struct buffer_head *bh_result, int create)
758 {
759 /* Block number less than F2FS MAX BLOCKS */
760 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
761 return -EFBIG;
762
763 return __get_data_block(inode, iblock, bh_result, create,
764 F2FS_GET_BLOCK_BMAP);
765 }
766
767 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
768 {
769 return (offset >> inode->i_blkbits);
770 }
771
772 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
773 {
774 return (blk << inode->i_blkbits);
775 }
776
777 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
778 u64 start, u64 len)
779 {
780 struct buffer_head map_bh;
781 sector_t start_blk, last_blk;
782 loff_t isize;
783 u64 logical = 0, phys = 0, size = 0;
784 u32 flags = 0;
785 int ret = 0;
786
787 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
788 if (ret)
789 return ret;
790
791 if (f2fs_has_inline_data(inode)) {
792 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
793 if (ret != -EAGAIN)
794 return ret;
795 }
796
797 mutex_lock(&inode->i_mutex);
798
799 isize = i_size_read(inode);
800 if (start >= isize)
801 goto out;
802
803 if (start + len > isize)
804 len = isize - start;
805
806 if (logical_to_blk(inode, len) == 0)
807 len = blk_to_logical(inode, 1);
808
809 start_blk = logical_to_blk(inode, start);
810 last_blk = logical_to_blk(inode, start + len - 1);
811
812 next:
813 memset(&map_bh, 0, sizeof(struct buffer_head));
814 map_bh.b_size = len;
815
816 ret = get_data_block(inode, start_blk, &map_bh, 0,
817 F2FS_GET_BLOCK_FIEMAP);
818 if (ret)
819 goto out;
820
821 /* HOLE */
822 if (!buffer_mapped(&map_bh)) {
823 /* Go through holes util pass the EOF */
824 if (blk_to_logical(inode, start_blk++) < isize)
825 goto prep_next;
826 /* Found a hole beyond isize means no more extents.
827 * Note that the premise is that filesystems don't
828 * punch holes beyond isize and keep size unchanged.
829 */
830 flags |= FIEMAP_EXTENT_LAST;
831 }
832
833 if (size) {
834 if (f2fs_encrypted_inode(inode))
835 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
836
837 ret = fiemap_fill_next_extent(fieinfo, logical,
838 phys, size, flags);
839 }
840
841 if (start_blk > last_blk || ret)
842 goto out;
843
844 logical = blk_to_logical(inode, start_blk);
845 phys = blk_to_logical(inode, map_bh.b_blocknr);
846 size = map_bh.b_size;
847 flags = 0;
848 if (buffer_unwritten(&map_bh))
849 flags = FIEMAP_EXTENT_UNWRITTEN;
850
851 start_blk += logical_to_blk(inode, size);
852
853 prep_next:
854 cond_resched();
855 if (fatal_signal_pending(current))
856 ret = -EINTR;
857 else
858 goto next;
859 out:
860 if (ret == 1)
861 ret = 0;
862
863 mutex_unlock(&inode->i_mutex);
864 return ret;
865 }
866
867 /*
868 * This function was originally taken from fs/mpage.c, and customized for f2fs.
869 * Major change was from block_size == page_size in f2fs by default.
870 */
871 static int f2fs_mpage_readpages(struct address_space *mapping,
872 struct list_head *pages, struct page *page,
873 unsigned nr_pages)
874 {
875 struct bio *bio = NULL;
876 unsigned page_idx;
877 sector_t last_block_in_bio = 0;
878 struct inode *inode = mapping->host;
879 const unsigned blkbits = inode->i_blkbits;
880 const unsigned blocksize = 1 << blkbits;
881 sector_t block_in_file;
882 sector_t last_block;
883 sector_t last_block_in_file;
884 sector_t block_nr;
885 struct block_device *bdev = inode->i_sb->s_bdev;
886 struct f2fs_map_blocks map;
887
888 map.m_pblk = 0;
889 map.m_lblk = 0;
890 map.m_len = 0;
891 map.m_flags = 0;
892
893 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
894
895 prefetchw(&page->flags);
896 if (pages) {
897 page = list_entry(pages->prev, struct page, lru);
898 list_del(&page->lru);
899 if (add_to_page_cache_lru(page, mapping,
900 page->index, GFP_KERNEL))
901 goto next_page;
902 }
903
904 block_in_file = (sector_t)page->index;
905 last_block = block_in_file + nr_pages;
906 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
907 blkbits;
908 if (last_block > last_block_in_file)
909 last_block = last_block_in_file;
910
911 /*
912 * Map blocks using the previous result first.
