]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/f2fs.h
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #ifdef CONFIG_F2FS_FS_ENCRYPTION
26 #include <linux/fscrypt_supp.h>
27 #else
28 #include <linux/fscrypt_notsupp.h>
29 #endif
30 #include <crypto/hash.h>
31
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition) \
36 do { \
37 if (unlikely(condition)) { \
38 WARN_ON(1); \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } \
41 } while (0)
42 #endif
43
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 FAULT_KMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_ALLOC_NID,
49 FAULT_ORPHAN,
50 FAULT_BLOCK,
51 FAULT_DIR_DEPTH,
52 FAULT_EVICT_INODE,
53 FAULT_IO,
54 FAULT_CHECKPOINT,
55 FAULT_MAX,
56 };
57
58 struct f2fs_fault_info {
59 atomic_t inject_ops;
60 unsigned int inject_rate;
61 unsigned int inject_type;
62 };
63
64 extern char *fault_name[FAULT_MAX];
65 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type)))
66 #endif
67
68 /*
69 * For mount options
70 */
71 #define F2FS_MOUNT_BG_GC 0x00000001
72 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
73 #define F2FS_MOUNT_DISCARD 0x00000004
74 #define F2FS_MOUNT_NOHEAP 0x00000008
75 #define F2FS_MOUNT_XATTR_USER 0x00000010
76 #define F2FS_MOUNT_POSIX_ACL 0x00000020
77 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
78 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
79 #define F2FS_MOUNT_INLINE_DATA 0x00000100
80 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
81 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
82 #define F2FS_MOUNT_NOBARRIER 0x00000800
83 #define F2FS_MOUNT_FASTBOOT 0x00001000
84 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
85 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
86 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
87 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
88 #define F2FS_MOUNT_ADAPTIVE 0x00020000
89 #define F2FS_MOUNT_LFS 0x00040000
90
91 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
92 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
93 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
94
95 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
96 typecheck(unsigned long long, b) && \
97 ((long long)((a) - (b)) > 0))
98
99 typedef u32 block_t; /*
100 * should not change u32, since it is the on-disk block
101 * address format, __le32.
102 */
103 typedef u32 nid_t;
104
105 struct f2fs_mount_info {
106 unsigned int opt;
107 };
108
109 #define F2FS_FEATURE_ENCRYPT 0x0001
110 #define F2FS_FEATURE_BLKZONED 0x0002
111
112 #define F2FS_HAS_FEATURE(sb, mask) \
113 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
114 #define F2FS_SET_FEATURE(sb, mask) \
115 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
116 #define F2FS_CLEAR_FEATURE(sb, mask) \
117 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
118
119 /*
120 * For checkpoint manager
121 */
122 enum {
123 NAT_BITMAP,
124 SIT_BITMAP
125 };
126
127 enum {
128 CP_UMOUNT,
129 CP_FASTBOOT,
130 CP_SYNC,
131 CP_RECOVERY,
132 CP_DISCARD,
133 };
134
135 #define DEF_BATCHED_TRIM_SECTIONS 2048
136 #define BATCHED_TRIM_SEGMENTS(sbi) \
137 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
138 #define BATCHED_TRIM_BLOCKS(sbi) \
139 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
140 #define MAX_DISCARD_BLOCKS(sbi) \
141 ((1 << (sbi)->log_blocks_per_seg) * (sbi)->segs_per_sec)
142 #define DISCARD_ISSUE_RATE 8
143 #define DEF_CP_INTERVAL 60 /* 60 secs */
144 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
145
146 struct cp_control {
147 int reason;
148 __u64 trim_start;
149 __u64 trim_end;
150 __u64 trim_minlen;
151 __u64 trimmed;
152 };
153
154 /*
155 * For CP/NAT/SIT/SSA readahead
156 */
157 enum {
158 META_CP,
159 META_NAT,
160 META_SIT,
161 META_SSA,
162 META_POR,
163 };
164
165 /* for the list of ino */
166 enum {
167 ORPHAN_INO, /* for orphan ino list */
168 APPEND_INO, /* for append ino list */
169 UPDATE_INO, /* for update ino list */
170 MAX_INO_ENTRY, /* max. list */
171 };
172
173 struct ino_entry {
174 struct list_head list; /* list head */
175 nid_t ino; /* inode number */
176 };
177
178 /* for the list of inodes to be GCed */
179 struct inode_entry {
180 struct list_head list; /* list head */
181 struct inode *inode; /* vfs inode pointer */
182 };
183
184 /* for the list of blockaddresses to be discarded */
185 struct discard_entry {
186 struct list_head list; /* list head */
187 block_t blkaddr; /* block address to be discarded */
188 int len; /* # of consecutive blocks of the discard */
189 };
190
191 enum {
192 D_PREP,
193 D_SUBMIT,
194 D_DONE,
195 };
196
197 struct discard_cmd {
198 struct list_head list; /* command list */
199 struct completion wait; /* compleation */
200 block_t lstart; /* logical start address */
201 block_t len; /* length */
202 struct bio *bio; /* bio */
203 int state; /* state */
204 };
205
206 struct discard_cmd_control {
207 struct task_struct *f2fs_issue_discard; /* discard thread */
208 struct list_head discard_entry_list; /* 4KB discard entry list */
209 int nr_discards; /* # of discards in the list */
210 struct list_head discard_cmd_list; /* discard cmd list */
211 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
212 struct mutex cmd_lock;
213 int max_discards; /* max. discards to be issued */
214 atomic_t submit_discard; /* # of issued discard */
215 };
216
217 /* for the list of fsync inodes, used only during recovery */
218 struct fsync_inode_entry {
219 struct list_head list; /* list head */
220 struct inode *inode; /* vfs inode pointer */
221 block_t blkaddr; /* block address locating the last fsync */
222 block_t last_dentry; /* block address locating the last dentry */
223 };
224
225 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
226 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
227
228 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
229 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
230 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
231 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
232
233 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
234 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
235
236 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
237 {
238 int before = nats_in_cursum(journal);
239
240 journal->n_nats = cpu_to_le16(before + i);
241 return before;
242 }
243
244 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
245 {
246 int before = sits_in_cursum(journal);
247
248 journal->n_sits = cpu_to_le16(before + i);
249 return before;
250 }
251
252 static inline bool __has_cursum_space(struct f2fs_journal *journal,
253 int size, int type)
254 {
255 if (type == NAT_JOURNAL)
256 return size <= MAX_NAT_JENTRIES(journal);
257 return size <= MAX_SIT_JENTRIES(journal);
258 }
259
260 /*
261 * ioctl commands
262 */
263 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
264 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
265 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
266
267 #define F2FS_IOCTL_MAGIC 0xf5
268 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
269 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
270 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
271 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
272 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
273 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
274 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
275 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
276 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
277 struct f2fs_move_range)
278
279 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
280 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
281 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
282
283 /*
284 * should be same as XFS_IOC_GOINGDOWN.
285 * Flags for going down operation used by FS_IOC_GOINGDOWN
286 */
287 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
288 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
289 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
290 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
291 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
292
293 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
294 /*
295 * ioctl commands in 32 bit emulation
296 */
297 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
298 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
299 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
300 #endif
301
302 struct f2fs_defragment {
303 u64 start;
304 u64 len;
305 };
306
307 struct f2fs_move_range {
308 u32 dst_fd; /* destination fd */
309 u64 pos_in; /* start position in src_fd */
310 u64 pos_out; /* start position in dst_fd */
311 u64 len; /* size to move */
312 };
313
314 /*
315 * For INODE and NODE manager
316 */
317 /* for directory operations */
318 struct f2fs_dentry_ptr {
319 struct inode *inode;
320 const void *bitmap;
321 struct f2fs_dir_entry *dentry;
322 __u8 (*filename)[F2FS_SLOT_LEN];
323 int max;
324 };
325
326 static inline void make_dentry_ptr(struct inode *inode,
327 struct f2fs_dentry_ptr *d, void *src, int type)
328 {
329 d->inode = inode;
330
331 if (type == 1) {
332 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
333
334 d->max = NR_DENTRY_IN_BLOCK;
335 d->bitmap = &t->dentry_bitmap;
336 d->dentry = t->dentry;
337 d->filename = t->filename;
338 } else {
339 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
340
341 d->max = NR_INLINE_DENTRY;
342 d->bitmap = &t->dentry_bitmap;
343 d->dentry = t->dentry;
344 d->filename = t->filename;
345 }
346 }
347
348 /*
349 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
350 * as its node offset to distinguish from index node blocks.
351 * But some bits are used to mark the node block.
352 */
353 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
354 >> OFFSET_BIT_SHIFT)
355 enum {
356 ALLOC_NODE, /* allocate a new node page if needed */
357 LOOKUP_NODE, /* look up a node without readahead */
358 LOOKUP_NODE_RA, /*
359 * look up a node with readahead called
360 * by get_data_block.
