]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/f2fs.h
VFS: normal filesystems (and lustre): d_inode() annotations
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 set_sbi_flag(sbi, SBI_NEED_FSCK); \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53
54 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
55 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
56 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
57
58 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
59 typecheck(unsigned long long, b) && \
60 ((long long)((a) - (b)) > 0))
61
62 typedef u32 block_t; /*
63 * should not change u32, since it is the on-disk block
64 * address format, __le32.
65 */
66 typedef u32 nid_t;
67
68 struct f2fs_mount_info {
69 unsigned int opt;
70 };
71
72 #define CRCPOLY_LE 0xedb88320
73
74 static inline __u32 f2fs_crc32(void *buf, size_t len)
75 {
76 unsigned char *p = (unsigned char *)buf;
77 __u32 crc = F2FS_SUPER_MAGIC;
78 int i;
79
80 while (len--) {
81 crc ^= *p++;
82 for (i = 0; i < 8; i++)
83 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
84 }
85 return crc;
86 }
87
88 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
89 {
90 return f2fs_crc32(buf, buf_size) == blk_crc;
91 }
92
93 /*
94 * For checkpoint manager
95 */
96 enum {
97 NAT_BITMAP,
98 SIT_BITMAP
99 };
100
101 enum {
102 CP_UMOUNT,
103 CP_FASTBOOT,
104 CP_SYNC,
105 CP_DISCARD,
106 };
107
108 #define DEF_BATCHED_TRIM_SECTIONS 32
109 #define BATCHED_TRIM_SEGMENTS(sbi) \
110 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
111
112 struct cp_control {
113 int reason;
114 __u64 trim_start;
115 __u64 trim_end;
116 __u64 trim_minlen;
117 __u64 trimmed;
118 };
119
120 /*
121 * For CP/NAT/SIT/SSA readahead
122 */
123 enum {
124 META_CP,
125 META_NAT,
126 META_SIT,
127 META_SSA,
128 META_POR,
129 };
130
131 /* for the list of ino */
132 enum {
133 ORPHAN_INO, /* for orphan ino list */
134 APPEND_INO, /* for append ino list */
135 UPDATE_INO, /* for update ino list */
136 MAX_INO_ENTRY, /* max. list */
137 };
138
139 struct ino_entry {
140 struct list_head list; /* list head */
141 nid_t ino; /* inode number */
142 };
143
144 /*
145 * for the list of directory inodes or gc inodes.
146 * NOTE: there are two slab users for this structure, if we add/modify/delete
147 * fields in structure for one of slab users, it may affect fields or size of
148 * other one, in this condition, it's better to split both of slab and related
149 * data structure.
150 */
151 struct inode_entry {
152 struct list_head list; /* list head */
153 struct inode *inode; /* vfs inode pointer */
154 };
155
156 /* for the list of blockaddresses to be discarded */
157 struct discard_entry {
158 struct list_head list; /* list head */
159 block_t blkaddr; /* block address to be discarded */
160 int len; /* # of consecutive blocks of the discard */
161 };
162
163 /* for the list of fsync inodes, used only during recovery */
164 struct fsync_inode_entry {
165 struct list_head list; /* list head */
166 struct inode *inode; /* vfs inode pointer */
167 block_t blkaddr; /* block address locating the last fsync */
168 block_t last_dentry; /* block address locating the last dentry */
169 block_t last_inode; /* block address locating the last inode */
170 };
171
172 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
173 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
174
175 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
176 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
177 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
178 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
179
180 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
181 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
182
183 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
184 {
185 int before = nats_in_cursum(rs);
186 rs->n_nats = cpu_to_le16(before + i);
187 return before;
188 }
189
190 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
191 {
192 int before = sits_in_cursum(rs);
193 rs->n_sits = cpu_to_le16(before + i);
194 return before;
195 }
196
197 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
198 int type)
199 {
200 if (type == NAT_JOURNAL)
201 return size <= MAX_NAT_JENTRIES(sum);
202 return size <= MAX_SIT_JENTRIES(sum);
203 }
204
205 /*
206 * ioctl commands
207 */
208 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
209 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
210 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
211
212 #define F2FS_IOCTL_MAGIC 0xf5
213 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
214 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
215 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
216 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
217 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
218
219 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
220 /*
221 * ioctl commands in 32 bit emulation
222 */
223 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
224 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
225 #endif
226
227 /*
228 * For INODE and NODE manager
229 */
230 /* for directory operations */
231 struct f2fs_dentry_ptr {
232 const void *bitmap;
233 struct f2fs_dir_entry *dentry;
234 __u8 (*filename)[F2FS_SLOT_LEN];
235 int max;
236 };
237
238 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
239 void *src, int type)
240 {
241 if (type == 1) {
242 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
243 d->max = NR_DENTRY_IN_BLOCK;
244 d->bitmap = &t->dentry_bitmap;
245 d->dentry = t->dentry;
246 d->filename = t->filename;
247 } else {
248 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
249 d->max = NR_INLINE_DENTRY;
250 d->bitmap = &t->dentry_bitmap;
251 d->dentry = t->dentry;
252 d->filename = t->filename;
253 }
254 }
255
256 /*
257 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
258 * as its node offset to distinguish from index node blocks.
259 * But some bits are used to mark the node block.
260 */
261 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
262 >> OFFSET_BIT_SHIFT)
263 enum {
264 ALLOC_NODE, /* allocate a new node page if needed */
265 LOOKUP_NODE, /* look up a node without readahead */
266 LOOKUP_NODE_RA, /*
267 * look up a node with readahead called
268 * by get_data_block.
