]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/f2fs.h
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / f2fs.h
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26
27 #include <linux/fscrypt.h>
28
29 #ifdef CONFIG_F2FS_CHECK_FS
30 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
31 #else
32 #define f2fs_bug_on(sbi, condition) \
33 do { \
34 if (unlikely(condition)) { \
35 WARN_ON(1); \
36 set_sbi_flag(sbi, SBI_NEED_FSCK); \
37 } \
38 } while (0)
39 #endif
40
41 enum {
42 FAULT_KMALLOC,
43 FAULT_KVMALLOC,
44 FAULT_PAGE_ALLOC,
45 FAULT_PAGE_GET,
46 FAULT_ALLOC_BIO,
47 FAULT_ALLOC_NID,
48 FAULT_ORPHAN,
49 FAULT_BLOCK,
50 FAULT_DIR_DEPTH,
51 FAULT_EVICT_INODE,
52 FAULT_TRUNCATE,
53 FAULT_READ_IO,
54 FAULT_CHECKPOINT,
55 FAULT_DISCARD,
56 FAULT_WRITE_IO,
57 FAULT_MAX,
58 };
59
60 #ifdef CONFIG_F2FS_FAULT_INJECTION
61 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
62
63 struct f2fs_fault_info {
64 atomic_t inject_ops;
65 unsigned int inject_rate;
66 unsigned int inject_type;
67 };
68
69 extern const char *f2fs_fault_name[FAULT_MAX];
70 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
71 #endif
72
73 /*
74 * For mount options
75 */
76 #define F2FS_MOUNT_BG_GC 0x00000001
77 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
78 #define F2FS_MOUNT_DISCARD 0x00000004
79 #define F2FS_MOUNT_NOHEAP 0x00000008
80 #define F2FS_MOUNT_XATTR_USER 0x00000010
81 #define F2FS_MOUNT_POSIX_ACL 0x00000020
82 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
83 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
84 #define F2FS_MOUNT_INLINE_DATA 0x00000100
85 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
86 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
87 #define F2FS_MOUNT_NOBARRIER 0x00000800
88 #define F2FS_MOUNT_FASTBOOT 0x00001000
89 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
90 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
91 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
93 #define F2FS_MOUNT_ADAPTIVE 0x00020000
94 #define F2FS_MOUNT_LFS 0x00040000
95 #define F2FS_MOUNT_USRQUOTA 0x00080000
96 #define F2FS_MOUNT_GRPQUOTA 0x00100000
97 #define F2FS_MOUNT_PRJQUOTA 0x00200000
98 #define F2FS_MOUNT_QUOTA 0x00400000
99 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
100 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
101 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
102
103 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
104 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107
108 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
109 typecheck(unsigned long long, b) && \
110 ((long long)((a) - (b)) > 0))
111
112 typedef u32 block_t; /*
113 * should not change u32, since it is the on-disk block
114 * address format, __le32.
115 */
116 typedef u32 nid_t;
117
118 struct f2fs_mount_info {
119 unsigned int opt;
120 int write_io_size_bits; /* Write IO size bits */
121 block_t root_reserved_blocks; /* root reserved blocks */
122 kuid_t s_resuid; /* reserved blocks for uid */
123 kgid_t s_resgid; /* reserved blocks for gid */
124 int active_logs; /* # of active logs */
125 int inline_xattr_size; /* inline xattr size */
126 #ifdef CONFIG_F2FS_FAULT_INJECTION
127 struct f2fs_fault_info fault_info; /* For fault injection */
128 #endif
129 #ifdef CONFIG_QUOTA
130 /* Names of quota files with journalled quota */
131 char *s_qf_names[MAXQUOTAS];
132 int s_jquota_fmt; /* Format of quota to use */
133 #endif
134 /* For which write hints are passed down to block layer */
135 int whint_mode;
136 int alloc_mode; /* segment allocation policy */
137 int fsync_mode; /* fsync policy */
138 bool test_dummy_encryption; /* test dummy encryption */
139 };
140
141 #define F2FS_FEATURE_ENCRYPT 0x0001
142 #define F2FS_FEATURE_BLKZONED 0x0002
143 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
144 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
145 #define F2FS_FEATURE_PRJQUOTA 0x0010
146 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
147 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
148 #define F2FS_FEATURE_QUOTA_INO 0x0080
149 #define F2FS_FEATURE_INODE_CRTIME 0x0100
150 #define F2FS_FEATURE_LOST_FOUND 0x0200
151 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */
152 #define F2FS_FEATURE_SB_CHKSUM 0x0800
153
154 #define __F2FS_HAS_FEATURE(raw_super, mask) \
155 ((raw_super->feature & cpu_to_le32(mask)) != 0)
156 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
157 #define F2FS_SET_FEATURE(sbi, mask) \
158 (sbi->raw_super->feature |= cpu_to_le32(mask))
159 #define F2FS_CLEAR_FEATURE(sbi, mask) \
160 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
161
162 /*
163 * Default values for user and/or group using reserved blocks
164 */
165 #define F2FS_DEF_RESUID 0
166 #define F2FS_DEF_RESGID 0
167
168 /*
169 * For checkpoint manager
170 */
171 enum {
172 NAT_BITMAP,
173 SIT_BITMAP
174 };
175
176 #define CP_UMOUNT 0x00000001
177 #define CP_FASTBOOT 0x00000002
178 #define CP_SYNC 0x00000004
179 #define CP_RECOVERY 0x00000008
180 #define CP_DISCARD 0x00000010
181 #define CP_TRIMMED 0x00000020
182 #define CP_PAUSE 0x00000040
183
184 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
185 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
186 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
187 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
188 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
189 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
190 #define DEF_CP_INTERVAL 60 /* 60 secs */
191 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
192 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
193 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
194 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
195
196 struct cp_control {
197 int reason;
198 __u64 trim_start;
199 __u64 trim_end;
200 __u64 trim_minlen;
201 };
202
203 /*
204 * indicate meta/data type
205 */
206 enum {
207 META_CP,
208 META_NAT,
209 META_SIT,
210 META_SSA,
211 META_MAX,
212 META_POR,
213 DATA_GENERIC, /* check range only */
214 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
215 DATA_GENERIC_ENHANCE_READ, /*
216 * strong check on range and segment
217 * bitmap but no warning due to race
218 * condition of read on truncated area
219 * by extent_cache
220 */
221 META_GENERIC,
222 };
223
224 /* for the list of ino */
225 enum {
226 ORPHAN_INO, /* for orphan ino list */
227 APPEND_INO, /* for append ino list */
228 UPDATE_INO, /* for update ino list */
229 TRANS_DIR_INO, /* for trasactions dir ino list */
230 FLUSH_INO, /* for multiple device flushing */
231 MAX_INO_ENTRY, /* max. list */
232 };
233
234 struct ino_entry {
235 struct list_head list; /* list head */
236 nid_t ino; /* inode number */
237 unsigned int dirty_device; /* dirty device bitmap */
238 };
239
240 /* for the list of inodes to be GCed */
241 struct inode_entry {
242 struct list_head list; /* list head */
243 struct inode *inode; /* vfs inode pointer */
244 };
245
246 struct fsync_node_entry {
247 struct list_head list; /* list head */
248 struct page *page; /* warm node page pointer */
249 unsigned int seq_id; /* sequence id */
250 };
251
252 /* for the bitmap indicate blocks to be discarded */
253 struct discard_entry {
254 struct list_head list; /* list head */
255 block_t start_blkaddr; /* start blockaddr of current segment */
256 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
257 };
258
259 /* default discard granularity of inner discard thread, unit: block count */
260 #define DEFAULT_DISCARD_GRANULARITY 16
261
262 /* max discard pend list number */
263 #define MAX_PLIST_NUM 512
264 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
265 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
266
267 enum {
268 D_PREP, /* initial */
269 D_PARTIAL, /* partially submitted */
270 D_SUBMIT, /* all submitted */
271 D_DONE, /* finished */
272 };
273
274 struct discard_info {
275 block_t lstart; /* logical start address */
276 block_t len; /* length */
277 block_t start; /* actual start address in dev */
278 };
279
280 struct discard_cmd {
281 struct rb_node rb_node; /* rb node located in rb-tree */
282 union {
283 struct {
284 block_t lstart; /* logical start address */
285 block_t len; /* length */
286 block_t start; /* actual start address in dev */
287 };
288 struct discard_info di; /* discard info */
289
290 };
291 struct list_head list; /* command list */
292 struct completion wait; /* compleation */
293 struct block_device *bdev; /* bdev */
294 unsigned short ref; /* reference count */
295 unsigned char state; /* state */
296 unsigned char queued; /* queued discard */
297 int error; /* bio error */
298 spinlock_t lock; /* for state/bio_ref updating */
299 unsigned short bio_ref; /* bio reference count */
300 };
301
302 enum {
303 DPOLICY_BG,
304 DPOLICY_FORCE,
305 DPOLICY_FSTRIM,
306 DPOLICY_UMOUNT,
307 MAX_DPOLICY,
308 };
309
310 struct discard_policy {
311 int type; /* type of discard */
312 unsigned int min_interval; /* used for candidates exist */
313 unsigned int mid_interval; /* used for device busy */
314 unsigned int max_interval; /* used for candidates not exist */
315 unsigned int max_requests; /* # of discards issued per round */
316 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
317 bool io_aware; /* issue discard in idle time */
318 bool sync; /* submit discard with REQ_SYNC flag */
319 bool ordered; /* issue discard by lba order */
320 unsigned int granularity; /* discard granularity */
321 int timeout; /* discard timeout for put_super */
322 };
323
324 struct discard_cmd_control {
325 struct task_struct *f2fs_issue_discard; /* discard thread */
326 struct list_head entry_list; /* 4KB discard entry list */
327 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
328 struct list_head wait_list; /* store on-flushing entries */
329 struct list_head fstrim_list; /* in-flight discard from fstrim */
330 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
331 unsigned int discard_wake; /* to wake up discard thread */
332 struct mutex cmd_lock;
333 unsigned int nr_discards; /* # of discards in the list */
334 unsigned int max_discards; /* max. discards to be issued */
335 unsigned int discard_granularity; /* discard granularity */
336 unsigned int undiscard_blks; /* # of undiscard blocks */
337 unsigned int next_pos; /* next discard position */
338 atomic_t issued_discard; /* # of issued discard */
339 atomic_t queued_discard; /* # of queued discard */
340 atomic_t discard_cmd_cnt; /* # of cached cmd count */
341 struct rb_root_cached root; /* root of discard rb-tree */
342 bool rbtree_check; /* config for consistence check */
343 };
344
345 /* for the list of fsync inodes, used only during recovery */
346 struct fsync_inode_entry {
347 struct list_head list; /* list head */
348 struct inode *inode; /* vfs inode pointer */
349 block_t blkaddr; /* block address locating the last fsync */
350 block_t last_dentry; /* block address locating the last dentry */
351 };
352
353 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
354 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
355
356 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
357 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
358 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
359 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
360
361 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
362 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
363
364 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
365 {
366 int before = nats_in_cursum(journal);
367
368 journal->n_nats = cpu_to_le16(before + i);
369 return before;
370 }
371
372 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
373 {
374 int before = sits_in_cursum(journal);
375
376 journal->n_sits = cpu_to_le16(before + i);
377 return before;
378 }
379
380 static inline bool __has_cursum_space(struct f2fs_journal *journal,
381 int size, int type)
382 {
383 if (type == NAT_JOURNAL)
384 return size <= MAX_NAT_JENTRIES(journal);
385 return size <= MAX_SIT_JENTRIES(journal);
386 }
387
388 /*
389 * ioctl commands
390 */
391 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
392 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
393 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
394
395 #define F2FS_IOCTL_MAGIC 0xf5
396 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
397 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
398 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
399 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
400 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
401 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
402 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
403 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
404 struct f2fs_defragment)
405 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
406 struct f2fs_move_range)
407 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
408 struct f2fs_flush_device)
409 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
410 struct f2fs_gc_range)
411 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
412 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
413 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
414 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15)
415
416 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
417 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
418 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
419
420 /*
421 * should be same as XFS_IOC_GOINGDOWN.