361 */
362 };
363
364 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
365
366 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
367
368 /* vector size for gang look-up from extent cache that consists of radix tree */
369 #define EXT_TREE_VEC_SIZE 64
370
371 /* for in-memory extent cache entry */
372 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
373
374 /* number of extent info in extent cache we try to shrink */
375 #define EXTENT_CACHE_SHRINK_NUMBER 128
376
377 struct extent_info {
378 unsigned int fofs; /* start offset in a file */
379 u32 blk; /* start block address of the extent */
380 unsigned int len; /* length of the extent */
381 };
382
383 struct extent_node {
384 struct rb_node rb_node; /* rb node located in rb-tree */
385 struct list_head list; /* node in global extent list of sbi */
386 struct extent_info ei; /* extent info */
387 struct extent_tree *et; /* extent tree pointer */
388 };
389
390 struct extent_tree {
391 nid_t ino; /* inode number */
392 struct rb_root root; /* root of extent info rb-tree */
393 struct extent_node *cached_en; /* recently accessed extent node */
394 struct extent_info largest; /* largested extent info */
395 struct list_head list; /* to be used by sbi->zombie_list */
396 rwlock_t lock; /* protect extent info rb-tree */
397 atomic_t node_cnt; /* # of extent node in rb-tree*/
398 };
399
400 /*
401 * This structure is taken from ext4_map_blocks.
402 *
403 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
404 */
405 #define F2FS_MAP_NEW (1 << BH_New)
406 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
407 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
408 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
409 F2FS_MAP_UNWRITTEN)
410
411 struct f2fs_map_blocks {
412 block_t m_pblk;
413 block_t m_lblk;
414 unsigned int m_len;
415 unsigned int m_flags;
416 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
417 };
418
419 /* for flag in get_data_block */
420 #define F2FS_GET_BLOCK_READ 0
421 #define F2FS_GET_BLOCK_DIO 1
422 #define F2FS_GET_BLOCK_FIEMAP 2
423 #define F2FS_GET_BLOCK_BMAP 3
424 #define F2FS_GET_BLOCK_PRE_DIO 4
425 #define F2FS_GET_BLOCK_PRE_AIO 5
426
427 /*
428 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
429 */
430 #define FADVISE_COLD_BIT 0x01
431 #define FADVISE_LOST_PINO_BIT 0x02
432 #define FADVISE_ENCRYPT_BIT 0x04
433 #define FADVISE_ENC_NAME_BIT 0x08
434 #define FADVISE_KEEP_SIZE_BIT 0x10
435
436 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
437 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
438 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
439 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
440 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
441 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
442 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
443 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
444 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
445 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
446 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
447 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
448 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
449
450 #define DEF_DIR_LEVEL 0
451
452 struct f2fs_inode_info {
453 struct inode vfs_inode; /* serve a vfs inode */
454 unsigned long i_flags; /* keep an inode flags for ioctl */
455 unsigned char i_advise; /* use to give file attribute hints */
456 unsigned char i_dir_level; /* use for dentry level for large dir */
457 unsigned int i_current_depth; /* use only in directory structure */
458 unsigned int i_pino; /* parent inode number */
459 umode_t i_acl_mode; /* keep file acl mode temporarily */
460
461 /* Use below internally in f2fs*/
462 unsigned long flags; /* use to pass per-file flags */
463 struct rw_semaphore i_sem; /* protect fi info */
464 atomic_t dirty_pages; /* # of dirty pages */
465 f2fs_hash_t chash; /* hash value of given file name */
466 unsigned int clevel; /* maximum level of given file name */
467 struct task_struct *task; /* lookup and create consistency */
468 nid_t i_xattr_nid; /* node id that contains xattrs */
469 loff_t last_disk_size; /* lastly written file size */
470
471 struct list_head dirty_list; /* dirty list for dirs and files */
472 struct list_head gdirty_list; /* linked in global dirty list */
473 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
474 struct mutex inmem_lock; /* lock for inmemory pages */
475 struct extent_tree *extent_tree; /* cached extent_tree entry */
476 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
477 };
478
479 static inline void get_extent_info(struct extent_info *ext,
480 struct f2fs_extent *i_ext)
481 {
482 ext->fofs = le32_to_cpu(i_ext->fofs);
483 ext->blk = le32_to_cpu(i_ext->blk);
484 ext->len = le32_to_cpu(i_ext->len);
485 }
486
487 static inline void set_raw_extent(struct extent_info *ext,
488 struct f2fs_extent *i_ext)
489 {
490 i_ext->fofs = cpu_to_le32(ext->fofs);
491 i_ext->blk = cpu_to_le32(ext->blk);
492 i_ext->len = cpu_to_le32(ext->len);
493 }
494
495 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
496 u32 blk, unsigned int len)
497 {
498 ei->fofs = fofs;
499 ei->blk = blk;
500 ei->len = len;
501 }
502
503 static inline bool __is_extent_mergeable(struct extent_info *back,
504 struct extent_info *front)
505 {
506 return (back->fofs + back->len == front->fofs &&
507 back->blk + back->len == front->blk);
508 }
509
510 static inline bool __is_back_mergeable(struct extent_info *cur,
511 struct extent_info *back)
512 {
513 return __is_extent_mergeable(back, cur);
514 }
515
516 static inline bool __is_front_mergeable(struct extent_info *cur,
517 struct extent_info *front)
518 {
519 return __is_extent_mergeable(cur, front);
520 }
521
522 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
523 static inline void __try_update_largest_extent(struct inode *inode,
524 struct extent_tree *et, struct extent_node *en)
525 {
526 if (en->ei.len > et->largest.len) {
527 et->largest = en->ei;
528 f2fs_mark_inode_dirty_sync(inode, true);
529 }
530 }
531
532 enum nid_list {
533 FREE_NID_LIST,
534 ALLOC_NID_LIST,
535 MAX_NID_LIST,
536 };
537
538 struct f2fs_nm_info {
539 block_t nat_blkaddr; /* base disk address of NAT */
540 nid_t max_nid; /* maximum possible node ids */
541 nid_t available_nids; /* # of available node ids */
542 nid_t next_scan_nid; /* the next nid to be scanned */
543 unsigned int ram_thresh; /* control the memory footprint */
544 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
545 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
546
547 /* NAT cache management */
548 struct radix_tree_root nat_root;/* root of the nat entry cache */
549 struct radix_tree_root nat_set_root;/* root of the nat set cache */
550 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
551 struct list_head nat_entries; /* cached nat entry list (clean) */
552 unsigned int nat_cnt; /* the # of cached nat entries */
553 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
554 unsigned int nat_blocks; /* # of nat blocks */
555
556 /* free node ids management */
557 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
558 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
559 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */
560 spinlock_t nid_list_lock; /* protect nid lists ops */
561 struct mutex build_lock; /* lock for build free nids */
562 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
563 unsigned char *nat_block_bitmap;
564 unsigned short *free_nid_count; /* free nid count of NAT block */
565 spinlock_t free_nid_lock; /* protect updating of nid count */
566
567 /* for checkpoint */
568 char *nat_bitmap; /* NAT bitmap pointer */
569
570 unsigned int nat_bits_blocks; /* # of nat bits blocks */
571 unsigned char *nat_bits; /* NAT bits blocks */
572 unsigned char *full_nat_bits; /* full NAT pages */
573 unsigned char *empty_nat_bits; /* empty NAT pages */
574 #ifdef CONFIG_F2FS_CHECK_FS
575 char *nat_bitmap_mir; /* NAT bitmap mirror */
576 #endif
577 int bitmap_size; /* bitmap size */
578 };
579
580 /*
581 * this structure is used as one of function parameters.
582 * all the information are dedicated to a given direct node block determined
583 * by the data offset in a file.
584 */
585 struct dnode_of_data {
586 struct inode *inode; /* vfs inode pointer */
587 struct page *inode_page; /* its inode page, NULL is possible */
588 struct page *node_page; /* cached direct node page */
589 nid_t nid; /* node id of the direct node block */
590 unsigned int ofs_in_node; /* data offset in the node page */
591 bool inode_page_locked; /* inode page is locked or not */
592 bool node_changed; /* is node block changed */
593 char cur_level; /* level of hole node page */
594 char max_level; /* level of current page located */
595 block_t data_blkaddr; /* block address of the node block */
596 };
597
598 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
599 struct page *ipage, struct page *npage, nid_t nid)
600 {
601 memset(dn, 0, sizeof(*dn));
602 dn->inode = inode;
603 dn->inode_page = ipage;
604 dn->node_page = npage;
605 dn->nid = nid;
606 }
607
608 /*
609 * For SIT manager
610 *
611 * By default, there are 6 active log areas across the whole main area.
612 * When considering hot and cold data separation to reduce cleaning overhead,
613 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
614 * respectively.
615 * In the current design, you should not change the numbers intentionally.
616 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
617 * logs individually according to the underlying devices. (default: 6)
618 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
619 * data and 8 for node logs.
