]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/extent_cache.c
Merge branches 'acpi-button', 'acpica' and 'acpi-sysfs'
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / extent_cache.c
1 /*
2 * f2fs extent cache support
3 *
4 * Copyright (c) 2015 Motorola Mobility
5 * Copyright (c) 2015 Samsung Electronics
6 * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
7 * Chao Yu <chao2.yu@samsung.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/fs.h>
15 #include <linux/f2fs_fs.h>
16
17 #include "f2fs.h"
18 #include "node.h"
19 #include <trace/events/f2fs.h>
20
21 static struct rb_entry *__lookup_rb_tree_fast(struct rb_entry *cached_re,
22 unsigned int ofs)
23 {
24 if (cached_re) {
25 if (cached_re->ofs <= ofs &&
26 cached_re->ofs + cached_re->len > ofs) {
27 return cached_re;
28 }
29 }
30 return NULL;
31 }
32
33 static struct rb_entry *__lookup_rb_tree_slow(struct rb_root *root,
34 unsigned int ofs)
35 {
36 struct rb_node *node = root->rb_node;
37 struct rb_entry *re;
38
39 while (node) {
40 re = rb_entry(node, struct rb_entry, rb_node);
41
42 if (ofs < re->ofs)
43 node = node->rb_left;
44 else if (ofs >= re->ofs + re->len)
45 node = node->rb_right;
46 else
47 return re;
48 }
49 return NULL;
50 }
51
52 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
53 struct rb_entry *cached_re, unsigned int ofs)
54 {
55 struct rb_entry *re;
56
57 re = __lookup_rb_tree_fast(cached_re, ofs);
58 if (!re)
59 return __lookup_rb_tree_slow(root, ofs);
60
61 return re;
62 }
63
64 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
65 struct rb_root *root, struct rb_node **parent,
66 unsigned int ofs)
67 {
68 struct rb_node **p = &root->rb_node;
69 struct rb_entry *re;
70
71 while (*p) {
72 *parent = *p;
73 re = rb_entry(*parent, struct rb_entry, rb_node);
74
75 if (ofs < re->ofs)
76 p = &(*p)->rb_left;
77 else if (ofs >= re->ofs + re->len)
78 p = &(*p)->rb_right;
79 else
80 f2fs_bug_on(sbi, 1);
81 }
82
83 return p;
84 }
85
86 /*
87 * lookup rb entry in position of @ofs in rb-tree,
88 * if hit, return the entry, otherwise, return NULL
89 * @prev_ex: extent before ofs
90 * @next_ex: extent after ofs
91 * @insert_p: insert point for new extent at ofs
92 * in order to simpfy the insertion after.
93 * tree must stay unchanged between lookup and insertion.
94 */
95 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
96 struct rb_entry *cached_re,
97 unsigned int ofs,
98 struct rb_entry **prev_entry,
99 struct rb_entry **next_entry,
100 struct rb_node ***insert_p,
101 struct rb_node **insert_parent,
102 bool force)
103 {
104 struct rb_node **pnode = &root->rb_node;
105 struct rb_node *parent = NULL, *tmp_node;
106 struct rb_entry *re = cached_re;
107
108 *insert_p = NULL;
109 *insert_parent = NULL;
110 *prev_entry = NULL;
111 *next_entry = NULL;
112
113 if (RB_EMPTY_ROOT(root))
114 return NULL;
115
116 if (re) {
117 if (re->ofs <= ofs && re->ofs + re->len > ofs)
118 goto lookup_neighbors;
119 }
120
121 while (*pnode) {