422 * Flags for going down operation used by FS_IOC_GOINGDOWN
423 */
424 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
425 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
426 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
427 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
428 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
429 #define F2FS_GOING_DOWN_NEED_FSCK 0x4 /* going down to trigger fsck */
430
431 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
432 /*
433 * ioctl commands in 32 bit emulation
434 */
435 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
436 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
437 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
438 #endif
439
440 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
441 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
442
443 struct f2fs_gc_range {
444 u32 sync;
445 u64 start;
446 u64 len;
447 };
448
449 struct f2fs_defragment {
450 u64 start;
451 u64 len;
452 };
453
454 struct f2fs_move_range {
455 u32 dst_fd; /* destination fd */
456 u64 pos_in; /* start position in src_fd */
457 u64 pos_out; /* start position in dst_fd */
458 u64 len; /* size to move */
459 };
460
461 struct f2fs_flush_device {
462 u32 dev_num; /* device number to flush */
463 u32 segments; /* # of segments to flush */
464 };
465
466 /* for inline stuff */
467 #define DEF_INLINE_RESERVED_SIZE 1
468 static inline int get_extra_isize(struct inode *inode);
469 static inline int get_inline_xattr_addrs(struct inode *inode);
470 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
471 (CUR_ADDRS_PER_INODE(inode) - \
472 get_inline_xattr_addrs(inode) - \
473 DEF_INLINE_RESERVED_SIZE))
474
475 /* for inline dir */
476 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
477 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
478 BITS_PER_BYTE + 1))
479 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
480 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
481 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
482 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
483 NR_INLINE_DENTRY(inode) + \
484 INLINE_DENTRY_BITMAP_SIZE(inode)))
485
486 /*
487 * For INODE and NODE manager
488 */
489 /* for directory operations */
490 struct f2fs_dentry_ptr {
491 struct inode *inode;
492 void *bitmap;
493 struct f2fs_dir_entry *dentry;
494 __u8 (*filename)[F2FS_SLOT_LEN];
495 int max;
496 int nr_bitmap;
497 };
498
499 static inline void make_dentry_ptr_block(struct inode *inode,
500 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
501 {
502 d->inode = inode;
503 d->max = NR_DENTRY_IN_BLOCK;
504 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
505 d->bitmap = t->dentry_bitmap;
506 d->dentry = t->dentry;
507 d->filename = t->filename;
508 }
509
510 static inline void make_dentry_ptr_inline(struct inode *inode,
511 struct f2fs_dentry_ptr *d, void *t)
512 {
513 int entry_cnt = NR_INLINE_DENTRY(inode);
514 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
515 int reserved_size = INLINE_RESERVED_SIZE(inode);
516
517 d->inode = inode;
518 d->max = entry_cnt;
519 d->nr_bitmap = bitmap_size;
520 d->bitmap = t;
521 d->dentry = t + bitmap_size + reserved_size;
522 d->filename = t + bitmap_size + reserved_size +
523 SIZE_OF_DIR_ENTRY * entry_cnt;
524 }
525
526 /*
527 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
528 * as its node offset to distinguish from index node blocks.
529 * But some bits are used to mark the node block.
530 */
531 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
532 >> OFFSET_BIT_SHIFT)
533 enum {
534 ALLOC_NODE, /* allocate a new node page if needed */
535 LOOKUP_NODE, /* look up a node without readahead */
536 LOOKUP_NODE_RA, /*
537 * look up a node with readahead called
538 * by get_data_block.
539 */
540 };
541
542 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
543
544 /* maximum retry quota flush count */
545 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
546
547 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
548
549 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
550
551 /* for in-memory extent cache entry */
552 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
553
554 /* number of extent info in extent cache we try to shrink */
555 #define EXTENT_CACHE_SHRINK_NUMBER 128
556
557 struct rb_entry {
558 struct rb_node rb_node; /* rb node located in rb-tree */
559 unsigned int ofs; /* start offset of the entry */
560 unsigned int len; /* length of the entry */
561 };
562
563 struct extent_info {
564 unsigned int fofs; /* start offset in a file */
565 unsigned int len; /* length of the extent */
566 u32 blk; /* start block address of the extent */
567 };
568
569 struct extent_node {
570 struct rb_node rb_node; /* rb node located in rb-tree */
571 struct extent_info ei; /* extent info */
572 struct list_head list; /* node in global extent list of sbi */
573 struct extent_tree *et; /* extent tree pointer */
574 };
575
576 struct extent_tree {
577 nid_t ino; /* inode number */
578 struct rb_root_cached root; /* root of extent info rb-tree */
579 struct extent_node *cached_en; /* recently accessed extent node */
580 struct extent_info largest; /* largested extent info */
581 struct list_head list; /* to be used by sbi->zombie_list */
582 rwlock_t lock; /* protect extent info rb-tree */
583 atomic_t node_cnt; /* # of extent node in rb-tree*/
584 bool largest_updated; /* largest extent updated */
585 };
586
587 /*
588 * This structure is taken from ext4_map_blocks.
589 *
590 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
591 */
592 #define F2FS_MAP_NEW (1 << BH_New)
593 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
594 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
595 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
596 F2FS_MAP_UNWRITTEN)
597
598 struct f2fs_map_blocks {
599 block_t m_pblk;
600 block_t m_lblk;
601 unsigned int m_len;
602 unsigned int m_flags;
603 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
604 pgoff_t *m_next_extent; /* point to next possible extent */
605 int m_seg_type;
606 bool m_may_create; /* indicate it is from write path */
607 };
608
609 /* for flag in get_data_block */
610 enum {
611 F2FS_GET_BLOCK_DEFAULT,
612 F2FS_GET_BLOCK_FIEMAP,
613 F2FS_GET_BLOCK_BMAP,
614 F2FS_GET_BLOCK_DIO,
615 F2FS_GET_BLOCK_PRE_DIO,
616 F2FS_GET_BLOCK_PRE_AIO,
617 F2FS_GET_BLOCK_PRECACHE,
618 };
619
620 /*
621 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
622 */
623 #define FADVISE_COLD_BIT 0x01
624 #define FADVISE_LOST_PINO_BIT 0x02
625 #define FADVISE_ENCRYPT_BIT 0x04
626 #define FADVISE_ENC_NAME_BIT 0x08
627 #define FADVISE_KEEP_SIZE_BIT 0x10
628 #define FADVISE_HOT_BIT 0x20
629 #define FADVISE_VERITY_BIT 0x40 /* reserved */
630
631 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
632
633 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
634 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
635 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
636 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
637 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
638 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
639 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
640 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
641 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
642 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
643 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
644 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
645 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
646 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
647 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
648 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
649
650 #define DEF_DIR_LEVEL 0
651
652 enum {
653 GC_FAILURE_PIN,
654 GC_FAILURE_ATOMIC,
655 MAX_GC_FAILURE
656 };
657
658 struct f2fs_inode_info {
659 struct inode vfs_inode; /* serve a vfs inode */
660 unsigned long i_flags; /* keep an inode flags for ioctl */
661 unsigned char i_advise; /* use to give file attribute hints */
662 unsigned char i_dir_level; /* use for dentry level for large dir */
663 unsigned int i_current_depth; /* only for directory depth */
664 /* for gc failure statistic */
665 unsigned int i_gc_failures[MAX_GC_FAILURE];
666 unsigned int i_pino; /* parent inode number */
667 umode_t i_acl_mode; /* keep file acl mode temporarily */
668
669 /* Use below internally in f2fs*/
670 unsigned long flags; /* use to pass per-file flags */
671 struct rw_semaphore i_sem; /* protect fi info */
672 atomic_t dirty_pages; /* # of dirty pages */
673 f2fs_hash_t chash; /* hash value of given file name */
674 unsigned int clevel; /* maximum level of given file name */
675 struct task_struct *task; /* lookup and create consistency */
676 struct task_struct *cp_task; /* separate cp/wb IO stats*/
677 nid_t i_xattr_nid; /* node id that contains xattrs */
678 loff_t last_disk_size; /* lastly written file size */
679
680 #ifdef CONFIG_QUOTA
681 struct dquot *i_dquot[MAXQUOTAS];
682
683 /* quota space reservation, managed internally by quota code */
684 qsize_t i_reserved_quota;
685 #endif
686 struct list_head dirty_list; /* dirty list for dirs and files */
687 struct list_head gdirty_list; /* linked in global dirty list */
688 struct list_head inmem_ilist; /* list for inmem inodes */
689 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
690 struct task_struct *inmem_task; /* store inmemory task */
691 struct mutex inmem_lock; /* lock for inmemory pages */
692 struct extent_tree *extent_tree; /* cached extent_tree entry */
693
694 /* avoid racing between foreground op and gc */
695 struct rw_semaphore i_gc_rwsem[2];
696 struct rw_semaphore i_mmap_sem;
697 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
698
699 int i_extra_isize; /* size of extra space located in i_addr */
700 kprojid_t i_projid; /* id for project quota */
701 int i_inline_xattr_size; /* inline xattr size */
702 struct timespec64 i_crtime; /* inode creation time */
703 struct timespec64 i_disk_time[4];/* inode disk times */
704 };
705
706 static inline void get_extent_info(struct extent_info *ext,
707 struct f2fs_extent *i_ext)
708 {
709 ext->fofs = le32_to_cpu(i_ext->fofs);
710 ext->blk = le32_to_cpu(i_ext->blk);
711 ext->len = le32_to_cpu(i_ext->len);
712 }
713
714 static inline void set_raw_extent(struct extent_info *ext,
715 struct f2fs_extent *i_ext)
716 {
717 i_ext->fofs = cpu_to_le32(ext->fofs);
718 i_ext->blk = cpu_to_le32(ext->blk);
719 i_ext->len = cpu_to_le32(ext->len);
720 }
721
722 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
723 u32 blk, unsigned int len)
724 {
725 ei->fofs = fofs;
726 ei->blk = blk;
727 ei->len = len;
728 }
729
730 static inline bool __is_discard_mergeable(struct discard_info *back,
731 struct discard_info *front, unsigned int max_len)
732 {
733 return (back->lstart + back->len == front->lstart) &&
734 (back->len + front->len <= max_len);
735 }
736
737 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
738 struct discard_info *back, unsigned int max_len)
739 {
740 return __is_discard_mergeable(back, cur, max_len);
741 }
742
743 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
744 struct discard_info *front, unsigned int max_len)
745 {
746 return __is_discard_mergeable(cur, front, max_len);
747 }
748
749 static inline bool __is_extent_mergeable(struct extent_info *back,
750 struct extent_info *front)
751 {
752 return (back->fofs + back->len == front->fofs &&
753 back->blk + back->len == front->blk);
754 }
755
756 static inline bool __is_back_mergeable(struct extent_info *cur,
757 struct extent_info *back)
758 {
759 return __is_extent_mergeable(back, cur);
760 }
761
762 static inline bool __is_front_mergeable(struct extent_info *cur,
763 struct extent_info *front)
764 {
765 return __is_extent_mergeable(cur, front);
766 }
767
768 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
769 static inline void __try_update_largest_extent(struct extent_tree *et,
770 struct extent_node *en)
771 {
772 if (en->ei.len > et->largest.len) {
773 et->largest = en->ei;
774 et->largest_updated = true;
775 }
776 }
777
778 /*
779 * For free nid management
780 */
781 enum nid_state {
782 FREE_NID, /* newly added to free nid list */
783 PREALLOC_NID, /* it is preallocated */
784 MAX_NID_STATE,
785 };
786
787 struct f2fs_nm_info {
788 block_t nat_blkaddr; /* base disk address of NAT */
789 nid_t max_nid; /* maximum possible node ids */
790 nid_t available_nids; /* # of available node ids */
791 nid_t next_scan_nid; /* the next nid to be scanned */
792 unsigned int ram_thresh; /* control the memory footprint */
793 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
794 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
795
796 /* NAT cache management */
797 struct radix_tree_root nat_root;/* root of the nat entry cache */
798 struct radix_tree_root nat_set_root;/* root of the nat set cache */
799 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
800 struct list_head nat_entries; /* cached nat entry list (clean) */
801 spinlock_t nat_list_lock; /* protect clean nat entry list */
802 unsigned int nat_cnt; /* the # of cached nat entries */
803 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
804 unsigned int nat_blocks; /* # of nat blocks */
805
806 /* free node ids management */
807 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
808 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
809 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
810 spinlock_t nid_list_lock; /* protect nid lists ops */
811 struct mutex build_lock; /* lock for build free nids */
812 unsigned char **free_nid_bitmap;
813 unsigned char *nat_block_bitmap;
814 unsigned short *free_nid_count; /* free nid count of NAT block */
815
816 /* for checkpoint */
817 char *nat_bitmap; /* NAT bitmap pointer */
818
819 unsigned int nat_bits_blocks; /* # of nat bits blocks */
820 unsigned char *nat_bits; /* NAT bits blocks */
821 unsigned char *full_nat_bits; /* full NAT pages */
822 unsigned char *empty_nat_bits; /* empty NAT pages */
823 #ifdef CONFIG_F2FS_CHECK_FS
824 char *nat_bitmap_mir; /* NAT bitmap mirror */
825 #endif
826 int bitmap_size; /* bitmap size */
827 };
828
829 /*
830 * this structure is used as one of function parameters.
831 * all the information are dedicated to a given direct node block determined
832 * by the data offset in a file.
833 */
834 struct dnode_of_data {
835 struct inode *inode; /* vfs inode pointer */
836 struct page *inode_page; /* its inode page, NULL is possible */
837 struct page *node_page; /* cached direct node page */
838 nid_t nid; /* node id of the direct node block */
839 unsigned int ofs_in_node; /* data offset in the node page */
840 bool inode_page_locked; /* inode page is locked or not */
841 bool node_changed; /* is node block changed */
842 char cur_level; /* level of hole node page */
843 char max_level; /* level of current page located */
844 block_t data_blkaddr; /* block address of the node block */
845 };
846
847 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
848 struct page *ipage, struct page *npage, nid_t nid)
849 {
850 memset(dn, 0, sizeof(*dn));
851 dn->inode = inode;
852 dn->inode_page = ipage;
853 dn->node_page = npage;
854 dn->nid = nid;
855 }
856
857 /*
858 * For SIT manager
859 *
860 * By default, there are 6 active log areas across the whole main area.
861 * When considering hot and cold data separation to reduce cleaning overhead,
862 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
863 * respectively.
864 * In the current design, you should not change the numbers intentionally.
865 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
866 * logs individually according to the underlying devices. (default: 6)
867 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
868 * data and 8 for node logs.