269 */
270 };
271
272 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
273
274 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
275
276 /* for in-memory extent cache entry */
277 #define F2FS_MIN_EXTENT_LEN 16 /* minimum extent length */
278
279 struct extent_info {
280 rwlock_t ext_lock; /* rwlock for consistency */
281 unsigned int fofs; /* start offset in a file */
282 u32 blk_addr; /* start block address of the extent */
283 unsigned int len; /* length of the extent */
284 };
285
286 /*
287 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
288 */
289 #define FADVISE_COLD_BIT 0x01
290 #define FADVISE_LOST_PINO_BIT 0x02
291
292 #define DEF_DIR_LEVEL 0
293
294 struct f2fs_inode_info {
295 struct inode vfs_inode; /* serve a vfs inode */
296 unsigned long i_flags; /* keep an inode flags for ioctl */
297 unsigned char i_advise; /* use to give file attribute hints */
298 unsigned char i_dir_level; /* use for dentry level for large dir */
299 unsigned int i_current_depth; /* use only in directory structure */
300 unsigned int i_pino; /* parent inode number */
301 umode_t i_acl_mode; /* keep file acl mode temporarily */
302
303 /* Use below internally in f2fs*/
304 unsigned long flags; /* use to pass per-file flags */
305 struct rw_semaphore i_sem; /* protect fi info */
306 atomic_t dirty_pages; /* # of dirty pages */
307 f2fs_hash_t chash; /* hash value of given file name */
308 unsigned int clevel; /* maximum level of given file name */
309 nid_t i_xattr_nid; /* node id that contains xattrs */
310 unsigned long long xattr_ver; /* cp version of xattr modification */
311 struct extent_info ext; /* in-memory extent cache entry */
312 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
313
314 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
315 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
316 struct mutex inmem_lock; /* lock for inmemory pages */
317 };
318
319 static inline void get_extent_info(struct extent_info *ext,
320 struct f2fs_extent i_ext)
321 {
322 write_lock(&ext->ext_lock);
323 ext->fofs = le32_to_cpu(i_ext.fofs);
324 ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
325 ext->len = le32_to_cpu(i_ext.len);
326 write_unlock(&ext->ext_lock);
327 }
328
329 static inline void set_raw_extent(struct extent_info *ext,
330 struct f2fs_extent *i_ext)
331 {
332 read_lock(&ext->ext_lock);
333 i_ext->fofs = cpu_to_le32(ext->fofs);
334 i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
335 i_ext->len = cpu_to_le32(ext->len);
336 read_unlock(&ext->ext_lock);
337 }
338
339 struct f2fs_nm_info {
340 block_t nat_blkaddr; /* base disk address of NAT */
341 nid_t max_nid; /* maximum possible node ids */
342 nid_t available_nids; /* maximum available node ids */
343 nid_t next_scan_nid; /* the next nid to be scanned */
344 unsigned int ram_thresh; /* control the memory footprint */
345
346 /* NAT cache management */
347 struct radix_tree_root nat_root;/* root of the nat entry cache */
348 struct radix_tree_root nat_set_root;/* root of the nat set cache */
349 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
350 struct list_head nat_entries; /* cached nat entry list (clean) */
351 unsigned int nat_cnt; /* the # of cached nat entries */
352 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
353
354 /* free node ids management */
355 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
356 struct list_head free_nid_list; /* a list for free nids */
357 spinlock_t free_nid_list_lock; /* protect free nid list */
358 unsigned int fcnt; /* the number of free node id */
359 struct mutex build_lock; /* lock for build free nids */
360
361 /* for checkpoint */
362 char *nat_bitmap; /* NAT bitmap pointer */
363 int bitmap_size; /* bitmap size */
364 };
365
366 /*
367 * this structure is used as one of function parameters.
368 * all the information are dedicated to a given direct node block determined
369 * by the data offset in a file.
370 */
371 struct dnode_of_data {
372 struct inode *inode; /* vfs inode pointer */
373 struct page *inode_page; /* its inode page, NULL is possible */
374 struct page *node_page; /* cached direct node page */
375 nid_t nid; /* node id of the direct node block */
376 unsigned int ofs_in_node; /* data offset in the node page */
377 bool inode_page_locked; /* inode page is locked or not */
378 block_t data_blkaddr; /* block address of the node block */
379 };
380
381 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
382 struct page *ipage, struct page *npage, nid_t nid)
383 {
384 memset(dn, 0, sizeof(*dn));
385 dn->inode = inode;
386 dn->inode_page = ipage;
387 dn->node_page = npage;
388 dn->nid = nid;
389 }
390
391 /*
392 * For SIT manager
393 *
394 * By default, there are 6 active log areas across the whole main area.
395 * When considering hot and cold data separation to reduce cleaning overhead,
396 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
397 * respectively.
398 * In the current design, you should not change the numbers intentionally.
399 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
400 * logs individually according to the underlying devices. (default: 6)
401 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
402 * data and 8 for node logs.
403 */
404 #define NR_CURSEG_DATA_TYPE (3)
405 #define NR_CURSEG_NODE_TYPE (3)
406 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
407
408 enum {
409 CURSEG_HOT_DATA = 0, /* directory entry blocks */
410 CURSEG_WARM_DATA, /* data blocks */
411 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
412 CURSEG_HOT_NODE, /* direct node blocks of directory files */
413 CURSEG_WARM_NODE, /* direct node blocks of normal files */
414 CURSEG_COLD_NODE, /* indirect node blocks */
415 NO_CHECK_TYPE,
416 CURSEG_DIRECT_IO, /* to use for the direct IO path */
417 };
418
419 struct flush_cmd {
420 struct completion wait;
421 struct llist_node llnode;
422 int ret;
423 };
424
425 struct flush_cmd_control {
426 struct task_struct *f2fs_issue_flush; /* flush thread */
427 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
428 struct llist_head issue_list; /* list for command issue */
429 struct llist_node *dispatch_list; /* list for command dispatch */
430 };
431
432 struct f2fs_sm_info {
433 struct sit_info *sit_info; /* whole segment information */
434 struct free_segmap_info *free_info; /* free segment information */
435 struct dirty_seglist_info *dirty_info; /* dirty segment information */
436 struct curseg_info *curseg_array; /* active segment information */
437
438 block_t seg0_blkaddr; /* block address of 0'th segment */
439 block_t main_blkaddr; /* start block address of main area */
440 block_t ssa_blkaddr; /* start block address of SSA area */
441
442 unsigned int segment_count; /* total # of segments */
443 unsigned int main_segments; /* # of segments in main area */
444 unsigned int reserved_segments; /* # of reserved segments */
445 unsigned int ovp_segments; /* # of overprovision segments */
446
447 /* a threshold to reclaim prefree segments */
448 unsigned int rec_prefree_segments;
449
450 /* for small discard management */
451 struct list_head discard_list; /* 4KB discard list */
452 int nr_discards; /* # of discards in the list */
453 int max_discards; /* max. discards to be issued */
454
455 /* for batched trimming */
456 unsigned int trim_sections; /* # of sections to trim */
457
458 struct list_head sit_entry_set; /* sit entry set list */
459
460 unsigned int ipu_policy; /* in-place-update policy */
461 unsigned int min_ipu_util; /* in-place-update threshold */
462 unsigned int min_fsync_blocks; /* threshold for fsync */
463
464 /* for flush command control */
465 struct flush_cmd_control *cmd_control_info;
466
467 };
468
469 /*
470 * For superblock
471 */
472 /*
473 * COUNT_TYPE for monitoring
474 *
475 * f2fs monitors the number of several block types such as on-writeback,
476 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
477 */
478 enum count_type {
479 F2FS_WRITEBACK,
480 F2FS_DIRTY_DENTS,
481 F2FS_DIRTY_NODES,
482 F2FS_DIRTY_META,
483 F2FS_INMEM_PAGES,
484 NR_COUNT_TYPE,
485 };
486
487 /*
488 * The below are the page types of bios used in submit_bio().
