]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/f2fs/f2fs.h
clk-bcm2835: Read max core clock from firmware
[mirror_ubuntu-zesty-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_EVICT_INODE,
49 FAULT_IO,
50 FAULT_CHECKPOINT,
51 FAULT_MAX,
52 };
53
54 struct f2fs_fault_info {
55 atomic_t inject_ops;
56 unsigned int inject_rate;
57 unsigned int inject_type;
58 };
59
60 extern char *fault_name[FAULT_MAX];
61 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type)))
62 #endif
63
64 /*
65 * For mount options
66 */
67 #define F2FS_MOUNT_BG_GC 0x00000001
68 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
69 #define F2FS_MOUNT_DISCARD 0x00000004
70 #define F2FS_MOUNT_NOHEAP 0x00000008
71 #define F2FS_MOUNT_XATTR_USER 0x00000010
72 #define F2FS_MOUNT_POSIX_ACL 0x00000020
73 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
74 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
75 #define F2FS_MOUNT_INLINE_DATA 0x00000100
76 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
77 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
78 #define F2FS_MOUNT_NOBARRIER 0x00000800
79 #define F2FS_MOUNT_FASTBOOT 0x00001000
80 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
81 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
82 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
83 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
84 #define F2FS_MOUNT_ADAPTIVE 0x00020000
85 #define F2FS_MOUNT_LFS 0x00040000
86
87 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
88 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
89 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
90
91 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
92 typecheck(unsigned long long, b) && \
93 ((long long)((a) - (b)) > 0))
94
95 typedef u32 block_t; /*
96 * should not change u32, since it is the on-disk block
97 * address format, __le32.
98 */
99 typedef u32 nid_t;
100
101 struct f2fs_mount_info {
102 unsigned int opt;
103 };
104
105 #define F2FS_FEATURE_ENCRYPT 0x0001
106 #define F2FS_FEATURE_BLKZONED 0x0002
107
108 #define F2FS_HAS_FEATURE(sb, mask) \
109 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
110 #define F2FS_SET_FEATURE(sb, mask) \
111 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
112 #define F2FS_CLEAR_FEATURE(sb, mask) \
113 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
114
115 /*
116 * For checkpoint manager
117 */
118 enum {
119 NAT_BITMAP,
120 SIT_BITMAP
121 };
122
123 enum {
124 CP_UMOUNT,
125 CP_FASTBOOT,
126 CP_SYNC,
127 CP_RECOVERY,
128 CP_DISCARD,
129 };
130
131 #define DEF_BATCHED_TRIM_SECTIONS 2
132 #define BATCHED_TRIM_SEGMENTS(sbi) \
133 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
134 #define BATCHED_TRIM_BLOCKS(sbi) \
135 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
136 #define DEF_CP_INTERVAL 60 /* 60 secs */
137 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
138
139 struct cp_control {
140 int reason;
141 __u64 trim_start;
142 __u64 trim_end;
143 __u64 trim_minlen;
144 __u64 trimmed;
145 };
146
147 /*
148 * For CP/NAT/SIT/SSA readahead
149 */
150 enum {
151 META_CP,
152 META_NAT,
153 META_SIT,
154 META_SSA,
155 META_POR,
156 };
157
158 /* for the list of ino */
159 enum {
160 ORPHAN_INO, /* for orphan ino list */
161 APPEND_INO, /* for append ino list */
162 UPDATE_INO, /* for update ino list */
163 MAX_INO_ENTRY, /* max. list */
164 };
165
166 struct ino_entry {
167 struct list_head list; /* list head */
168 nid_t ino; /* inode number */
169 };
170
171 /* for the list of inodes to be GCed */
172 struct inode_entry {
173 struct list_head list; /* list head */
174 struct inode *inode; /* vfs inode pointer */
175 };
176
177 /* for the list of blockaddresses to be discarded */
178 struct discard_entry {
179 struct list_head list; /* list head */
180 block_t blkaddr; /* block address to be discarded */
181 int len; /* # of consecutive blocks of the discard */
182 };
183
184 struct bio_entry {
185 struct list_head list;
186 struct bio *bio;
187 struct completion event;
188 int error;
189 };
190
191 /* for the list of fsync inodes, used only during recovery */
192 struct fsync_inode_entry {
193 struct list_head list; /* list head */
194 struct inode *inode; /* vfs inode pointer */
195 block_t blkaddr; /* block address locating the last fsync */
196 block_t last_dentry; /* block address locating the last dentry */
197 };
198
199 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
200 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
201
202 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
203 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
204 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
205 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
206
207 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
208 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
209
210 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
211 {
212 int before = nats_in_cursum(journal);
213 journal->n_nats = cpu_to_le16(before + i);
214 return before;
215 }
216
217 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
218 {
219 int before = sits_in_cursum(journal);
220 journal->n_sits = cpu_to_le16(before + i);
221 return before;
222 }
223
224 static inline bool __has_cursum_space(struct f2fs_journal *journal,
225 int size, int type)
226 {
227 if (type == NAT_JOURNAL)
228 return size <= MAX_NAT_JENTRIES(journal);
229 return size <= MAX_SIT_JENTRIES(journal);
230 }
231
232 /*
233 * ioctl commands
234 */
235 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
236 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
237 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
238
239 #define F2FS_IOCTL_MAGIC 0xf5
240 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
241 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
242 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
243 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
244 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
245 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
246 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
247 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
248 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
249 struct f2fs_move_range)
250
251 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
252 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
253 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
254
255 /*
256 * should be same as XFS_IOC_GOINGDOWN.
257 * Flags for going down operation used by FS_IOC_GOINGDOWN
258 */
259 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
260 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
261 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
262 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
263 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
264
265 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
266 /*
267 * ioctl commands in 32 bit emulation
268 */
269 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
270 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
271 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
272 #endif
273
274 struct f2fs_defragment {
275 u64 start;
276 u64 len;
277 };
278
279 struct f2fs_move_range {
280 u32 dst_fd; /* destination fd */
281 u64 pos_in; /* start position in src_fd */
282 u64 pos_out; /* start position in dst_fd */
283 u64 len; /* size to move */
284 };
285
286 /*
287 * For INODE and NODE manager
288 */
289 /* for directory operations */
290 struct f2fs_dentry_ptr {
291 struct inode *inode;
292 const void *bitmap;
293 struct f2fs_dir_entry *dentry;
294 __u8 (*filename)[F2FS_SLOT_LEN];
295 int max;
296 };
297
298 static inline void make_dentry_ptr(struct inode *inode,
299 struct f2fs_dentry_ptr *d, void *src, int type)
300 {
301 d->inode = inode;
302
303 if (type == 1) {
304 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
305 d->max = NR_DENTRY_IN_BLOCK;
306 d->bitmap = &t->dentry_bitmap;
307 d->dentry = t->dentry;
308 d->filename = t->filename;
309 } else {
310 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
311 d->max = NR_INLINE_DENTRY;
312 d->bitmap = &t->dentry_bitmap;
313 d->dentry = t->dentry;
314 d->filename = t->filename;
315 }
316 }
317
318 /*
319 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
320 * as its node offset to distinguish from index node blocks.
321 * But some bits are used to mark the node block.
322 */
323 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
324 >> OFFSET_BIT_SHIFT)
325 enum {
326 ALLOC_NODE, /* allocate a new node page if needed */
327 LOOKUP_NODE, /* look up a node without readahead */
328 LOOKUP_NODE_RA, /*
329 * look up a node with readahead called
330 * by get_data_block.
331 */
332 };
333
334 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
335
336 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
337
338 /* vector size for gang look-up from extent cache that consists of radix tree */
339 #define EXT_TREE_VEC_SIZE 64
340
341 /* for in-memory extent cache entry */
342 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
343
344 /* number of extent info in extent cache we try to shrink */
345 #define EXTENT_CACHE_SHRINK_NUMBER 128
346
347 struct extent_info {
348 unsigned int fofs; /* start offset in a file */
349 u32 blk; /* start block address of the extent */
350 unsigned int len; /* length of the extent */
351 };
352
353 struct extent_node {
354 struct rb_node rb_node; /* rb node located in rb-tree */
355 struct list_head list; /* node in global extent list of sbi */
356 struct extent_info ei; /* extent info */
357 struct extent_tree *et; /* extent tree pointer */
358 };
359
360 struct extent_tree {
361 nid_t ino; /* inode number */
362 struct rb_root root; /* root of extent info rb-tree */
363 struct extent_node *cached_en; /* recently accessed extent node */
364 struct extent_info largest; /* largested extent info */
365 struct list_head list; /* to be used by sbi->zombie_list */
366 rwlock_t lock; /* protect extent info rb-tree */
367 atomic_t node_cnt; /* # of extent node in rb-tree*/
368 };
369
370 /*
371 * This structure is taken from ext4_map_blocks.