869 */
870 #define NR_CURSEG_DATA_TYPE (3)
871 #define NR_CURSEG_NODE_TYPE (3)
872 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
873
874 enum {
875 CURSEG_HOT_DATA = 0, /* directory entry blocks */
876 CURSEG_WARM_DATA, /* data blocks */
877 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
878 CURSEG_HOT_NODE, /* direct node blocks of directory files */
879 CURSEG_WARM_NODE, /* direct node blocks of normal files */
880 CURSEG_COLD_NODE, /* indirect node blocks */
881 NO_CHECK_TYPE,
882 };
883
884 struct flush_cmd {
885 struct completion wait;
886 struct llist_node llnode;
887 nid_t ino;
888 int ret;
889 };
890
891 struct flush_cmd_control {
892 struct task_struct *f2fs_issue_flush; /* flush thread */
893 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
894 atomic_t issued_flush; /* # of issued flushes */
895 atomic_t queued_flush; /* # of queued flushes */
896 struct llist_head issue_list; /* list for command issue */
897 struct llist_node *dispatch_list; /* list for command dispatch */
898 };
899
900 struct f2fs_sm_info {
901 struct sit_info *sit_info; /* whole segment information */
902 struct free_segmap_info *free_info; /* free segment information */
903 struct dirty_seglist_info *dirty_info; /* dirty segment information */
904 struct curseg_info *curseg_array; /* active segment information */
905
906 struct rw_semaphore curseg_lock; /* for preventing curseg change */
907
908 block_t seg0_blkaddr; /* block address of 0'th segment */
909 block_t main_blkaddr; /* start block address of main area */
910 block_t ssa_blkaddr; /* start block address of SSA area */
911
912 unsigned int segment_count; /* total # of segments */
913 unsigned int main_segments; /* # of segments in main area */
914 unsigned int reserved_segments; /* # of reserved segments */
915 unsigned int ovp_segments; /* # of overprovision segments */
916
917 /* a threshold to reclaim prefree segments */
918 unsigned int rec_prefree_segments;
919
920 /* for batched trimming */
921 unsigned int trim_sections; /* # of sections to trim */
922
923 struct list_head sit_entry_set; /* sit entry set list */
924
925 unsigned int ipu_policy; /* in-place-update policy */
926 unsigned int min_ipu_util; /* in-place-update threshold */
927 unsigned int min_fsync_blocks; /* threshold for fsync */
928 unsigned int min_seq_blocks; /* threshold for sequential blocks */
929 unsigned int min_hot_blocks; /* threshold for hot block allocation */
930 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
931
932 /* for flush command control */
933 struct flush_cmd_control *fcc_info;
934
935 /* for discard command control */
936 struct discard_cmd_control *dcc_info;
937 };
938
939 /*
940 * For superblock
941 */
942 /*
943 * COUNT_TYPE for monitoring
944 *
945 * f2fs monitors the number of several block types such as on-writeback,
946 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
947 */
948 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
949 enum count_type {
950 F2FS_DIRTY_DENTS,
951 F2FS_DIRTY_DATA,
952 F2FS_DIRTY_QDATA,
953 F2FS_DIRTY_NODES,
954 F2FS_DIRTY_META,
955 F2FS_INMEM_PAGES,
956 F2FS_DIRTY_IMETA,
957 F2FS_WB_CP_DATA,
958 F2FS_WB_DATA,
959 F2FS_RD_DATA,
960 F2FS_RD_NODE,
961 F2FS_RD_META,
962 F2FS_DIO_WRITE,
963 F2FS_DIO_READ,
964 NR_COUNT_TYPE,
965 };
966
967 /*
968 * The below are the page types of bios used in submit_bio().
969 * The available types are:
970 * DATA User data pages. It operates as async mode.
971 * NODE Node pages. It operates as async mode.
972 * META FS metadata pages such as SIT, NAT, CP.
973 * NR_PAGE_TYPE The number of page types.
974 * META_FLUSH Make sure the previous pages are written
975 * with waiting the bio's completion
976 * ... Only can be used with META.
977 */
978 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
979 enum page_type {
980 DATA,
981 NODE,
982 META,
983 NR_PAGE_TYPE,
984 META_FLUSH,
985 INMEM, /* the below types are used by tracepoints only. */
986 INMEM_DROP,
987 INMEM_INVALIDATE,
988 INMEM_REVOKE,
989 IPU,
990 OPU,
991 };
992
993 enum temp_type {
994 HOT = 0, /* must be zero for meta bio */
995 WARM,
996 COLD,
997 NR_TEMP_TYPE,
998 };
999
1000 enum need_lock_type {
1001 LOCK_REQ = 0,
1002 LOCK_DONE,
1003 LOCK_RETRY,
1004 };
1005
1006 enum cp_reason_type {
1007 CP_NO_NEEDED,
1008 CP_NON_REGULAR,
1009 CP_HARDLINK,
1010 CP_SB_NEED_CP,
1011 CP_WRONG_PINO,
1012 CP_NO_SPC_ROLL,
1013 CP_NODE_NEED_CP,
1014 CP_FASTBOOT_MODE,
1015 CP_SPEC_LOG_NUM,
1016 CP_RECOVER_DIR,
1017 };
1018
1019 enum iostat_type {
1020 APP_DIRECT_IO, /* app direct IOs */
1021 APP_BUFFERED_IO, /* app buffered IOs */
1022 APP_WRITE_IO, /* app write IOs */
1023 APP_MAPPED_IO, /* app mapped IOs */
1024 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1025 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1026 FS_META_IO, /* meta IOs from kworker/reclaimer */
1027 FS_GC_DATA_IO, /* data IOs from forground gc */
1028 FS_GC_NODE_IO, /* node IOs from forground gc */
1029 FS_CP_DATA_IO, /* data IOs from checkpoint */
1030 FS_CP_NODE_IO, /* node IOs from checkpoint */
1031 FS_CP_META_IO, /* meta IOs from checkpoint */
1032 FS_DISCARD, /* discard */
1033 NR_IO_TYPE,
1034 };
1035
1036 struct f2fs_io_info {
1037 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1038 nid_t ino; /* inode number */
1039 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1040 enum temp_type temp; /* contains HOT/WARM/COLD */
1041 int op; /* contains REQ_OP_ */
1042 int op_flags; /* req_flag_bits */
1043 block_t new_blkaddr; /* new block address to be written */
1044 block_t old_blkaddr; /* old block address before Cow */
1045 struct page *page; /* page to be written */
1046 struct page *encrypted_page; /* encrypted page */
1047 struct list_head list; /* serialize IOs */
1048 bool submitted; /* indicate IO submission */
1049 int need_lock; /* indicate we need to lock cp_rwsem */
1050 bool in_list; /* indicate fio is in io_list */
1051 bool is_por; /* indicate IO is from recovery or not */
1052 bool retry; /* need to reallocate block address */
1053 enum iostat_type io_type; /* io type */
1054 struct writeback_control *io_wbc; /* writeback control */
1055 unsigned char version; /* version of the node */
1056 };
1057
1058 #define is_read_io(rw) ((rw) == READ)
1059 struct f2fs_bio_info {
1060 struct f2fs_sb_info *sbi; /* f2fs superblock */
1061 struct bio *bio; /* bios to merge */
1062 sector_t last_block_in_bio; /* last block number */
1063 struct f2fs_io_info fio; /* store buffered io info. */
1064 struct rw_semaphore io_rwsem; /* blocking op for bio */
1065 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1066 struct list_head io_list; /* track fios */
1067 };
1068
1069 #define FDEV(i) (sbi->devs[i])
1070 #define RDEV(i) (raw_super->devs[i])
1071 struct f2fs_dev_info {
1072 struct block_device *bdev;
1073 char path[MAX_PATH_LEN];
1074 unsigned int total_segments;
1075 block_t start_blk;
1076 block_t end_blk;
1077 #ifdef CONFIG_BLK_DEV_ZONED
1078 unsigned int nr_blkz; /* Total number of zones */
1079 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1080 #endif
1081 };
1082
1083 enum inode_type {
1084 DIR_INODE, /* for dirty dir inode */
1085 FILE_INODE, /* for dirty regular/symlink inode */
1086 DIRTY_META, /* for all dirtied inode metadata */
1087 ATOMIC_FILE, /* for all atomic files */
1088 NR_INODE_TYPE,
1089 };
1090
1091 /* for inner inode cache management */
1092 struct inode_management {
1093 struct radix_tree_root ino_root; /* ino entry array */
1094 spinlock_t ino_lock; /* for ino entry lock */
1095 struct list_head ino_list; /* inode list head */
1096 unsigned long ino_num; /* number of entries */
1097 };
1098
1099 /* For s_flag in struct f2fs_sb_info */
1100 enum {
1101 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1102 SBI_IS_CLOSE, /* specify unmounting */
1103 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1104 SBI_POR_DOING, /* recovery is doing or not */
1105 SBI_NEED_SB_WRITE, /* need to recover superblock */
1106 SBI_NEED_CP, /* need to checkpoint */
1107 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1108 SBI_IS_RECOVERED, /* recovered orphan/data */
1109 SBI_CP_DISABLED, /* CP was disabled last mount */
1110 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1111 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1112 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1113 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1114 };
1115
1116 enum {
1117 CP_TIME,
1118 REQ_TIME,
1119 DISCARD_TIME,
1120 GC_TIME,
1121 DISABLE_TIME,
1122 UMOUNT_DISCARD_TIMEOUT,
1123 MAX_TIME,
1124 };
1125
1126 enum {
1127 GC_NORMAL,
1128 GC_IDLE_CB,
1129 GC_IDLE_GREEDY,
1130 GC_URGENT,
1131 };
1132
1133 enum {
1134 WHINT_MODE_OFF, /* not pass down write hints */
1135 WHINT_MODE_USER, /* try to pass down hints given by users */
1136 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1137 };
1138
1139 enum {
1140 ALLOC_MODE_DEFAULT, /* stay default */
1141 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1142 };
1143
1144 enum fsync_mode {
1145 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1146 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1147 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1148 };
1149
1150 #ifdef CONFIG_FS_ENCRYPTION
1151 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1152 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1153 #else
1154 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1155 #endif
1156
1157 struct f2fs_sb_info {
1158 struct super_block *sb; /* pointer to VFS super block */
1159 struct proc_dir_entry *s_proc; /* proc entry */
1160 struct f2fs_super_block *raw_super; /* raw super block pointer */
1161 struct rw_semaphore sb_lock; /* lock for raw super block */
1162 int valid_super_block; /* valid super block no */
1163 unsigned long s_flag; /* flags for sbi */
1164 struct mutex writepages; /* mutex for writepages() */
1165
1166 #ifdef CONFIG_BLK_DEV_ZONED
1167 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1168 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1169 #endif
1170
1171 /* for node-related operations */
1172 struct f2fs_nm_info *nm_info; /* node manager */
1173 struct inode *node_inode; /* cache node blocks */
1174
1175 /* for segment-related operations */
1176 struct f2fs_sm_info *sm_info; /* segment manager */
1177
1178 /* for bio operations */
1179 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1180 /* keep migration IO order for LFS mode */
1181 struct rw_semaphore io_order_lock;
1182 mempool_t *write_io_dummy; /* Dummy pages */
1183
1184 /* for checkpoint */
1185 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1186 int cur_cp_pack; /* remain current cp pack */
1187 spinlock_t cp_lock; /* for flag in ckpt */
1188 struct inode *meta_inode; /* cache meta blocks */
1189 struct mutex cp_mutex; /* checkpoint procedure lock */
1190 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1191 struct rw_semaphore node_write; /* locking node writes */
1192 struct rw_semaphore node_change; /* locking node change */
1193 wait_queue_head_t cp_wait;
1194 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1195 long interval_time[MAX_TIME]; /* to store thresholds */
1196
1197 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1198
1199 spinlock_t fsync_node_lock; /* for node entry lock */
1200 struct list_head fsync_node_list; /* node list head */
1201 unsigned int fsync_seg_id; /* sequence id */
1202 unsigned int fsync_node_num; /* number of node entries */
1203
1204 /* for orphan inode, use 0'th array */
1205 unsigned int max_orphans; /* max orphan inodes */
1206
1207 /* for inode management */
1208 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1209 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1210
1211 /* for extent tree cache */
1212 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1213 struct mutex extent_tree_lock; /* locking extent radix tree */
1214 struct list_head extent_list; /* lru list for shrinker */
1215 spinlock_t extent_lock; /* locking extent lru list */
1216 atomic_t total_ext_tree; /* extent tree count */
1217 struct list_head zombie_list; /* extent zombie tree list */
1218 atomic_t total_zombie_tree; /* extent zombie tree count */
1219 atomic_t total_ext_node; /* extent info count */
1220
1221 /* basic filesystem units */
1222 unsigned int log_sectors_per_block; /* log2 sectors per block */
1223 unsigned int log_blocksize; /* log2 block size */
1224 unsigned int blocksize; /* block size */
1225 unsigned int root_ino_num; /* root inode number*/
1226 unsigned int node_ino_num; /* node inode number*/
1227 unsigned int meta_ino_num; /* meta inode number*/
1228 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1229 unsigned int blocks_per_seg; /* blocks per segment */
1230 unsigned int segs_per_sec; /* segments per section */
1231 unsigned int secs_per_zone; /* sections per zone */
1232 unsigned int total_sections; /* total section count */
1233 unsigned int total_node_count; /* total node block count */
1234 unsigned int total_valid_node_count; /* valid node block count */
1235 loff_t max_file_blocks; /* max block index of file */
1236 int dir_level; /* directory level */
1237 int readdir_ra; /* readahead inode in readdir */
1238
1239 block_t user_block_count; /* # of user blocks */
1240 block_t total_valid_block_count; /* # of valid blocks */
1241 block_t discard_blks; /* discard command candidats */
1242 block_t last_valid_block_count; /* for recovery */
1243 block_t reserved_blocks; /* configurable reserved blocks */
1244 block_t current_reserved_blocks; /* current reserved blocks */
1245
1246 /* Additional tracking for no checkpoint mode */
1247 block_t unusable_block_count; /* # of blocks saved by last cp */
1248
1249 unsigned int nquota_files; /* # of quota sysfile */
1250
1251 /* # of pages, see count_type */
1252 atomic_t nr_pages[NR_COUNT_TYPE];
1253 /* # of allocated blocks */
1254 struct percpu_counter alloc_valid_block_count;
1255
1256 /* writeback control */
1257 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1258
1259 /* valid inode count */
1260 struct percpu_counter total_valid_inode_count;
1261
1262 struct f2fs_mount_info mount_opt; /* mount options */
1263
1264 /* for cleaning operations */
1265 struct mutex gc_mutex; /* mutex for GC */
1266 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1267 unsigned int cur_victim_sec; /* current victim section num */
1268 unsigned int gc_mode; /* current GC state */
1269 unsigned int next_victim_seg[2]; /* next segment in victim section */
1270 /* for skip statistic */
1271 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1272 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1273
1274 /* threshold for gc trials on pinned files */
1275 u64 gc_pin_file_threshold;
1276
1277 /* maximum # of trials to find a victim segment for SSR and GC */
1278 unsigned int max_victim_search;
1279 /* migration granularity of garbage collection, unit: segment */
1280 unsigned int migration_granularity;
1281
1282 /*
1283 * for stat information.