913 */
914 if ((map.m_flags & F2FS_MAP_MAPPED) &&
915 block_in_file > map.m_lblk &&
916 block_in_file < (map.m_lblk + map.m_len))
917 goto got_it;
918
919 /*
920 * Then do more f2fs_map_blocks() calls until we are
921 * done with this page.
922 */
923 map.m_flags = 0;
924
925 if (block_in_file < last_block) {
926 map.m_lblk = block_in_file;
927 map.m_len = last_block - block_in_file;
928
929 if (f2fs_map_blocks(inode, &map, 0,
930 F2FS_GET_BLOCK_READ))
931 goto set_error_page;
932 }
933 got_it:
934 if ((map.m_flags & F2FS_MAP_MAPPED)) {
935 block_nr = map.m_pblk + block_in_file - map.m_lblk;
936 SetPageMappedToDisk(page);
937
938 if (!PageUptodate(page) && !cleancache_get_page(page)) {
939 SetPageUptodate(page);
940 goto confused;
941 }
942 } else {
943 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
944 SetPageUptodate(page);
945 unlock_page(page);
946 goto next_page;
947 }
948
949 /*
950 * This page will go to BIO. Do we need to send this
951 * BIO off first?
952 */
953 if (bio && (last_block_in_bio != block_nr - 1)) {
954 submit_and_realloc:
955 submit_bio(READ, bio);
956 bio = NULL;
957 }
958 if (bio == NULL) {
959 struct f2fs_crypto_ctx *ctx = NULL;
960
961 if (f2fs_encrypted_inode(inode) &&
962 S_ISREG(inode->i_mode)) {
963
964 ctx = f2fs_get_crypto_ctx(inode);
965 if (IS_ERR(ctx))
966 goto set_error_page;
967
968 /* wait the page to be moved by cleaning */
969 f2fs_wait_on_encrypted_page_writeback(
970 F2FS_I_SB(inode), block_nr);
971 }
972
973 bio = bio_alloc(GFP_KERNEL,
974 min_t(int, nr_pages, BIO_MAX_PAGES));
975 if (!bio) {
976 if (ctx)
977 f2fs_release_crypto_ctx(ctx);
978 goto set_error_page;
979 }
980 bio->bi_bdev = bdev;
981 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
982 bio->bi_end_io = f2fs_read_end_io;
983 bio->bi_private = ctx;
984 }
985
986 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
987 goto submit_and_realloc;
988
989 last_block_in_bio = block_nr;
990 goto next_page;
991 set_error_page:
992 SetPageError(page);
993 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
994 unlock_page(page);
995 goto next_page;
996 confused:
997 if (bio) {
998 submit_bio(READ, bio);
999 bio = NULL;
1000 }
1001 unlock_page(page);
1002 next_page:
1003 if (pages)
1004 page_cache_release(page);
1005 }
1006 BUG_ON(pages && !list_empty(pages));
1007 if (bio)
1008 submit_bio(READ, bio);
1009 return 0;
1010 }
1011
1012 static int f2fs_read_data_page(struct file *file, struct page *page)
1013 {
1014 struct inode *inode = page->mapping->host;
1015 int ret = -EAGAIN;
1016
1017 trace_f2fs_readpage(page, DATA);
1018
1019 /* If the file has inline data, try to read it directly */
1020 if (f2fs_has_inline_data(inode))
1021 ret = f2fs_read_inline_data(inode, page);
1022 if (ret == -EAGAIN)
1023 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1024 return ret;
1025 }
1026
1027 static int f2fs_read_data_pages(struct file *file,
1028 struct address_space *mapping,
1029 struct list_head *pages, unsigned nr_pages)
1030 {
1031 struct inode *inode = file->f_mapping->host;
1032 struct page *page = list_entry(pages->prev, struct page, lru);
1033
1034 trace_f2fs_readpages(inode, page, nr_pages);
1035
1036 /* If the file has inline data, skip readpages */
1037 if (f2fs_has_inline_data(inode))
1038 return 0;
1039
1040 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1041 }
1042
1043 int do_write_data_page(struct f2fs_io_info *fio)
1044 {
1045 struct page *page = fio->page;
1046 struct inode *inode = page->mapping->host;
1047 struct dnode_of_data dn;
1048 int err = 0;
1049
1050 set_new_dnode(&dn, inode, NULL, NULL, 0);
1051 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1052 if (err)
1053 return err;
1054
1055 fio->blk_addr = dn.data_blkaddr;
1056
1057 /* This page is already truncated */
1058 if (fio->blk_addr == NULL_ADDR) {
1059 ClearPageUptodate(page);
1060 goto out_writepage;
1061 }
1062
1063 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1064
1065 /* wait for GCed encrypted page writeback */