372 *
373 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
374 */
375 #define F2FS_MAP_NEW (1 << BH_New)
376 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
377 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
378 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
379 F2FS_MAP_UNWRITTEN)
380
381 struct f2fs_map_blocks {
382 block_t m_pblk;
383 block_t m_lblk;
384 unsigned int m_len;
385 unsigned int m_flags;
386 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
387 };
388
389 /* for flag in get_data_block */
390 #define F2FS_GET_BLOCK_READ 0
391 #define F2FS_GET_BLOCK_DIO 1
392 #define F2FS_GET_BLOCK_FIEMAP 2
393 #define F2FS_GET_BLOCK_BMAP 3
394 #define F2FS_GET_BLOCK_PRE_DIO 4
395 #define F2FS_GET_BLOCK_PRE_AIO 5
396
397 /*
398 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
399 */
400 #define FADVISE_COLD_BIT 0x01
401 #define FADVISE_LOST_PINO_BIT 0x02
402 #define FADVISE_ENCRYPT_BIT 0x04
403 #define FADVISE_ENC_NAME_BIT 0x08
404 #define FADVISE_KEEP_SIZE_BIT 0x10
405
406 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
407 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
408 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
409 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
410 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
411 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
412 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
413 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
414 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
415 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
416 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
417 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
418 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
419
420 #define DEF_DIR_LEVEL 0
421
422 struct f2fs_inode_info {
423 struct inode vfs_inode; /* serve a vfs inode */
424 unsigned long i_flags; /* keep an inode flags for ioctl */
425 unsigned char i_advise; /* use to give file attribute hints */
426 unsigned char i_dir_level; /* use for dentry level for large dir */
427 unsigned int i_current_depth; /* use only in directory structure */
428 unsigned int i_pino; /* parent inode number */
429 umode_t i_acl_mode; /* keep file acl mode temporarily */
430
431 /* Use below internally in f2fs*/
432 unsigned long flags; /* use to pass per-file flags */
433 struct rw_semaphore i_sem; /* protect fi info */
434 atomic_t dirty_pages; /* # of dirty pages */
435 f2fs_hash_t chash; /* hash value of given file name */
436 unsigned int clevel; /* maximum level of given file name */
437 struct task_struct *task; /* lookup and create consistency */
438 nid_t i_xattr_nid; /* node id that contains xattrs */
439 unsigned long long xattr_ver; /* cp version of xattr modification */
440 loff_t last_disk_size; /* lastly written file size */
441
442 struct list_head dirty_list; /* dirty list for dirs and files */
443 struct list_head gdirty_list; /* linked in global dirty list */
444 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
445 struct mutex inmem_lock; /* lock for inmemory pages */
446 struct extent_tree *extent_tree; /* cached extent_tree entry */
447 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
448 };
449
450 static inline void get_extent_info(struct extent_info *ext,
451 struct f2fs_extent *i_ext)
452 {
453 ext->fofs = le32_to_cpu(i_ext->fofs);
454 ext->blk = le32_to_cpu(i_ext->blk);
455 ext->len = le32_to_cpu(i_ext->len);
456 }
457
458 static inline void set_raw_extent(struct extent_info *ext,
459 struct f2fs_extent *i_ext)
460 {
461 i_ext->fofs = cpu_to_le32(ext->fofs);
462 i_ext->blk = cpu_to_le32(ext->blk);
463 i_ext->len = cpu_to_le32(ext->len);
464 }
465
466 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
467 u32 blk, unsigned int len)
468 {
469 ei->fofs = fofs;
470 ei->blk = blk;
471 ei->len = len;
472 }
473
474 static inline bool __is_extent_same(struct extent_info *ei1,
475 struct extent_info *ei2)
476 {
477 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
478 ei1->len == ei2->len);
479 }
480
481 static inline bool __is_extent_mergeable(struct extent_info *back,
482 struct extent_info *front)
483 {
484 return (back->fofs + back->len == front->fofs &&
485 back->blk + back->len == front->blk);
486 }
487
488 static inline bool __is_back_mergeable(struct extent_info *cur,
489 struct extent_info *back)
490 {
491 return __is_extent_mergeable(back, cur);
492 }
493
494 static inline bool __is_front_mergeable(struct extent_info *cur,
495 struct extent_info *front)
496 {
497 return __is_extent_mergeable(cur, front);
498 }
499
500 extern void f2fs_mark_inode_dirty_sync(struct inode *, bool);
501 static inline void __try_update_largest_extent(struct inode *inode,
502 struct extent_tree *et, struct extent_node *en)
503 {
504 if (en->ei.len > et->largest.len) {
505 et->largest = en->ei;
506 f2fs_mark_inode_dirty_sync(inode, true);
507 }
508 }
509
510 enum nid_list {
511 FREE_NID_LIST,
512 ALLOC_NID_LIST,
513 MAX_NID_LIST,
514 };
515
516 struct f2fs_nm_info {
517 block_t nat_blkaddr; /* base disk address of NAT */
518 nid_t max_nid; /* maximum possible node ids */
519 nid_t available_nids; /* # of available node ids */
520 nid_t next_scan_nid; /* the next nid to be scanned */
521 unsigned int ram_thresh; /* control the memory footprint */
522 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
523 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
524
525 /* NAT cache management */
526 struct radix_tree_root nat_root;/* root of the nat entry cache */
527 struct radix_tree_root nat_set_root;/* root of the nat set cache */
528 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
529 struct list_head nat_entries; /* cached nat entry list (clean) */
530 unsigned int nat_cnt; /* the # of cached nat entries */
531 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
532
533 /* free node ids management */
534 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
535 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
536 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */
537 spinlock_t nid_list_lock; /* protect nid lists ops */
538 struct mutex build_lock; /* lock for build free nids */
539
540 /* for checkpoint */
541 char *nat_bitmap; /* NAT bitmap pointer */
542 int bitmap_size; /* bitmap size */
543 };
544
545 /*
546 * this structure is used as one of function parameters.
547 * all the information are dedicated to a given direct node block determined
548 * by the data offset in a file.
549 */
550 struct dnode_of_data {
551 struct inode *inode; /* vfs inode pointer */
552 struct page *inode_page; /* its inode page, NULL is possible */
553 struct page *node_page; /* cached direct node page */
554 nid_t nid; /* node id of the direct node block */
555 unsigned int ofs_in_node; /* data offset in the node page */
556 bool inode_page_locked; /* inode page is locked or not */
557 bool node_changed; /* is node block changed */
558 char cur_level; /* level of hole node page */
559 char max_level; /* level of current page located */
560 block_t data_blkaddr; /* block address of the node block */
561 };
562
563 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
564 struct page *ipage, struct page *npage, nid_t nid)
565 {
566 memset(dn, 0, sizeof(*dn));
567 dn->inode = inode;
568 dn->inode_page = ipage;
569 dn->node_page = npage;
570 dn->nid = nid;
571 }
572
573 /*
574 * For SIT manager
575 *
576 * By default, there are 6 active log areas across the whole main area.
577 * When considering hot and cold data separation to reduce cleaning overhead,
578 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
579 * respectively.
580 * In the current design, you should not change the numbers intentionally.
581 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
582 * logs individually according to the underlying devices. (default: 6)
583 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
584 * data and 8 for node logs.
585 */
586 #define NR_CURSEG_DATA_TYPE (3)
587 #define NR_CURSEG_NODE_TYPE (3)
588 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
589
590 enum {
591 CURSEG_HOT_DATA = 0, /* directory entry blocks */
592 CURSEG_WARM_DATA, /* data blocks */
593 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
594 CURSEG_HOT_NODE, /* direct node blocks of directory files */
595 CURSEG_WARM_NODE, /* direct node blocks of normal files */
596 CURSEG_COLD_NODE, /* indirect node blocks */
597 NO_CHECK_TYPE,
598 };
599
600 struct flush_cmd {
601 struct completion wait;
602 struct llist_node llnode;
603 int ret;
604 };
605
606 struct flush_cmd_control {
607 struct task_struct *f2fs_issue_flush; /* flush thread */
608 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
609 atomic_t submit_flush; /* # of issued flushes */
610 struct llist_head issue_list; /* list for command issue */
611 struct llist_node *dispatch_list; /* list for command dispatch */
612 };
613
614 struct f2fs_sm_info {
615 struct sit_info *sit_info; /* whole segment information */
616 struct free_segmap_info *free_info; /* free segment information */
617 struct dirty_seglist_info *dirty_info; /* dirty segment information */
618 struct curseg_info *curseg_array; /* active segment information */
619
620 block_t seg0_blkaddr; /* block address of 0'th segment */
621 block_t main_blkaddr; /* start block address of main area */
622 block_t ssa_blkaddr; /* start block address of SSA area */
623
624 unsigned int segment_count; /* total # of segments */
625 unsigned int main_segments; /* # of segments in main area */
626 unsigned int reserved_segments; /* # of reserved segments */
627 unsigned int ovp_segments; /* # of overprovision segments */
628
629 /* a threshold to reclaim prefree segments */
630 unsigned int rec_prefree_segments;
631
632 /* for small discard management */
633 struct list_head discard_list; /* 4KB discard list */
634 struct list_head wait_list; /* linked with issued discard bio */
635 int nr_discards; /* # of discards in the list */
636 int max_discards; /* max. discards to be issued */
637
638 /* for batched trimming */
639 unsigned int trim_sections; /* # of sections to trim */
640
641 struct list_head sit_entry_set; /* sit entry set list */
642
643 unsigned int ipu_policy; /* in-place-update policy */
644 unsigned int min_ipu_util; /* in-place-update threshold */
645 unsigned int min_fsync_blocks; /* threshold for fsync */
646
647 /* for flush command control */
648 struct flush_cmd_control *cmd_control_info;
649
650 };
651
652 /*
653 * For superblock
654 */
655 /*
656 * COUNT_TYPE for monitoring
657 *
658 * f2fs monitors the number of several block types such as on-writeback,
659 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
660 */
661 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
662 enum count_type {
663 F2FS_DIRTY_DENTS,
664 F2FS_DIRTY_DATA,
665 F2FS_DIRTY_NODES,
666 F2FS_DIRTY_META,
667 F2FS_INMEM_PAGES,
668 F2FS_DIRTY_IMETA,
669 F2FS_WB_CP_DATA,
670 F2FS_WB_DATA,
671 NR_COUNT_TYPE,
672 };
673
674 /*
675 * The below are the page types of bios used in submit_bio().