1284 * one is for the LFS mode, and the other is for the SSR mode.
1285 */
1286 #ifdef CONFIG_F2FS_STAT_FS
1287 struct f2fs_stat_info *stat_info; /* FS status information */
1288 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1289 unsigned int segment_count[2]; /* # of allocated segments */
1290 unsigned int block_count[2]; /* # of allocated blocks */
1291 atomic_t inplace_count; /* # of inplace update */
1292 atomic64_t total_hit_ext; /* # of lookup extent cache */
1293 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1294 atomic64_t read_hit_largest; /* # of hit largest extent node */
1295 atomic64_t read_hit_cached; /* # of hit cached extent node */
1296 atomic_t inline_xattr; /* # of inline_xattr inodes */
1297 atomic_t inline_inode; /* # of inline_data inodes */
1298 atomic_t inline_dir; /* # of inline_dentry inodes */
1299 atomic_t aw_cnt; /* # of atomic writes */
1300 atomic_t vw_cnt; /* # of volatile writes */
1301 atomic_t max_aw_cnt; /* max # of atomic writes */
1302 atomic_t max_vw_cnt; /* max # of volatile writes */
1303 int bg_gc; /* background gc calls */
1304 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1305 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1306 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1307 #endif
1308 spinlock_t stat_lock; /* lock for stat operations */
1309
1310 /* For app/fs IO statistics */
1311 spinlock_t iostat_lock;
1312 unsigned long long write_iostat[NR_IO_TYPE];
1313 bool iostat_enable;
1314
1315 /* For sysfs suppport */
1316 struct kobject s_kobj;
1317 struct completion s_kobj_unregister;
1318
1319 /* For shrinker support */
1320 struct list_head s_list;
1321 int s_ndevs; /* number of devices */
1322 struct f2fs_dev_info *devs; /* for device list */
1323 unsigned int dirty_device; /* for checkpoint data flush */
1324 spinlock_t dev_lock; /* protect dirty_device */
1325 struct mutex umount_mutex;
1326 unsigned int shrinker_run_no;
1327
1328 /* For write statistics */
1329 u64 sectors_written_start;
1330 u64 kbytes_written;
1331
1332 /* Reference to checksum algorithm driver via cryptoapi */
1333 struct crypto_shash *s_chksum_driver;
1334
1335 /* Precomputed FS UUID checksum for seeding other checksums */
1336 __u32 s_chksum_seed;
1337 };
1338
1339 struct f2fs_private_dio {
1340 struct inode *inode;
1341 void *orig_private;
1342 bio_end_io_t *orig_end_io;
1343 bool write;
1344 };
1345
1346 #ifdef CONFIG_F2FS_FAULT_INJECTION
1347 #define f2fs_show_injection_info(type) \
1348 printk_ratelimited("%sF2FS-fs : inject %s in %s of %pS\n", \
1349 KERN_INFO, f2fs_fault_name[type], \
1350 __func__, __builtin_return_address(0))
1351 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1352 {
1353 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1354
1355 if (!ffi->inject_rate)
1356 return false;
1357
1358 if (!IS_FAULT_SET(ffi, type))
1359 return false;
1360
1361 atomic_inc(&ffi->inject_ops);
1362 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1363 atomic_set(&ffi->inject_ops, 0);
1364 return true;
1365 }
1366 return false;
1367 }
1368 #else
1369 #define f2fs_show_injection_info(type) do { } while (0)
1370 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1371 {
1372 return false;
1373 }
1374 #endif
1375
1376 /*
1377 * Test if the mounted volume is a multi-device volume.
1378 * - For a single regular disk volume, sbi->s_ndevs is 0.
1379 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1380 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1381 */
1382 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1383 {
1384 return sbi->s_ndevs > 1;
1385 }
1386
1387 /* For write statistics. Suppose sector size is 512 bytes,
1388 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1389 */
1390 #define BD_PART_WRITTEN(s) \
1391 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \
1392 (s)->sectors_written_start) >> 1)
1393
1394 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1395 {
1396 unsigned long now = jiffies;
1397
1398 sbi->last_time[type] = now;
1399
1400 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1401 if (type == REQ_TIME) {
1402 sbi->last_time[DISCARD_TIME] = now;
1403 sbi->last_time[GC_TIME] = now;
1404 }
1405 }
1406
1407 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1408 {
1409 unsigned long interval = sbi->interval_time[type] * HZ;
1410
1411 return time_after(jiffies, sbi->last_time[type] + interval);
1412 }
1413
1414 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1415 int type)
1416 {
1417 unsigned long interval = sbi->interval_time[type] * HZ;
1418 unsigned int wait_ms = 0;
1419 long delta;
1420
1421 delta = (sbi->last_time[type] + interval) - jiffies;
1422 if (delta > 0)
1423 wait_ms = jiffies_to_msecs(delta);
1424
1425 return wait_ms;
1426 }
1427
1428 /*
1429 * Inline functions
1430 */
1431 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1432 const void *address, unsigned int length)
1433 {
1434 struct {
1435 struct shash_desc shash;
1436 char ctx[4];
1437 } desc;
1438 int err;
1439
1440 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1441
1442 desc.shash.tfm = sbi->s_chksum_driver;
1443 *(u32 *)desc.ctx = crc;
1444
1445 err = crypto_shash_update(&desc.shash, address, length);
1446 BUG_ON(err);
1447
1448 return *(u32 *)desc.ctx;
1449 }
1450
1451 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1452 unsigned int length)
1453 {
1454 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1455 }
1456
1457 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1458 void *buf, size_t buf_size)
1459 {
1460 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1461 }
1462
1463 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1464 const void *address, unsigned int length)
1465 {
1466 return __f2fs_crc32(sbi, crc, address, length);
1467 }
1468
1469 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1470 {
1471 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1472 }
1473
1474 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1475 {
1476 return sb->s_fs_info;
1477 }
1478
1479 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1480 {
1481 return F2FS_SB(inode->i_sb);
1482 }
1483
1484 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1485 {
1486 return F2FS_I_SB(mapping->host);
1487 }
1488
1489 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1490 {
1491 return F2FS_M_SB(page->mapping);
1492 }
1493
1494 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1495 {
1496 return (struct f2fs_super_block *)(sbi->raw_super);
1497 }
1498
1499 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1500 {
1501 return (struct f2fs_checkpoint *)(sbi->ckpt);
1502 }
1503
1504 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1505 {
1506 return (struct f2fs_node *)page_address(page);
1507 }
1508
1509 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1510 {
1511 return &((struct f2fs_node *)page_address(page))->i;
1512 }
1513
1514 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1515 {
1516 return (struct f2fs_nm_info *)(sbi->nm_info);
1517 }
1518
1519 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1520 {
1521 return (struct f2fs_sm_info *)(sbi->sm_info);
1522 }
1523
1524 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1525 {
1526 return (struct sit_info *)(SM_I(sbi)->sit_info);
1527 }
1528
1529 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1530 {
1531 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1532 }
1533
1534 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1535 {
1536 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1537 }
1538
1539 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1540 {
1541 return sbi->meta_inode->i_mapping;
1542 }
1543
1544 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1545 {
1546 return sbi->node_inode->i_mapping;
1547 }
1548
1549 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1550 {
1551 return test_bit(type, &sbi->s_flag);
1552 }
1553
1554 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1555 {
1556 set_bit(type, &sbi->s_flag);
1557 }
1558
1559 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1560 {
1561 clear_bit(type, &sbi->s_flag);
1562 }
1563
1564 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1565 {
1566 return le64_to_cpu(cp->checkpoint_ver);
1567 }
1568
1569 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1570 {
1571 if (type < F2FS_MAX_QUOTAS)
1572 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1573 return 0;
1574 }
1575
1576 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1577 {
1578 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1579 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1580 }
1581
1582 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1583 {
1584 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1585
1586 return ckpt_flags & f;
1587 }
1588
1589 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1590 {
1591 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1592 }
1593
1594 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1595 {
1596 unsigned int ckpt_flags;
1597
1598 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1599 ckpt_flags |= f;
1600 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1601 }
1602
1603 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1604 {
1605 unsigned long flags;
1606
1607 spin_lock_irqsave(&sbi->cp_lock, flags);
1608 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1609 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1610 }
1611
1612 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1613 {
1614 unsigned int ckpt_flags;
1615
1616 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1617 ckpt_flags &= (~f);
1618 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1619 }
1620
1621 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1622 {
1623 unsigned long flags;
1624
1625 spin_lock_irqsave(&sbi->cp_lock, flags);
1626 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1627 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1628 }
1629
1630 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1631 {
1632 unsigned long flags;
1633
1634 /*
1635 * In order to re-enable nat_bits we need to call fsck.f2fs by
1636 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1637 * so let's rely on regular fsck or unclean shutdown.
1638 */
1639
1640 if (lock)
1641 spin_lock_irqsave(&sbi->cp_lock, flags);
1642 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1643 kvfree(NM_I(sbi)->nat_bits);
1644 NM_I(sbi)->nat_bits = NULL;
1645 if (lock)
1646 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1647 }
1648
1649 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1650 struct cp_control *cpc)
1651 {
1652 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1653
1654 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1655 }
1656
1657 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1658 {
1659 down_read(&sbi->cp_rwsem);
1660 }
1661
1662 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1663 {
1664 return down_read_trylock(&sbi->cp_rwsem);
1665 }
1666
1667 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1668 {
1669 up_read(&sbi->cp_rwsem);
1670 }
1671
1672 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1673 {
1674 down_write(&sbi->cp_rwsem);
1675 }
1676
1677 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1678 {
1679 up_write(&sbi->cp_rwsem);
1680 }
1681
1682 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1683 {
1684 int reason = CP_SYNC;
1685
1686 if (test_opt(sbi, FASTBOOT))
1687 reason = CP_FASTBOOT;
1688 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1689 reason = CP_UMOUNT;
1690 return reason;
1691 }
1692
1693 static inline bool __remain_node_summaries(int reason)
1694 {
1695 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1696 }
1697
1698 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1699 {
1700 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1701 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1702 }
1703
1704 /*
1705 * Check whether the inode has blocks or not
1706 */
1707 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1708 {
1709 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1710
1711 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1712 }
1713
1714 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1715 {
1716 return ofs == XATTR_NODE_OFFSET;
1717 }
1718
1719 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1720 struct inode *inode, bool cap)
1721 {
1722 if (!inode)
1723 return true;
1724 if (!test_opt(sbi, RESERVE_ROOT))
1725 return false;
1726 if (IS_NOQUOTA(inode))
1727 return true;
1728 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1729 return true;
1730 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1731 in_group_p(F2FS_OPTION(sbi).s_resgid))
1732 return true;
1733 if (cap && capable(CAP_SYS_RESOURCE))
1734 return true;
1735 return false;
1736 }
1737
1738 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1739 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1740 struct inode *inode, blkcnt_t *count)
1741 {
1742 blkcnt_t diff = 0, release = 0;
1743 block_t avail_user_block_count;
1744 int ret;
1745
1746 ret = dquot_reserve_block(inode, *count);
1747 if (ret)
1748 return ret;
1749
1750 if (time_to_inject(sbi, FAULT_BLOCK)) {
1751 f2fs_show_injection_info(FAULT_BLOCK);
1752 release = *count;
1753 goto enospc;
1754 }
1755
1756 /*
1757 * let's increase this in prior to actual block count change in order
1758 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1759 */
1760 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1761
1762 spin_lock(&sbi->stat_lock);
1763 sbi->total_valid_block_count += (block_t)(*count);
1764 avail_user_block_count = sbi->user_block_count -
1765 sbi->current_reserved_blocks;
1766
1767 if (!__allow_reserved_blocks(sbi, inode, true))
1768 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1769 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1770 avail_user_block_count -= sbi->unusable_block_count;
1771 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1772 diff = sbi->total_valid_block_count - avail_user_block_count;
1773 if (diff > *count)
1774 diff = *count;
1775 *count -= diff;
1776 release = diff;
1777 sbi->total_valid_block_count -= diff;
1778 if (!*count) {
1779 spin_unlock(&sbi->stat_lock);
1780 goto enospc;
1781 }
1782 }
1783 spin_unlock(&sbi->stat_lock);
1784
1785 if (unlikely(release)) {
1786 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1787 dquot_release_reservation_block(inode, release);
1788 }
1789 f2fs_i_blocks_write(inode, *count, true, true);
1790 return 0;
1791
1792 enospc:
1793 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1794 dquot_release_reservation_block(inode, release);
1795 return -ENOSPC;
1796 }
1797
1798 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
1799 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1800 struct inode *inode,
1801 block_t count)
1802 {
1803 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1804
1805 spin_lock(&sbi->stat_lock);
1806 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1807 sbi->total_valid_block_count -= (block_t)count;
1808 if (sbi->reserved_blocks &&
1809 sbi->current_reserved_blocks < sbi->reserved_blocks)
1810 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1811 sbi->current_reserved_blocks + count);
1812 spin_unlock(&sbi->stat_lock);
1813 if (unlikely(inode->i_blocks < sectors)) {
1814 f2fs_msg(sbi->sb, KERN_WARNING,
1815 "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
1816 inode->i_ino,
1817 (unsigned long long)inode->i_blocks,
1818 (unsigned long long)sectors);
1819 set_sbi_flag(sbi, SBI_NEED_FSCK);
1820 return;
1821 }
1822 f2fs_i_blocks_write(inode, count, false, true);
1823 }
1824
1825 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1826 {
1827 atomic_inc(&sbi->nr_pages[count_type]);
1828
1829 if (count_type == F2FS_DIRTY_DENTS ||
1830 count_type == F2FS_DIRTY_NODES ||
1831 count_type == F2FS_DIRTY_META ||
1832 count_type == F2FS_DIRTY_QDATA ||
1833 count_type == F2FS_DIRTY_IMETA)
1834 set_sbi_flag(sbi, SBI_IS_DIRTY);
1835 }
1836
1837 static inline void inode_inc_dirty_pages(struct inode *inode)
1838 {
1839 atomic_inc(&F2FS_I(inode)->dirty_pages);
1840 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1841 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1842 if (IS_NOQUOTA(inode))
1843 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1844 }
1845
1846 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1847 {
1848 atomic_dec(&sbi->nr_pages[count_type]);
1849 }
1850
1851 static inline void inode_dec_dirty_pages(struct inode *inode)
1852 {
1853 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1854 !S_ISLNK(inode->i_mode))
1855 return;
1856
1857 atomic_dec(&F2FS_I(inode)->dirty_pages);
1858 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1859 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1860 if (IS_NOQUOTA(inode))
1861 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1862 }
1863
1864 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1865 {
1866 return atomic_read(&sbi->nr_pages[count_type]);
1867 }
1868
1869 static inline int get_dirty_pages(struct inode *inode)
1870 {
1871 return atomic_read(&F2FS_I(inode)->dirty_pages);
1872 }
1873
1874 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1875 {
1876 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1877 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1878 sbi->log_blocks_per_seg;
1879
1880 return segs / sbi->segs_per_sec;
1881 }
1882
1883 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1884 {
1885 return sbi->total_valid_block_count;
1886 }
1887
1888 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1889 {
1890 return sbi->discard_blks;
1891 }
1892
1893 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1894 {
1895 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1896
1897 /* return NAT or SIT bitmap */
1898 if (flag == NAT_BITMAP)
1899 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1900 else if (flag == SIT_BITMAP)
1901 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1902
1903 return 0;
1904 }
1905
1906 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1907 {
1908 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1909 }
1910
1911 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1912 {
1913 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1914 int offset;
1915
1916 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1917 offset = (flag == SIT_BITMAP) ?