1066 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1067 fio->blk_addr);
1068
1069 fio->encrypted_page = f2fs_encrypt(inode, fio->page);
1070 if (IS_ERR(fio->encrypted_page)) {
1071 err = PTR_ERR(fio->encrypted_page);
1072 goto out_writepage;
1073 }
1074 }
1075
1076 set_page_writeback(page);
1077
1078 /*
1079 * If current allocation needs SSR,
1080 * it had better in-place writes for updated data.
1081 */
1082 if (unlikely(fio->blk_addr != NEW_ADDR &&
1083 !is_cold_data(page) &&
1084 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1085 need_inplace_update(inode))) {
1086 rewrite_data_page(fio);
1087 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1088 trace_f2fs_do_write_data_page(page, IPU);
1089 } else {
1090 write_data_page(&dn, fio);
1091 set_data_blkaddr(&dn);
1092 f2fs_update_extent_cache(&dn);
1093 trace_f2fs_do_write_data_page(page, OPU);
1094 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1095 if (page->index == 0)
1096 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1097 }
1098 out_writepage:
1099 f2fs_put_dnode(&dn);
1100 return err;
1101 }
1102
1103 static int f2fs_write_data_page(struct page *page,
1104 struct writeback_control *wbc)
1105 {
1106 struct inode *inode = page->mapping->host;
1107 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1108 loff_t i_size = i_size_read(inode);
1109 const pgoff_t end_index = ((unsigned long long) i_size)
1110 >> PAGE_CACHE_SHIFT;
1111 unsigned offset = 0;
1112 bool need_balance_fs = false;
1113 int err = 0;
1114 struct f2fs_io_info fio = {
1115 .sbi = sbi,
1116 .type = DATA,
1117 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1118 .page = page,
1119 .encrypted_page = NULL,
1120 };
1121
1122 trace_f2fs_writepage(page, DATA);
1123
1124 if (page->index < end_index)
1125 goto write;
1126
1127 /*
1128 * If the offset is out-of-range of file size,
1129 * this page does not have to be written to disk.
1130 */
1131 offset = i_size & (PAGE_CACHE_SIZE - 1);
1132 if ((page->index >= end_index + 1) || !offset)
1133 goto out;
1134
1135 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1136 write:
1137 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1138 goto redirty_out;
1139 if (f2fs_is_drop_cache(inode))
1140 goto out;
1141 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1142 available_free_memory(sbi, BASE_CHECK))
1143 goto redirty_out;
1144
1145 /* Dentry blocks are controlled by checkpoint */
1146 if (S_ISDIR(inode->i_mode)) {
1147 if (unlikely(f2fs_cp_error(sbi)))
1148 goto redirty_out;
1149 err = do_write_data_page(&fio);
1150 goto done;
1151 }
1152
1153 /* we should bypass data pages to proceed the kworkder jobs */
1154 if (unlikely(f2fs_cp_error(sbi))) {
1155 SetPageError(page);
1156 goto out;
1157 }
1158
1159 if (!wbc->for_reclaim)
1160 need_balance_fs = true;
1161 else if (has_not_enough_free_secs(sbi, 0))
1162 goto redirty_out;
1163
1164 err = -EAGAIN;
1165 f2fs_lock_op(sbi);
1166 if (f2fs_has_inline_data(inode))
1167 err = f2fs_write_inline_data(inode, page);
1168 if (err == -EAGAIN)
1169 err = do_write_data_page(&fio);
1170 f2fs_unlock_op(sbi);
1171 done:
1172 if (err && err != -ENOENT)
1173 goto redirty_out;
1174
1175 clear_cold_data(page);
1176 out:
1177 inode_dec_dirty_pages(inode);
1178 if (err)
1179 ClearPageUptodate(page);
1180 unlock_page(page);
1181 f2fs_balance_fs(sbi, need_balance_fs);
1182 if (wbc->for_reclaim || unlikely(f2fs_cp_error(sbi))) {
1183 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1184 remove_dirty_inode(inode);
1185 }
1186 return 0;
1187
1188 redirty_out:
1189 redirty_page_for_writepage(wbc, page);
1190 return AOP_WRITEPAGE_ACTIVATE;
1191 }
1192
1193 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1194 void *data)
1195 {
1196 struct address_space *mapping = data;
1197 int ret = mapping->a_ops->writepage(page, wbc);
1198 mapping_set_error(mapping, ret);
1199 return ret;
1200 }
1201
1202 /*
1203 * This function was copied from write_cche_pages from mm/page-writeback.c.