620 */
621 #define NR_CURSEG_DATA_TYPE (3)
622 #define NR_CURSEG_NODE_TYPE (3)
623 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
624
625 enum {
626 CURSEG_HOT_DATA = 0, /* directory entry blocks */
627 CURSEG_WARM_DATA, /* data blocks */
628 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
629 CURSEG_HOT_NODE, /* direct node blocks of directory files */
630 CURSEG_WARM_NODE, /* direct node blocks of normal files */
631 CURSEG_COLD_NODE, /* indirect node blocks */
632 NO_CHECK_TYPE,
633 };
634
635 struct flush_cmd {
636 struct completion wait;
637 struct llist_node llnode;
638 int ret;
639 };
640
641 struct flush_cmd_control {
642 struct task_struct *f2fs_issue_flush; /* flush thread */
643 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
644 atomic_t submit_flush; /* # of issued flushes */
645 struct llist_head issue_list; /* list for command issue */
646 struct llist_node *dispatch_list; /* list for command dispatch */
647 };
648
649 struct f2fs_sm_info {
650 struct sit_info *sit_info; /* whole segment information */
651 struct free_segmap_info *free_info; /* free segment information */
652 struct dirty_seglist_info *dirty_info; /* dirty segment information */
653 struct curseg_info *curseg_array; /* active segment information */
654
655 block_t seg0_blkaddr; /* block address of 0'th segment */
656 block_t main_blkaddr; /* start block address of main area */
657 block_t ssa_blkaddr; /* start block address of SSA area */
658
659 unsigned int segment_count; /* total # of segments */
660 unsigned int main_segments; /* # of segments in main area */
661 unsigned int reserved_segments; /* # of reserved segments */
662 unsigned int ovp_segments; /* # of overprovision segments */
663
664 /* a threshold to reclaim prefree segments */
665 unsigned int rec_prefree_segments;
666
667 /* for batched trimming */
668 unsigned int trim_sections; /* # of sections to trim */
669
670 struct list_head sit_entry_set; /* sit entry set list */
671
672 unsigned int ipu_policy; /* in-place-update policy */
673 unsigned int min_ipu_util; /* in-place-update threshold */
674 unsigned int min_fsync_blocks; /* threshold for fsync */
675
676 /* for flush command control */
677 struct flush_cmd_control *fcc_info;
678
679 /* for discard command control */
680 struct discard_cmd_control *dcc_info;
681 };
682
683 /*
684 * For superblock
685 */
686 /*
687 * COUNT_TYPE for monitoring
688 *
689 * f2fs monitors the number of several block types such as on-writeback,
690 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
691 */
692 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
693 enum count_type {
694 F2FS_DIRTY_DENTS,
695 F2FS_DIRTY_DATA,
696 F2FS_DIRTY_NODES,
697 F2FS_DIRTY_META,
698 F2FS_INMEM_PAGES,
699 F2FS_DIRTY_IMETA,
700 F2FS_WB_CP_DATA,
701 F2FS_WB_DATA,
702 NR_COUNT_TYPE,
703 };
704
705 /*
706 * The below are the page types of bios used in submit_bio().
707 * The available types are:
708 * DATA User data pages. It operates as async mode.
709 * NODE Node pages. It operates as async mode.
710 * META FS metadata pages such as SIT, NAT, CP.
711 * NR_PAGE_TYPE The number of page types.
712 * META_FLUSH Make sure the previous pages are written
713 * with waiting the bio's completion
714 * ... Only can be used with META.
715 */
716 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
717 enum page_type {
718 DATA,
719 NODE,
720 META,
721 NR_PAGE_TYPE,
722 META_FLUSH,
723 INMEM, /* the below types are used by tracepoints only. */
724 INMEM_DROP,
725 INMEM_REVOKE,
726 IPU,
727 OPU,
728 };
729
730 struct f2fs_io_info {
731 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
732 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
733 int op; /* contains REQ_OP_ */
734 int op_flags; /* req_flag_bits */
735 block_t new_blkaddr; /* new block address to be written */
736 block_t old_blkaddr; /* old block address before Cow */
737 struct page *page; /* page to be written */
738 struct page *encrypted_page; /* encrypted page */
739 bool submitted; /* indicate IO submission */
740 };
741
742 #define is_read_io(rw) (rw == READ)
743 struct f2fs_bio_info {
744 struct f2fs_sb_info *sbi; /* f2fs superblock */
745 struct bio *bio; /* bios to merge */
746 sector_t last_block_in_bio; /* last block number */
747 struct f2fs_io_info fio; /* store buffered io info. */
748 struct rw_semaphore io_rwsem; /* blocking op for bio */
749 };
750
751 #define FDEV(i) (sbi->devs[i])
752 #define RDEV(i) (raw_super->devs[i])
753 struct f2fs_dev_info {
754 struct block_device *bdev;
755 char path[MAX_PATH_LEN];
756 unsigned int total_segments;
757 block_t start_blk;
758 block_t end_blk;
759 #ifdef CONFIG_BLK_DEV_ZONED
760 unsigned int nr_blkz; /* Total number of zones */
761 u8 *blkz_type; /* Array of zones type */
762 #endif
763 };
764
765 enum inode_type {
766 DIR_INODE, /* for dirty dir inode */
767 FILE_INODE, /* for dirty regular/symlink inode */
768 DIRTY_META, /* for all dirtied inode metadata */
769 NR_INODE_TYPE,
770 };
771
772 /* for inner inode cache management */
773 struct inode_management {
774 struct radix_tree_root ino_root; /* ino entry array */
775 spinlock_t ino_lock; /* for ino entry lock */
776 struct list_head ino_list; /* inode list head */
777 unsigned long ino_num; /* number of entries */
778 };
779
780 /* For s_flag in struct f2fs_sb_info */
781 enum {
782 SBI_IS_DIRTY, /* dirty flag for checkpoint */
783 SBI_IS_CLOSE, /* specify unmounting */
784 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
785 SBI_POR_DOING, /* recovery is doing or not */
786 SBI_NEED_SB_WRITE, /* need to recover superblock */
787 SBI_NEED_CP, /* need to checkpoint */
788 };
789
790 enum {
791 CP_TIME,
792 REQ_TIME,
793 MAX_TIME,
794 };
795
796 struct f2fs_sb_info {
797 struct super_block *sb; /* pointer to VFS super block */
798 struct proc_dir_entry *s_proc; /* proc entry */
799 struct f2fs_super_block *raw_super; /* raw super block pointer */
800 int valid_super_block; /* valid super block no */
801 unsigned long s_flag; /* flags for sbi */
802
803 #ifdef CONFIG_BLK_DEV_ZONED
804 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
805 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
806 #endif
807
808 /* for node-related operations */
809 struct f2fs_nm_info *nm_info; /* node manager */
810 struct inode *node_inode; /* cache node blocks */
811
812 /* for segment-related operations */
813 struct f2fs_sm_info *sm_info; /* segment manager */
814
815 /* for bio operations */
816 struct f2fs_bio_info read_io; /* for read bios */
817 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
818 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */
819 int write_io_size_bits; /* Write IO size bits */
820 mempool_t *write_io_dummy; /* Dummy pages */
821
822 /* for checkpoint */
823 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
824 int cur_cp_pack; /* remain current cp pack */
825 spinlock_t cp_lock; /* for flag in ckpt */
826 struct inode *meta_inode; /* cache meta blocks */
827 struct mutex cp_mutex; /* checkpoint procedure lock */
828 struct rw_semaphore cp_rwsem; /* blocking FS operations */
829 struct rw_semaphore node_write; /* locking node writes */
830 wait_queue_head_t cp_wait;
831 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
832 long interval_time[MAX_TIME]; /* to store thresholds */
833
834 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
835
836 /* for orphan inode, use 0'th array */
837 unsigned int max_orphans; /* max orphan inodes */
838
839 /* for inode management */
840 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
841 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
842
843 /* for extent tree cache */
844 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
845 struct mutex extent_tree_lock; /* locking extent radix tree */
846 struct list_head extent_list; /* lru list for shrinker */
847 spinlock_t extent_lock; /* locking extent lru list */
848 atomic_t total_ext_tree; /* extent tree count */
849 struct list_head zombie_list; /* extent zombie tree list */
850 atomic_t total_zombie_tree; /* extent zombie tree count */
851 atomic_t total_ext_node; /* extent info count */
852
853 /* basic filesystem units */
854 unsigned int log_sectors_per_block; /* log2 sectors per block */
855 unsigned int log_blocksize; /* log2 block size */
856 unsigned int blocksize; /* block size */
857 unsigned int root_ino_num; /* root inode number*/
858 unsigned int node_ino_num; /* node inode number*/
859 unsigned int meta_ino_num; /* meta inode number*/
860 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
861 unsigned int blocks_per_seg; /* blocks per segment */
862 unsigned int segs_per_sec; /* segments per section */
863 unsigned int secs_per_zone; /* sections per zone */
864 unsigned int total_sections; /* total section count */
865 unsigned int total_node_count; /* total node block count */
866 unsigned int total_valid_node_count; /* valid node block count */
867 loff_t max_file_blocks; /* max block index of file */
868 int active_logs; /* # of active logs */
869 int dir_level; /* directory level */
870
871 block_t user_block_count; /* # of user blocks */
872 block_t total_valid_block_count; /* # of valid blocks */
873 block_t discard_blks; /* discard command candidats */
874 block_t last_valid_block_count; /* for recovery */
875 u32 s_next_generation; /* for NFS support */
876
877 /* # of pages, see count_type */
878 atomic_t nr_pages[NR_COUNT_TYPE];
879 /* # of allocated blocks */
880 struct percpu_counter alloc_valid_block_count;
881
882 /* valid inode count */
883 struct percpu_counter total_valid_inode_count;
884
885 struct f2fs_mount_info mount_opt; /* mount options */
886
887 /* for cleaning operations */
888 struct mutex gc_mutex; /* mutex for GC */
889 struct f2fs_gc_kthread *gc_thread; /* GC thread */
890 unsigned int cur_victim_sec; /* current victim section num */
891
892 /* threshold for converting bg victims for fg */
893 u64 fggc_threshold;
894
895 /* maximum # of trials to find a victim segment for SSR and GC */
896 unsigned int max_victim_search;
897
898 /*
899 * for stat information.
900 * one is for the LFS mode, and the other is for the SSR mode.