122 parent = *pnode;
123 re = rb_entry(*pnode, struct rb_entry, rb_node);
124
125 if (ofs < re->ofs)
126 pnode = &(*pnode)->rb_left;
127 else if (ofs >= re->ofs + re->len)
128 pnode = &(*pnode)->rb_right;
129 else
130 goto lookup_neighbors;
131 }
132
133 *insert_p = pnode;
134 *insert_parent = parent;
135
136 re = rb_entry(parent, struct rb_entry, rb_node);
137 tmp_node = parent;
138 if (parent && ofs > re->ofs)
139 tmp_node = rb_next(parent);
140 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
141
142 tmp_node = parent;
143 if (parent && ofs < re->ofs)
144 tmp_node = rb_prev(parent);
145 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
146 return NULL;
147
148 lookup_neighbors:
149 if (ofs == re->ofs || force) {
150 /* lookup prev node for merging backward later */
151 tmp_node = rb_prev(&re->rb_node);
152 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
153 }
154 if (ofs == re->ofs + re->len - 1 || force) {
155 /* lookup next node for merging frontward later */
156 tmp_node = rb_next(&re->rb_node);
157 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
158 }
159 return re;
160 }
161
162 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
163 struct rb_root *root)
164 {
165 #ifdef CONFIG_F2FS_CHECK_FS
166 struct rb_node *cur = rb_first(root), *next;
167 struct rb_entry *cur_re, *next_re;
168
169 if (!cur)
170 return true;
171
172 while (cur) {
173 next = rb_next(cur);
174 if (!next)
175 return true;
176
177 cur_re = rb_entry(cur, struct rb_entry, rb_node);
178 next_re = rb_entry(next, struct rb_entry, rb_node);
179
180 if (cur_re->ofs + cur_re->len > next_re->ofs) {
181 f2fs_msg(sbi->sb, KERN_INFO, "inconsistent rbtree, "
182 "cur(%u, %u) next(%u, %u)",
183 cur_re->ofs, cur_re->len,
184 next_re->ofs, next_re->len);
185 return false;
186 }
187
188 cur = next;
189 }
190 #endif
191 return true;
192 }
193
194 static struct kmem_cache *extent_tree_slab;
195 static struct kmem_cache *extent_node_slab;
196
197 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
198 struct extent_tree *et, struct extent_info *ei,
199 struct rb_node *parent, struct rb_node **p)
200 {
201 struct extent_node *en;
202
203 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
204 if (!en)
205 return NULL;
206
207 en->ei = *ei;
208 INIT_LIST_HEAD(&en->list);
209 en->et = et;
210
211 rb_link_node(&en->rb_node, parent, p);
212 rb_insert_color(&en->rb_node, &et->root);
213 atomic_inc(&et->node_cnt);
214 atomic_inc(&sbi->total_ext_node);
215 return en;
216 }
217
218 static void __detach_extent_node(struct f2fs_sb_info *sbi,
219 struct extent_tree *et, struct extent_node *en)
220 {
221 rb_erase(&en->rb_node, &et->root);
222 atomic_dec(&et->node_cnt);
223 atomic_dec(&sbi->total_ext_node);
224
225 if (et->cached_en == en)
226 et->cached_en = NULL;
227 kmem_cache_free(extent_node_slab, en);
228 }
229
230 /*
231 * Flow to release an extent_node:
232 * 1. list_del_init
233 * 2. __detach_extent_node
234 * 3. kmem_cache_free.