1918 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1919 /*
1920 * if large_nat_bitmap feature is enabled, leave checksum
1921 * protection for all nat/sit bitmaps.
1922 */
1923 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
1924 }
1925
1926 if (__cp_payload(sbi) > 0) {
1927 if (flag == NAT_BITMAP)
1928 return &ckpt->sit_nat_version_bitmap;
1929 else
1930 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1931 } else {
1932 offset = (flag == NAT_BITMAP) ?
1933 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1934 return &ckpt->sit_nat_version_bitmap + offset;
1935 }
1936 }
1937
1938 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1939 {
1940 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1941
1942 if (sbi->cur_cp_pack == 2)
1943 start_addr += sbi->blocks_per_seg;
1944 return start_addr;
1945 }
1946
1947 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1948 {
1949 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1950
1951 if (sbi->cur_cp_pack == 1)
1952 start_addr += sbi->blocks_per_seg;
1953 return start_addr;
1954 }
1955
1956 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1957 {
1958 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1959 }
1960
1961 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1962 {
1963 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1964 }
1965
1966 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1967 struct inode *inode, bool is_inode)
1968 {
1969 block_t valid_block_count;
1970 unsigned int valid_node_count;
1971 int err;
1972
1973 if (is_inode) {
1974 if (inode) {
1975 err = dquot_alloc_inode(inode);
1976 if (err)
1977 return err;
1978 }
1979 } else {
1980 err = dquot_reserve_block(inode, 1);
1981 if (err)
1982 return err;
1983 }
1984
1985 if (time_to_inject(sbi, FAULT_BLOCK)) {
1986 f2fs_show_injection_info(FAULT_BLOCK);
1987 goto enospc;
1988 }
1989
1990 spin_lock(&sbi->stat_lock);
1991
1992 valid_block_count = sbi->total_valid_block_count +
1993 sbi->current_reserved_blocks + 1;
1994
1995 if (!__allow_reserved_blocks(sbi, inode, false))
1996 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1997 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1998 valid_block_count += sbi->unusable_block_count;
1999
2000 if (unlikely(valid_block_count > sbi->user_block_count)) {
2001 spin_unlock(&sbi->stat_lock);
2002 goto enospc;
2003 }
2004
2005 valid_node_count = sbi->total_valid_node_count + 1;
2006 if (unlikely(valid_node_count > sbi->total_node_count)) {
2007 spin_unlock(&sbi->stat_lock);
2008 goto enospc;
2009 }
2010
2011 sbi->total_valid_node_count++;
2012 sbi->total_valid_block_count++;
2013 spin_unlock(&sbi->stat_lock);
2014
2015 if (inode) {
2016 if (is_inode)
2017 f2fs_mark_inode_dirty_sync(inode, true);
2018 else
2019 f2fs_i_blocks_write(inode, 1, true, true);
2020 }
2021
2022 percpu_counter_inc(&sbi->alloc_valid_block_count);
2023 return 0;
2024
2025 enospc:
2026 if (is_inode) {
2027 if (inode)
2028 dquot_free_inode(inode);
2029 } else {
2030 dquot_release_reservation_block(inode, 1);
2031 }
2032 return -ENOSPC;
2033 }
2034
2035 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2036 struct inode *inode, bool is_inode)
2037 {
2038 spin_lock(&sbi->stat_lock);
2039
2040 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2041 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2042
2043 sbi->total_valid_node_count--;
2044 sbi->total_valid_block_count--;
2045 if (sbi->reserved_blocks &&
2046 sbi->current_reserved_blocks < sbi->reserved_blocks)
2047 sbi->current_reserved_blocks++;
2048
2049 spin_unlock(&sbi->stat_lock);
2050
2051 if (is_inode) {
2052 dquot_free_inode(inode);
2053 } else {
2054 if (unlikely(inode->i_blocks == 0)) {
2055 f2fs_msg(sbi->sb, KERN_WARNING,
2056 "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
2057 inode->i_ino,
2058 (unsigned long long)inode->i_blocks);
2059 set_sbi_flag(sbi, SBI_NEED_FSCK);
2060 return;
2061 }
2062 f2fs_i_blocks_write(inode, 1, false, true);
2063 }
2064 }
2065
2066 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2067 {
2068 return sbi->total_valid_node_count;
2069 }
2070
2071 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2072 {
2073 percpu_counter_inc(&sbi->total_valid_inode_count);
2074 }
2075
2076 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2077 {
2078 percpu_counter_dec(&sbi->total_valid_inode_count);
2079 }
2080
2081 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2082 {
2083 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2084 }
2085
2086 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2087 pgoff_t index, bool for_write)
2088 {
2089 struct page *page;
2090
2091 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2092 if (!for_write)
2093 page = find_get_page_flags(mapping, index,
2094 FGP_LOCK | FGP_ACCESSED);
2095 else
2096 page = find_lock_page(mapping, index);
2097 if (page)
2098 return page;
2099
2100 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2101 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2102 return NULL;
2103 }
2104 }
2105
2106 if (!for_write)
2107 return grab_cache_page(mapping, index);
2108 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2109 }
2110
2111 static inline struct page *f2fs_pagecache_get_page(
2112 struct address_space *mapping, pgoff_t index,
2113 int fgp_flags, gfp_t gfp_mask)
2114 {
2115 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2116 f2fs_show_injection_info(FAULT_PAGE_GET);
2117 return NULL;
2118 }
2119
2120 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2121 }
2122
2123 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2124 {
2125 char *src_kaddr = kmap(src);
2126 char *dst_kaddr = kmap(dst);
2127
2128 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2129 kunmap(dst);
2130 kunmap(src);
2131 }
2132
2133 static inline void f2fs_put_page(struct page *page, int unlock)
2134 {
2135 if (!page)
2136 return;
2137
2138 if (unlock) {
2139 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2140 unlock_page(page);
2141 }
2142 put_page(page);
2143 }
2144
2145 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2146 {
2147 if (dn->node_page)
2148 f2fs_put_page(dn->node_page, 1);
2149 if (dn->inode_page && dn->node_page != dn->inode_page)
2150 f2fs_put_page(dn->inode_page, 0);
2151 dn->node_page = NULL;
2152 dn->inode_page = NULL;
2153 }
2154
2155 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2156 size_t size)
2157 {
2158 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2159 }
2160
2161 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2162 gfp_t flags)
2163 {
2164 void *entry;
2165
2166 entry = kmem_cache_alloc(cachep, flags);
2167 if (!entry)
2168 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2169 return entry;
2170 }
2171
2172 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2173 int npages, bool no_fail)
2174 {
2175 struct bio *bio;
2176
2177 if (no_fail) {
2178 /* No failure on bio allocation */
2179 bio = bio_alloc(GFP_NOIO, npages);
2180 if (!bio)
2181 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2182 return bio;
2183 }
2184 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2185 f2fs_show_injection_info(FAULT_ALLOC_BIO);
2186 return NULL;
2187 }
2188
2189 return bio_alloc(GFP_KERNEL, npages);
2190 }
2191
2192 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2193 {
2194 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2195 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2196 get_pages(sbi, F2FS_WB_CP_DATA) ||
2197 get_pages(sbi, F2FS_DIO_READ) ||
2198 get_pages(sbi, F2FS_DIO_WRITE))
2199 return false;
2200
2201 if (SM_I(sbi) && SM_I(sbi)->dcc_info &&
2202 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2203 return false;
2204
2205 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2206 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2207 return false;
2208
2209 return f2fs_time_over(sbi, type);
2210 }
2211
2212 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2213 unsigned long index, void *item)
2214 {
2215 while (radix_tree_insert(root, index, item))
2216 cond_resched();
2217 }
2218
2219 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2220
2221 static inline bool IS_INODE(struct page *page)
2222 {
2223 struct f2fs_node *p = F2FS_NODE(page);
2224
2225 return RAW_IS_INODE(p);
2226 }
2227
2228 static inline int offset_in_addr(struct f2fs_inode *i)
2229 {
2230 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2231 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2232 }
2233
2234 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2235 {
2236 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2237 }
2238
2239 static inline int f2fs_has_extra_attr(struct inode *inode);
2240 static inline block_t datablock_addr(struct inode *inode,
2241 struct page *node_page, unsigned int offset)
2242 {
2243 struct f2fs_node *raw_node;
2244 __le32 *addr_array;
2245 int base = 0;
2246 bool is_inode = IS_INODE(node_page);
2247
2248 raw_node = F2FS_NODE(node_page);
2249
2250 /* from GC path only */
2251 if (is_inode) {
2252 if (!inode)
2253 base = offset_in_addr(&raw_node->i);
2254 else if (f2fs_has_extra_attr(inode))
2255 base = get_extra_isize(inode);
2256 }
2257
2258 addr_array = blkaddr_in_node(raw_node);
2259 return le32_to_cpu(addr_array[base + offset]);
2260 }
2261
2262 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2263 {
2264 int mask;
2265
2266 addr += (nr >> 3);
2267 mask = 1 << (7 - (nr & 0x07));
2268 return mask & *addr;
2269 }
2270
2271 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2272 {
2273 int mask;
2274
2275 addr += (nr >> 3);
2276 mask = 1 << (7 - (nr & 0x07));
2277 *addr |= mask;
2278 }
2279
2280 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2281 {
2282 int mask;
2283
2284 addr += (nr >> 3);
2285 mask = 1 << (7 - (nr & 0x07));
2286 *addr &= ~mask;
2287 }
2288
2289 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2290 {
2291 int mask;
2292 int ret;
2293
2294 addr += (nr >> 3);
2295 mask = 1 << (7 - (nr & 0x07));
2296 ret = mask & *addr;
2297 *addr |= mask;
2298 return ret;
2299 }
2300
2301 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2302 {
2303 int mask;
2304 int ret;
2305
2306 addr += (nr >> 3);
2307 mask = 1 << (7 - (nr & 0x07));
2308 ret = mask & *addr;
2309 *addr &= ~mask;
2310 return ret;
2311 }
2312
2313 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2314 {
2315 int mask;
2316
2317 addr += (nr >> 3);
2318 mask = 1 << (7 - (nr & 0x07));
2319 *addr ^= mask;
2320 }
2321
2322 /*
2323 * Inode flags
2324 */
2325 #define F2FS_SECRM_FL 0x00000001 /* Secure deletion */
2326 #define F2FS_UNRM_FL 0x00000002 /* Undelete */
2327 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2328 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2329 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2330 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2331 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2332 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2333 /* Reserved for compression usage... */
2334 #define F2FS_DIRTY_FL 0x00000100
2335 #define F2FS_COMPRBLK_FL 0x00000200 /* One or more compressed clusters */
2336 #define F2FS_NOCOMPR_FL 0x00000400 /* Don't compress */
2337 #define F2FS_ENCRYPT_FL 0x00000800 /* encrypted file */
2338 /* End compression flags --- maybe not all used */
2339 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2340 #define F2FS_IMAGIC_FL 0x00002000 /* AFS directory */
2341 #define F2FS_JOURNAL_DATA_FL 0x00004000 /* file data should be journaled */
2342 #define F2FS_NOTAIL_FL 0x00008000 /* file tail should not be merged */
2343 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2344 #define F2FS_TOPDIR_FL 0x00020000 /* Top of directory hierarchies*/
2345 #define F2FS_HUGE_FILE_FL 0x00040000 /* Set to each huge file */
2346 #define F2FS_EXTENTS_FL 0x00080000 /* Inode uses extents */
2347 #define F2FS_EA_INODE_FL 0x00200000 /* Inode used for large EA */
2348 #define F2FS_EOFBLOCKS_FL 0x00400000 /* Blocks allocated beyond EOF */
2349 #define F2FS_NOCOW_FL 0x00800000 /* Do not cow file */
2350 #define F2FS_INLINE_DATA_FL 0x10000000 /* Inode has inline data. */