489 * The available types are:
490 * DATA User data pages. It operates as async mode.
491 * NODE Node pages. It operates as async mode.
492 * META FS metadata pages such as SIT, NAT, CP.
493 * NR_PAGE_TYPE The number of page types.
494 * META_FLUSH Make sure the previous pages are written
495 * with waiting the bio's completion
496 * ... Only can be used with META.
497 */
498 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
499 enum page_type {
500 DATA,
501 NODE,
502 META,
503 NR_PAGE_TYPE,
504 META_FLUSH,
505 };
506
507 struct f2fs_io_info {
508 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
509 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
510 block_t blk_addr; /* block address to be written */
511 };
512
513 #define is_read_io(rw) (((rw) & 1) == READ)
514 struct f2fs_bio_info {
515 struct f2fs_sb_info *sbi; /* f2fs superblock */
516 struct bio *bio; /* bios to merge */
517 sector_t last_block_in_bio; /* last block number */
518 struct f2fs_io_info fio; /* store buffered io info. */
519 struct rw_semaphore io_rwsem; /* blocking op for bio */
520 };
521
522 /* for inner inode cache management */
523 struct inode_management {
524 struct radix_tree_root ino_root; /* ino entry array */
525 spinlock_t ino_lock; /* for ino entry lock */
526 struct list_head ino_list; /* inode list head */
527 unsigned long ino_num; /* number of entries */
528 };
529
530 /* For s_flag in struct f2fs_sb_info */
531 enum {
532 SBI_IS_DIRTY, /* dirty flag for checkpoint */
533 SBI_IS_CLOSE, /* specify unmounting */
534 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
535 SBI_POR_DOING, /* recovery is doing or not */
536 };
537
538 struct f2fs_sb_info {
539 struct super_block *sb; /* pointer to VFS super block */
540 struct proc_dir_entry *s_proc; /* proc entry */
541 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
542 struct f2fs_super_block *raw_super; /* raw super block pointer */
543 int s_flag; /* flags for sbi */
544
545 /* for node-related operations */
546 struct f2fs_nm_info *nm_info; /* node manager */
547 struct inode *node_inode; /* cache node blocks */
548
549 /* for segment-related operations */
550 struct f2fs_sm_info *sm_info; /* segment manager */
551
552 /* for bio operations */
553 struct f2fs_bio_info read_io; /* for read bios */
554 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
555
556 /* for checkpoint */
557 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
558 struct inode *meta_inode; /* cache meta blocks */
559 struct mutex cp_mutex; /* checkpoint procedure lock */
560 struct rw_semaphore cp_rwsem; /* blocking FS operations */
561 struct rw_semaphore node_write; /* locking node writes */
562 struct mutex writepages; /* mutex for writepages() */
563 wait_queue_head_t cp_wait;
564
565 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
566
567 /* for orphan inode, use 0'th array */
568 unsigned int max_orphans; /* max orphan inodes */
569
570 /* for directory inode management */
571 struct list_head dir_inode_list; /* dir inode list */
572 spinlock_t dir_inode_lock; /* for dir inode list lock */
573
574 /* basic filesystem units */
575 unsigned int log_sectors_per_block; /* log2 sectors per block */
576 unsigned int log_blocksize; /* log2 block size */
577 unsigned int blocksize; /* block size */
578 unsigned int root_ino_num; /* root inode number*/
579 unsigned int node_ino_num; /* node inode number*/
580 unsigned int meta_ino_num; /* meta inode number*/
581 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
582 unsigned int blocks_per_seg; /* blocks per segment */
583 unsigned int segs_per_sec; /* segments per section */
584 unsigned int secs_per_zone; /* sections per zone */
585 unsigned int total_sections; /* total section count */
586 unsigned int total_node_count; /* total node block count */
587 unsigned int total_valid_node_count; /* valid node block count */
588 unsigned int total_valid_inode_count; /* valid inode count */
589 int active_logs; /* # of active logs */
590 int dir_level; /* directory level */
591
592 block_t user_block_count; /* # of user blocks */
593 block_t total_valid_block_count; /* # of valid blocks */
594 block_t alloc_valid_block_count; /* # of allocated blocks */
595 block_t last_valid_block_count; /* for recovery */
596 u32 s_next_generation; /* for NFS support */
597 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
598
599 struct f2fs_mount_info mount_opt; /* mount options */
600
601 /* for cleaning operations */
602 struct mutex gc_mutex; /* mutex for GC */
603 struct f2fs_gc_kthread *gc_thread; /* GC thread */
604 unsigned int cur_victim_sec; /* current victim section num */
605
606 /* maximum # of trials to find a victim segment for SSR and GC */
607 unsigned int max_victim_search;
608
609 /*
610 * for stat information.
611 * one is for the LFS mode, and the other is for the SSR mode.