235 */
236 static void __release_extent_node(struct f2fs_sb_info *sbi,
237 struct extent_tree *et, struct extent_node *en)
238 {
239 spin_lock(&sbi->extent_lock);
240 f2fs_bug_on(sbi, list_empty(&en->list));
241 list_del_init(&en->list);
242 spin_unlock(&sbi->extent_lock);
243
244 __detach_extent_node(sbi, et, en);
245 }
246
247 static struct extent_tree *__grab_extent_tree(struct inode *inode)
248 {
249 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
250 struct extent_tree *et;
251 nid_t ino = inode->i_ino;
252
253 mutex_lock(&sbi->extent_tree_lock);
254 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
255 if (!et) {
256 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
257 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
258 memset(et, 0, sizeof(struct extent_tree));
259 et->ino = ino;
260 et->root = RB_ROOT;
261 et->cached_en = NULL;
262 rwlock_init(&et->lock);
263 INIT_LIST_HEAD(&et->list);
264 atomic_set(&et->node_cnt, 0);
265 atomic_inc(&sbi->total_ext_tree);
266 } else {
267 atomic_dec(&sbi->total_zombie_tree);
268 list_del_init(&et->list);
269 }
270 mutex_unlock(&sbi->extent_tree_lock);
271
272 /* never died until evict_inode */
273 F2FS_I(inode)->extent_tree = et;
274
275 return et;
276 }
277
278 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
279 struct extent_tree *et, struct extent_info *ei)
280 {
281 struct rb_node **p = &et->root.rb_node;
282 struct extent_node *en;
283
284 en = __attach_extent_node(sbi, et, ei, NULL, p);
285 if (!en)
286 return NULL;
287
288 et->largest = en->ei;
289 et->cached_en = en;
290 return en;
291 }
292
293 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
294 struct extent_tree *et)
295 {
296 struct rb_node *node, *next;
297 struct extent_node *en;
298 unsigned int count = atomic_read(&et->node_cnt);
299
300 node = rb_first(&et->root);
301 while (node) {
302 next = rb_next(node);
303 en = rb_entry(node, struct extent_node, rb_node);
304 __release_extent_node(sbi, et, en);
305 node = next;
306 }
307
308 return count - atomic_read(&et->node_cnt);
309 }
310
311 static void __drop_largest_extent(struct inode *inode,
312 pgoff_t fofs, unsigned int len)
313 {
314 struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
315
316 if (fofs < largest->fofs + largest->len && fofs + len > largest->fofs) {
317 largest->len = 0;
318 f2fs_mark_inode_dirty_sync(inode, true);
319 }
320 }
321
322 /* return true, if inode page is changed */
323 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
324 {
325 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
326 struct extent_tree *et;
327 struct extent_node *en;
328 struct extent_info ei;
329
330 if (!f2fs_may_extent_tree(inode)) {
331 /* drop largest extent */
332 if (i_ext && i_ext->len) {
333 i_ext->len = 0;
334 return true;
335 }
336 return false;
337 }
338
339 et = __grab_extent_tree(inode);
340
341 if (!i_ext || !i_ext->len)
342 return false;
343
344 get_extent_info(&ei, i_ext);
345
346 write_lock(&et->lock);
347 if (atomic_read(&et->node_cnt))
348 goto out;
349
350 en = __init_extent_tree(sbi, et, &ei);
351 if (en) {
352 spin_lock(&sbi->extent_lock);
353 list_add_tail(&en->list, &sbi->extent_list);
354 spin_unlock(&sbi->extent_lock);
355 }
356 out:
357 write_unlock(&et->lock);
358 return false;
359 }
360
361 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
362 struct extent_info *ei)
363 {
364 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
365 struct extent_tree *et = F2FS_I(inode)->extent_tree;
366 struct extent_node *en;
367 bool ret = false;
368
369 f2fs_bug_on(sbi, !et);
370
371 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
372
373 read_lock(&et->lock);
374
375 if (et->largest.fofs <= pgofs &&
376 et->largest.fofs + et->largest.len > pgofs) {
377 *ei = et->largest;
378 ret = true;
379 stat_inc_largest_node_hit(sbi);
380 goto out;
381 }
382
383 en = (struct extent_node *)__lookup_rb_tree(&et->root,
384 (struct rb_entry *)et->cached_en, pgofs);
385 if (!en)
386 goto out;
387
388 if (en == et->cached_en)
389 stat_inc_cached_node_hit(sbi);
390 else
391 stat_inc_rbtree_node_hit(sbi);
392
393 *ei = en->ei;
394 spin_lock(&sbi->extent_lock);
395 if (!list_empty(&en->list)) {
396 list_move_tail(&en->list, &sbi->extent_list);
397 et->cached_en = en;
398 }
399 spin_unlock(&sbi->extent_lock);
400 ret = true;
401 out:
402 stat_inc_total_hit(sbi);
403 read_unlock(&et->lock);
404
405 trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
406 return ret;
407 }
408