676 * The available types are:
677 * DATA User data pages. It operates as async mode.
678 * NODE Node pages. It operates as async mode.
679 * META FS metadata pages such as SIT, NAT, CP.
680 * NR_PAGE_TYPE The number of page types.
681 * META_FLUSH Make sure the previous pages are written
682 * with waiting the bio's completion
683 * ... Only can be used with META.
684 */
685 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
686 enum page_type {
687 DATA,
688 NODE,
689 META,
690 NR_PAGE_TYPE,
691 META_FLUSH,
692 INMEM, /* the below types are used by tracepoints only. */
693 INMEM_DROP,
694 INMEM_REVOKE,
695 IPU,
696 OPU,
697 };
698
699 struct f2fs_io_info {
700 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
701 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
702 int op; /* contains REQ_OP_ */
703 int op_flags; /* req_flag_bits */
704 block_t new_blkaddr; /* new block address to be written */
705 block_t old_blkaddr; /* old block address before Cow */
706 struct page *page; /* page to be written */
707 struct page *encrypted_page; /* encrypted page */
708 };
709
710 #define is_read_io(rw) (rw == READ)
711 struct f2fs_bio_info {
712 struct f2fs_sb_info *sbi; /* f2fs superblock */
713 struct bio *bio; /* bios to merge */
714 sector_t last_block_in_bio; /* last block number */
715 struct f2fs_io_info fio; /* store buffered io info. */
716 struct rw_semaphore io_rwsem; /* blocking op for bio */
717 };
718
719 #define FDEV(i) (sbi->devs[i])
720 #define RDEV(i) (raw_super->devs[i])
721 struct f2fs_dev_info {
722 struct block_device *bdev;
723 char path[MAX_PATH_LEN];
724 unsigned int total_segments;
725 block_t start_blk;
726 block_t end_blk;
727 #ifdef CONFIG_BLK_DEV_ZONED
728 unsigned int nr_blkz; /* Total number of zones */
729 u8 *blkz_type; /* Array of zones type */
730 #endif
731 };
732
733 enum inode_type {
734 DIR_INODE, /* for dirty dir inode */
735 FILE_INODE, /* for dirty regular/symlink inode */
736 DIRTY_META, /* for all dirtied inode metadata */
737 NR_INODE_TYPE,
738 };
739
740 /* for inner inode cache management */
741 struct inode_management {
742 struct radix_tree_root ino_root; /* ino entry array */
743 spinlock_t ino_lock; /* for ino entry lock */
744 struct list_head ino_list; /* inode list head */
745 unsigned long ino_num; /* number of entries */
746 };
747
748 /* For s_flag in struct f2fs_sb_info */
749 enum {
750 SBI_IS_DIRTY, /* dirty flag for checkpoint */
751 SBI_IS_CLOSE, /* specify unmounting */
752 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
753 SBI_POR_DOING, /* recovery is doing or not */
754 SBI_NEED_SB_WRITE, /* need to recover superblock */
755 SBI_NEED_CP, /* need to checkpoint */
756 };
757
758 enum {
759 CP_TIME,
760 REQ_TIME,
761 MAX_TIME,
762 };
763
764 #ifdef CONFIG_F2FS_FS_ENCRYPTION
765 #define F2FS_KEY_DESC_PREFIX "f2fs:"
766 #define F2FS_KEY_DESC_PREFIX_SIZE 5
767 #endif
768 struct f2fs_sb_info {
769 struct super_block *sb; /* pointer to VFS super block */
770 struct proc_dir_entry *s_proc; /* proc entry */
771 struct f2fs_super_block *raw_super; /* raw super block pointer */
772 int valid_super_block; /* valid super block no */
773 unsigned long s_flag; /* flags for sbi */
774
775 #ifdef CONFIG_F2FS_FS_ENCRYPTION
776 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
777 u8 key_prefix_size;
778 #endif
779
780 #ifdef CONFIG_BLK_DEV_ZONED
781 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
782 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
783 #endif
784
785 /* for node-related operations */
786 struct f2fs_nm_info *nm_info; /* node manager */
787 struct inode *node_inode; /* cache node blocks */
788
789 /* for segment-related operations */
790 struct f2fs_sm_info *sm_info; /* segment manager */
791
792 /* for bio operations */
793 struct f2fs_bio_info read_io; /* for read bios */
794 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
795 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */
796
797 /* for checkpoint */
798 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
799 int cur_cp_pack; /* remain current cp pack */
800 spinlock_t cp_lock; /* for flag in ckpt */
801 struct inode *meta_inode; /* cache meta blocks */
802 struct mutex cp_mutex; /* checkpoint procedure lock */
803 struct rw_semaphore cp_rwsem; /* blocking FS operations */
804 struct rw_semaphore node_write; /* locking node writes */
805 wait_queue_head_t cp_wait;
806 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
807 long interval_time[MAX_TIME]; /* to store thresholds */
808
809 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
810
811 /* for orphan inode, use 0'th array */
812 unsigned int max_orphans; /* max orphan inodes */
813
814 /* for inode management */
815 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
816 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
817
818 /* for extent tree cache */
819 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
820 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
821 struct list_head extent_list; /* lru list for shrinker */
822 spinlock_t extent_lock; /* locking extent lru list */
823 atomic_t total_ext_tree; /* extent tree count */
824 struct list_head zombie_list; /* extent zombie tree list */
825 atomic_t total_zombie_tree; /* extent zombie tree count */
826 atomic_t total_ext_node; /* extent info count */
827
828 /* basic filesystem units */
829 unsigned int log_sectors_per_block; /* log2 sectors per block */
830 unsigned int log_blocksize; /* log2 block size */
831 unsigned int blocksize; /* block size */
832 unsigned int root_ino_num; /* root inode number*/
833 unsigned int node_ino_num; /* node inode number*/
834 unsigned int meta_ino_num; /* meta inode number*/
835 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
836 unsigned int blocks_per_seg; /* blocks per segment */
837 unsigned int segs_per_sec; /* segments per section */
838 unsigned int secs_per_zone; /* sections per zone */
839 unsigned int total_sections; /* total section count */
840 unsigned int total_node_count; /* total node block count */
841 unsigned int total_valid_node_count; /* valid node block count */
842 loff_t max_file_blocks; /* max block index of file */
843 int active_logs; /* # of active logs */
844 int dir_level; /* directory level */
845
846 block_t user_block_count; /* # of user blocks */
847 block_t total_valid_block_count; /* # of valid blocks */
848 block_t discard_blks; /* discard command candidats */
849 block_t last_valid_block_count; /* for recovery */
850 u32 s_next_generation; /* for NFS support */
851
852 /* # of pages, see count_type */
853 atomic_t nr_pages[NR_COUNT_TYPE];
854 /* # of allocated blocks */
855 struct percpu_counter alloc_valid_block_count;
856
857 /* valid inode count */
858 struct percpu_counter total_valid_inode_count;
859
860 struct f2fs_mount_info mount_opt; /* mount options */
861
862 /* for cleaning operations */
863 struct mutex gc_mutex; /* mutex for GC */
864 struct f2fs_gc_kthread *gc_thread; /* GC thread */
865 unsigned int cur_victim_sec; /* current victim section num */
866
867 /* threshold for converting bg victims for fg */
868 u64 fggc_threshold;
869
870 /* maximum # of trials to find a victim segment for SSR and GC */
871 unsigned int max_victim_search;
872
873 /*
874 * for stat information.
875 * one is for the LFS mode, and the other is for the SSR mode.