612 */
613 #ifdef CONFIG_F2FS_STAT_FS
614 struct f2fs_stat_info *stat_info; /* FS status information */
615 unsigned int segment_count[2]; /* # of allocated segments */
616 unsigned int block_count[2]; /* # of allocated blocks */
617 atomic_t inplace_count; /* # of inplace update */
618 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
619 atomic_t inline_inode; /* # of inline_data inodes */
620 atomic_t inline_dir; /* # of inline_dentry inodes */
621 int bg_gc; /* background gc calls */
622 unsigned int n_dirty_dirs; /* # of dir inodes */
623 #endif
624 unsigned int last_victim[2]; /* last victim segment # */
625 spinlock_t stat_lock; /* lock for stat operations */
626
627 /* For sysfs suppport */
628 struct kobject s_kobj;
629 struct completion s_kobj_unregister;
630 };
631
632 /*
633 * Inline functions
634 */
635 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
636 {
637 return container_of(inode, struct f2fs_inode_info, vfs_inode);
638 }
639
640 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
641 {
642 return sb->s_fs_info;
643 }
644
645 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
646 {
647 return F2FS_SB(inode->i_sb);
648 }
649
650 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
651 {
652 return F2FS_I_SB(mapping->host);
653 }
654
655 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
656 {
657 return F2FS_M_SB(page->mapping);
658 }
659
660 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
661 {
662 return (struct f2fs_super_block *)(sbi->raw_super);
663 }
664
665 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
666 {
667 return (struct f2fs_checkpoint *)(sbi->ckpt);
668 }
669
670 static inline struct f2fs_node *F2FS_NODE(struct page *page)
671 {
672 return (struct f2fs_node *)page_address(page);
673 }
674
675 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
676 {
677 return &((struct f2fs_node *)page_address(page))->i;
678 }
679
680 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
681 {
682 return (struct f2fs_nm_info *)(sbi->nm_info);
683 }
684
685 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
686 {
687 return (struct f2fs_sm_info *)(sbi->sm_info);
688 }
689
690 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
691 {
692 return (struct sit_info *)(SM_I(sbi)->sit_info);
693 }
694
695 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
696 {
697 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
698 }
699
700 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
701 {
702 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
703 }
704
705 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
706 {
707 return sbi->meta_inode->i_mapping;
708 }
709
710 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
711 {
712 return sbi->node_inode->i_mapping;
713 }
714
715 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
716 {
717 return sbi->s_flag & (0x01 << type);
718 }
719
720 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
721 {
722 sbi->s_flag |= (0x01 << type);
723 }
724
725 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
726 {
727 sbi->s_flag &= ~(0x01 << type);
728 }
729
730 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
731 {
732 return le64_to_cpu(cp->checkpoint_ver);
733 }
734
735 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
736 {
737 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
738 return ckpt_flags & f;
739 }
740
741 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
742 {
743 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
744 ckpt_flags |= f;
745 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
746 }
747
748 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
749 {
750 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
751 ckpt_flags &= (~f);
752 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
753 }
754
755 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
756 {
757 down_read(&sbi->cp_rwsem);
758 }
759
760 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
761 {
762 up_read(&sbi->cp_rwsem);
763 }
764
765 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
766 {
767 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
768 }
769
770 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
771 {
772 up_write(&sbi->cp_rwsem);
773 }
774
775 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
776 {
777 int reason = CP_SYNC;
778
779 if (test_opt(sbi, FASTBOOT))
780 reason = CP_FASTBOOT;
781 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
782 reason = CP_UMOUNT;
783 return reason;
784 }
785
786 static inline bool __remain_node_summaries(int reason)
787 {
788 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
789 }
790
791 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
792 {
793 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
794 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
795 }
796
797 /*
798 * Check whether the given nid is within node id range.
799 */
800 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
801 {
802 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
803 return -EINVAL;
804 if (unlikely(nid >= NM_I(sbi)->max_nid))
805 return -EINVAL;
806 return 0;
807 }
808
809 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
810
811 /*
812 * Check whether the inode has blocks or not
813 */
814 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
815 {
816 if (F2FS_I(inode)->i_xattr_nid)
817 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
818 else
819 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
820 }
821
822 static inline bool f2fs_has_xattr_block(unsigned int ofs)
823 {
824 return ofs == XATTR_NODE_OFFSET;
825 }
826
827 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
828 struct inode *inode, blkcnt_t count)
829 {
830 block_t valid_block_count;
831
832 spin_lock(&sbi->stat_lock);
833 valid_block_count =
834 sbi->total_valid_block_count + (block_t)count;
835 if (unlikely(valid_block_count > sbi->user_block_count)) {
836 spin_unlock(&sbi->stat_lock);
837 return false;
838 }
839 inode->i_blocks += count;
840 sbi->total_valid_block_count = valid_block_count;
841 sbi->alloc_valid_block_count += (block_t)count;
842 spin_unlock(&sbi->stat_lock);
843 return true;
844 }
845
846 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
847 struct inode *inode,
848 blkcnt_t count)
849 {
850 spin_lock(&sbi->stat_lock);
851 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
852 f2fs_bug_on(sbi, inode->i_blocks < count);
853 inode->i_blocks -= count;
854 sbi->total_valid_block_count -= (block_t)count;
855 spin_unlock(&sbi->stat_lock);
856 }
857
858 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
859 {
860 atomic_inc(&sbi->nr_pages[count_type]);
861 set_sbi_flag(sbi, SBI_IS_DIRTY);
862 }
863
864 static inline void inode_inc_dirty_pages(struct inode *inode)
865 {
866 atomic_inc(&F2FS_I(inode)->dirty_pages);
867 if (S_ISDIR(inode->i_mode))
868 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
869 }
870
871 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
872 {
873 atomic_dec(&sbi->nr_pages[count_type]);
874 }
875
876 static inline void inode_dec_dirty_pages(struct inode *inode)
877 {
878 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
879 return;
880
881 atomic_dec(&F2FS_I(inode)->dirty_pages);
882
883 if (S_ISDIR(inode->i_mode))
884 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
885 }
886
887 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
888 {
889 return atomic_read(&sbi->nr_pages[count_type]);
890 }
891
892 static inline int get_dirty_pages(struct inode *inode)
893 {
894 return atomic_read(&F2FS_I(inode)->dirty_pages);
895 }
896
897 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
898 {
899 unsigned int pages_per_sec = sbi->segs_per_sec *
900 (1 << sbi->log_blocks_per_seg);
901 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
902 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
903 }
904
905 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
906 {
907 return sbi->total_valid_block_count;
908 }
909
910 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
911 {
912 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
913
914 /* return NAT or SIT bitmap */
915 if (flag == NAT_BITMAP)
916 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
917 else if (flag == SIT_BITMAP)
918 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
919
920 return 0;
921 }
922
923 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
924 {
925 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
926 int offset;
927
928 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
929 if (flag == NAT_BITMAP)
930 return &ckpt->sit_nat_version_bitmap;
931 else
932 return (unsigned char *)ckpt + F2FS_BLKSIZE;
933 } else {
934 offset = (flag == NAT_BITMAP) ?