409 static struct extent_node *__try_merge_extent_node(struct inode *inode,
410 struct extent_tree *et, struct extent_info *ei,
411 struct extent_node *prev_ex,
412 struct extent_node *next_ex)
413 {
414 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
415 struct extent_node *en = NULL;
416
417 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
418 prev_ex->ei.len += ei->len;
419 ei = &prev_ex->ei;
420 en = prev_ex;
421 }
422
423 if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
424 next_ex->ei.fofs = ei->fofs;
425 next_ex->ei.blk = ei->blk;
426 next_ex->ei.len += ei->len;
427 if (en)
428 __release_extent_node(sbi, et, prev_ex);
429
430 en = next_ex;
431 }
432
433 if (!en)
434 return NULL;
435
436 __try_update_largest_extent(inode, et, en);
437
438 spin_lock(&sbi->extent_lock);
439 if (!list_empty(&en->list)) {
440 list_move_tail(&en->list, &sbi->extent_list);
441 et->cached_en = en;
442 }
443 spin_unlock(&sbi->extent_lock);
444 return en;
445 }
446
447 static struct extent_node *__insert_extent_tree(struct inode *inode,
448 struct extent_tree *et, struct extent_info *ei,
449 struct rb_node **insert_p,
450 struct rb_node *insert_parent)
451 {
452 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
453 struct rb_node **p = &et->root.rb_node;
454 struct rb_node *parent = NULL;
455 struct extent_node *en = NULL;
456
457 if (insert_p && insert_parent) {
458 parent = insert_parent;
459 p = insert_p;
460 goto do_insert;
461 }
462
463 p = __lookup_rb_tree_for_insert(sbi, &et->root, &parent, ei->fofs);
464 do_insert:
465 en = __attach_extent_node(sbi, et, ei, parent, p);
466 if (!en)
467 return NULL;
468
469 __try_update_largest_extent(inode, et, en);
470
471 /* update in global extent list */
472 spin_lock(&sbi->extent_lock);
473 list_add_tail(&en->list, &sbi->extent_list);
474 et->cached_en = en;
475 spin_unlock(&sbi->extent_lock);
476 return en;
477 }
478
479 static void f2fs_update_extent_tree_range(struct inode *inode,
480 pgoff_t fofs, block_t blkaddr, unsigned int len)
481 {
482 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
483 struct extent_tree *et = F2FS_I(inode)->extent_tree;
484 struct extent_node *en = NULL, *en1 = NULL;
485 struct extent_node *prev_en = NULL, *next_en = NULL;
486 struct extent_info ei, dei, prev;
487 struct rb_node **insert_p = NULL, *insert_parent = NULL;
488 unsigned int end = fofs + len;
489 unsigned int pos = (unsigned int)fofs;
490
491 if (!et)
492 return;
493
494 trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
495
496 write_lock(&et->lock);
497
498 if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
499 write_unlock(&et->lock);
500 return;
501 }
502
503 prev = et->largest;
504 dei.len = 0;
505
506 /*
507 * drop largest extent before lookup, in case it's already
508 * been shrunk from extent tree
509 */
510 __drop_largest_extent(inode, fofs, len);
511
512 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
513 en = (struct extent_node *)__lookup_rb_tree_ret(&et->root,
514 (struct rb_entry *)et->cached_en, fofs,
515 (struct rb_entry **)&prev_en,
516 (struct rb_entry **)&next_en,
517 &insert_p, &insert_parent, false);
518 if (!en)
519 en = next_en;
520
521 /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
522 while (en && en->ei.fofs < end) {
523 unsigned int org_end;
524 int parts = 0; /* # of parts current extent split into */
525
526 next_en = en1 = NULL;
527
528 dei = en->ei;
529 org_end = dei.fofs + dei.len;
530 f2fs_bug_on(sbi, pos >= org_end);
531
532 if (pos > dei.fofs && pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
533 en->ei.len = pos - en->ei.fofs;
534 prev_en = en;
535 parts = 1;
536 }
537
538 if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
539 if (parts) {
540 set_extent_info(&ei, end,
541 end - dei.fofs + dei.blk,
542 org_end - end);
543 en1 = __insert_extent_tree(inode, et, &ei,
544 NULL, NULL);
545 next_en = en1;
546 } else {
547 en->ei.fofs = end;
548 en->ei.blk += end - dei.fofs;
549 en->ei.len -= end - dei.fofs;
550 next_en = en;
551 }
552 parts++;
553 }
554
555 if (!next_en) {
556 struct rb_node *node = rb_next(&en->rb_node);
557
558 next_en = rb_entry_safe(node, struct extent_node,
559 rb_node);
560 }
561
562 if (parts)
563 __try_update_largest_extent(inode, et, en);
564 else
565 __release_extent_node(sbi, et, en);
566
567 /*
568 * if original extent is split into zero or two parts, extent
569 * tree has been altered by deletion or insertion, therefore
570 * invalidate pointers regard to tree.