876 */
877 #ifdef CONFIG_F2FS_STAT_FS
878 struct f2fs_stat_info *stat_info; /* FS status information */
879 unsigned int segment_count[2]; /* # of allocated segments */
880 unsigned int block_count[2]; /* # of allocated blocks */
881 atomic_t inplace_count; /* # of inplace update */
882 atomic64_t total_hit_ext; /* # of lookup extent cache */
883 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
884 atomic64_t read_hit_largest; /* # of hit largest extent node */
885 atomic64_t read_hit_cached; /* # of hit cached extent node */
886 atomic_t inline_xattr; /* # of inline_xattr inodes */
887 atomic_t inline_inode; /* # of inline_data inodes */
888 atomic_t inline_dir; /* # of inline_dentry inodes */
889 int bg_gc; /* background gc calls */
890 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
891 #endif
892 unsigned int last_victim[2]; /* last victim segment # */
893 spinlock_t stat_lock; /* lock for stat operations */
894
895 /* For sysfs suppport */
896 struct kobject s_kobj;
897 struct completion s_kobj_unregister;
898
899 /* For shrinker support */
900 struct list_head s_list;
901 int s_ndevs; /* number of devices */
902 struct f2fs_dev_info *devs; /* for device list */
903 struct mutex umount_mutex;
904 unsigned int shrinker_run_no;
905
906 /* For write statistics */
907 u64 sectors_written_start;
908 u64 kbytes_written;
909
910 /* Reference to checksum algorithm driver via cryptoapi */
911 struct crypto_shash *s_chksum_driver;
912
913 /* For fault injection */
914 #ifdef CONFIG_F2FS_FAULT_INJECTION
915 struct f2fs_fault_info fault_info;
916 #endif
917 };
918
919 #ifdef CONFIG_F2FS_FAULT_INJECTION
920 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
921 {
922 struct f2fs_fault_info *ffi = &sbi->fault_info;
923
924 if (!ffi->inject_rate)
925 return false;
926
927 if (!IS_FAULT_SET(ffi, type))
928 return false;
929
930 atomic_inc(&ffi->inject_ops);
931 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
932 atomic_set(&ffi->inject_ops, 0);
933 printk("%sF2FS-fs : inject %s in %pF\n",
934 KERN_INFO,
935 fault_name[type],
936 __builtin_return_address(0));
937 return true;
938 }
939 return false;
940 }
941 #endif
942
943 /* For write statistics. Suppose sector size is 512 bytes,
944 * and the return value is in kbytes. s is of struct f2fs_sb_info.
945 */
946 #define BD_PART_WRITTEN(s) \
947 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
948 s->sectors_written_start) >> 1)
949
950 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
951 {
952 sbi->last_time[type] = jiffies;
953 }
954
955 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
956 {
957 struct timespec ts = {sbi->interval_time[type], 0};
958 unsigned long interval = timespec_to_jiffies(&ts);
959
960 return time_after(jiffies, sbi->last_time[type] + interval);
961 }
962
963 static inline bool is_idle(struct f2fs_sb_info *sbi)
964 {
965 struct block_device *bdev = sbi->sb->s_bdev;
966 struct request_queue *q = bdev_get_queue(bdev);
967 struct request_list *rl = &q->root_rl;
968
969 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
970 return 0;
971
972 return f2fs_time_over(sbi, REQ_TIME);
973 }
974
975 /*
976 * Inline functions
977 */
978 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
979 unsigned int length)
980 {
981 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
982 u32 *ctx = (u32 *)shash_desc_ctx(shash);
983 int err;
984
985 shash->tfm = sbi->s_chksum_driver;
986 shash->flags = 0;
987 *ctx = F2FS_SUPER_MAGIC;
988
989 err = crypto_shash_update(shash, address, length);
990 BUG_ON(err);
991
992 return *ctx;
993 }
994
995 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
996 void *buf, size_t buf_size)
997 {
998 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
999 }
1000
1001 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1002 {
1003 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1004 }
1005
1006 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1007 {
1008 return sb->s_fs_info;
1009 }
1010
1011 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1012 {
1013 return F2FS_SB(inode->i_sb);
1014 }
1015
1016 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1017 {
1018 return F2FS_I_SB(mapping->host);
1019 }
1020
1021 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1022 {
1023 return F2FS_M_SB(page->mapping);
1024 }
1025
1026 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1027 {
1028 return (struct f2fs_super_block *)(sbi->raw_super);
1029 }
1030
1031 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1032 {
1033 return (struct f2fs_checkpoint *)(sbi->ckpt);
1034 }
1035
1036 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1037 {
1038 return (struct f2fs_node *)page_address(page);
1039 }
1040
1041 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1042 {
1043 return &((struct f2fs_node *)page_address(page))->i;
1044 }
1045
1046 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1047 {
1048 return (struct f2fs_nm_info *)(sbi->nm_info);
1049 }
1050
1051 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1052 {
1053 return (struct f2fs_sm_info *)(sbi->sm_info);
1054 }
1055
1056 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1057 {
1058 return (struct sit_info *)(SM_I(sbi)->sit_info);
1059 }
1060
1061 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1062 {
1063 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1064 }
1065
1066 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1067 {
1068 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1069 }
1070
1071 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1072 {
1073 return sbi->meta_inode->i_mapping;
1074 }
1075
1076 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1077 {
1078 return sbi->node_inode->i_mapping;
1079 }
1080
1081 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1082 {
1083 return test_bit(type, &sbi->s_flag);
1084 }
1085
1086 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1087 {
1088 set_bit(type, &sbi->s_flag);
1089 }
1090
1091 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1092 {
1093 clear_bit(type, &sbi->s_flag);
1094 }
1095
1096 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1097 {
1098 return le64_to_cpu(cp->checkpoint_ver);
1099 }
1100
1101 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1102 {
1103 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1104
1105 return ckpt_flags & f;
1106 }
1107
1108 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1109 {
1110 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1111 }
1112
1113 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1114 {
1115 unsigned int ckpt_flags;
1116
1117 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1118 ckpt_flags |= f;
1119 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1120 }
1121
1122 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1123 {
1124 spin_lock(&sbi->cp_lock);
1125 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1126 spin_unlock(&sbi->cp_lock);
1127 }
1128
1129 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1130 {
1131 unsigned int ckpt_flags;
1132
1133 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1134 ckpt_flags &= (~f);
1135 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1136 }
1137
1138 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1139 {
1140 spin_lock(&sbi->cp_lock);
1141 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1142 spin_unlock(&sbi->cp_lock);
1143 }
1144
1145 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1146 {
1147 down_read(&sbi->cp_rwsem);
1148 }
1149
1150 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1151 {
1152 up_read(&sbi->cp_rwsem);
1153 }
1154
1155 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1156 {
1157 down_write(&sbi->cp_rwsem);
1158 }
1159
1160 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1161 {
1162 up_write(&sbi->cp_rwsem);
1163 }
1164
1165 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1166 {
1167 int reason = CP_SYNC;
1168
1169 if (test_opt(sbi, FASTBOOT))
1170 reason = CP_FASTBOOT;
1171 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1172 reason = CP_UMOUNT;
1173 return reason;
1174 }
1175
1176 static inline bool __remain_node_summaries(int reason)
1177 {
1178 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1179 }
1180
1181 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1182 {
1183 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1184 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1185 }
1186
1187 /*
1188 * Check whether the given nid is within node id range.