1204 * The major change is making write step of cold data page separately from
1205 * warm/hot data page.
1206 */
1207 static int f2fs_write_cache_pages(struct address_space *mapping,
1208 struct writeback_control *wbc, writepage_t writepage,
1209 void *data)
1210 {
1211 int ret = 0;
1212 int done = 0;
1213 struct pagevec pvec;
1214 int nr_pages;
1215 pgoff_t uninitialized_var(writeback_index);
1216 pgoff_t index;
1217 pgoff_t end; /* Inclusive */
1218 pgoff_t done_index;
1219 int cycled;
1220 int range_whole = 0;
1221 int tag;
1222 int step = 0;
1223
1224 pagevec_init(&pvec, 0);
1225 next:
1226 if (wbc->range_cyclic) {
1227 writeback_index = mapping->writeback_index; /* prev offset */
1228 index = writeback_index;
1229 if (index == 0)
1230 cycled = 1;
1231 else
1232 cycled = 0;
1233 end = -1;
1234 } else {
1235 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1236 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1237 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1238 range_whole = 1;
1239 cycled = 1; /* ignore range_cyclic tests */
1240 }
1241 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1242 tag = PAGECACHE_TAG_TOWRITE;
1243 else
1244 tag = PAGECACHE_TAG_DIRTY;
1245 retry:
1246 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1247 tag_pages_for_writeback(mapping, index, end);
1248 done_index = index;
1249 while (!done && (index <= end)) {
1250 int i;
1251
1252 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1253 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1254 if (nr_pages == 0)
1255 break;
1256
1257 for (i = 0; i < nr_pages; i++) {
1258 struct page *page = pvec.pages[i];
1259
1260 if (page->index > end) {
1261 done = 1;
1262 break;
1263 }
1264
1265 done_index = page->index;
1266
1267 lock_page(page);
1268
1269 if (unlikely(page->mapping != mapping)) {
1270 continue_unlock:
1271 unlock_page(page);
1272 continue;
1273 }
1274
1275 if (!PageDirty(page)) {
1276 /* someone wrote it for us */
1277 goto continue_unlock;
1278 }
1279
1280 if (step == is_cold_data(page))
1281 goto continue_unlock;
1282
1283 if (PageWriteback(page)) {
1284 if (wbc->sync_mode != WB_SYNC_NONE)
1285 f2fs_wait_on_page_writeback(page, DATA);
1286 else
1287 goto continue_unlock;
1288 }
1289
1290 BUG_ON(PageWriteback(page));
1291 if (!clear_page_dirty_for_io(page))
1292 goto continue_unlock;
1293
1294 ret = (*writepage)(page, wbc, data);
1295 if (unlikely(ret)) {
1296 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1297 unlock_page(page);
1298 ret = 0;
1299 } else {
1300 done_index = page->index + 1;
1301 done = 1;
1302 break;
1303 }
1304 }
1305
1306 if (--wbc->nr_to_write <= 0 &&
1307 wbc->sync_mode == WB_SYNC_NONE) {
1308 done = 1;
1309 break;
1310 }
1311 }
1312 pagevec_release(&pvec);
1313 cond_resched();
1314 }
1315
1316 if (step < 1) {
1317 step++;
1318 goto next;
1319 }
1320
1321 if (!cycled && !done) {
1322 cycled = 1;
1323 index = 0;
1324 end = writeback_index - 1;
1325 goto retry;
1326 }
1327 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1328 mapping->writeback_index = done_index;
1329
1330 return ret;
1331 }
1332
1333 static int f2fs_write_data_pages(struct address_space *mapping,
1334 struct writeback_control *wbc)
1335 {
1336 struct inode *inode = mapping->host;
1337 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1338 bool locked = false;
1339 int ret;
1340 long diff;
1341
1342 trace_f2fs_writepages(mapping->host, wbc, DATA);
1343
1344 /* deal with chardevs and other special file */
1345 if (!mapping->a_ops->writepage)
1346 return 0;
1347
1348 /* skip writing if there is no dirty page in this inode */