935 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
936 return &ckpt->sit_nat_version_bitmap + offset;
937 }
938 }
939
940 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
941 {
942 block_t start_addr;
943 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
944 unsigned long long ckpt_version = cur_cp_version(ckpt);
945
946 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
947
948 /*
949 * odd numbered checkpoint should at cp segment 0
950 * and even segment must be at cp segment 1
951 */
952 if (!(ckpt_version & 1))
953 start_addr += sbi->blocks_per_seg;
954
955 return start_addr;
956 }
957
958 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
959 {
960 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
961 }
962
963 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
964 struct inode *inode)
965 {
966 block_t valid_block_count;
967 unsigned int valid_node_count;
968
969 spin_lock(&sbi->stat_lock);
970
971 valid_block_count = sbi->total_valid_block_count + 1;
972 if (unlikely(valid_block_count > sbi->user_block_count)) {
973 spin_unlock(&sbi->stat_lock);
974 return false;
975 }
976
977 valid_node_count = sbi->total_valid_node_count + 1;
978 if (unlikely(valid_node_count > sbi->total_node_count)) {
979 spin_unlock(&sbi->stat_lock);
980 return false;
981 }
982
983 if (inode)
984 inode->i_blocks++;
985
986 sbi->alloc_valid_block_count++;
987 sbi->total_valid_node_count++;
988 sbi->total_valid_block_count++;
989 spin_unlock(&sbi->stat_lock);
990
991 return true;
992 }
993
994 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
995 struct inode *inode)
996 {
997 spin_lock(&sbi->stat_lock);
998
999 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1000 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1001 f2fs_bug_on(sbi, !inode->i_blocks);
1002
1003 inode->i_blocks--;
1004 sbi->total_valid_node_count--;
1005 sbi->total_valid_block_count--;
1006
1007 spin_unlock(&sbi->stat_lock);
1008 }
1009
1010 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1011 {
1012 return sbi->total_valid_node_count;
1013 }
1014
1015 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1016 {
1017 spin_lock(&sbi->stat_lock);
1018 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1019 sbi->total_valid_inode_count++;
1020 spin_unlock(&sbi->stat_lock);
1021 }
1022
1023 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1024 {
1025 spin_lock(&sbi->stat_lock);
1026 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1027 sbi->total_valid_inode_count--;
1028 spin_unlock(&sbi->stat_lock);
1029 }
1030
1031 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1032 {
1033 return sbi->total_valid_inode_count;
1034 }
1035
1036 static inline void f2fs_put_page(struct page *page, int unlock)
1037 {
1038 if (!page)
1039 return;
1040
1041 if (unlock) {
1042 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1043 unlock_page(page);
1044 }
1045 page_cache_release(page);
1046 }
1047
1048 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1049 {
1050 if (dn->node_page)
1051 f2fs_put_page(dn->node_page, 1);
1052 if (dn->inode_page && dn->node_page != dn->inode_page)
1053 f2fs_put_page(dn->inode_page, 0);
1054 dn->node_page = NULL;
1055 dn->inode_page = NULL;
1056 }
1057
1058 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1059 size_t size)
1060 {
1061 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1062 }
1063
1064 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1065 gfp_t flags)
1066 {
1067 void *entry;
1068 retry:
1069 entry = kmem_cache_alloc(cachep, flags);
1070 if (!entry) {
1071 cond_resched();
1072 goto retry;
1073 }
1074
1075 return entry;
1076 }
1077
1078 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1079 unsigned long index, void *item)
1080 {
1081 while (radix_tree_insert(root, index, item))
1082 cond_resched();
1083 }
1084
1085 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1086
1087 static inline bool IS_INODE(struct page *page)
1088 {
1089 struct f2fs_node *p = F2FS_NODE(page);
1090 return RAW_IS_INODE(p);
1091 }
1092
1093 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1094 {
1095 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1096 }
1097
1098 static inline block_t datablock_addr(struct page *node_page,
1099 unsigned int offset)
1100 {
1101 struct f2fs_node *raw_node;
1102 __le32 *addr_array;
1103 raw_node = F2FS_NODE(node_page);
1104 addr_array = blkaddr_in_node(raw_node);
1105 return le32_to_cpu(addr_array[offset]);
1106 }
1107
1108 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1109 {
1110 int mask;
1111
1112 addr += (nr >> 3);
1113 mask = 1 << (7 - (nr & 0x07));
1114 return mask & *addr;
1115 }
1116
1117 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1118 {
1119 int mask;
1120 int ret;
1121
1122 addr += (nr >> 3);
1123 mask = 1 << (7 - (nr & 0x07));
1124 ret = mask & *addr;
1125 *addr |= mask;
1126 return ret;
1127 }
1128
1129 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1130 {
1131 int mask;
1132 int ret;
1133
1134 addr += (nr >> 3);
1135 mask = 1 << (7 - (nr & 0x07));
1136 ret = mask & *addr;
1137 *addr &= ~mask;
1138 return ret;
1139 }
1140
1141 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1142 {
1143 int mask;
1144
1145 addr += (nr >> 3);
1146 mask = 1 << (7 - (nr & 0x07));
1147 *addr ^= mask;
1148 }
1149
1150 /* used for f2fs_inode_info->flags */
1151 enum {
1152 FI_NEW_INODE, /* indicate newly allocated inode */
1153 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1154 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1155 FI_INC_LINK, /* need to increment i_nlink */
1156 FI_ACL_MODE, /* indicate acl mode */
1157 FI_NO_ALLOC, /* should not allocate any blocks */
1158 FI_UPDATE_DIR, /* should update inode block for consistency */
1159 FI_DELAY_IPUT, /* used for the recovery */
1160 FI_NO_EXTENT, /* not to use the extent cache */
1161 FI_INLINE_XATTR, /* used for inline xattr */
1162 FI_INLINE_DATA, /* used for inline data*/
1163 FI_INLINE_DENTRY, /* used for inline dentry */
1164 FI_APPEND_WRITE, /* inode has appended data */
1165 FI_UPDATE_WRITE, /* inode has in-place-update data */
1166 FI_NEED_IPU, /* used for ipu per file */
1167 FI_ATOMIC_FILE, /* indicate atomic file */
1168 FI_VOLATILE_FILE, /* indicate volatile file */
1169 FI_DROP_CACHE, /* drop dirty page cache */
1170 FI_DATA_EXIST, /* indicate data exists */
1171 };
1172
1173 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1174 {
1175 if (!test_bit(flag, &fi->flags))
1176 set_bit(flag, &fi->flags);
1177 }
1178
1179 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1180 {
1181 return test_bit(flag, &fi->flags);
1182 }
1183