1189 */
1190 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1191 {
1192 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1193 return -EINVAL;
1194 if (unlikely(nid >= NM_I(sbi)->max_nid))
1195 return -EINVAL;
1196 return 0;
1197 }
1198
1199 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1200
1201 /*
1202 * Check whether the inode has blocks or not
1203 */
1204 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1205 {
1206 if (F2FS_I(inode)->i_xattr_nid)
1207 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1208 else
1209 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1210 }
1211
1212 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1213 {
1214 return ofs == XATTR_NODE_OFFSET;
1215 }
1216
1217 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1218 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1219 struct inode *inode, blkcnt_t *count)
1220 {
1221 blkcnt_t diff;
1222
1223 #ifdef CONFIG_F2FS_FAULT_INJECTION
1224 if (time_to_inject(sbi, FAULT_BLOCK))
1225 return false;
1226 #endif
1227 /*
1228 * let's increase this in prior to actual block count change in order
1229 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1230 */
1231 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1232
1233 spin_lock(&sbi->stat_lock);
1234 sbi->total_valid_block_count += (block_t)(*count);
1235 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1236 diff = sbi->total_valid_block_count - sbi->user_block_count;
1237 *count -= diff;
1238 sbi->total_valid_block_count = sbi->user_block_count;
1239 if (!*count) {
1240 spin_unlock(&sbi->stat_lock);
1241 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1242 return false;
1243 }
1244 }
1245 spin_unlock(&sbi->stat_lock);
1246
1247 f2fs_i_blocks_write(inode, *count, true);
1248 return true;
1249 }
1250
1251 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1252 struct inode *inode,
1253 blkcnt_t count)
1254 {
1255 spin_lock(&sbi->stat_lock);
1256 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1257 f2fs_bug_on(sbi, inode->i_blocks < count);
1258 sbi->total_valid_block_count -= (block_t)count;
1259 spin_unlock(&sbi->stat_lock);
1260 f2fs_i_blocks_write(inode, count, false);
1261 }
1262
1263 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1264 {
1265 atomic_inc(&sbi->nr_pages[count_type]);
1266
1267 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1268 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1269 return;
1270
1271 set_sbi_flag(sbi, SBI_IS_DIRTY);
1272 }
1273
1274 static inline void inode_inc_dirty_pages(struct inode *inode)
1275 {
1276 atomic_inc(&F2FS_I(inode)->dirty_pages);
1277 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1278 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1279 }
1280
1281 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1282 {
1283 atomic_dec(&sbi->nr_pages[count_type]);
1284 }
1285
1286 static inline void inode_dec_dirty_pages(struct inode *inode)
1287 {
1288 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1289 !S_ISLNK(inode->i_mode))
1290 return;
1291
1292 atomic_dec(&F2FS_I(inode)->dirty_pages);
1293 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1294 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1295 }
1296
1297 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1298 {
1299 return atomic_read(&sbi->nr_pages[count_type]);
1300 }
1301
1302 static inline int get_dirty_pages(struct inode *inode)
1303 {
1304 return atomic_read(&F2FS_I(inode)->dirty_pages);
1305 }
1306
1307 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1308 {
1309 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1310 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1311 sbi->log_blocks_per_seg;
1312
1313 return segs / sbi->segs_per_sec;
1314 }
1315
1316 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1317 {
1318 return sbi->total_valid_block_count;
1319 }
1320
1321 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1322 {
1323 return sbi->discard_blks;
1324 }
1325
1326 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1327 {
1328 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1329
1330 /* return NAT or SIT bitmap */
1331 if (flag == NAT_BITMAP)
1332 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1333 else if (flag == SIT_BITMAP)
1334 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1335
1336 return 0;
1337 }
1338
1339 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1340 {
1341 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1342 }
1343
1344 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1345 {
1346 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1347 int offset;
1348
1349 if (__cp_payload(sbi) > 0) {
1350 if (flag == NAT_BITMAP)
1351 return &ckpt->sit_nat_version_bitmap;
1352 else
1353 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1354 } else {
1355 offset = (flag == NAT_BITMAP) ?
1356 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1357 return &ckpt->sit_nat_version_bitmap + offset;
1358 }
1359 }
1360
1361 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1362 {
1363 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1364
1365 if (sbi->cur_cp_pack == 2)
1366 start_addr += sbi->blocks_per_seg;
1367 return start_addr;
1368 }
1369
1370 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1371 {
1372 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1373
1374 if (sbi->cur_cp_pack == 1)
1375 start_addr += sbi->blocks_per_seg;
1376 return start_addr;
1377 }
1378
1379 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1380 {
1381 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1382 }
1383
1384 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1385 {
1386 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1387 }
1388
1389 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1390 struct inode *inode)
1391 {
1392 block_t valid_block_count;
1393 unsigned int valid_node_count;
1394
1395 spin_lock(&sbi->stat_lock);
1396
1397 valid_block_count = sbi->total_valid_block_count + 1;
1398 if (unlikely(valid_block_count > sbi->user_block_count)) {
1399 spin_unlock(&sbi->stat_lock);
1400 return false;
1401 }
1402
1403 valid_node_count = sbi->total_valid_node_count + 1;
1404 if (unlikely(valid_node_count > sbi->total_node_count)) {
1405 spin_unlock(&sbi->stat_lock);
1406 return false;
1407 }
1408
1409 if (inode)
1410 f2fs_i_blocks_write(inode, 1, true);
1411
1412 sbi->total_valid_node_count++;
1413 sbi->total_valid_block_count++;
1414 spin_unlock(&sbi->stat_lock);
1415
1416 percpu_counter_inc(&sbi->alloc_valid_block_count);
1417 return true;
1418 }
1419
1420 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1421 struct inode *inode)
1422 {
1423 spin_lock(&sbi->stat_lock);
1424
1425 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1426 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1427 f2fs_bug_on(sbi, !inode->i_blocks);
1428
1429 f2fs_i_blocks_write(inode, 1, false);
1430 sbi->total_valid_node_count--;
1431 sbi->total_valid_block_count--;
1432
1433 spin_unlock(&sbi->stat_lock);
1434 }
1435
1436 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1437 {
1438 return sbi->total_valid_node_count;
1439 }
1440
1441 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1442 {
1443 percpu_counter_inc(&sbi->total_valid_inode_count);
1444 }
1445
1446 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1447 {
1448 percpu_counter_dec(&sbi->total_valid_inode_count);
1449 }
1450
1451 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1452 {
1453 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1454 }
1455
1456 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1457 pgoff_t index, bool for_write)
1458 {
1459 #ifdef CONFIG_F2FS_FAULT_INJECTION
1460 struct page *page = find_lock_page(mapping, index);
1461 if (page)
1462 return page;
1463
1464 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
1465 return NULL;
1466 #endif
1467 if (!for_write)
1468 return grab_cache_page(mapping, index);
1469 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1470 }
1471
1472 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1473 {
1474 char *src_kaddr = kmap(src);
1475 char *dst_kaddr = kmap(dst);
1476
1477 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1478 kunmap(dst);
1479 kunmap(src);
1480 }
1481
1482 static inline void f2fs_put_page(struct page *page, int unlock)
1483 {
1484 if (!page)
1485 return;
1486
1487 if (unlock) {
1488 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1489 unlock_page(page);
1490 }
1491 put_page(page);
1492 }
1493
1494 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1495 {
1496 if (dn->node_page)
1497 f2fs_put_page(dn->node_page, 1);
1498 if (dn->inode_page && dn->node_page != dn->inode_page)
1499 f2fs_put_page(dn->inode_page, 0);
1500 dn->node_page = NULL;
1501 dn->inode_page = NULL;
1502 }
1503
1504 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1505 size_t size)
1506 {
1507 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1508 }
1509
1510 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1511 gfp_t flags)
1512 {
1513 void *entry;
1514
1515 entry = kmem_cache_alloc(cachep, flags);
1516 if (!entry)
1517 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1518 return entry;
1519 }
1520
1521 static inline struct bio *f2fs_bio_alloc(int npages)
1522 {
1523 struct bio *bio;
1524
1525 /* No failure on bio allocation */
1526 bio = bio_alloc(GFP_NOIO, npages);
1527 if (!bio)
1528 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1529 return bio;
1530 }
1531
1532 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1533 unsigned long index, void *item)
1534 {
1535 while (radix_tree_insert(root, index, item))
1536 cond_resched();
1537 }
1538
1539 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1540
1541 static inline bool IS_INODE(struct page *page)
1542 {
1543 struct f2fs_node *p = F2FS_NODE(page);
1544 return RAW_IS_INODE(p);
1545 }
1546
1547 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1548 {
1549 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1550 }
1551
1552 static inline block_t datablock_addr(struct page *node_page,
1553 unsigned int offset)
1554 {
1555 struct f2fs_node *raw_node;
1556 __le32 *addr_array;