1349 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1350 return 0;
1351
1352 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1353 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1354 available_free_memory(sbi, DIRTY_DENTS))
1355 goto skip_write;
1356
1357 /* skip writing during file defragment */
1358 if (is_inode_flag_set(F2FS_I(inode), FI_DO_DEFRAG))
1359 goto skip_write;
1360
1361 /* during POR, we don't need to trigger writepage at all. */
1362 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1363 goto skip_write;
1364
1365 diff = nr_pages_to_write(sbi, DATA, wbc);
1366
1367 if (!S_ISDIR(inode->i_mode)) {
1368 mutex_lock(&sbi->writepages);
1369 locked = true;
1370 }
1371 ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1372 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1373 if (locked)
1374 mutex_unlock(&sbi->writepages);
1375
1376 remove_dirty_inode(inode);
1377
1378 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1379 return ret;
1380
1381 skip_write:
1382 wbc->pages_skipped += get_dirty_pages(inode);
1383 return 0;
1384 }
1385
1386 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1387 {
1388 struct inode *inode = mapping->host;
1389 loff_t i_size = i_size_read(inode);
1390
1391 if (to > i_size) {
1392 truncate_pagecache(inode, i_size);
1393 truncate_blocks(inode, i_size, true);
1394 }
1395 }
1396
1397 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1398 struct page *page, loff_t pos, unsigned len,
1399 block_t *blk_addr, bool *node_changed)
1400 {
1401 struct inode *inode = page->mapping->host;
1402 pgoff_t index = page->index;
1403 struct dnode_of_data dn;
1404 struct page *ipage;
1405 bool locked = false;
1406 struct extent_info ei;
1407 int err = 0;
1408
1409 if (f2fs_has_inline_data(inode) ||
1410 (pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1411 f2fs_lock_op(sbi);
1412 locked = true;
1413 }
1414 restart:
1415 /* check inline_data */
1416 ipage = get_node_page(sbi, inode->i_ino);
1417 if (IS_ERR(ipage)) {
1418 err = PTR_ERR(ipage);
1419 goto unlock_out;
1420 }
1421
1422 set_new_dnode(&dn, inode, ipage, ipage, 0);
1423
1424 if (f2fs_has_inline_data(inode)) {
1425 if (pos + len <= MAX_INLINE_DATA) {
1426 read_inline_data(page, ipage);
1427 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1428 sync_inode_page(&dn);
1429 } else {
1430 err = f2fs_convert_inline_page(&dn, page);
1431 if (err)
1432 goto out;
1433 if (dn.data_blkaddr == NULL_ADDR)
1434 err = f2fs_get_block(&dn, index);
1435 }
1436 } else if (locked) {
1437 err = f2fs_get_block(&dn, index);
1438 } else {
1439 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1440 dn.data_blkaddr = ei.blk + index - ei.fofs;
1441 } else {
1442 bool restart = false;
1443
1444 /* hole case */
1445 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1446 if (err || (!err && dn.data_blkaddr == NULL_ADDR))
1447 restart = true;
1448 if (restart) {
1449 f2fs_put_dnode(&dn);
1450 f2fs_lock_op(sbi);
1451 locked = true;
1452 goto restart;
1453 }
1454 }
1455 }
1456
1457 /* convert_inline_page can make node_changed */
1458 *blk_addr = dn.data_blkaddr;
1459 *node_changed = dn.node_changed;
1460 out:
1461 f2fs_put_dnode(&dn);
1462 unlock_out:
1463 if (locked)
1464 f2fs_unlock_op(sbi);
1465 return err;
1466 }
1467
1468 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1469 loff_t pos, unsigned len, unsigned flags,
1470 struct page **pagep, void **fsdata)
1471 {
1472 struct inode *inode = mapping->host;
1473 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1474 struct page *page = NULL;
1475 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1476 bool need_balance = false;