1184 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1185 {
1186 if (test_bit(flag, &fi->flags))
1187 clear_bit(flag, &fi->flags);
1188 }
1189
1190 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1191 {
1192 fi->i_acl_mode = mode;
1193 set_inode_flag(fi, FI_ACL_MODE);
1194 }
1195
1196 static inline void get_inline_info(struct f2fs_inode_info *fi,
1197 struct f2fs_inode *ri)
1198 {
1199 if (ri->i_inline & F2FS_INLINE_XATTR)
1200 set_inode_flag(fi, FI_INLINE_XATTR);
1201 if (ri->i_inline & F2FS_INLINE_DATA)
1202 set_inode_flag(fi, FI_INLINE_DATA);
1203 if (ri->i_inline & F2FS_INLINE_DENTRY)
1204 set_inode_flag(fi, FI_INLINE_DENTRY);
1205 if (ri->i_inline & F2FS_DATA_EXIST)
1206 set_inode_flag(fi, FI_DATA_EXIST);
1207 }
1208
1209 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1210 struct f2fs_inode *ri)
1211 {
1212 ri->i_inline = 0;
1213
1214 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1215 ri->i_inline |= F2FS_INLINE_XATTR;
1216 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1217 ri->i_inline |= F2FS_INLINE_DATA;
1218 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1219 ri->i_inline |= F2FS_INLINE_DENTRY;
1220 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1221 ri->i_inline |= F2FS_DATA_EXIST;
1222 }
1223
1224 static inline int f2fs_has_inline_xattr(struct inode *inode)
1225 {
1226 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1227 }
1228
1229 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1230 {
1231 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1232 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1233 return DEF_ADDRS_PER_INODE;
1234 }
1235
1236 static inline void *inline_xattr_addr(struct page *page)
1237 {
1238 struct f2fs_inode *ri = F2FS_INODE(page);
1239 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1240 F2FS_INLINE_XATTR_ADDRS]);
1241 }
1242
1243 static inline int inline_xattr_size(struct inode *inode)
1244 {
1245 if (f2fs_has_inline_xattr(inode))
1246 return F2FS_INLINE_XATTR_ADDRS << 2;
1247 else
1248 return 0;
1249 }
1250
1251 static inline int f2fs_has_inline_data(struct inode *inode)
1252 {
1253 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1254 }
1255
1256 static inline void f2fs_clear_inline_inode(struct inode *inode)
1257 {
1258 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1259 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1260 }
1261
1262 static inline int f2fs_exist_data(struct inode *inode)
1263 {
1264 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1265 }
1266
1267 static inline bool f2fs_is_atomic_file(struct inode *inode)
1268 {
1269 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1270 }
1271
1272 static inline bool f2fs_is_volatile_file(struct inode *inode)
1273 {
1274 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1275 }
1276
1277 static inline bool f2fs_is_drop_cache(struct inode *inode)
1278 {
1279 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1280 }
1281
1282 static inline void *inline_data_addr(struct page *page)
1283 {
1284 struct f2fs_inode *ri = F2FS_INODE(page);
1285 return (void *)&(ri->i_addr[1]);
1286 }
1287
1288 static inline int f2fs_has_inline_dentry(struct inode *inode)
1289 {
1290 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1291 }
1292
1293 static inline void *inline_dentry_addr(struct page *page)
1294 {
1295 struct f2fs_inode *ri = F2FS_INODE(page);
1296 return (void *)&(ri->i_addr[1]);
1297 }
1298
1299 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1300 {
1301 if (!f2fs_has_inline_dentry(dir))
1302 kunmap(page);
1303 }
1304
1305 static inline int f2fs_readonly(struct super_block *sb)
1306 {
1307 return sb->s_flags & MS_RDONLY;
1308 }
1309
1310 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1311 {
1312 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1313 }
1314
1315 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1316 {
1317 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1318 sbi->sb->s_flags |= MS_RDONLY;
1319 }
1320
1321 #define get_inode_mode(i) \
1322 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1323 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1324
1325 /* get offset of first page in next direct node */
1326 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1327 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1328 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1329 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1330
1331 /*
1332 * file.c
1333 */
1334 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1335 void truncate_data_blocks(struct dnode_of_data *);
1336 int truncate_blocks(struct inode *, u64, bool);
1337 void f2fs_truncate(struct inode *);
1338 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1339 int f2fs_setattr(struct dentry *, struct iattr *);
1340 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1341 int truncate_data_blocks_range(struct dnode_of_data *, int);
1342 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1343 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1344
1345 /*
1346 * inode.c
1347 */
1348 void f2fs_set_inode_flags(struct inode *);
1349 struct inode *f2fs_iget(struct super_block *, unsigned long);
1350 int try_to_free_nats(struct f2fs_sb_info *, int);
1351 void update_inode(struct inode *, struct page *);
1352 void update_inode_page(struct inode *);
1353 int f2fs_write_inode(struct inode *, struct writeback_control *);
1354 void f2fs_evict_inode(struct inode *);
1355 void handle_failed_inode(struct inode *);
1356
1357 /*
1358 * namei.c
1359 */
1360 struct dentry *f2fs_get_parent(struct dentry *child);
1361
1362 /*
1363 * dir.c
1364 */
1365 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1366 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1367 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1368 struct f2fs_dentry_ptr *);
1369 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1370 unsigned int);
1371 void do_make_empty_dir(struct inode *, struct inode *,
1372 struct f2fs_dentry_ptr *);
1373 struct page *init_inode_metadata(struct inode *, struct inode *,
1374 const struct qstr *, struct page *);
1375 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1376 int room_for_filename(const void *, int, int);
1377 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1378 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1379 struct page **);
1380 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1381 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1382 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1383 struct page *, struct inode *);
1384 int update_dent_inode(struct inode *, const struct qstr *);