2351 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2352 #define F2FS_RESERVED_FL 0x80000000 /* reserved for ext4 lib */
2353
2354 #define F2FS_FL_USER_VISIBLE 0x30CBDFFF /* User visible flags */
2355 #define F2FS_FL_USER_MODIFIABLE 0x204BC0FF /* User modifiable flags */
2356
2357 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2358 #define F2FS_FL_XFLAG_VISIBLE (F2FS_SYNC_FL | \
2359 F2FS_IMMUTABLE_FL | \
2360 F2FS_APPEND_FL | \
2361 F2FS_NODUMP_FL | \
2362 F2FS_NOATIME_FL | \
2363 F2FS_PROJINHERIT_FL)
2364
2365 /* Flags that should be inherited by new inodes from their parent. */
2366 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2367 F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2368 F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2369 F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2370 F2FS_PROJINHERIT_FL)
2371
2372 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2373 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2374
2375 /* Flags that are appropriate for non-directories/regular files. */
2376 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2377
2378 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2379 {
2380 if (S_ISDIR(mode))
2381 return flags;
2382 else if (S_ISREG(mode))
2383 return flags & F2FS_REG_FLMASK;
2384 else
2385 return flags & F2FS_OTHER_FLMASK;
2386 }
2387
2388 /* used for f2fs_inode_info->flags */
2389 enum {
2390 FI_NEW_INODE, /* indicate newly allocated inode */
2391 FI_DIRTY_INODE, /* indicate inode is dirty or not */
2392 FI_AUTO_RECOVER, /* indicate inode is recoverable */
2393 FI_DIRTY_DIR, /* indicate directory has dirty pages */
2394 FI_INC_LINK, /* need to increment i_nlink */
2395 FI_ACL_MODE, /* indicate acl mode */
2396 FI_NO_ALLOC, /* should not allocate any blocks */
2397 FI_FREE_NID, /* free allocated nide */
2398 FI_NO_EXTENT, /* not to use the extent cache */
2399 FI_INLINE_XATTR, /* used for inline xattr */
2400 FI_INLINE_DATA, /* used for inline data*/
2401 FI_INLINE_DENTRY, /* used for inline dentry */
2402 FI_APPEND_WRITE, /* inode has appended data */
2403 FI_UPDATE_WRITE, /* inode has in-place-update data */
2404 FI_NEED_IPU, /* used for ipu per file */
2405 FI_ATOMIC_FILE, /* indicate atomic file */
2406 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2407 FI_VOLATILE_FILE, /* indicate volatile file */
2408 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2409 FI_DROP_CACHE, /* drop dirty page cache */
2410 FI_DATA_EXIST, /* indicate data exists */
2411 FI_INLINE_DOTS, /* indicate inline dot dentries */
2412 FI_DO_DEFRAG, /* indicate defragment is running */
2413 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2414 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2415 FI_HOT_DATA, /* indicate file is hot */
2416 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2417 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2418 FI_PIN_FILE, /* indicate file should not be gced */
2419 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2420 };
2421
2422 static inline void __mark_inode_dirty_flag(struct inode *inode,
2423 int flag, bool set)
2424 {
2425 switch (flag) {
2426 case FI_INLINE_XATTR:
2427 case FI_INLINE_DATA:
2428 case FI_INLINE_DENTRY:
2429 case FI_NEW_INODE:
2430 if (set)
2431 return;
2432 /* fall through */
2433 case FI_DATA_EXIST:
2434 case FI_INLINE_DOTS:
2435 case FI_PIN_FILE:
2436 f2fs_mark_inode_dirty_sync(inode, true);
2437 }
2438 }
2439
2440 static inline void set_inode_flag(struct inode *inode, int flag)
2441 {
2442 if (!test_bit(flag, &F2FS_I(inode)->flags))
2443 set_bit(flag, &F2FS_I(inode)->flags);
2444 __mark_inode_dirty_flag(inode, flag, true);
2445 }
2446
2447 static inline int is_inode_flag_set(struct inode *inode, int flag)
2448 {
2449 return test_bit(flag, &F2FS_I(inode)->flags);
2450 }
2451
2452 static inline void clear_inode_flag(struct inode *inode, int flag)
2453 {
2454 if (test_bit(flag, &F2FS_I(inode)->flags))
2455 clear_bit(flag, &F2FS_I(inode)->flags);
2456 __mark_inode_dirty_flag(inode, flag, false);
2457 }
2458
2459 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2460 {
2461 F2FS_I(inode)->i_acl_mode = mode;
2462 set_inode_flag(inode, FI_ACL_MODE);
2463 f2fs_mark_inode_dirty_sync(inode, false);
2464 }
2465
2466 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2467 {
2468 if (inc)
2469 inc_nlink(inode);
2470 else
2471 drop_nlink(inode);
2472 f2fs_mark_inode_dirty_sync(inode, true);
2473 }
2474
2475 static inline void f2fs_i_blocks_write(struct inode *inode,
2476 block_t diff, bool add, bool claim)
2477 {
2478 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2479 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2480
2481 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2482 if (add) {
2483 if (claim)
2484 dquot_claim_block(inode, diff);
2485 else
2486 dquot_alloc_block_nofail(inode, diff);
2487 } else {
2488 dquot_free_block(inode, diff);
2489 }
2490
2491 f2fs_mark_inode_dirty_sync(inode, true);
2492 if (clean || recover)
2493 set_inode_flag(inode, FI_AUTO_RECOVER);
2494 }
2495
2496 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2497 {
2498 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2499 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2500
2501 if (i_size_read(inode) == i_size)
2502 return;
2503
2504 i_size_write(inode, i_size);
2505 f2fs_mark_inode_dirty_sync(inode, true);
2506 if (clean || recover)
2507 set_inode_flag(inode, FI_AUTO_RECOVER);
2508 }
2509
2510 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2511 {
2512 F2FS_I(inode)->i_current_depth = depth;
2513 f2fs_mark_inode_dirty_sync(inode, true);
2514 }
2515
2516 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2517 unsigned int count)
2518 {
2519 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2520 f2fs_mark_inode_dirty_sync(inode, true);
2521 }
2522
2523 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2524 {
2525 F2FS_I(inode)->i_xattr_nid = xnid;
2526 f2fs_mark_inode_dirty_sync(inode, true);
2527 }
2528
2529 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2530 {
2531 F2FS_I(inode)->i_pino = pino;
2532 f2fs_mark_inode_dirty_sync(inode, true);
2533 }
2534
2535 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2536 {
2537 struct f2fs_inode_info *fi = F2FS_I(inode);
2538
2539 if (ri->i_inline & F2FS_INLINE_XATTR)
2540 set_bit(FI_INLINE_XATTR, &fi->flags);
2541 if (ri->i_inline & F2FS_INLINE_DATA)
2542 set_bit(FI_INLINE_DATA, &fi->flags);
2543 if (ri->i_inline & F2FS_INLINE_DENTRY)
2544 set_bit(FI_INLINE_DENTRY, &fi->flags);
2545 if (ri->i_inline & F2FS_DATA_EXIST)
2546 set_bit(FI_DATA_EXIST, &fi->flags);
2547 if (ri->i_inline & F2FS_INLINE_DOTS)
2548 set_bit(FI_INLINE_DOTS, &fi->flags);
2549 if (ri->i_inline & F2FS_EXTRA_ATTR)
2550 set_bit(FI_EXTRA_ATTR, &fi->flags);
2551 if (ri->i_inline & F2FS_PIN_FILE)
2552 set_bit(FI_PIN_FILE, &fi->flags);
2553 }
2554
2555 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2556 {
2557 ri->i_inline = 0;
2558
2559 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2560 ri->i_inline |= F2FS_INLINE_XATTR;
2561 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2562 ri->i_inline |= F2FS_INLINE_DATA;
2563 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2564 ri->i_inline |= F2FS_INLINE_DENTRY;
2565 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2566 ri->i_inline |= F2FS_DATA_EXIST;
2567 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2568 ri->i_inline |= F2FS_INLINE_DOTS;
2569 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2570 ri->i_inline |= F2FS_EXTRA_ATTR;
2571 if (is_inode_flag_set(inode, FI_PIN_FILE))
2572 ri->i_inline |= F2FS_PIN_FILE;
2573 }
2574
2575 static inline int f2fs_has_extra_attr(struct inode *inode)
2576 {
2577 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2578 }
2579
2580 static inline int f2fs_has_inline_xattr(struct inode *inode)
2581 {
2582 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2583 }
2584
2585 static inline unsigned int addrs_per_inode(struct inode *inode)
2586 {
2587 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2588 get_inline_xattr_addrs(inode);
2589 return ALIGN_DOWN(addrs, 1);
2590 }
2591
2592 static inline unsigned int addrs_per_block(struct inode *inode)
2593 {
2594 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, 1);
2595 }
2596
2597 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2598 {
2599 struct f2fs_inode *ri = F2FS_INODE(page);
2600
2601 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2602 get_inline_xattr_addrs(inode)]);
2603 }
2604
2605 static inline int inline_xattr_size(struct inode *inode)
2606 {
2607 if (f2fs_has_inline_xattr(inode))
2608 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2609 return 0;
2610 }
2611
2612 static inline int f2fs_has_inline_data(struct inode *inode)
2613 {
2614 return is_inode_flag_set(inode, FI_INLINE_DATA);
2615 }
2616
2617 static inline int f2fs_exist_data(struct inode *inode)
2618 {
2619 return is_inode_flag_set(inode, FI_DATA_EXIST);
2620 }
2621
2622 static inline int f2fs_has_inline_dots(struct inode *inode)
2623 {
2624 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2625 }
2626
2627 static inline bool f2fs_is_pinned_file(struct inode *inode)
2628 {
2629 return is_inode_flag_set(inode, FI_PIN_FILE);
2630 }
2631
2632 static inline bool f2fs_is_atomic_file(struct inode *inode)
2633 {
2634 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2635 }
2636
2637 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2638 {
2639 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2640 }
2641
2642 static inline bool f2fs_is_volatile_file(struct inode *inode)
2643 {
2644 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2645 }
2646
2647 static inline bool f2fs_is_first_block_written(struct inode *inode)
2648 {
2649 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2650 }
2651
2652 static inline bool f2fs_is_drop_cache(struct inode *inode)
2653 {
2654 return is_inode_flag_set(inode, FI_DROP_CACHE);
2655 }
2656
2657 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2658 {
2659 struct f2fs_inode *ri = F2FS_INODE(page);
2660 int extra_size = get_extra_isize(inode);
2661
2662 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2663 }
2664
2665 static inline int f2fs_has_inline_dentry(struct inode *inode)
2666 {
2667 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2668 }
2669
2670 static inline int is_file(struct inode *inode, int type)
2671 {
2672 return F2FS_I(inode)->i_advise & type;
2673 }
2674
2675 static inline void set_file(struct inode *inode, int type)
2676 {
2677 F2FS_I(inode)->i_advise |= type;
2678 f2fs_mark_inode_dirty_sync(inode, true);
2679 }
2680
2681 static inline void clear_file(struct inode *inode, int type)
2682 {
2683 F2FS_I(inode)->i_advise &= ~type;
2684 f2fs_mark_inode_dirty_sync(inode, true);
2685 }
2686
2687 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2688 {
2689 bool ret;
2690
2691 if (dsync) {
2692 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2693
2694 spin_lock(&sbi->inode_lock[DIRTY_META]);
2695 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2696 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2697 return ret;
2698 }
2699 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2700 file_keep_isize(inode) ||
2701 i_size_read(inode) & ~PAGE_MASK)
2702 return false;
2703
2704 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2705 return false;
2706 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2707 return false;
2708 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2709 return false;
2710 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2711 &F2FS_I(inode)->i_crtime))
2712 return false;
2713
2714 down_read(&F2FS_I(inode)->i_sem);
2715 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2716 up_read(&F2FS_I(inode)->i_sem);
2717
2718 return ret;
2719 }
2720
2721 static inline bool f2fs_readonly(struct super_block *sb)
2722 {
2723 return sb_rdonly(sb);
2724 }
2725
2726 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2727 {
2728 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2729 }
2730
2731 static inline bool is_dot_dotdot(const struct qstr *str)
2732 {
2733 if (str->len == 1 && str->name[0] == '.')