901 */
902 #ifdef CONFIG_F2FS_STAT_FS
903 struct f2fs_stat_info *stat_info; /* FS status information */
904 unsigned int segment_count[2]; /* # of allocated segments */
905 unsigned int block_count[2]; /* # of allocated blocks */
906 atomic_t inplace_count; /* # of inplace update */
907 atomic64_t total_hit_ext; /* # of lookup extent cache */
908 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
909 atomic64_t read_hit_largest; /* # of hit largest extent node */
910 atomic64_t read_hit_cached; /* # of hit cached extent node */
911 atomic_t inline_xattr; /* # of inline_xattr inodes */
912 atomic_t inline_inode; /* # of inline_data inodes */
913 atomic_t inline_dir; /* # of inline_dentry inodes */
914 atomic_t aw_cnt; /* # of atomic writes */
915 atomic_t max_aw_cnt; /* max # of atomic writes */
916 int bg_gc; /* background gc calls */
917 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
918 #endif
919 unsigned int last_victim[2]; /* last victim segment # */
920 spinlock_t stat_lock; /* lock for stat operations */
921
922 /* For sysfs suppport */
923 struct kobject s_kobj;
924 struct completion s_kobj_unregister;
925
926 /* For shrinker support */
927 struct list_head s_list;
928 int s_ndevs; /* number of devices */
929 struct f2fs_dev_info *devs; /* for device list */
930 struct mutex umount_mutex;
931 unsigned int shrinker_run_no;
932
933 /* For write statistics */
934 u64 sectors_written_start;
935 u64 kbytes_written;
936
937 /* Reference to checksum algorithm driver via cryptoapi */
938 struct crypto_shash *s_chksum_driver;
939
940 /* For fault injection */
941 #ifdef CONFIG_F2FS_FAULT_INJECTION
942 struct f2fs_fault_info fault_info;
943 #endif
944 };
945
946 #ifdef CONFIG_F2FS_FAULT_INJECTION
947 #define f2fs_show_injection_info(type) \
948 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
949 KERN_INFO, fault_name[type], \
950 __func__, __builtin_return_address(0))
951 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
952 {
953 struct f2fs_fault_info *ffi = &sbi->fault_info;
954
955 if (!ffi->inject_rate)
956 return false;
957
958 if (!IS_FAULT_SET(ffi, type))
959 return false;
960
961 atomic_inc(&ffi->inject_ops);
962 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
963 atomic_set(&ffi->inject_ops, 0);
964 return true;
965 }
966 return false;
967 }
968 #endif
969
970 /* For write statistics. Suppose sector size is 512 bytes,
971 * and the return value is in kbytes. s is of struct f2fs_sb_info.
972 */
973 #define BD_PART_WRITTEN(s) \
974 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
975 s->sectors_written_start) >> 1)
976
977 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
978 {
979 sbi->last_time[type] = jiffies;
980 }
981
982 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
983 {
984 struct timespec ts = {sbi->interval_time[type], 0};
985 unsigned long interval = timespec_to_jiffies(&ts);
986
987 return time_after(jiffies, sbi->last_time[type] + interval);
988 }
989
990 static inline bool is_idle(struct f2fs_sb_info *sbi)
991 {
992 struct block_device *bdev = sbi->sb->s_bdev;
993 struct request_queue *q = bdev_get_queue(bdev);
994 struct request_list *rl = &q->root_rl;
995
996 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
997 return 0;
998
999 return f2fs_time_over(sbi, REQ_TIME);
1000 }
1001
1002 /*
1003 * Inline functions
1004 */
1005 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1006 unsigned int length)
1007 {
1008 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1009 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1010 int err;
1011
1012 shash->tfm = sbi->s_chksum_driver;
1013 shash->flags = 0;
1014 *ctx = F2FS_SUPER_MAGIC;
1015
1016 err = crypto_shash_update(shash, address, length);
1017 BUG_ON(err);
1018
1019 return *ctx;
1020 }
1021
1022 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1023 void *buf, size_t buf_size)
1024 {
1025 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1026 }
1027
1028 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1029 {
1030 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1031 }
1032
1033 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1034 {
1035 return sb->s_fs_info;
1036 }
1037
1038 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1039 {
1040 return F2FS_SB(inode->i_sb);
1041 }
1042
1043 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1044 {
1045 return F2FS_I_SB(mapping->host);
1046 }
1047
1048 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1049 {
1050 return F2FS_M_SB(page->mapping);
1051 }
1052
1053 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1054 {
1055 return (struct f2fs_super_block *)(sbi->raw_super);
1056 }
1057
1058 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1059 {
1060 return (struct f2fs_checkpoint *)(sbi->ckpt);
1061 }
1062
1063 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1064 {
1065 return (struct f2fs_node *)page_address(page);
1066 }
1067
1068 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1069 {
1070 return &((struct f2fs_node *)page_address(page))->i;
1071 }
1072
1073 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1074 {
1075 return (struct f2fs_nm_info *)(sbi->nm_info);
1076 }
1077
1078 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1079 {
1080 return (struct f2fs_sm_info *)(sbi->sm_info);
1081 }
1082
1083 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1084 {
1085 return (struct sit_info *)(SM_I(sbi)->sit_info);
1086 }
1087
1088 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1089 {
1090 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1091 }
1092
1093 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1094 {
1095 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1096 }
1097
1098 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1099 {
1100 return sbi->meta_inode->i_mapping;
1101 }
1102
1103 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1104 {
1105 return sbi->node_inode->i_mapping;
1106 }
1107
1108 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1109 {
1110 return test_bit(type, &sbi->s_flag);
1111 }
1112
1113 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1114 {
1115 set_bit(type, &sbi->s_flag);
1116 }
1117
1118 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1119 {
1120 clear_bit(type, &sbi->s_flag);
1121 }
1122
1123 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1124 {
1125 return le64_to_cpu(cp->checkpoint_ver);
1126 }
1127
1128 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1129 {
1130 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1131 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1132 }
1133
1134 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1135 {
1136 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1137
1138 return ckpt_flags & f;
1139 }
1140
1141 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1142 {
1143 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1144 }
1145
1146 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1147 {
1148 unsigned int ckpt_flags;
1149
1150 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1151 ckpt_flags |= f;
1152 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1153 }
1154
1155 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1156 {
1157 spin_lock(&sbi->cp_lock);
1158 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1159 spin_unlock(&sbi->cp_lock);
1160 }
1161
1162 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1163 {
1164 unsigned int ckpt_flags;
1165
1166 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1167 ckpt_flags &= (~f);
1168 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1169 }
1170
1171 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1172 {
1173 spin_lock(&sbi->cp_lock);
1174 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1175 spin_unlock(&sbi->cp_lock);
1176 }
1177
1178 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1179 {
1180 set_sbi_flag(sbi, SBI_NEED_FSCK);
1181
1182 if (lock)
1183 spin_lock(&sbi->cp_lock);
1184 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1185 kfree(NM_I(sbi)->nat_bits);
1186 NM_I(sbi)->nat_bits = NULL;
1187 if (lock)
1188 spin_unlock(&sbi->cp_lock);
1189 }
1190
1191 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1192 struct cp_control *cpc)
1193 {
1194 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1195
1196 return (cpc) ? (cpc->reason == CP_UMOUNT) && set : set;
1197 }
1198
1199 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1200 {
1201 down_read(&sbi->cp_rwsem);
1202 }
1203
1204 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1205 {
1206 up_read(&sbi->cp_rwsem);
1207 }
1208
1209 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1210 {
1211 down_write(&sbi->cp_rwsem);
1212 }
1213
1214 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1215 {
1216 up_write(&sbi->cp_rwsem);
1217 }
1218
1219 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1220 {
1221 int reason = CP_SYNC;
1222
1223 if (test_opt(sbi, FASTBOOT))
1224 reason = CP_FASTBOOT;
1225 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1226 reason = CP_UMOUNT;
1227 return reason;
1228 }
1229
1230 static inline bool __remain_node_summaries(int reason)
1231 {
1232 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1233 }
1234
1235 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1236 {
1237 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1238 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1239 }
1240
1241 /*
1242 * Check whether the given nid is within node id range.