1477 block_t blkaddr = NULL_ADDR;
1478 int err = 0;
1479
1480 trace_f2fs_write_begin(inode, pos, len, flags);
1481
1482 /*
1483 * We should check this at this moment to avoid deadlock on inode page
1484 * and #0 page. The locking rule for inline_data conversion should be:
1485 * lock_page(page #0) -> lock_page(inode_page)
1486 */
1487 if (index != 0) {
1488 err = f2fs_convert_inline_inode(inode);
1489 if (err)
1490 goto fail;
1491 }
1492 repeat:
1493 page = grab_cache_page_write_begin(mapping, index, flags);
1494 if (!page) {
1495 err = -ENOMEM;
1496 goto fail;
1497 }
1498
1499 *pagep = page;
1500
1501 err = prepare_write_begin(sbi, page, pos, len,
1502 &blkaddr, &need_balance);
1503 if (err)
1504 goto fail;
1505
1506 if (need_balance && has_not_enough_free_secs(sbi, 0)) {
1507 unlock_page(page);
1508 f2fs_balance_fs(sbi, true);
1509 lock_page(page);
1510 if (page->mapping != mapping) {
1511 /* The page got truncated from under us */
1512 f2fs_put_page(page, 1);
1513 goto repeat;
1514 }
1515 }
1516
1517 f2fs_wait_on_page_writeback(page, DATA);
1518
1519 /* wait for GCed encrypted page writeback */
1520 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1521 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1522
1523 if (len == PAGE_CACHE_SIZE)
1524 goto out_update;
1525 if (PageUptodate(page))
1526 goto out_clear;
1527
1528 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1529 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1530 unsigned end = start + len;
1531
1532 /* Reading beyond i_size is simple: memset to zero */
1533 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1534 goto out_update;
1535 }
1536
1537 if (blkaddr == NEW_ADDR) {
1538 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1539 } else {
1540 struct f2fs_io_info fio = {
1541 .sbi = sbi,
1542 .type = DATA,
1543 .rw = READ_SYNC,
1544 .blk_addr = blkaddr,
1545 .page = page,
1546 .encrypted_page = NULL,
1547 };
1548 err = f2fs_submit_page_bio(&fio);
1549 if (err)
1550 goto fail;
1551
1552 lock_page(page);
1553 if (unlikely(!PageUptodate(page))) {
1554 err = -EIO;
1555 goto fail;
1556 }
1557 if (unlikely(page->mapping != mapping)) {
1558 f2fs_put_page(page, 1);
1559 goto repeat;
1560 }
1561
1562 /* avoid symlink page */
1563 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1564 err = f2fs_decrypt_one(inode, page);
1565 if (err)
1566 goto fail;
1567 }
1568 }
1569 out_update:
1570 SetPageUptodate(page);
1571 out_clear:
1572 clear_cold_data(page);
1573 return 0;
1574
1575 fail:
1576 f2fs_put_page(page, 1);
1577 f2fs_write_failed(mapping, pos + len);
1578 return err;
1579 }
1580
1581 static int f2fs_write_end(struct file *file,
1582 struct address_space *mapping,
1583 loff_t pos, unsigned len, unsigned copied,
1584 struct page *page, void *fsdata)
1585 {
1586 struct inode *inode = page->mapping->host;
1587
1588 trace_f2fs_write_end(inode, pos, len, copied);
1589
1590 set_page_dirty(page);
1591
1592 if (pos + copied > i_size_read(inode)) {
1593 i_size_write(inode, pos + copied);
1594 mark_inode_dirty(inode);
1595 update_inode_page(inode);
1596 }
1597
1598 f2fs_put_page(page, 1);
1599 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1600 return copied;
1601 }
1602
1603 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1604 loff_t offset)
1605 {
1606 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1607
1608 if (offset & blocksize_mask)
1609 return -EINVAL;
1610
1611 if (iov_iter_alignment(iter) & blocksize_mask)
1612 return -EINVAL;
1613
1614 return 0;
1615 }
1616
1617 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1618 loff_t offset)
1619 {