571 */
572 if (parts != 1) {
573 insert_p = NULL;
574 insert_parent = NULL;
575 }
576 en = next_en;
577 }
578
579 /* 3. update extent in extent cache */
580 if (blkaddr) {
581
582 set_extent_info(&ei, fofs, blkaddr, len);
583 if (!__try_merge_extent_node(inode, et, &ei, prev_en, next_en))
584 __insert_extent_tree(inode, et, &ei,
585 insert_p, insert_parent);
586
587 /* give up extent_cache, if split and small updates happen */
588 if (dei.len >= 1 &&
589 prev.len < F2FS_MIN_EXTENT_LEN &&
590 et->largest.len < F2FS_MIN_EXTENT_LEN) {
591 __drop_largest_extent(inode, 0, UINT_MAX);
592 set_inode_flag(inode, FI_NO_EXTENT);
593 }
594 }
595
596 if (is_inode_flag_set(inode, FI_NO_EXTENT))
597 __free_extent_tree(sbi, et);
598
599 write_unlock(&et->lock);
600 }
601
602 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
603 {
604 struct extent_tree *et, *next;
605 struct extent_node *en;
606 unsigned int node_cnt = 0, tree_cnt = 0;
607 int remained;
608
609 if (!test_opt(sbi, EXTENT_CACHE))
610 return 0;
611
612 if (!atomic_read(&sbi->total_zombie_tree))
613 goto free_node;
614
615 if (!mutex_trylock(&sbi->extent_tree_lock))
616 goto out;
617
618 /* 1. remove unreferenced extent tree */
619 list_for_each_entry_safe(et, next, &sbi->zombie_list, list) {
620 if (atomic_read(&et->node_cnt)) {
621 write_lock(&et->lock);
622 node_cnt += __free_extent_tree(sbi, et);
623 write_unlock(&et->lock);
624 }
625 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
626 list_del_init(&et->list);
627 radix_tree_delete(&sbi->extent_tree_root, et->ino);
628 kmem_cache_free(extent_tree_slab, et);
629 atomic_dec(&sbi->total_ext_tree);
630 atomic_dec(&sbi->total_zombie_tree);
631 tree_cnt++;
632
633 if (node_cnt + tree_cnt >= nr_shrink)
634 goto unlock_out;
635 cond_resched();
636 }
637 mutex_unlock(&sbi->extent_tree_lock);
638
639 free_node:
640 /* 2. remove LRU extent entries */
641 if (!mutex_trylock(&sbi->extent_tree_lock))
642 goto out;
643
644 remained = nr_shrink - (node_cnt + tree_cnt);
645
646 spin_lock(&sbi->extent_lock);
647 for (; remained > 0; remained--) {
648 if (list_empty(&sbi->extent_list))
649 break;
650 en = list_first_entry(&sbi->extent_list,
651 struct extent_node, list);
652 et = en->et;
653 if (!write_trylock(&et->lock)) {
654 /* refresh this extent node's position in extent list */
655 list_move_tail(&en->list, &sbi->extent_list);
656 continue;
657 }
658
659 list_del_init(&en->list);
660 spin_unlock(&sbi->extent_lock);
661
662 __detach_extent_node(sbi, et, en);
663
664 write_unlock(&et->lock);
665 node_cnt++;
666 spin_lock(&sbi->extent_lock);
667 }
668 spin_unlock(&sbi->extent_lock);
669
670 unlock_out:
671 mutex_unlock(&sbi->extent_tree_lock);
672 out:
673 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
674
675 return node_cnt + tree_cnt;
676 }
677
678 unsigned int f2fs_destroy_extent_node(struct inode *inode)
679 {
680 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
681 struct extent_tree *et = F2FS_I(inode)->extent_tree;
682 unsigned int node_cnt = 0;
683
684 if (!et || !atomic_read(&et->node_cnt))
685 return 0;
686
687 write_lock(&et->lock);
688 node_cnt = __free_extent_tree(sbi, et);
689 write_unlock(&et->lock);
690
691 return node_cnt;
692 }
693
694 void f2fs_drop_extent_tree(struct inode *inode)