1243 */
1244 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1245 {
1246 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1247 return -EINVAL;
1248 if (unlikely(nid >= NM_I(sbi)->max_nid))
1249 return -EINVAL;
1250 return 0;
1251 }
1252
1253 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1254
1255 /*
1256 * Check whether the inode has blocks or not
1257 */
1258 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1259 {
1260 if (F2FS_I(inode)->i_xattr_nid)
1261 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1262 else
1263 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1264 }
1265
1266 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1267 {
1268 return ofs == XATTR_NODE_OFFSET;
1269 }
1270
1271 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1272 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1273 struct inode *inode, blkcnt_t *count)
1274 {
1275 blkcnt_t diff;
1276
1277 #ifdef CONFIG_F2FS_FAULT_INJECTION
1278 if (time_to_inject(sbi, FAULT_BLOCK)) {
1279 f2fs_show_injection_info(FAULT_BLOCK);
1280 return false;
1281 }
1282 #endif
1283 /*
1284 * let's increase this in prior to actual block count change in order
1285 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1286 */
1287 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1288
1289 spin_lock(&sbi->stat_lock);
1290 sbi->total_valid_block_count += (block_t)(*count);
1291 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1292 diff = sbi->total_valid_block_count - sbi->user_block_count;
1293 *count -= diff;
1294 sbi->total_valid_block_count = sbi->user_block_count;
1295 if (!*count) {
1296 spin_unlock(&sbi->stat_lock);
1297 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1298 return false;
1299 }
1300 }
1301 spin_unlock(&sbi->stat_lock);
1302
1303 f2fs_i_blocks_write(inode, *count, true);
1304 return true;
1305 }
1306
1307 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1308 struct inode *inode,
1309 blkcnt_t count)
1310 {
1311 spin_lock(&sbi->stat_lock);
1312 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1313 f2fs_bug_on(sbi, inode->i_blocks < count);
1314 sbi->total_valid_block_count -= (block_t)count;
1315 spin_unlock(&sbi->stat_lock);
1316 f2fs_i_blocks_write(inode, count, false);
1317 }
1318
1319 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1320 {
1321 atomic_inc(&sbi->nr_pages[count_type]);
1322
1323 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1324 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1325 return;
1326
1327 set_sbi_flag(sbi, SBI_IS_DIRTY);
1328 }
1329
1330 static inline void inode_inc_dirty_pages(struct inode *inode)
1331 {
1332 atomic_inc(&F2FS_I(inode)->dirty_pages);
1333 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1334 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1335 }
1336
1337 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1338 {
1339 atomic_dec(&sbi->nr_pages[count_type]);
1340 }
1341
1342 static inline void inode_dec_dirty_pages(struct inode *inode)
1343 {
1344 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1345 !S_ISLNK(inode->i_mode))
1346 return;
1347
1348 atomic_dec(&F2FS_I(inode)->dirty_pages);
1349 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1350 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1351 }
1352
1353 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1354 {
1355 return atomic_read(&sbi->nr_pages[count_type]);
1356 }
1357
1358 static inline int get_dirty_pages(struct inode *inode)
1359 {
1360 return atomic_read(&F2FS_I(inode)->dirty_pages);
1361 }
1362
1363 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1364 {
1365 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1366 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1367 sbi->log_blocks_per_seg;
1368
1369 return segs / sbi->segs_per_sec;
1370 }
1371
1372 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1373 {
1374 return sbi->total_valid_block_count;
1375 }
1376
1377 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1378 {
1379 return sbi->discard_blks;
1380 }
1381
1382 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1383 {
1384 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1385
1386 /* return NAT or SIT bitmap */
1387 if (flag == NAT_BITMAP)
1388 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1389 else if (flag == SIT_BITMAP)
1390 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1391
1392 return 0;
1393 }
1394
1395 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1396 {
1397 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1398 }
1399
1400 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1401 {
1402 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1403 int offset;
1404
1405 if (__cp_payload(sbi) > 0) {
1406 if (flag == NAT_BITMAP)
1407 return &ckpt->sit_nat_version_bitmap;
1408 else
1409 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1410 } else {
1411 offset = (flag == NAT_BITMAP) ?
1412 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1413 return &ckpt->sit_nat_version_bitmap + offset;
1414 }
1415 }
1416
1417 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1418 {
1419 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1420
1421 if (sbi->cur_cp_pack == 2)
1422 start_addr += sbi->blocks_per_seg;
1423 return start_addr;
1424 }
1425
1426 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1427 {
1428 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1429
1430 if (sbi->cur_cp_pack == 1)
1431 start_addr += sbi->blocks_per_seg;
1432 return start_addr;
1433 }
1434
1435 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1436 {
1437 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1438 }
1439
1440 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1441 {
1442 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1443 }
1444
1445 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1446 struct inode *inode)
1447 {
1448 block_t valid_block_count;
1449 unsigned int valid_node_count;
1450
1451 spin_lock(&sbi->stat_lock);
1452
1453 valid_block_count = sbi->total_valid_block_count + 1;
1454 if (unlikely(valid_block_count > sbi->user_block_count)) {
1455 spin_unlock(&sbi->stat_lock);
1456 return false;
1457 }
1458
1459 valid_node_count = sbi->total_valid_node_count + 1;
1460 if (unlikely(valid_node_count > sbi->total_node_count)) {
1461 spin_unlock(&sbi->stat_lock);
1462 return false;
1463 }
1464
1465 if (inode)
1466 f2fs_i_blocks_write(inode, 1, true);
1467
1468 sbi->total_valid_node_count++;
1469 sbi->total_valid_block_count++;
1470 spin_unlock(&sbi->stat_lock);
1471
1472 percpu_counter_inc(&sbi->alloc_valid_block_count);
1473 return true;
1474 }
1475
1476 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1477 struct inode *inode)
1478 {
1479 spin_lock(&sbi->stat_lock);
1480
1481 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1482 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1483 f2fs_bug_on(sbi, !inode->i_blocks);
1484
1485 f2fs_i_blocks_write(inode, 1, false);
1486 sbi->total_valid_node_count--;
1487 sbi->total_valid_block_count--;
1488
1489 spin_unlock(&sbi->stat_lock);
1490 }
1491
1492 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1493 {
1494 return sbi->total_valid_node_count;
1495 }
1496
1497 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1498 {
1499 percpu_counter_inc(&sbi->total_valid_inode_count);
1500 }
1501
1502 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1503 {
1504 percpu_counter_dec(&sbi->total_valid_inode_count);
1505 }
1506
1507 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1508 {
1509 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1510 }
1511
1512 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1513 pgoff_t index, bool for_write)
1514 {
1515 #ifdef CONFIG_F2FS_FAULT_INJECTION
1516 struct page *page = find_lock_page(mapping, index);
1517
1518 if (page)
1519 return page;
1520
1521 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1522 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1523 return NULL;
1524 }
1525 #endif
1526 if (!for_write)
1527 return grab_cache_page(mapping, index);
1528 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1529 }
1530
1531 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1532 {
1533 char *src_kaddr = kmap(src);
1534 char *dst_kaddr = kmap(dst);
1535
1536 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1537 kunmap(dst);
1538 kunmap(src);
1539 }
1540
1541 static inline void f2fs_put_page(struct page *page, int unlock)
1542 {
1543 if (!page)
1544 return;
1545
1546 if (unlock) {
1547 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1548 unlock_page(page);
1549 }
1550 put_page(page);
1551 }
1552
1553 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1554 {
1555 if (dn->node_page)
1556 f2fs_put_page(dn->node_page, 1);
1557 if (dn->inode_page && dn->node_page != dn->inode_page)
1558 f2fs_put_page(dn->inode_page, 0);
1559 dn->node_page = NULL;
1560 dn->inode_page = NULL;
1561 }
1562
1563 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1564 size_t size)
1565 {
1566 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1567 }
1568
1569 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1570 gfp_t flags)
1571 {
1572 void *entry;
1573
1574 entry = kmem_cache_alloc(cachep, flags);
1575 if (!entry)
1576 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1577 return entry;
1578 }
1579
1580 static inline struct bio *f2fs_bio_alloc(int npages)
1581 {
1582 struct bio *bio;
1583
1584 /* No failure on bio allocation */
1585 bio = bio_alloc(GFP_NOIO, npages);
1586 if (!bio)
1587 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1588 return bio;
1589 }
1590
1591 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1592 unsigned long index, void *item)
1593 {
1594 while (radix_tree_insert(root, index, item))
1595 cond_resched();
1596 }
1597
1598 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1599
1600 static inline bool IS_INODE(struct page *page)
1601 {
1602 struct f2fs_node *p = F2FS_NODE(page);
1603
1604 return RAW_IS_INODE(p);
1605 }
1606
1607 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1608 {
1609 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1610 }
1611
1612 static inline block_t datablock_addr(struct page *node_page,
1613 unsigned int offset)
1614 {
1615 struct f2fs_node *raw_node;
1616 __le32 *addr_array;
1617
1618 raw_node = F2FS_NODE(node_page);
1619 addr_array = blkaddr_in_node(raw_node);