1557 raw_node = F2FS_NODE(node_page);
1558 addr_array = blkaddr_in_node(raw_node);
1559 return le32_to_cpu(addr_array[offset]);
1560 }
1561
1562 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1563 {
1564 int mask;
1565
1566 addr += (nr >> 3);
1567 mask = 1 << (7 - (nr & 0x07));
1568 return mask & *addr;
1569 }
1570
1571 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1572 {
1573 int mask;
1574
1575 addr += (nr >> 3);
1576 mask = 1 << (7 - (nr & 0x07));
1577 *addr |= mask;
1578 }
1579
1580 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1581 {
1582 int mask;
1583
1584 addr += (nr >> 3);
1585 mask = 1 << (7 - (nr & 0x07));
1586 *addr &= ~mask;
1587 }
1588
1589 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1590 {
1591 int mask;
1592 int ret;
1593
1594 addr += (nr >> 3);
1595 mask = 1 << (7 - (nr & 0x07));
1596 ret = mask & *addr;
1597 *addr |= mask;
1598 return ret;
1599 }
1600
1601 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1602 {
1603 int mask;
1604 int ret;
1605
1606 addr += (nr >> 3);
1607 mask = 1 << (7 - (nr & 0x07));
1608 ret = mask & *addr;
1609 *addr &= ~mask;
1610 return ret;
1611 }
1612
1613 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1614 {
1615 int mask;
1616
1617 addr += (nr >> 3);
1618 mask = 1 << (7 - (nr & 0x07));
1619 *addr ^= mask;
1620 }
1621
1622 /* used for f2fs_inode_info->flags */
1623 enum {
1624 FI_NEW_INODE, /* indicate newly allocated inode */
1625 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1626 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1627 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1628 FI_INC_LINK, /* need to increment i_nlink */
1629 FI_ACL_MODE, /* indicate acl mode */
1630 FI_NO_ALLOC, /* should not allocate any blocks */
1631 FI_FREE_NID, /* free allocated nide */
1632 FI_NO_EXTENT, /* not to use the extent cache */
1633 FI_INLINE_XATTR, /* used for inline xattr */
1634 FI_INLINE_DATA, /* used for inline data*/
1635 FI_INLINE_DENTRY, /* used for inline dentry */
1636 FI_APPEND_WRITE, /* inode has appended data */
1637 FI_UPDATE_WRITE, /* inode has in-place-update data */
1638 FI_NEED_IPU, /* used for ipu per file */
1639 FI_ATOMIC_FILE, /* indicate atomic file */
1640 FI_VOLATILE_FILE, /* indicate volatile file */
1641 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1642 FI_DROP_CACHE, /* drop dirty page cache */
1643 FI_DATA_EXIST, /* indicate data exists */
1644 FI_INLINE_DOTS, /* indicate inline dot dentries */
1645 FI_DO_DEFRAG, /* indicate defragment is running */
1646 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1647 };
1648
1649 static inline void __mark_inode_dirty_flag(struct inode *inode,
1650 int flag, bool set)
1651 {
1652 switch (flag) {
1653 case FI_INLINE_XATTR:
1654 case FI_INLINE_DATA:
1655 case FI_INLINE_DENTRY:
1656 if (set)
1657 return;
1658 case FI_DATA_EXIST:
1659 case FI_INLINE_DOTS:
1660 f2fs_mark_inode_dirty_sync(inode, true);
1661 }
1662 }
1663
1664 static inline void set_inode_flag(struct inode *inode, int flag)
1665 {
1666 if (!test_bit(flag, &F2FS_I(inode)->flags))
1667 set_bit(flag, &F2FS_I(inode)->flags);
1668 __mark_inode_dirty_flag(inode, flag, true);
1669 }
1670
1671 static inline int is_inode_flag_set(struct inode *inode, int flag)
1672 {
1673 return test_bit(flag, &F2FS_I(inode)->flags);
1674 }
1675
1676 static inline void clear_inode_flag(struct inode *inode, int flag)
1677 {
1678 if (test_bit(flag, &F2FS_I(inode)->flags))
1679 clear_bit(flag, &F2FS_I(inode)->flags);
1680 __mark_inode_dirty_flag(inode, flag, false);
1681 }
1682
1683 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1684 {
1685 F2FS_I(inode)->i_acl_mode = mode;
1686 set_inode_flag(inode, FI_ACL_MODE);
1687 f2fs_mark_inode_dirty_sync(inode, false);
1688 }
1689
1690 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1691 {
1692 if (inc)
1693 inc_nlink(inode);
1694 else
1695 drop_nlink(inode);
1696 f2fs_mark_inode_dirty_sync(inode, true);
1697 }
1698
1699 static inline void f2fs_i_blocks_write(struct inode *inode,
1700 blkcnt_t diff, bool add)
1701 {
1702 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1703 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1704
1705 inode->i_blocks = add ? inode->i_blocks + diff :
1706 inode->i_blocks - diff;
1707 f2fs_mark_inode_dirty_sync(inode, true);
1708 if (clean || recover)
1709 set_inode_flag(inode, FI_AUTO_RECOVER);
1710 }
1711
1712 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1713 {
1714 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1715 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1716
1717 if (i_size_read(inode) == i_size)
1718 return;
1719
1720 i_size_write(inode, i_size);
1721 f2fs_mark_inode_dirty_sync(inode, true);
1722 if (clean || recover)
1723 set_inode_flag(inode, FI_AUTO_RECOVER);
1724 }
1725
1726 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1727 {
1728 F2FS_I(inode)->i_current_depth = depth;
1729 f2fs_mark_inode_dirty_sync(inode, true);
1730 }
1731
1732 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1733 {
1734 F2FS_I(inode)->i_xattr_nid = xnid;
1735 f2fs_mark_inode_dirty_sync(inode, true);
1736 }
1737
1738 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1739 {
1740 F2FS_I(inode)->i_pino = pino;
1741 f2fs_mark_inode_dirty_sync(inode, true);
1742 }
1743
1744 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1745 {
1746 struct f2fs_inode_info *fi = F2FS_I(inode);
1747
1748 if (ri->i_inline & F2FS_INLINE_XATTR)
1749 set_bit(FI_INLINE_XATTR, &fi->flags);
1750 if (ri->i_inline & F2FS_INLINE_DATA)
1751 set_bit(FI_INLINE_DATA, &fi->flags);
1752 if (ri->i_inline & F2FS_INLINE_DENTRY)
1753 set_bit(FI_INLINE_DENTRY, &fi->flags);
1754 if (ri->i_inline & F2FS_DATA_EXIST)
1755 set_bit(FI_DATA_EXIST, &fi->flags);
1756 if (ri->i_inline & F2FS_INLINE_DOTS)
1757 set_bit(FI_INLINE_DOTS, &fi->flags);
1758 }
1759
1760 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1761 {
1762 ri->i_inline = 0;
1763
1764 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1765 ri->i_inline |= F2FS_INLINE_XATTR;
1766 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1767 ri->i_inline |= F2FS_INLINE_DATA;
1768 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1769 ri->i_inline |= F2FS_INLINE_DENTRY;
1770 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1771 ri->i_inline |= F2FS_DATA_EXIST;
1772 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1773 ri->i_inline |= F2FS_INLINE_DOTS;
1774 }
1775
1776 static inline int f2fs_has_inline_xattr(struct inode *inode)
1777 {
1778 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1779 }
1780
1781 static inline unsigned int addrs_per_inode(struct inode *inode)
1782 {
1783 if (f2fs_has_inline_xattr(inode))
1784 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1785 return DEF_ADDRS_PER_INODE;
1786 }
1787
1788 static inline void *inline_xattr_addr(struct page *page)
1789 {
1790 struct f2fs_inode *ri = F2FS_INODE(page);
1791 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1792 F2FS_INLINE_XATTR_ADDRS]);
1793 }
1794
1795 static inline int inline_xattr_size(struct inode *inode)
1796 {
1797 if (f2fs_has_inline_xattr(inode))
1798 return F2FS_INLINE_XATTR_ADDRS << 2;
1799 else
1800 return 0;
1801 }
1802
1803 static inline int f2fs_has_inline_data(struct inode *inode)
1804 {
1805 return is_inode_flag_set(inode, FI_INLINE_DATA);
1806 }
1807
1808 static inline void f2fs_clear_inline_inode(struct inode *inode)
1809 {
1810 clear_inode_flag(inode, FI_INLINE_DATA);
1811 clear_inode_flag(inode, FI_DATA_EXIST);
1812 }
1813
1814 static inline int f2fs_exist_data(struct inode *inode)
1815 {
1816 return is_inode_flag_set(inode, FI_DATA_EXIST);
1817 }
1818
1819 static inline int f2fs_has_inline_dots(struct inode *inode)
1820 {
1821 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1822 }
1823
1824 static inline bool f2fs_is_atomic_file(struct inode *inode)
1825 {
1826 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1827 }
1828
1829 static inline bool f2fs_is_volatile_file(struct inode *inode)
1830 {
1831 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1832 }
1833
1834 static inline bool f2fs_is_first_block_written(struct inode *inode)
1835 {
1836 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1837 }
1838
1839 static inline bool f2fs_is_drop_cache(struct inode *inode)
1840 {
1841 return is_inode_flag_set(inode, FI_DROP_CACHE);
1842 }
1843
1844 static inline void *inline_data_addr(struct page *page)
1845 {
1846 struct f2fs_inode *ri = F2FS_INODE(page);
1847 return (void *)&(ri->i_addr[1]);
1848 }
1849
1850 static inline int f2fs_has_inline_dentry(struct inode *inode)
1851 {
1852 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1853 }
1854
1855 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1856 {
1857 if (!f2fs_has_inline_dentry(dir))
1858 kunmap(page);
1859 }
1860
1861 static inline int is_file(struct inode *inode, int type)
1862 {
1863 return F2FS_I(inode)->i_advise & type;
1864 }
1865
1866 static inline void set_file(struct inode *inode, int type)
1867 {
1868 F2FS_I(inode)->i_advise |= type;
1869 f2fs_mark_inode_dirty_sync(inode, true);
1870 }
1871
1872 static inline void clear_file(struct inode *inode, int type)
1873 {
1874 F2FS_I(inode)->i_advise &= ~type;
1875 f2fs_mark_inode_dirty_sync(inode, true);
1876 }
1877
1878 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
1879 {
1880 if (dsync) {
1881 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1882 bool ret;
1883
1884 spin_lock(&sbi->inode_lock[DIRTY_META]);
1885 ret = list_empty(&F2FS_I(inode)->gdirty_list);
1886 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1887 return ret;
1888 }
1889 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
1890 file_keep_isize(inode) ||
1891 i_size_read(inode) & PAGE_MASK)
1892 return false;
1893 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1894 }
1895
1896 static inline int f2fs_readonly(struct super_block *sb)
1897 {
1898 return sb->s_flags & MS_RDONLY;
1899 }
1900
1901 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1902 {
1903 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
1904 }
1905
1906 static inline bool is_dot_dotdot(const struct qstr *str)
1907 {
1908 if (str->len == 1 && str->name[0] == '.')