695 {
696 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
697 struct extent_tree *et = F2FS_I(inode)->extent_tree;
698
699 set_inode_flag(inode, FI_NO_EXTENT);
700
701 write_lock(&et->lock);
702 __free_extent_tree(sbi, et);
703 __drop_largest_extent(inode, 0, UINT_MAX);
704 write_unlock(&et->lock);
705 }
706
707 void f2fs_destroy_extent_tree(struct inode *inode)
708 {
709 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
710 struct extent_tree *et = F2FS_I(inode)->extent_tree;
711 unsigned int node_cnt = 0;
712
713 if (!et)
714 return;
715
716 if (inode->i_nlink && !is_bad_inode(inode) &&
717 atomic_read(&et->node_cnt)) {
718 mutex_lock(&sbi->extent_tree_lock);
719 list_add_tail(&et->list, &sbi->zombie_list);
720 atomic_inc(&sbi->total_zombie_tree);
721 mutex_unlock(&sbi->extent_tree_lock);
722 return;
723 }
724
725 /* free all extent info belong to this extent tree */
726 node_cnt = f2fs_destroy_extent_node(inode);
727
728 /* delete extent tree entry in radix tree */
729 mutex_lock(&sbi->extent_tree_lock);
730 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
731 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
732 kmem_cache_free(extent_tree_slab, et);
733 atomic_dec(&sbi->total_ext_tree);
734 mutex_unlock(&sbi->extent_tree_lock);
735
736 F2FS_I(inode)->extent_tree = NULL;
737
738 trace_f2fs_destroy_extent_tree(inode, node_cnt);
739 }
740
741 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
742 struct extent_info *ei)
743 {
744 if (!f2fs_may_extent_tree(inode))
745 return false;
746
747 return f2fs_lookup_extent_tree(inode, pgofs, ei);
748 }
749
750 void f2fs_update_extent_cache(struct dnode_of_data *dn)
751 {
752 pgoff_t fofs;
753 block_t blkaddr;
754
755 if (!f2fs_may_extent_tree(dn->inode))
756 return;
757
758 if (dn->data_blkaddr == NEW_ADDR)
759 blkaddr = NULL_ADDR;
760 else
761 blkaddr = dn->data_blkaddr;
762
763 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
764 dn->ofs_in_node;
765 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1);
766 }
767
768 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
769 pgoff_t fofs, block_t blkaddr, unsigned int len)
770
771 {
772 if (!f2fs_may_extent_tree(dn->inode))
773 return;
774
775 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len);
776 }
777
778 void init_extent_cache_info(struct f2fs_sb_info *sbi)
779 {
780 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
781 mutex_init(&sbi->extent_tree_lock);
782 INIT_LIST_HEAD(&sbi->extent_list);
783 spin_lock_init(&sbi->extent_lock);
784 atomic_set(&sbi->total_ext_tree, 0);
785 INIT_LIST_HEAD(&sbi->zombie_list);
786 atomic_set(&sbi->total_zombie_tree, 0);
787 atomic_set(&sbi->total_ext_node, 0);
788 }
789
790 int __init create_extent_cache(void)
791 {
792 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
793 sizeof(struct extent_tree));
794 if (!extent_tree_slab)
795 return -ENOMEM;
796 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
797 sizeof(struct extent_node));
798 if (!extent_node_slab) {
799 kmem_cache_destroy(extent_tree_slab);
800 return -ENOMEM;
801 }
802 return 0;
803 }
804
805 void destroy_extent_cache(void)
806 {
807 kmem_cache_destroy(extent_node_slab);
808 kmem_cache_destroy(extent_tree_slab);
809 }