1620 struct file *file = iocb->ki_filp;
1621 struct address_space *mapping = file->f_mapping;
1622 struct inode *inode = mapping->host;
1623 size_t count = iov_iter_count(iter);
1624 int err;
1625
1626 /* we don't need to use inline_data strictly */
1627 err = f2fs_convert_inline_inode(inode);
1628 if (err)
1629 return err;
1630
1631 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1632 return 0;
1633
1634 err = check_direct_IO(inode, iter, offset);
1635 if (err)
1636 return err;
1637
1638 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1639
1640 if (iov_iter_rw(iter) == WRITE) {
1641 err = __allocate_data_blocks(inode, offset, count);
1642 if (err)
1643 goto out;
1644 }
1645
1646 err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio);
1647 out:
1648 if (err < 0 && iov_iter_rw(iter) == WRITE)
1649 f2fs_write_failed(mapping, offset + count);
1650
1651 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1652
1653 return err;
1654 }
1655
1656 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1657 unsigned int length)
1658 {
1659 struct inode *inode = page->mapping->host;
1660 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1661
1662 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1663 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
1664 return;
1665
1666 if (PageDirty(page)) {
1667 if (inode->i_ino == F2FS_META_INO(sbi))
1668 dec_page_count(sbi, F2FS_DIRTY_META);
1669 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1670 dec_page_count(sbi, F2FS_DIRTY_NODES);
1671 else
1672 inode_dec_dirty_pages(inode);
1673 }
1674
1675 /* This is atomic written page, keep Private */
1676 if (IS_ATOMIC_WRITTEN_PAGE(page))
1677 return;
1678
1679 ClearPagePrivate(page);
1680 }
1681
1682 int f2fs_release_page(struct page *page, gfp_t wait)
1683 {
1684 /* If this is dirty page, keep PagePrivate */
1685 if (PageDirty(page))
1686 return 0;
1687
1688 /* This is atomic written page, keep Private */
1689 if (IS_ATOMIC_WRITTEN_PAGE(page))
1690 return 0;
1691
1692 ClearPagePrivate(page);
1693 return 1;
1694 }
1695
1696 static int f2fs_set_data_page_dirty(struct page *page)
1697 {
1698 struct address_space *mapping = page->mapping;
1699 struct inode *inode = mapping->host;
1700
1701 trace_f2fs_set_page_dirty(page, DATA);
1702
1703 SetPageUptodate(page);
1704
1705 if (f2fs_is_atomic_file(inode)) {
1706 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1707 register_inmem_page(inode, page);
1708 return 1;
1709 }
1710 /*
1711 * Previously, this page has been registered, we just
1712 * return here.
1713 */
1714 return 0;
1715 }
1716
1717 if (!PageDirty(page)) {
1718 __set_page_dirty_nobuffers(page);
1719 update_dirty_page(inode, page);
1720 return 1;
1721 }
1722 return 0;
1723 }
1724
1725 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1726 {
1727 struct inode *inode = mapping->host;
1728
1729 if (f2fs_has_inline_data(inode))
1730 return 0;
1731
1732 /* make sure allocating whole blocks */
1733 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1734 filemap_write_and_wait(mapping);
1735
1736 return generic_block_bmap(mapping, block, get_data_block_bmap);
1737 }
1738
1739 const struct address_space_operations f2fs_dblock_aops = {
1740 .readpage = f2fs_read_data_page,
1741 .readpages = f2fs_read_data_pages,
1742 .writepage = f2fs_write_data_page,
1743 .writepages = f2fs_write_data_pages,
1744 .write_begin = f2fs_write_begin,
1745 .write_end = f2fs_write_end,
1746 .set_page_dirty = f2fs_set_data_page_dirty,
1747 .invalidatepage = f2fs_invalidate_page,
1748 .releasepage = f2fs_release_page,
1749 .direct_IO = f2fs_direct_IO,
1750 .bmap = f2fs_bmap,
1751 };