1620 return le32_to_cpu(addr_array[offset]);
1621 }
1622
1623 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1624 {
1625 int mask;
1626
1627 addr += (nr >> 3);
1628 mask = 1 << (7 - (nr & 0x07));
1629 return mask & *addr;
1630 }
1631
1632 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1633 {
1634 int mask;
1635
1636 addr += (nr >> 3);
1637 mask = 1 << (7 - (nr & 0x07));
1638 *addr |= mask;
1639 }
1640
1641 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1642 {
1643 int mask;
1644
1645 addr += (nr >> 3);
1646 mask = 1 << (7 - (nr & 0x07));
1647 *addr &= ~mask;
1648 }
1649
1650 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1651 {
1652 int mask;
1653 int ret;
1654
1655 addr += (nr >> 3);
1656 mask = 1 << (7 - (nr & 0x07));
1657 ret = mask & *addr;
1658 *addr |= mask;
1659 return ret;
1660 }
1661
1662 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1663 {
1664 int mask;
1665 int ret;
1666
1667 addr += (nr >> 3);
1668 mask = 1 << (7 - (nr & 0x07));
1669 ret = mask & *addr;
1670 *addr &= ~mask;
1671 return ret;
1672 }
1673
1674 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1675 {
1676 int mask;
1677
1678 addr += (nr >> 3);
1679 mask = 1 << (7 - (nr & 0x07));
1680 *addr ^= mask;
1681 }
1682
1683 /* used for f2fs_inode_info->flags */
1684 enum {
1685 FI_NEW_INODE, /* indicate newly allocated inode */
1686 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1687 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1688 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1689 FI_INC_LINK, /* need to increment i_nlink */
1690 FI_ACL_MODE, /* indicate acl mode */
1691 FI_NO_ALLOC, /* should not allocate any blocks */
1692 FI_FREE_NID, /* free allocated nide */
1693 FI_NO_EXTENT, /* not to use the extent cache */
1694 FI_INLINE_XATTR, /* used for inline xattr */
1695 FI_INLINE_DATA, /* used for inline data*/
1696 FI_INLINE_DENTRY, /* used for inline dentry */
1697 FI_APPEND_WRITE, /* inode has appended data */
1698 FI_UPDATE_WRITE, /* inode has in-place-update data */
1699 FI_NEED_IPU, /* used for ipu per file */
1700 FI_ATOMIC_FILE, /* indicate atomic file */
1701 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
1702 FI_VOLATILE_FILE, /* indicate volatile file */
1703 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1704 FI_DROP_CACHE, /* drop dirty page cache */
1705 FI_DATA_EXIST, /* indicate data exists */
1706 FI_INLINE_DOTS, /* indicate inline dot dentries */
1707 FI_DO_DEFRAG, /* indicate defragment is running */
1708 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1709 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
1710 };
1711
1712 static inline void __mark_inode_dirty_flag(struct inode *inode,
1713 int flag, bool set)
1714 {
1715 switch (flag) {
1716 case FI_INLINE_XATTR:
1717 case FI_INLINE_DATA:
1718 case FI_INLINE_DENTRY:
1719 if (set)
1720 return;
1721 case FI_DATA_EXIST:
1722 case FI_INLINE_DOTS:
1723 f2fs_mark_inode_dirty_sync(inode, true);
1724 }
1725 }
1726
1727 static inline void set_inode_flag(struct inode *inode, int flag)
1728 {
1729 if (!test_bit(flag, &F2FS_I(inode)->flags))
1730 set_bit(flag, &F2FS_I(inode)->flags);
1731 __mark_inode_dirty_flag(inode, flag, true);
1732 }
1733
1734 static inline int is_inode_flag_set(struct inode *inode, int flag)
1735 {
1736 return test_bit(flag, &F2FS_I(inode)->flags);
1737 }
1738
1739 static inline void clear_inode_flag(struct inode *inode, int flag)
1740 {
1741 if (test_bit(flag, &F2FS_I(inode)->flags))
1742 clear_bit(flag, &F2FS_I(inode)->flags);
1743 __mark_inode_dirty_flag(inode, flag, false);
1744 }
1745
1746 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1747 {
1748 F2FS_I(inode)->i_acl_mode = mode;
1749 set_inode_flag(inode, FI_ACL_MODE);
1750 f2fs_mark_inode_dirty_sync(inode, false);
1751 }
1752
1753 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1754 {
1755 if (inc)
1756 inc_nlink(inode);
1757 else
1758 drop_nlink(inode);
1759 f2fs_mark_inode_dirty_sync(inode, true);
1760 }
1761
1762 static inline void f2fs_i_blocks_write(struct inode *inode,
1763 blkcnt_t diff, bool add)
1764 {
1765 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1766 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1767
1768 inode->i_blocks = add ? inode->i_blocks + diff :
1769 inode->i_blocks - diff;
1770 f2fs_mark_inode_dirty_sync(inode, true);
1771 if (clean || recover)
1772 set_inode_flag(inode, FI_AUTO_RECOVER);
1773 }
1774
1775 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1776 {
1777 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1778 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1779
1780 if (i_size_read(inode) == i_size)
1781 return;
1782
1783 i_size_write(inode, i_size);
1784 f2fs_mark_inode_dirty_sync(inode, true);
1785 if (clean || recover)
1786 set_inode_flag(inode, FI_AUTO_RECOVER);
1787 }
1788
1789 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1790 {
1791 F2FS_I(inode)->i_current_depth = depth;
1792 f2fs_mark_inode_dirty_sync(inode, true);
1793 }
1794
1795 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1796 {
1797 F2FS_I(inode)->i_xattr_nid = xnid;
1798 f2fs_mark_inode_dirty_sync(inode, true);
1799 }
1800
1801 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1802 {
1803 F2FS_I(inode)->i_pino = pino;
1804 f2fs_mark_inode_dirty_sync(inode, true);
1805 }
1806
1807 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1808 {
1809 struct f2fs_inode_info *fi = F2FS_I(inode);
1810
1811 if (ri->i_inline & F2FS_INLINE_XATTR)
1812 set_bit(FI_INLINE_XATTR, &fi->flags);
1813 if (ri->i_inline & F2FS_INLINE_DATA)
1814 set_bit(FI_INLINE_DATA, &fi->flags);
1815 if (ri->i_inline & F2FS_INLINE_DENTRY)
1816 set_bit(FI_INLINE_DENTRY, &fi->flags);
1817 if (ri->i_inline & F2FS_DATA_EXIST)
1818 set_bit(FI_DATA_EXIST, &fi->flags);
1819 if (ri->i_inline & F2FS_INLINE_DOTS)
1820 set_bit(FI_INLINE_DOTS, &fi->flags);
1821 }
1822
1823 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1824 {
1825 ri->i_inline = 0;
1826
1827 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1828 ri->i_inline |= F2FS_INLINE_XATTR;
1829 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1830 ri->i_inline |= F2FS_INLINE_DATA;
1831 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1832 ri->i_inline |= F2FS_INLINE_DENTRY;
1833 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1834 ri->i_inline |= F2FS_DATA_EXIST;
1835 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1836 ri->i_inline |= F2FS_INLINE_DOTS;
1837 }
1838
1839 static inline int f2fs_has_inline_xattr(struct inode *inode)
1840 {
1841 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1842 }
1843
1844 static inline unsigned int addrs_per_inode(struct inode *inode)
1845 {
1846 if (f2fs_has_inline_xattr(inode))
1847 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1848 return DEF_ADDRS_PER_INODE;
1849 }
1850
1851 static inline void *inline_xattr_addr(struct page *page)
1852 {
1853 struct f2fs_inode *ri = F2FS_INODE(page);
1854
1855 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1856 F2FS_INLINE_XATTR_ADDRS]);
1857 }
1858
1859 static inline int inline_xattr_size(struct inode *inode)
1860 {
1861 if (f2fs_has_inline_xattr(inode))
1862 return F2FS_INLINE_XATTR_ADDRS << 2;
1863 else
1864 return 0;
1865 }
1866
1867 static inline int f2fs_has_inline_data(struct inode *inode)
1868 {
1869 return is_inode_flag_set(inode, FI_INLINE_DATA);
1870 }
1871
1872 static inline void f2fs_clear_inline_inode(struct inode *inode)
1873 {
1874 clear_inode_flag(inode, FI_INLINE_DATA);
1875 clear_inode_flag(inode, FI_DATA_EXIST);
1876 }
1877
1878 static inline int f2fs_exist_data(struct inode *inode)
1879 {
1880 return is_inode_flag_set(inode, FI_DATA_EXIST);
1881 }
1882
1883 static inline int f2fs_has_inline_dots(struct inode *inode)
1884 {
1885 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1886 }
1887
1888 static inline bool f2fs_is_atomic_file(struct inode *inode)
1889 {
1890 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1891 }
1892
1893 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
1894 {
1895 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
1896 }
1897
1898 static inline bool f2fs_is_volatile_file(struct inode *inode)
1899 {
1900 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1901 }
1902
1903 static inline bool f2fs_is_first_block_written(struct inode *inode)
1904 {
1905 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1906 }
1907
1908 static inline bool f2fs_is_drop_cache(struct inode *inode)
1909 {
1910 return is_inode_flag_set(inode, FI_DROP_CACHE);
1911 }
1912
1913 static inline void *inline_data_addr(struct page *page)
1914 {
1915 struct f2fs_inode *ri = F2FS_INODE(page);
1916
1917 return (void *)&(ri->i_addr[1]);
1918 }
1919
1920 static inline int f2fs_has_inline_dentry(struct inode *inode)
1921 {
1922 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1923 }
1924
1925 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1926 {
1927 if (!f2fs_has_inline_dentry(dir))
1928 kunmap(page);
1929 }
1930
1931 static inline int is_file(struct inode *inode, int type)
1932 {
1933 return F2FS_I(inode)->i_advise & type;
1934 }
1935
1936 static inline void set_file(struct inode *inode, int type)
1937 {
1938 F2FS_I(inode)->i_advise |= type;
1939 f2fs_mark_inode_dirty_sync(inode, true);
1940 }
1941
1942 static inline void clear_file(struct inode *inode, int type)
1943 {
1944 F2FS_I(inode)->i_advise &= ~type;
1945 f2fs_mark_inode_dirty_sync(inode, true);
1946 }
1947
1948 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
1949 {
1950 if (dsync) {
1951 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1952 bool ret;
1953
1954 spin_lock(&sbi->inode_lock[DIRTY_META]);
1955 ret = list_empty(&F2FS_I(inode)->gdirty_list);
1956 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1957 return ret;
1958 }
1959 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
1960 file_keep_isize(inode) ||
1961 i_size_read(inode) & PAGE_MASK)
1962 return false;
1963 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1964 }
1965
1966 static inline int f2fs_readonly(struct super_block *sb)
1967 {
1968 return sb->s_flags & MS_RDONLY;
1969 }
1970
1971 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1972 {
1973 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
1974 }
1975
1976 static inline bool is_dot_dotdot(const struct qstr *str)
1977 {
1978 if (str->len == 1 && str->name[0] == '.')