2734 return true;
2735
2736 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2737 return true;
2738
2739 return false;
2740 }
2741
2742 static inline bool f2fs_may_extent_tree(struct inode *inode)
2743 {
2744 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2745
2746 if (!test_opt(sbi, EXTENT_CACHE) ||
2747 is_inode_flag_set(inode, FI_NO_EXTENT))
2748 return false;
2749
2750 /*
2751 * for recovered files during mount do not create extents
2752 * if shrinker is not registered.
2753 */
2754 if (list_empty(&sbi->s_list))
2755 return false;
2756
2757 return S_ISREG(inode->i_mode);
2758 }
2759
2760 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2761 size_t size, gfp_t flags)
2762 {
2763 void *ret;
2764
2765 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2766 f2fs_show_injection_info(FAULT_KMALLOC);
2767 return NULL;
2768 }
2769
2770 ret = kmalloc(size, flags);
2771 if (ret)
2772 return ret;
2773
2774 return kvmalloc(size, flags);
2775 }
2776
2777 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2778 size_t size, gfp_t flags)
2779 {
2780 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2781 }
2782
2783 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2784 size_t size, gfp_t flags)
2785 {
2786 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2787 f2fs_show_injection_info(FAULT_KVMALLOC);
2788 return NULL;
2789 }
2790
2791 return kvmalloc(size, flags);
2792 }
2793
2794 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2795 size_t size, gfp_t flags)
2796 {
2797 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2798 }
2799
2800 static inline int get_extra_isize(struct inode *inode)
2801 {
2802 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2803 }
2804
2805 static inline int get_inline_xattr_addrs(struct inode *inode)
2806 {
2807 return F2FS_I(inode)->i_inline_xattr_size;
2808 }
2809
2810 #define f2fs_get_inode_mode(i) \
2811 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2812 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2813
2814 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2815 (offsetof(struct f2fs_inode, i_extra_end) - \
2816 offsetof(struct f2fs_inode, i_extra_isize)) \
2817
2818 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2819 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2820 ((offsetof(typeof(*(f2fs_inode)), field) + \
2821 sizeof((f2fs_inode)->field)) \
2822 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
2823
2824 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2825 {
2826 int i;
2827
2828 spin_lock(&sbi->iostat_lock);
2829 for (i = 0; i < NR_IO_TYPE; i++)
2830 sbi->write_iostat[i] = 0;
2831 spin_unlock(&sbi->iostat_lock);
2832 }
2833
2834 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2835 enum iostat_type type, unsigned long long io_bytes)
2836 {
2837 if (!sbi->iostat_enable)
2838 return;
2839 spin_lock(&sbi->iostat_lock);
2840 sbi->write_iostat[type] += io_bytes;
2841
2842 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2843 sbi->write_iostat[APP_BUFFERED_IO] =
2844 sbi->write_iostat[APP_WRITE_IO] -
2845 sbi->write_iostat[APP_DIRECT_IO];
2846 spin_unlock(&sbi->iostat_lock);
2847 }
2848
2849 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
2850
2851 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
2852
2853 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2854 block_t blkaddr, int type);
2855 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2856 block_t blkaddr, int type)
2857 {
2858 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2859 f2fs_msg(sbi->sb, KERN_ERR,
2860 "invalid blkaddr: %u, type: %d, run fsck to fix.",
2861 blkaddr, type);
2862 f2fs_bug_on(sbi, 1);
2863 }
2864 }
2865
2866 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2867 {
2868 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2869 return false;
2870 return true;
2871 }
2872
2873 static inline void f2fs_set_page_private(struct page *page,
2874 unsigned long data)
2875 {
2876 if (PagePrivate(page))
2877 return;
2878
2879 get_page(page);
2880 SetPagePrivate(page);
2881 set_page_private(page, data);
2882 }
2883
2884 static inline void f2fs_clear_page_private(struct page *page)
2885 {
2886 if (!PagePrivate(page))
2887 return;
2888
2889 set_page_private(page, 0);
2890 ClearPagePrivate(page);
2891 f2fs_put_page(page, 0);
2892 }
2893
2894 /*
2895 * file.c
2896 */
2897 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2898 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2899 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2900 int f2fs_truncate(struct inode *inode);
2901 int f2fs_getattr(const struct path *path, struct kstat *stat,
2902 u32 request_mask, unsigned int flags);
2903 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2904 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2905 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2906 int f2fs_precache_extents(struct inode *inode);
2907 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2908 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2909 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2910 int f2fs_pin_file_control(struct inode *inode, bool inc);
2911
2912 /*
2913 * inode.c
2914 */
2915 void f2fs_set_inode_flags(struct inode *inode);
2916 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2917 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2918 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2919 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2920 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2921 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2922 void f2fs_update_inode_page(struct inode *inode);
2923 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2924 void f2fs_evict_inode(struct inode *inode);
2925 void f2fs_handle_failed_inode(struct inode *inode);
2926
2927 /*
2928 * namei.c
2929 */
2930 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2931 bool hot, bool set);
2932 struct dentry *f2fs_get_parent(struct dentry *child);
2933
2934 /*
2935 * dir.c
2936 */
2937 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2938 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2939 f2fs_hash_t namehash, int *max_slots,
2940 struct f2fs_dentry_ptr *d);
2941 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2942 unsigned int start_pos, struct fscrypt_str *fstr);
2943 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2944 struct f2fs_dentry_ptr *d);
2945 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2946 const struct qstr *new_name,
2947 const struct qstr *orig_name, struct page *dpage);
2948 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2949 unsigned int current_depth);
2950 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2951 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2952 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2953 struct fscrypt_name *fname, struct page **res_page);
2954 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2955 const struct qstr *child, struct page **res_page);
2956 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2957 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2958 struct page **page);
2959 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2960 struct page *page, struct inode *inode);
2961 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2962 const struct qstr *name, f2fs_hash_t name_hash,
2963 unsigned int bit_pos);
2964 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2965 const struct qstr *orig_name,
2966 struct inode *inode, nid_t ino, umode_t mode);
2967 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2968 struct inode *inode, nid_t ino, umode_t mode);
2969 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2970 struct inode *inode, nid_t ino, umode_t mode);
2971 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2972 struct inode *dir, struct inode *inode);
2973 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2974 bool f2fs_empty_dir(struct inode *dir);
2975
2976 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2977 {
2978 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2979 inode, inode->i_ino, inode->i_mode);
2980 }
2981
2982 /*
2983 * super.c
2984 */
2985 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2986 void f2fs_inode_synced(struct inode *inode);
2987 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2988 int f2fs_quota_sync(struct super_block *sb, int type);
2989 void f2fs_quota_off_umount(struct super_block *sb);
2990 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2991 int f2fs_sync_fs(struct super_block *sb, int sync);
2992 extern __printf(3, 4)
2993 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2994 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2995
2996 /*
2997 * hash.c
2998 */
2999 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
3000 struct fscrypt_name *fname);
3001
3002 /*
3003 * node.c
3004 */
3005 struct dnode_of_data;
3006 struct node_info;
3007
3008 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3009 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3010 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3011 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3012 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3013 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3014 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3015 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3016 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3017 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3018 struct node_info *ni);
3019 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3020 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3021 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3022 int f2fs_truncate_xattr_node(struct inode *inode);
3023 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3024 unsigned int seq_id);
3025 int f2fs_remove_inode_page(struct inode *inode);
3026 struct page *f2fs_new_inode_page(struct inode *inode);
3027 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3028 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3029 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3030 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3031 int f2fs_move_node_page(struct page *node_page, int gc_type);
3032 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3033 struct writeback_control *wbc, bool atomic,
3034 unsigned int *seq_id);
3035 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3036 struct writeback_control *wbc,
3037 bool do_balance, enum iostat_type io_type);
3038 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3039 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3040 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3041 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3042 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3043 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3044 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3045 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3046 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3047 unsigned int segno, struct f2fs_summary_block *sum);
3048 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3049 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3050 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3051 int __init f2fs_create_node_manager_caches(void);
3052 void f2fs_destroy_node_manager_caches(void);
3053
3054 /*
3055 * segment.c
3056 */
3057 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3058 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3059 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3060 void f2fs_drop_inmem_pages(struct inode *inode);
3061 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3062 int f2fs_commit_inmem_pages(struct inode *inode);
3063 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3064 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3065 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3066 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3067 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3068 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3069 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3070 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3071 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3072 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3073 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3074 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3075 struct cp_control *cpc);
3076 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3077 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi);
3078 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3079 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3080 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3081 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3082 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3083 struct cp_control *cpc);
3084 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3085 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3086 block_t blk_addr);
3087 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3088 enum iostat_type io_type);
3089 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3090 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3091 struct f2fs_io_info *fio);
3092 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3093 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3094 block_t old_blkaddr, block_t new_blkaddr,
3095 bool recover_curseg, bool recover_newaddr);
3096 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3097 block_t old_addr, block_t new_addr,
3098 unsigned char version, bool recover_curseg,
3099 bool recover_newaddr);
3100 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3101 block_t old_blkaddr, block_t *new_blkaddr,
3102 struct f2fs_summary *sum, int type,
3103 struct f2fs_io_info *fio, bool add_list);
3104 void f2fs_wait_on_page_writeback(struct page *page,
3105 enum page_type type, bool ordered, bool locked);
3106 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3107 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3108 block_t len);
3109 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3110 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3111 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3112 unsigned int val, int alloc);
3113 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3114 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3115 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3116 int __init f2fs_create_segment_manager_caches(void);
3117 void f2fs_destroy_segment_manager_caches(void);
3118 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3119 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3120 enum page_type type, enum temp_type temp);
3121
3122 /*
3123 * checkpoint.c
3124 */
3125 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3126 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3127 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3128 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3129 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3130 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3131 block_t blkaddr, int type);
3132 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3133 int type, bool sync);
3134 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3135 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3136 long nr_to_write, enum iostat_type io_type);
3137 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3138 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3139 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3140 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3141 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3142 unsigned int devidx, int type);
3143 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3144 unsigned int devidx, int type);
3145 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3146 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3147 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3148 void f2fs_add_orphan_inode(struct inode *inode);
3149 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3150 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3151 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3152 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3153 void f2fs_remove_dirty_inode(struct inode *inode);
3154 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3155 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3156 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3157 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3158 int __init f2fs_create_checkpoint_caches(void);
3159 void f2fs_destroy_checkpoint_caches(void);
3160
3161 /*
3162 * data.c
3163 */
3164 int f2fs_init_post_read_processing(void);
3165 void f2fs_destroy_post_read_processing(void);
3166 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3167 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3168 struct inode *inode, struct page *page,
3169 nid_t ino, enum page_type type);
3170 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3171 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3172 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3173 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3174 block_t blk_addr, struct bio *bio);
3175 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3176 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3177 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3178 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3179 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3180 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3181 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3182 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3183 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3184 int op_flags, bool for_write);
3185 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3186 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3187 bool for_write);
3188 struct page *f2fs_get_new_data_page(struct inode *inode,
3189 struct page *ipage, pgoff_t index, bool new_i_size);
3190 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3191 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3192 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3193 int create, int flag);
3194 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3195 u64 start, u64 len);
3196 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3197 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3198 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3199 unsigned int length);
3200 int f2fs_release_page(struct page *page, gfp_t wait);
3201 #ifdef CONFIG_MIGRATION
3202 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3203 struct page *page, enum migrate_mode mode);
3204 #endif
3205 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3206 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3207