1909 return true;
1910
1911 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1912 return true;
1913
1914 return false;
1915 }
1916
1917 static inline bool f2fs_may_extent_tree(struct inode *inode)
1918 {
1919 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1920 is_inode_flag_set(inode, FI_NO_EXTENT))
1921 return false;
1922
1923 return S_ISREG(inode->i_mode);
1924 }
1925
1926 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
1927 size_t size, gfp_t flags)
1928 {
1929 #ifdef CONFIG_F2FS_FAULT_INJECTION
1930 if (time_to_inject(sbi, FAULT_KMALLOC))
1931 return NULL;
1932 #endif
1933 return kmalloc(size, flags);
1934 }
1935
1936 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1937 {
1938 void *ret;
1939
1940 ret = kmalloc(size, flags | __GFP_NOWARN);
1941 if (!ret)
1942 ret = __vmalloc(size, flags, PAGE_KERNEL);
1943 return ret;
1944 }
1945
1946 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1947 {
1948 void *ret;
1949
1950 ret = kzalloc(size, flags | __GFP_NOWARN);
1951 if (!ret)
1952 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1953 return ret;
1954 }
1955
1956 #define get_inode_mode(i) \
1957 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1958 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1959
1960 /* get offset of first page in next direct node */
1961 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1962 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1963 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1964 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1965
1966 /*
1967 * file.c
1968 */
1969 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1970 void truncate_data_blocks(struct dnode_of_data *);
1971 int truncate_blocks(struct inode *, u64, bool);
1972 int f2fs_truncate(struct inode *);
1973 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1974 int f2fs_setattr(struct dentry *, struct iattr *);
1975 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1976 int truncate_data_blocks_range(struct dnode_of_data *, int);
1977 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1978 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1979
1980 /*
1981 * inode.c
1982 */
1983 void f2fs_set_inode_flags(struct inode *);
1984 struct inode *f2fs_iget(struct super_block *, unsigned long);
1985 struct inode *f2fs_iget_retry(struct super_block *, unsigned long);
1986 int try_to_free_nats(struct f2fs_sb_info *, int);
1987 int update_inode(struct inode *, struct page *);
1988 int update_inode_page(struct inode *);
1989 int f2fs_write_inode(struct inode *, struct writeback_control *);
1990 void f2fs_evict_inode(struct inode *);
1991 void handle_failed_inode(struct inode *);
1992
1993 /*
1994 * namei.c
1995 */
1996 struct dentry *f2fs_get_parent(struct dentry *child);
1997
1998 /*
1999 * dir.c
2000 */
2001 void set_de_type(struct f2fs_dir_entry *, umode_t);
2002 unsigned char get_de_type(struct f2fs_dir_entry *);
2003 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
2004 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
2005 int f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
2006 unsigned int, struct fscrypt_str *);
2007 void do_make_empty_dir(struct inode *, struct inode *,
2008 struct f2fs_dentry_ptr *);
2009 struct page *init_inode_metadata(struct inode *, struct inode *,
2010 const struct qstr *, const struct qstr *, struct page *);
2011 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
2012 int room_for_filename(const void *, int, int);
2013 void f2fs_drop_nlink(struct inode *, struct inode *);
2014 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *, struct fscrypt_name *,
2015 struct page **);
2016 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *,
2017 struct page **);
2018 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
2019 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **);
2020 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
2021 struct page *, struct inode *);
2022 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
2023 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
2024 const struct qstr *, f2fs_hash_t , unsigned int);
2025 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
2026 const struct qstr *, struct inode *, nid_t, umode_t);
2027 int __f2fs_do_add_link(struct inode *, struct fscrypt_name*, struct inode *,
2028 nid_t, umode_t);
2029 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
2030 umode_t);
2031 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
2032 struct inode *);
2033 int f2fs_do_tmpfile(struct inode *, struct inode *);
2034 bool f2fs_empty_dir(struct inode *);
2035
2036 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2037 {
2038 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2039 inode, inode->i_ino, inode->i_mode);
2040 }
2041
2042 /*
2043 * super.c
2044 */
2045 int f2fs_inode_dirtied(struct inode *, bool);
2046 void f2fs_inode_synced(struct inode *);
2047 int f2fs_commit_super(struct f2fs_sb_info *, bool);
2048 int f2fs_sync_fs(struct super_block *, int);
2049 extern __printf(3, 4)
2050 void f2fs_msg(struct super_block *, const char *, const char *, ...);
2051 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2052
2053 /*
2054 * hash.c
2055 */
2056 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
2057
2058 /*
2059 * node.c
2060 */
2061 struct dnode_of_data;
2062 struct node_info;
2063
2064 bool available_free_memory(struct f2fs_sb_info *, int);
2065 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
2066 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
2067 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
2068 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
2069 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
2070 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
2071 int truncate_inode_blocks(struct inode *, pgoff_t);
2072 int truncate_xattr_node(struct inode *, struct page *);
2073 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
2074 int remove_inode_page(struct inode *);
2075 struct page *new_inode_page(struct inode *);
2076 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
2077 void ra_node_page(struct f2fs_sb_info *, nid_t);
2078 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
2079 struct page *get_node_page_ra(struct page *, int);
2080 void move_node_page(struct page *, int);
2081 int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
2082 struct writeback_control *, bool);
2083 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
2084 void build_free_nids(struct f2fs_sb_info *, bool);
2085 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
2086 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
2087 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
2088 int try_to_free_nids(struct f2fs_sb_info *, int);
2089 void recover_inline_xattr(struct inode *, struct page *);
2090 void recover_xattr_data(struct inode *, struct page *, block_t);
2091 int recover_inode_page(struct f2fs_sb_info *, struct page *);
2092 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
2093 struct f2fs_summary_block *);
2094 void flush_nat_entries(struct f2fs_sb_info *);
2095 int build_node_manager(struct f2fs_sb_info *);
2096 void destroy_node_manager(struct f2fs_sb_info *);
2097 int __init create_node_manager_caches(void);
2098 void destroy_node_manager_caches(void);
2099
2100 /*
2101 * segment.c
2102 */
2103 void register_inmem_page(struct inode *, struct page *);
2104 void drop_inmem_pages(struct inode *);
2105 int commit_inmem_pages(struct inode *);
2106 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
2107 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
2108 int f2fs_issue_flush(struct f2fs_sb_info *);
2109 int create_flush_cmd_control(struct f2fs_sb_info *);
2110 void destroy_flush_cmd_control(struct f2fs_sb_info *, bool);
2111 void invalidate_blocks(struct f2fs_sb_info *, block_t);
2112 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
2113 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
2114 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *);
2115 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
2116 void release_discard_addrs(struct f2fs_sb_info *);
2117 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
2118 void allocate_new_segments(struct f2fs_sb_info *);
2119 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
2120 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
2121 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
2122 void write_meta_page(struct f2fs_sb_info *, struct page *);
2123 void write_node_page(unsigned int, struct f2fs_io_info *);
2124 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2125 void rewrite_data_page(struct f2fs_io_info *);
2126 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2127 block_t, block_t, bool, bool);
2128 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2129 block_t, block_t, unsigned char, bool, bool);
2130 void allocate_data_block(struct f2fs_sb_info *, struct page *,
2131 block_t, block_t *, struct f2fs_summary *, int);
2132 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2133 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2134 void write_data_summaries(struct f2fs_sb_info *, block_t);
2135 void write_node_summaries(struct f2fs_sb_info *, block_t);
2136 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2137 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2138 int build_segment_manager(struct f2fs_sb_info *);
2139 void destroy_segment_manager(struct f2fs_sb_info *);
2140 int __init create_segment_manager_caches(void);
2141 void destroy_segment_manager_caches(void);
2142
2143 /*
2144 * checkpoint.c
2145 */
2146 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2147 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2148 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2149 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2150 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2151 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2152 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2153 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2154 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2155 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2156 void release_ino_entry(struct f2fs_sb_info *, bool);
2157 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2158 int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2159 int acquire_orphan_inode(struct f2fs_sb_info *);