1385 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1386 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1387 struct inode *);
1388 int f2fs_do_tmpfile(struct inode *, struct inode *);
1389 int f2fs_make_empty(struct inode *, struct inode *);
1390 bool f2fs_empty_dir(struct inode *);
1391
1392 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1393 {
1394 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1395 inode);
1396 }
1397
1398 /*
1399 * super.c
1400 */
1401 int f2fs_sync_fs(struct super_block *, int);
1402 extern __printf(3, 4)
1403 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1404
1405 /*
1406 * hash.c
1407 */
1408 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1409
1410 /*
1411 * node.c
1412 */
1413 struct dnode_of_data;
1414 struct node_info;
1415
1416 bool available_free_memory(struct f2fs_sb_info *, int);
1417 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1418 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1419 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1420 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1421 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1422 int truncate_inode_blocks(struct inode *, pgoff_t);
1423 int truncate_xattr_node(struct inode *, struct page *);
1424 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1425 void remove_inode_page(struct inode *);
1426 struct page *new_inode_page(struct inode *);
1427 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1428 void ra_node_page(struct f2fs_sb_info *, nid_t);
1429 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1430 struct page *get_node_page_ra(struct page *, int);
1431 void sync_inode_page(struct dnode_of_data *);
1432 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1433 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1434 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1435 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1436 void recover_inline_xattr(struct inode *, struct page *);
1437 void recover_xattr_data(struct inode *, struct page *, block_t);
1438 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1439 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1440 struct f2fs_summary_block *);
1441 void flush_nat_entries(struct f2fs_sb_info *);
1442 int build_node_manager(struct f2fs_sb_info *);
1443 void destroy_node_manager(struct f2fs_sb_info *);
1444 int __init create_node_manager_caches(void);
1445 void destroy_node_manager_caches(void);
1446
1447 /*
1448 * segment.c
1449 */
1450 void register_inmem_page(struct inode *, struct page *);
1451 void commit_inmem_pages(struct inode *, bool);
1452 void f2fs_balance_fs(struct f2fs_sb_info *);
1453 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1454 int f2fs_issue_flush(struct f2fs_sb_info *);
1455 int create_flush_cmd_control(struct f2fs_sb_info *);
1456 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1457 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1458 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1459 void clear_prefree_segments(struct f2fs_sb_info *);
1460 void release_discard_addrs(struct f2fs_sb_info *);
1461 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1462 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1463 void allocate_new_segments(struct f2fs_sb_info *);
1464 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1465 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1466 void write_meta_page(struct f2fs_sb_info *, struct page *);
1467 void write_node_page(struct f2fs_sb_info *, struct page *,
1468 unsigned int, struct f2fs_io_info *);
1469 void write_data_page(struct page *, struct dnode_of_data *,
1470 struct f2fs_io_info *);
1471 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1472 void recover_data_page(struct f2fs_sb_info *, struct page *,
1473 struct f2fs_summary *, block_t, block_t);
1474 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1475 block_t, block_t *, struct f2fs_summary *, int);
1476 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1477 void write_data_summaries(struct f2fs_sb_info *, block_t);
1478 void write_node_summaries(struct f2fs_sb_info *, block_t);
1479 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1480 int, unsigned int, int);
1481 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1482 int build_segment_manager(struct f2fs_sb_info *);
1483 void destroy_segment_manager(struct f2fs_sb_info *);
1484 int __init create_segment_manager_caches(void);
1485 void destroy_segment_manager_caches(void);
1486
1487 /*
1488 * checkpoint.c
1489 */
1490 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1491 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1492 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1493 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1494 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1495 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1496 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1497 void release_dirty_inode(struct f2fs_sb_info *);
1498 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1499 int acquire_orphan_inode(struct f2fs_sb_info *);
1500 void release_orphan_inode(struct f2fs_sb_info *);
1501 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1502 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1503 void recover_orphan_inodes(struct f2fs_sb_info *);
1504 int get_valid_checkpoint(struct f2fs_sb_info *);
1505 void update_dirty_page(struct inode *, struct page *);
1506 void add_dirty_dir_inode(struct inode *);
1507 void remove_dirty_dir_inode(struct inode *);
1508 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1509 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1510 void init_ino_entry_info(struct f2fs_sb_info *);
1511 int __init create_checkpoint_caches(void);
1512 void destroy_checkpoint_caches(void);
1513
1514 /*
1515 * data.c
1516 */
1517 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1518 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1519 struct f2fs_io_info *);
1520 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1521 struct f2fs_io_info *);
1522 int reserve_new_block(struct dnode_of_data *);
1523 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1524 void update_extent_cache(struct dnode_of_data *);
1525 struct page *find_data_page(struct inode *, pgoff_t, bool);
1526 struct page *get_lock_data_page(struct inode *, pgoff_t);
1527 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1528 int do_write_data_page(struct page *, struct f2fs_io_info *);
1529 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1530 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1531 int f2fs_release_page(struct page *, gfp_t);