3208 /*
3209 * gc.c
3210 */
3211 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3212 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3213 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3214 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3215 unsigned int segno);
3216 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3217
3218 /*
3219 * recovery.c
3220 */
3221 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3222 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3223
3224 /*
3225 * debug.c
3226 */
3227 #ifdef CONFIG_F2FS_STAT_FS
3228 struct f2fs_stat_info {
3229 struct list_head stat_list;
3230 struct f2fs_sb_info *sbi;
3231 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3232 int main_area_segs, main_area_sections, main_area_zones;
3233 unsigned long long hit_largest, hit_cached, hit_rbtree;
3234 unsigned long long hit_total, total_ext;
3235 int ext_tree, zombie_tree, ext_node;
3236 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3237 int ndirty_data, ndirty_qdata;
3238 int inmem_pages;
3239 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3240 int nats, dirty_nats, sits, dirty_sits;
3241 int free_nids, avail_nids, alloc_nids;
3242 int total_count, utilization;
3243 int bg_gc, nr_wb_cp_data, nr_wb_data;
3244 int nr_rd_data, nr_rd_node, nr_rd_meta;
3245 int nr_dio_read, nr_dio_write;
3246 unsigned int io_skip_bggc, other_skip_bggc;
3247 int nr_flushing, nr_flushed, flush_list_empty;
3248 int nr_discarding, nr_discarded;
3249 int nr_discard_cmd;
3250 unsigned int undiscard_blks;
3251 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3252 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3253 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3254 unsigned int bimodal, avg_vblocks;
3255 int util_free, util_valid, util_invalid;
3256 int rsvd_segs, overp_segs;
3257 int dirty_count, node_pages, meta_pages;
3258 int prefree_count, call_count, cp_count, bg_cp_count;
3259 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3260 int bg_node_segs, bg_data_segs;
3261 int tot_blks, data_blks, node_blks;
3262 int bg_data_blks, bg_node_blks;
3263 unsigned long long skipped_atomic_files[2];
3264 int curseg[NR_CURSEG_TYPE];
3265 int cursec[NR_CURSEG_TYPE];
3266 int curzone[NR_CURSEG_TYPE];
3267
3268 unsigned int meta_count[META_MAX];
3269 unsigned int segment_count[2];
3270 unsigned int block_count[2];
3271 unsigned int inplace_count;
3272 unsigned long long base_mem, cache_mem, page_mem;
3273 };
3274
3275 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3276 {
3277 return (struct f2fs_stat_info *)sbi->stat_info;
3278 }
3279
3280 #define stat_inc_cp_count(si) ((si)->cp_count++)
3281 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3282 #define stat_inc_call_count(si) ((si)->call_count++)
3283 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
3284 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3285 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3286 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3287 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3288 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3289 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3290 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3291 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3292 #define stat_inc_inline_xattr(inode) \
3293 do { \
3294 if (f2fs_has_inline_xattr(inode)) \
3295 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3296 } while (0)
3297 #define stat_dec_inline_xattr(inode) \
3298 do { \
3299 if (f2fs_has_inline_xattr(inode)) \
3300 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3301 } while (0)
3302 #define stat_inc_inline_inode(inode) \
3303 do { \
3304 if (f2fs_has_inline_data(inode)) \
3305 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3306 } while (0)
3307 #define stat_dec_inline_inode(inode) \
3308 do { \
3309 if (f2fs_has_inline_data(inode)) \
3310 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3311 } while (0)
3312 #define stat_inc_inline_dir(inode) \
3313 do { \
3314 if (f2fs_has_inline_dentry(inode)) \
3315 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3316 } while (0)
3317 #define stat_dec_inline_dir(inode) \
3318 do { \
3319 if (f2fs_has_inline_dentry(inode)) \
3320 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3321 } while (0)
3322 #define stat_inc_meta_count(sbi, blkaddr) \
3323 do { \
3324 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3325 atomic_inc(&(sbi)->meta_count[META_CP]); \
3326 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3327 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3328 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3329 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3330 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3331 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3332 } while (0)
3333 #define stat_inc_seg_type(sbi, curseg) \
3334 ((sbi)->segment_count[(curseg)->alloc_type]++)
3335 #define stat_inc_block_count(sbi, curseg) \
3336 ((sbi)->block_count[(curseg)->alloc_type]++)
3337 #define stat_inc_inplace_blocks(sbi) \
3338 (atomic_inc(&(sbi)->inplace_count))
3339 #define stat_inc_atomic_write(inode) \
3340 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3341 #define stat_dec_atomic_write(inode) \
3342 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3343 #define stat_update_max_atomic_write(inode) \
3344 do { \
3345 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
3346 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3347 if (cur > max) \
3348 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3349 } while (0)
3350 #define stat_inc_volatile_write(inode) \
3351 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3352 #define stat_dec_volatile_write(inode) \
3353 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3354 #define stat_update_max_volatile_write(inode) \
3355 do { \
3356 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3357 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3358 if (cur > max) \
3359 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3360 } while (0)
3361 #define stat_inc_seg_count(sbi, type, gc_type) \
3362 do { \
3363 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3364 si->tot_segs++; \
3365 if ((type) == SUM_TYPE_DATA) { \
3366 si->data_segs++; \
3367 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3368 } else { \
3369 si->node_segs++; \
3370 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3371 } \
3372 } while (0)
3373
3374 #define stat_inc_tot_blk_count(si, blks) \
3375 ((si)->tot_blks += (blks))
3376
3377 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3378 do { \
3379 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3380 stat_inc_tot_blk_count(si, blks); \
3381 si->data_blks += (blks); \
3382 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3383 } while (0)
3384
3385 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3386 do { \
3387 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3388 stat_inc_tot_blk_count(si, blks); \
3389 si->node_blks += (blks); \
3390 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3391 } while (0)
3392
3393 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3394 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3395 void __init f2fs_create_root_stats(void);
3396 void f2fs_destroy_root_stats(void);
3397 #else
3398 #define stat_inc_cp_count(si) do { } while (0)
3399 #define stat_inc_bg_cp_count(si) do { } while (0)
3400 #define stat_inc_call_count(si) do { } while (0)
3401 #define stat_inc_bggc_count(si) do { } while (0)
3402 #define stat_io_skip_bggc_count(sbi) do { } while (0)
3403 #define stat_other_skip_bggc_count(sbi) do { } while (0)
3404 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3405 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3406 #define stat_inc_total_hit(sb) do { } while (0)
3407 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
3408 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3409 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3410 #define stat_inc_inline_xattr(inode) do { } while (0)
3411 #define stat_dec_inline_xattr(inode) do { } while (0)
3412 #define stat_inc_inline_inode(inode) do { } while (0)
3413 #define stat_dec_inline_inode(inode) do { } while (0)
3414 #define stat_inc_inline_dir(inode) do { } while (0)
3415 #define stat_dec_inline_dir(inode) do { } while (0)
3416 #define stat_inc_atomic_write(inode) do { } while (0)
3417 #define stat_dec_atomic_write(inode) do { } while (0)
3418 #define stat_update_max_atomic_write(inode) do { } while (0)
3419 #define stat_inc_volatile_write(inode) do { } while (0)
3420 #define stat_dec_volatile_write(inode) do { } while (0)
3421 #define stat_update_max_volatile_write(inode) do { } while (0)
3422 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3423 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3424 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3425 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3426 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3427 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3428 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3429 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3430
3431 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3432 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3433 static inline void __init f2fs_create_root_stats(void) { }
3434 static inline void f2fs_destroy_root_stats(void) { }
3435 #endif
3436
3437 extern const struct file_operations f2fs_dir_operations;
3438 extern const struct file_operations f2fs_file_operations;
3439 extern const struct inode_operations f2fs_file_inode_operations;
3440 extern const struct address_space_operations f2fs_dblock_aops;
3441 extern const struct address_space_operations f2fs_node_aops;
3442 extern const struct address_space_operations f2fs_meta_aops;
3443 extern const struct inode_operations f2fs_dir_inode_operations;
3444 extern const struct inode_operations f2fs_symlink_inode_operations;
3445 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3446 extern const struct inode_operations f2fs_special_inode_operations;
3447 extern struct kmem_cache *f2fs_inode_entry_slab;
3448
3449 /*
3450 * inline.c
3451 */
3452 bool f2fs_may_inline_data(struct inode *inode);
3453 bool f2fs_may_inline_dentry(struct inode *inode);
3454 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3455 void f2fs_truncate_inline_inode(struct inode *inode,
3456 struct page *ipage, u64 from);
3457 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3458 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3459 int f2fs_convert_inline_inode(struct inode *inode);
3460 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3461 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3462 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3463 struct fscrypt_name *fname, struct page **res_page);
3464 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3465 struct page *ipage);
3466 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3467 const struct qstr *orig_name,
3468 struct inode *inode, nid_t ino, umode_t mode);
3469 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3470 struct page *page, struct inode *dir,
3471 struct inode *inode);
3472 bool f2fs_empty_inline_dir(struct inode *dir);
3473 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3474 struct fscrypt_str *fstr);
3475 int f2fs_inline_data_fiemap(struct inode *inode,
3476 struct fiemap_extent_info *fieinfo,
3477 __u64 start, __u64 len);
3478
3479 /*
3480 * shrinker.c
3481 */
3482 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3483 struct shrink_control *sc);
3484 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3485 struct shrink_control *sc);
3486 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3487 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3488
3489 /*
3490 * extent_cache.c
3491 */
3492 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3493 struct rb_entry *cached_re, unsigned int ofs);
3494 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3495 struct rb_root_cached *root,
3496 struct rb_node **parent,
3497 unsigned int ofs, bool *leftmost);
3498 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3499 struct rb_entry *cached_re, unsigned int ofs,
3500 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3501 struct rb_node ***insert_p, struct rb_node **insert_parent,
3502 bool force, bool *leftmost);
3503 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3504 struct rb_root_cached *root);
3505 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3506 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3507 void f2fs_drop_extent_tree(struct inode *inode);
3508 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3509 void f2fs_destroy_extent_tree(struct inode *inode);
3510 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3511 struct extent_info *ei);
3512 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3513 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3514 pgoff_t fofs, block_t blkaddr, unsigned int len);
3515 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3516 int __init f2fs_create_extent_cache(void);
3517 void f2fs_destroy_extent_cache(void);
3518
3519 /*
3520 * sysfs.c
3521 */
3522 int __init f2fs_init_sysfs(void);
3523 void f2fs_exit_sysfs(void);
3524 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3525 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3526
3527 /*
3528 * crypto support
3529 */
3530 static inline bool f2fs_encrypted_file(struct inode *inode)
3531 {
3532 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3533 }
3534
3535 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3536 {
3537 #ifdef CONFIG_FS_ENCRYPTION
3538 file_set_encrypt(inode);
3539 f2fs_set_inode_flags(inode);
3540 #endif
3541 }
3542
3543 /*
3544 * Returns true if the reads of the inode's data need to undergo some
3545 * postprocessing step, like decryption or authenticity verification.
3546 */
3547 static inline bool f2fs_post_read_required(struct inode *inode)
3548 {
3549 return f2fs_encrypted_file(inode);
3550 }
3551
3552 #define F2FS_FEATURE_FUNCS(name, flagname) \
3553 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3554 { \
3555 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3556 }
3557
3558 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3559 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3560 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3561 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3562 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3563 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3564 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3565 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3566 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3567 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3568
3569 #ifdef CONFIG_BLK_DEV_ZONED
3570 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3571 block_t blkaddr)
3572 {
3573 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3574
3575 return test_bit(zno, FDEV(devi).blkz_seq);
3576 }
3577 #endif
3578
3579 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3580 {
3581 return f2fs_sb_has_blkzoned(sbi);
3582 }
3583
3584 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3585 {
3586 return blk_queue_discard(bdev_get_queue(bdev)) ||
3587 bdev_is_zoned(bdev);
3588 }
3589
3590 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3591 {
3592 int i;
3593
3594 if (!f2fs_is_multi_device(sbi))
3595 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3596
3597 for (i = 0; i < sbi->s_ndevs; i++)
3598 if (f2fs_bdev_support_discard(FDEV(i).bdev))
3599 return true;
3600 return false;
3601 }
3602
3603 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3604 {
3605 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3606 f2fs_hw_should_discard(sbi);
3607 }
3608
3609 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3610 {
3611 int i;
3612
3613 if (!f2fs_is_multi_device(sbi))
3614 return bdev_read_only(sbi->sb->s_bdev);
3615
3616 for (i = 0; i < sbi->s_ndevs; i++)
3617 if (bdev_read_only(FDEV(i).bdev))
3618 return true;
3619 return false;
3620 }
3621
3622
3623 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3624 {
3625 clear_opt(sbi, ADAPTIVE);
3626 clear_opt(sbi, LFS);
3627
3628 switch (mt) {
3629 case F2FS_MOUNT_ADAPTIVE:
3630 set_opt(sbi, ADAPTIVE);
3631 break;
3632 case F2FS_MOUNT_LFS:
3633 set_opt(sbi, LFS);
3634 break;
3635 }
3636 }
3637
3638 static inline bool f2fs_may_encrypt(struct inode *inode)
3639 {
3640 #ifdef CONFIG_FS_ENCRYPTION
3641 umode_t mode = inode->i_mode;
3642
3643 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3644 #else
3645 return false;
3646 #endif
3647 }
3648
3649 static inline int block_unaligned_IO(struct inode *inode,
3650 struct kiocb *iocb, struct iov_iter *iter)
3651 {
3652 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3653 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3654 loff_t offset = iocb->ki_pos;
3655 unsigned long align = offset | iov_iter_alignment(iter);
3656
3657 return align & blocksize_mask;
3658 }
3659
3660 static inline int allow_outplace_dio(struct inode *inode,
3661 struct kiocb *iocb, struct iov_iter *iter)
3662 {
3663 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3664 int rw = iov_iter_rw(iter);
3665
3666 return (test_opt(sbi, LFS) && (rw == WRITE) &&
3667 !block_unaligned_IO(inode, iocb, iter));
3668 }
3669
3670 static inline bool f2fs_force_buffered_io(struct inode *inode,
3671 struct kiocb *iocb, struct iov_iter *iter)
3672 {
3673 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3674 int rw = iov_iter_rw(iter);
3675
3676 if (f2fs_post_read_required(inode))
3677 return true;
3678 if (f2fs_is_multi_device(sbi))
3679 return true;
3680 /*
3681 * for blkzoned device, fallback direct IO to buffered IO, so
3682 * all IOs can be serialized by log-structured write.
3683 */
3684 if (f2fs_sb_has_blkzoned(sbi))
3685 return true;
3686 if (test_opt(sbi, LFS) && (rw == WRITE) &&
3687 block_unaligned_IO(inode, iocb, iter))
3688 return true;
3689 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3690 return true;
3691
3692 return false;
3693 }
3694
3695 #ifdef CONFIG_F2FS_FAULT_INJECTION
3696 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3697 unsigned int type);
3698 #else
3699 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
3700 #endif
3701
3702 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3703 {
3704 #ifdef CONFIG_QUOTA
3705 if (f2fs_sb_has_quota_ino(sbi))
3706 return true;
3707 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3708 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3709 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3710 return true;
3711 #endif
3712 return false;
3713 }
3714
3715 #endif /* _LINUX_F2FS_H */