1979 return true;
1980
1981 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1982 return true;
1983
1984 return false;
1985 }
1986
1987 static inline bool f2fs_may_extent_tree(struct inode *inode)
1988 {
1989 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1990 is_inode_flag_set(inode, FI_NO_EXTENT))
1991 return false;
1992
1993 return S_ISREG(inode->i_mode);
1994 }
1995
1996 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
1997 size_t size, gfp_t flags)
1998 {
1999 #ifdef CONFIG_F2FS_FAULT_INJECTION
2000 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2001 f2fs_show_injection_info(FAULT_KMALLOC);
2002 return NULL;
2003 }
2004 #endif
2005 return kmalloc(size, flags);
2006 }
2007
2008 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
2009 {
2010 void *ret;
2011
2012 ret = kmalloc(size, flags | __GFP_NOWARN);
2013 if (!ret)
2014 ret = __vmalloc(size, flags, PAGE_KERNEL);
2015 return ret;
2016 }
2017
2018 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
2019 {
2020 void *ret;
2021
2022 ret = kzalloc(size, flags | __GFP_NOWARN);
2023 if (!ret)
2024 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
2025 return ret;
2026 }
2027
2028 #define get_inode_mode(i) \
2029 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2030 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2031
2032 /* get offset of first page in next direct node */
2033 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
2034 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
2035 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
2036 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
2037
2038 /*
2039 * file.c
2040 */
2041 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2042 void truncate_data_blocks(struct dnode_of_data *dn);
2043 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2044 int f2fs_truncate(struct inode *inode);
2045 int f2fs_getattr(const struct path *path, struct kstat *stat,
2046 u32 request_mask, unsigned int flags);
2047 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2048 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2049 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2050 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2051 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2052
2053 /*
2054 * inode.c
2055 */
2056 void f2fs_set_inode_flags(struct inode *inode);
2057 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2058 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2059 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2060 int update_inode(struct inode *inode, struct page *node_page);
2061 int update_inode_page(struct inode *inode);
2062 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2063 void f2fs_evict_inode(struct inode *inode);
2064 void handle_failed_inode(struct inode *inode);
2065
2066 /*
2067 * namei.c
2068 */
2069 struct dentry *f2fs_get_parent(struct dentry *child);
2070
2071 /*
2072 * dir.c
2073 */
2074 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2075 unsigned char get_de_type(struct f2fs_dir_entry *de);
2076 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2077 f2fs_hash_t namehash, int *max_slots,
2078 struct f2fs_dentry_ptr *d);
2079 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2080 unsigned int start_pos, struct fscrypt_str *fstr);
2081 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2082 struct f2fs_dentry_ptr *d);
2083 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2084 const struct qstr *new_name,
2085 const struct qstr *orig_name, struct page *dpage);
2086 void update_parent_metadata(struct inode *dir, struct inode *inode,
2087 unsigned int current_depth);
2088 int room_for_filename(const void *bitmap, int slots, int max_slots);
2089 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2090 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2091 struct fscrypt_name *fname, struct page **res_page);
2092 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2093 const struct qstr *child, struct page **res_page);
2094 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2095 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2096 struct page **page);
2097 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2098 struct page *page, struct inode *inode);
2099 int update_dent_inode(struct inode *inode, struct inode *to,
2100 const struct qstr *name);
2101 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2102 const struct qstr *name, f2fs_hash_t name_hash,
2103 unsigned int bit_pos);
2104 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2105 const struct qstr *orig_name,
2106 struct inode *inode, nid_t ino, umode_t mode);
2107 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2108 struct inode *inode, nid_t ino, umode_t mode);
2109 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2110 struct inode *inode, nid_t ino, umode_t mode);
2111 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2112 struct inode *dir, struct inode *inode);
2113 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2114 bool f2fs_empty_dir(struct inode *dir);
2115
2116 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2117 {
2118 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2119 inode, inode->i_ino, inode->i_mode);
2120 }
2121
2122 /*
2123 * super.c
2124 */
2125 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2126 void f2fs_inode_synced(struct inode *inode);
2127 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2128 int f2fs_sync_fs(struct super_block *sb, int sync);
2129 extern __printf(3, 4)
2130 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2131 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2132
2133 /*
2134 * hash.c
2135 */
2136 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info);
2137
2138 /*
2139 * node.c
2140 */
2141 struct dnode_of_data;
2142 struct node_info;
2143
2144 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2145 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2146 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2147 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2148 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2149 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2150 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2151 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2152 int truncate_xattr_node(struct inode *inode, struct page *page);
2153 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2154 int remove_inode_page(struct inode *inode);
2155 struct page *new_inode_page(struct inode *inode);
2156 struct page *new_node_page(struct dnode_of_data *dn,
2157 unsigned int ofs, struct page *ipage);
2158 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2159 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2160 struct page *get_node_page_ra(struct page *parent, int start);
2161 void move_node_page(struct page *node_page, int gc_type);
2162 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2163 struct writeback_control *wbc, bool atomic);
2164 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2165 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2166 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2167 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2168 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2169 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2170 void recover_inline_xattr(struct inode *inode, struct page *page);
2171 int recover_xattr_data(struct inode *inode, struct page *page,
2172 block_t blkaddr);
2173 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2174 int restore_node_summary(struct f2fs_sb_info *sbi,
2175 unsigned int segno, struct f2fs_summary_block *sum);
2176 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2177 int build_node_manager(struct f2fs_sb_info *sbi);
2178 void destroy_node_manager(struct f2fs_sb_info *sbi);
2179 int __init create_node_manager_caches(void);
2180 void destroy_node_manager_caches(void);
2181
2182 /*
2183 * segment.c
2184 */
2185 void register_inmem_page(struct inode *inode, struct page *page);
2186 void drop_inmem_pages(struct inode *inode);
2187 int commit_inmem_pages(struct inode *inode);
2188 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2189 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2190 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2191 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2192 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2193 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2194 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2195 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2196 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr);
2197 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2198 void release_discard_addrs(struct f2fs_sb_info *sbi);
2199 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2200 void allocate_new_segments(struct f2fs_sb_info *sbi);
2201 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2202 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2203 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2204 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2205 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2206 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2207 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2208 void rewrite_data_page(struct f2fs_io_info *fio);
2209 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2210 block_t old_blkaddr, block_t new_blkaddr,
2211 bool recover_curseg, bool recover_newaddr);
2212 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2213 block_t old_addr, block_t new_addr,
2214 unsigned char version, bool recover_curseg,
2215 bool recover_newaddr);
2216 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2217 block_t old_blkaddr, block_t *new_blkaddr,
2218 struct f2fs_summary *sum, int type);
2219 void f2fs_wait_on_page_writeback(struct page *page,
2220 enum page_type type, bool ordered);
2221 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2222 block_t blkaddr);
2223 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2224 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2225 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2226 unsigned int val, int alloc);
2227 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2228 int build_segment_manager(struct f2fs_sb_info *sbi);
2229 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2230 int __init create_segment_manager_caches(void);
2231 void destroy_segment_manager_caches(void);
2232
2233 /*
2234 * checkpoint.c
2235 */
2236 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2237 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2238 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2239 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2240 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2241 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2242 int type, bool sync);
2243 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2244 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2245 long nr_to_write);
2246 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2247 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2248 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2249 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2250 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2251 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2252 void release_orphan_inode(struct f2fs_sb_info *sbi);
2253 void add_orphan_inode(struct inode *inode);
2254 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2255 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2256 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2257 void update_dirty_page(struct inode *inode, struct page *page);
2258 void remove_dirty_inode(struct inode *inode);
2259 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2260 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2261 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2262 int __init create_checkpoint_caches(void);
2263 void destroy_checkpoint_caches(void);
2264
2265 /*
2266 * data.c
2267 */
2268 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
2269 int rw);
2270 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
2271 struct inode *inode, nid_t ino, pgoff_t idx,
2272 enum page_type type, int rw);
2273 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi);
2274 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2275 int f2fs_submit_page_mbio(struct f2fs_io_info *fio);
2276 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2277 block_t blk_addr, struct bio *bio);
2278 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2279 void set_data_blkaddr(struct dnode_of_data *dn);
2280 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2281 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2282 int reserve_new_block(struct dnode_of_data *dn);
2283 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2284 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2285 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2286 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2287 int op_flags, bool for_write);