1532
1533 /*
1534 * gc.c
1535 */
1536 int start_gc_thread(struct f2fs_sb_info *);
1537 void stop_gc_thread(struct f2fs_sb_info *);
1538 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1539 int f2fs_gc(struct f2fs_sb_info *);
1540 void build_gc_manager(struct f2fs_sb_info *);
1541
1542 /*
1543 * recovery.c
1544 */
1545 int recover_fsync_data(struct f2fs_sb_info *);
1546 bool space_for_roll_forward(struct f2fs_sb_info *);
1547
1548 /*
1549 * debug.c
1550 */
1551 #ifdef CONFIG_F2FS_STAT_FS
1552 struct f2fs_stat_info {
1553 struct list_head stat_list;
1554 struct f2fs_sb_info *sbi;
1555 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1556 int main_area_segs, main_area_sections, main_area_zones;
1557 int hit_ext, total_ext;
1558 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1559 int nats, dirty_nats, sits, dirty_sits, fnids;
1560 int total_count, utilization;
1561 int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1562 unsigned int valid_count, valid_node_count, valid_inode_count;
1563 unsigned int bimodal, avg_vblocks;
1564 int util_free, util_valid, util_invalid;
1565 int rsvd_segs, overp_segs;
1566 int dirty_count, node_pages, meta_pages;
1567 int prefree_count, call_count, cp_count;
1568 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1569 int tot_blks, data_blks, node_blks;
1570 int curseg[NR_CURSEG_TYPE];
1571 int cursec[NR_CURSEG_TYPE];
1572 int curzone[NR_CURSEG_TYPE];
1573
1574 unsigned int segment_count[2];
1575 unsigned int block_count[2];
1576 unsigned int inplace_count;
1577 unsigned base_mem, cache_mem, page_mem;
1578 };
1579
1580 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1581 {
1582 return (struct f2fs_stat_info *)sbi->stat_info;
1583 }
1584
1585 #define stat_inc_cp_count(si) ((si)->cp_count++)
1586 #define stat_inc_call_count(si) ((si)->call_count++)
1587 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1588 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1589 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1590 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1591 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1592 #define stat_inc_inline_inode(inode) \
1593 do { \
1594 if (f2fs_has_inline_data(inode)) \
1595 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1596 } while (0)
1597 #define stat_dec_inline_inode(inode) \
1598 do { \
1599 if (f2fs_has_inline_data(inode)) \
1600 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1601 } while (0)
1602 #define stat_inc_inline_dir(inode) \
1603 do { \
1604 if (f2fs_has_inline_dentry(inode)) \
1605 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1606 } while (0)
1607 #define stat_dec_inline_dir(inode) \
1608 do { \
1609 if (f2fs_has_inline_dentry(inode)) \
1610 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1611 } while (0)
1612 #define stat_inc_seg_type(sbi, curseg) \
1613 ((sbi)->segment_count[(curseg)->alloc_type]++)
1614 #define stat_inc_block_count(sbi, curseg) \
1615 ((sbi)->block_count[(curseg)->alloc_type]++)
1616 #define stat_inc_inplace_blocks(sbi) \
1617 (atomic_inc(&(sbi)->inplace_count))
1618 #define stat_inc_seg_count(sbi, type) \
1619 do { \
1620 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1621 (si)->tot_segs++; \
1622 if (type == SUM_TYPE_DATA) \
1623 si->data_segs++; \
1624 else \
1625 si->node_segs++; \
1626 } while (0)
1627
1628 #define stat_inc_tot_blk_count(si, blks) \
1629 (si->tot_blks += (blks))
1630
1631 #define stat_inc_data_blk_count(sbi, blks) \
1632 do { \
1633 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1634 stat_inc_tot_blk_count(si, blks); \
1635 si->data_blks += (blks); \
1636 } while (0)
1637
1638 #define stat_inc_node_blk_count(sbi, blks) \
1639 do { \
1640 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1641 stat_inc_tot_blk_count(si, blks); \
1642 si->node_blks += (blks); \
1643 } while (0)
1644
1645 int f2fs_build_stats(struct f2fs_sb_info *);
1646 void f2fs_destroy_stats(struct f2fs_sb_info *);
1647 void __init f2fs_create_root_stats(void);
1648 void f2fs_destroy_root_stats(void);
1649 #else
1650 #define stat_inc_cp_count(si)
1651 #define stat_inc_call_count(si)
1652 #define stat_inc_bggc_count(si)
1653 #define stat_inc_dirty_dir(sbi)
1654 #define stat_dec_dirty_dir(sbi)
1655 #define stat_inc_total_hit(sb)
1656 #define stat_inc_read_hit(sb)
1657 #define stat_inc_inline_inode(inode)
1658 #define stat_dec_inline_inode(inode)
1659 #define stat_inc_inline_dir(inode)
1660 #define stat_dec_inline_dir(inode)
1661 #define stat_inc_seg_type(sbi, curseg)
1662 #define stat_inc_block_count(sbi, curseg)
1663 #define stat_inc_inplace_blocks(sbi)
1664 #define stat_inc_seg_count(si, type)
1665 #define stat_inc_tot_blk_count(si, blks)
1666 #define stat_inc_data_blk_count(si, blks)
1667 #define stat_inc_node_blk_count(sbi, blks)
1668
1669 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1670 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1671 static inline void __init f2fs_create_root_stats(void) { }
1672 static inline void f2fs_destroy_root_stats(void) { }
1673 #endif
1674
1675 extern const struct file_operations f2fs_dir_operations;
1676 extern const struct file_operations f2fs_file_operations;
1677 extern const struct inode_operations f2fs_file_inode_operations;
1678 extern const struct address_space_operations f2fs_dblock_aops;
1679 extern const struct address_space_operations f2fs_node_aops;
1680 extern const struct address_space_operations f2fs_meta_aops;
1681 extern const struct inode_operations f2fs_dir_inode_operations;
1682 extern const struct inode_operations f2fs_symlink_inode_operations;
1683 extern const struct inode_operations f2fs_special_inode_operations;
1684 extern struct kmem_cache *inode_entry_slab;
1685
1686 /*
1687 * inline.c
1688 */
1689 bool f2fs_may_inline(struct inode *);
1690 void read_inline_data(struct page *, struct page *);
1691 int f2fs_read_inline_data(struct inode *, struct page *);
1692 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1693 int f2fs_convert_inline_inode(struct inode *);
1694 int f2fs_write_inline_data(struct inode *, struct page *);
1695 bool recover_inline_data(struct inode *, struct page *);
1696 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1697 struct page **);
1698 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1699 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1700 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1701 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1702 struct inode *, struct inode *);
1703 bool f2fs_empty_inline_dir(struct inode *);
1704 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1705 #endif