2288 struct page *find_data_page(struct inode *inode, pgoff_t index);
2289 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2290 bool for_write);
2291 struct page *get_new_data_page(struct inode *inode,
2292 struct page *ipage, pgoff_t index, bool new_i_size);
2293 int do_write_data_page(struct f2fs_io_info *fio);
2294 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2295 int create, int flag);
2296 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2297 u64 start, u64 len);
2298 void f2fs_set_page_dirty_nobuffers(struct page *page);
2299 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2300 unsigned int length);
2301 int f2fs_release_page(struct page *page, gfp_t wait);
2302 #ifdef CONFIG_MIGRATION
2303 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2304 struct page *page, enum migrate_mode mode);
2305 #endif
2306
2307 /*
2308 * gc.c
2309 */
2310 int start_gc_thread(struct f2fs_sb_info *sbi);
2311 void stop_gc_thread(struct f2fs_sb_info *sbi);
2312 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2313 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background);
2314 void build_gc_manager(struct f2fs_sb_info *sbi);
2315
2316 /*
2317 * recovery.c
2318 */
2319 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2320 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2321
2322 /*
2323 * debug.c
2324 */
2325 #ifdef CONFIG_F2FS_STAT_FS
2326 struct f2fs_stat_info {
2327 struct list_head stat_list;
2328 struct f2fs_sb_info *sbi;
2329 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2330 int main_area_segs, main_area_sections, main_area_zones;
2331 unsigned long long hit_largest, hit_cached, hit_rbtree;
2332 unsigned long long hit_total, total_ext;
2333 int ext_tree, zombie_tree, ext_node;
2334 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2335 int inmem_pages;
2336 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2337 int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids;
2338 int total_count, utilization;
2339 int bg_gc, nr_wb_cp_data, nr_wb_data, nr_flush, nr_discard;
2340 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2341 int aw_cnt, max_aw_cnt;
2342 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2343 unsigned int bimodal, avg_vblocks;
2344 int util_free, util_valid, util_invalid;
2345 int rsvd_segs, overp_segs;
2346 int dirty_count, node_pages, meta_pages;
2347 int prefree_count, call_count, cp_count, bg_cp_count;
2348 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2349 int bg_node_segs, bg_data_segs;
2350 int tot_blks, data_blks, node_blks;
2351 int bg_data_blks, bg_node_blks;
2352 int curseg[NR_CURSEG_TYPE];
2353 int cursec[NR_CURSEG_TYPE];
2354 int curzone[NR_CURSEG_TYPE];
2355
2356 unsigned int segment_count[2];
2357 unsigned int block_count[2];
2358 unsigned int inplace_count;
2359 unsigned long long base_mem, cache_mem, page_mem;
2360 };
2361
2362 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2363 {
2364 return (struct f2fs_stat_info *)sbi->stat_info;
2365 }
2366
2367 #define stat_inc_cp_count(si) ((si)->cp_count++)
2368 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2369 #define stat_inc_call_count(si) ((si)->call_count++)
2370 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2371 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2372 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2373 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2374 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2375 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2376 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2377 #define stat_inc_inline_xattr(inode) \
2378 do { \
2379 if (f2fs_has_inline_xattr(inode)) \
2380 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2381 } while (0)
2382 #define stat_dec_inline_xattr(inode) \
2383 do { \
2384 if (f2fs_has_inline_xattr(inode)) \
2385 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2386 } while (0)
2387 #define stat_inc_inline_inode(inode) \
2388 do { \
2389 if (f2fs_has_inline_data(inode)) \
2390 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2391 } while (0)
2392 #define stat_dec_inline_inode(inode) \
2393 do { \
2394 if (f2fs_has_inline_data(inode)) \
2395 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2396 } while (0)
2397 #define stat_inc_inline_dir(inode) \
2398 do { \
2399 if (f2fs_has_inline_dentry(inode)) \
2400 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2401 } while (0)
2402 #define stat_dec_inline_dir(inode) \
2403 do { \
2404 if (f2fs_has_inline_dentry(inode)) \
2405 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2406 } while (0)
2407 #define stat_inc_seg_type(sbi, curseg) \
2408 ((sbi)->segment_count[(curseg)->alloc_type]++)
2409 #define stat_inc_block_count(sbi, curseg) \
2410 ((sbi)->block_count[(curseg)->alloc_type]++)
2411 #define stat_inc_inplace_blocks(sbi) \
2412 (atomic_inc(&(sbi)->inplace_count))
2413 #define stat_inc_atomic_write(inode) \
2414 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2415 #define stat_dec_atomic_write(inode) \
2416 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2417 #define stat_update_max_atomic_write(inode) \
2418 do { \
2419 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2420 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2421 if (cur > max) \
2422 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2423 } while (0)
2424 #define stat_inc_seg_count(sbi, type, gc_type) \
2425 do { \
2426 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2427 (si)->tot_segs++; \
2428 if (type == SUM_TYPE_DATA) { \
2429 si->data_segs++; \
2430 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2431 } else { \
2432 si->node_segs++; \
2433 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2434 } \
2435 } while (0)
2436
2437 #define stat_inc_tot_blk_count(si, blks) \
2438 (si->tot_blks += (blks))
2439
2440 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2441 do { \
2442 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2443 stat_inc_tot_blk_count(si, blks); \
2444 si->data_blks += (blks); \
2445 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2446 } while (0)
2447
2448 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2449 do { \
2450 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2451 stat_inc_tot_blk_count(si, blks); \
2452 si->node_blks += (blks); \
2453 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2454 } while (0)
2455
2456 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2457 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2458 int __init f2fs_create_root_stats(void);
2459 void f2fs_destroy_root_stats(void);
2460 #else
2461 #define stat_inc_cp_count(si)
2462 #define stat_inc_bg_cp_count(si)
2463 #define stat_inc_call_count(si)
2464 #define stat_inc_bggc_count(si)
2465 #define stat_inc_dirty_inode(sbi, type)
2466 #define stat_dec_dirty_inode(sbi, type)
2467 #define stat_inc_total_hit(sb)
2468 #define stat_inc_rbtree_node_hit(sb)
2469 #define stat_inc_largest_node_hit(sbi)
2470 #define stat_inc_cached_node_hit(sbi)
2471 #define stat_inc_inline_xattr(inode)
2472 #define stat_dec_inline_xattr(inode)
2473 #define stat_inc_inline_inode(inode)
2474 #define stat_dec_inline_inode(inode)
2475 #define stat_inc_inline_dir(inode)
2476 #define stat_dec_inline_dir(inode)
2477 #define stat_inc_atomic_write(inode)
2478 #define stat_dec_atomic_write(inode)
2479 #define stat_update_max_atomic_write(inode)
2480 #define stat_inc_seg_type(sbi, curseg)
2481 #define stat_inc_block_count(sbi, curseg)
2482 #define stat_inc_inplace_blocks(sbi)
2483 #define stat_inc_seg_count(sbi, type, gc_type)
2484 #define stat_inc_tot_blk_count(si, blks)
2485 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2486 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2487
2488 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2489 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2490 static inline int __init f2fs_create_root_stats(void) { return 0; }
2491 static inline void f2fs_destroy_root_stats(void) { }
2492 #endif
2493
2494 extern const struct file_operations f2fs_dir_operations;
2495 extern const struct file_operations f2fs_file_operations;
2496 extern const struct inode_operations f2fs_file_inode_operations;
2497 extern const struct address_space_operations f2fs_dblock_aops;
2498 extern const struct address_space_operations f2fs_node_aops;
2499 extern const struct address_space_operations f2fs_meta_aops;
2500 extern const struct inode_operations f2fs_dir_inode_operations;
2501 extern const struct inode_operations f2fs_symlink_inode_operations;
2502 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2503 extern const struct inode_operations f2fs_special_inode_operations;
2504 extern struct kmem_cache *inode_entry_slab;
2505
2506 /*
2507 * inline.c
2508 */
2509 bool f2fs_may_inline_data(struct inode *inode);
2510 bool f2fs_may_inline_dentry(struct inode *inode);
2511 void read_inline_data(struct page *page, struct page *ipage);
2512 bool truncate_inline_inode(struct page *ipage, u64 from);
2513 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2514 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2515 int f2fs_convert_inline_inode(struct inode *inode);
2516 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2517 bool recover_inline_data(struct inode *inode, struct page *npage);
2518 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2519 struct fscrypt_name *fname, struct page **res_page);
2520 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2521 struct page *ipage);
2522 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2523 const struct qstr *orig_name,
2524 struct inode *inode, nid_t ino, umode_t mode);
2525 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2526 struct inode *dir, struct inode *inode);
2527 bool f2fs_empty_inline_dir(struct inode *dir);
2528 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2529 struct fscrypt_str *fstr);
2530 int f2fs_inline_data_fiemap(struct inode *inode,
2531 struct fiemap_extent_info *fieinfo,
2532 __u64 start, __u64 len);
2533
2534 /*
2535 * shrinker.c
2536 */
2537 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2538 struct shrink_control *sc);
2539 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2540 struct shrink_control *sc);
2541 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2542 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2543
2544 /*
2545 * extent_cache.c
2546 */
2547 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2548 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2549 void f2fs_drop_extent_tree(struct inode *inode);
2550 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2551 void f2fs_destroy_extent_tree(struct inode *inode);
2552 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2553 struct extent_info *ei);
2554 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2555 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2556 pgoff_t fofs, block_t blkaddr, unsigned int len);
2557 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2558 int __init create_extent_cache(void);
2559 void destroy_extent_cache(void);
2560
2561 /*
2562 * crypto support
2563 */
2564 static inline bool f2fs_encrypted_inode(struct inode *inode)
2565 {
2566 return file_is_encrypt(inode);
2567 }
2568
2569 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2570 {
2571 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2572 file_set_encrypt(inode);
2573 #endif
2574 }
2575
2576 static inline bool f2fs_bio_encrypted(struct bio *bio)
2577 {
2578 return bio->bi_private != NULL;
2579 }
2580
2581 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2582 {
2583 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2584 }
2585
2586 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2587 {
2588 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2589 }
2590
2591 #ifdef CONFIG_BLK_DEV_ZONED
2592 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2593 struct block_device *bdev, block_t blkaddr)
2594 {
2595 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2596 int i;
2597
2598 for (i = 0; i < sbi->s_ndevs; i++)
2599 if (FDEV(i).bdev == bdev)
2600 return FDEV(i).blkz_type[zno];
2601 return -EINVAL;
2602 }
2603 #endif
2604
2605 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2606 {
2607 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2608
2609 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2610 }
2611
2612 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2613 {
2614 clear_opt(sbi, ADAPTIVE);
2615 clear_opt(sbi, LFS);
2616
2617 switch (mt) {
2618 case F2FS_MOUNT_ADAPTIVE:
2619 set_opt(sbi, ADAPTIVE);
2620 break;
2621 case F2FS_MOUNT_LFS:
2622 set_opt(sbi, LFS);
2623 break;
2624 }
2625 }
2626
2627 static inline bool f2fs_may_encrypt(struct inode *inode)
2628 {
2629 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2630 umode_t mode = inode->i_mode;
2631
2632 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2633 #else
2634 return 0;
2635 #endif
2636 }
2637
2638 #endif