2160 void release_orphan_inode(struct f2fs_sb_info *);
2161 void add_orphan_inode(struct inode *);
2162 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2163 int recover_orphan_inodes(struct f2fs_sb_info *);
2164 int get_valid_checkpoint(struct f2fs_sb_info *);
2165 void update_dirty_page(struct inode *, struct page *);
2166 void remove_dirty_inode(struct inode *);
2167 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2168 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2169 void init_ino_entry_info(struct f2fs_sb_info *);
2170 int __init create_checkpoint_caches(void);
2171 void destroy_checkpoint_caches(void);
2172
2173 /*
2174 * data.c
2175 */
2176 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2177 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2178 struct page *, nid_t, enum page_type, int);
2179 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2180 int f2fs_submit_page_bio(struct f2fs_io_info *);
2181 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2182 struct block_device *f2fs_target_device(struct f2fs_sb_info *,
2183 block_t, struct bio *);
2184 int f2fs_target_device_index(struct f2fs_sb_info *, block_t);
2185 void set_data_blkaddr(struct dnode_of_data *);
2186 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2187 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2188 int reserve_new_block(struct dnode_of_data *);
2189 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2190 int f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2191 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2192 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2193 struct page *find_data_page(struct inode *, pgoff_t);
2194 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2195 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2196 int do_write_data_page(struct f2fs_io_info *);
2197 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2198 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2199 void f2fs_set_page_dirty_nobuffers(struct page *);
2200 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2201 int f2fs_release_page(struct page *, gfp_t);
2202 #ifdef CONFIG_MIGRATION
2203 int f2fs_migrate_page(struct address_space *, struct page *, struct page *,
2204 enum migrate_mode);
2205 #endif
2206
2207 /*
2208 * gc.c
2209 */
2210 int start_gc_thread(struct f2fs_sb_info *);
2211 void stop_gc_thread(struct f2fs_sb_info *);
2212 block_t start_bidx_of_node(unsigned int, struct inode *);
2213 int f2fs_gc(struct f2fs_sb_info *, bool, bool);
2214 void build_gc_manager(struct f2fs_sb_info *);
2215
2216 /*
2217 * recovery.c
2218 */
2219 int recover_fsync_data(struct f2fs_sb_info *, bool);
2220 bool space_for_roll_forward(struct f2fs_sb_info *);
2221
2222 /*
2223 * debug.c
2224 */
2225 #ifdef CONFIG_F2FS_STAT_FS
2226 struct f2fs_stat_info {
2227 struct list_head stat_list;
2228 struct f2fs_sb_info *sbi;
2229 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2230 int main_area_segs, main_area_sections, main_area_zones;
2231 unsigned long long hit_largest, hit_cached, hit_rbtree;
2232 unsigned long long hit_total, total_ext;
2233 int ext_tree, zombie_tree, ext_node;
2234 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2235 int inmem_pages;
2236 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2237 int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids;
2238 int total_count, utilization;
2239 int bg_gc, nr_wb_cp_data, nr_wb_data;
2240 int inline_xattr, inline_inode, inline_dir, orphans;
2241 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2242 unsigned int bimodal, avg_vblocks;
2243 int util_free, util_valid, util_invalid;
2244 int rsvd_segs, overp_segs;
2245 int dirty_count, node_pages, meta_pages;
2246 int prefree_count, call_count, cp_count, bg_cp_count;
2247 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2248 int bg_node_segs, bg_data_segs;
2249 int tot_blks, data_blks, node_blks;
2250 int bg_data_blks, bg_node_blks;
2251 int curseg[NR_CURSEG_TYPE];
2252 int cursec[NR_CURSEG_TYPE];
2253 int curzone[NR_CURSEG_TYPE];
2254
2255 unsigned int segment_count[2];
2256 unsigned int block_count[2];
2257 unsigned int inplace_count;
2258 unsigned long long base_mem, cache_mem, page_mem;
2259 };
2260
2261 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2262 {
2263 return (struct f2fs_stat_info *)sbi->stat_info;
2264 }
2265
2266 #define stat_inc_cp_count(si) ((si)->cp_count++)
2267 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2268 #define stat_inc_call_count(si) ((si)->call_count++)
2269 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2270 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2271 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2272 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2273 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2274 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2275 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2276 #define stat_inc_inline_xattr(inode) \
2277 do { \
2278 if (f2fs_has_inline_xattr(inode)) \
2279 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2280 } while (0)
2281 #define stat_dec_inline_xattr(inode) \
2282 do { \
2283 if (f2fs_has_inline_xattr(inode)) \
2284 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2285 } while (0)
2286 #define stat_inc_inline_inode(inode) \
2287 do { \
2288 if (f2fs_has_inline_data(inode)) \
2289 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2290 } while (0)
2291 #define stat_dec_inline_inode(inode) \
2292 do { \
2293 if (f2fs_has_inline_data(inode)) \
2294 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2295 } while (0)
2296 #define stat_inc_inline_dir(inode) \
2297 do { \
2298 if (f2fs_has_inline_dentry(inode)) \
2299 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2300 } while (0)
2301 #define stat_dec_inline_dir(inode) \
2302 do { \
2303 if (f2fs_has_inline_dentry(inode)) \
2304 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2305 } while (0)
2306 #define stat_inc_seg_type(sbi, curseg) \
2307 ((sbi)->segment_count[(curseg)->alloc_type]++)
2308 #define stat_inc_block_count(sbi, curseg) \
2309 ((sbi)->block_count[(curseg)->alloc_type]++)
2310 #define stat_inc_inplace_blocks(sbi) \
2311 (atomic_inc(&(sbi)->inplace_count))
2312 #define stat_inc_seg_count(sbi, type, gc_type) \
2313 do { \
2314 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2315 (si)->tot_segs++; \
2316 if (type == SUM_TYPE_DATA) { \
2317 si->data_segs++; \
2318 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2319 } else { \
2320 si->node_segs++; \
2321 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2322 } \
2323 } while (0)
2324
2325 #define stat_inc_tot_blk_count(si, blks) \
2326 (si->tot_blks += (blks))
2327
2328 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2329 do { \
2330 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2331 stat_inc_tot_blk_count(si, blks); \
2332 si->data_blks += (blks); \
2333 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2334 } while (0)
2335
2336 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2337 do { \
2338 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2339 stat_inc_tot_blk_count(si, blks); \
2340 si->node_blks += (blks); \
2341 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2342 } while (0)
2343
2344 int f2fs_build_stats(struct f2fs_sb_info *);
2345 void f2fs_destroy_stats(struct f2fs_sb_info *);
2346 int __init f2fs_create_root_stats(void);
2347 void f2fs_destroy_root_stats(void);
2348 #else
2349 #define stat_inc_cp_count(si)
2350 #define stat_inc_bg_cp_count(si)
2351 #define stat_inc_call_count(si)
2352 #define stat_inc_bggc_count(si)
2353 #define stat_inc_dirty_inode(sbi, type)
2354 #define stat_dec_dirty_inode(sbi, type)
2355 #define stat_inc_total_hit(sb)
2356 #define stat_inc_rbtree_node_hit(sb)
2357 #define stat_inc_largest_node_hit(sbi)
2358 #define stat_inc_cached_node_hit(sbi)
2359 #define stat_inc_inline_xattr(inode)
2360 #define stat_dec_inline_xattr(inode)
2361 #define stat_inc_inline_inode(inode)
2362 #define stat_dec_inline_inode(inode)
2363 #define stat_inc_inline_dir(inode)
2364 #define stat_dec_inline_dir(inode)
2365 #define stat_inc_seg_type(sbi, curseg)
2366 #define stat_inc_block_count(sbi, curseg)
2367 #define stat_inc_inplace_blocks(sbi)
2368 #define stat_inc_seg_count(sbi, type, gc_type)
2369 #define stat_inc_tot_blk_count(si, blks)
2370 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2371 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2372
2373 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2374 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2375 static inline int __init f2fs_create_root_stats(void) { return 0; }
2376 static inline void f2fs_destroy_root_stats(void) { }
2377 #endif
2378
2379 extern const struct file_operations f2fs_dir_operations;
2380 extern const struct file_operations f2fs_file_operations;
2381 extern const struct inode_operations f2fs_file_inode_operations;
2382 extern const struct address_space_operations f2fs_dblock_aops;
2383 extern const struct address_space_operations f2fs_node_aops;
2384 extern const struct address_space_operations f2fs_meta_aops;
2385 extern const struct inode_operations f2fs_dir_inode_operations;
2386 extern const struct inode_operations f2fs_symlink_inode_operations;
2387 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2388 extern const struct inode_operations f2fs_special_inode_operations;
2389 extern struct kmem_cache *inode_entry_slab;
2390
2391 /*
2392 * inline.c
2393 */
2394 bool f2fs_may_inline_data(struct inode *);
2395 bool f2fs_may_inline_dentry(struct inode *);
2396 void read_inline_data(struct page *, struct page *);
2397 bool truncate_inline_inode(struct page *, u64);
2398 int f2fs_read_inline_data(struct inode *, struct page *);
2399 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2400 int f2fs_convert_inline_inode(struct inode *);
2401 int f2fs_write_inline_data(struct inode *, struct page *);
2402 bool recover_inline_data(struct inode *, struct page *);
2403 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2404 struct fscrypt_name *, struct page **);
2405 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2406 int f2fs_add_inline_entry(struct inode *, const struct qstr *,
2407 const struct qstr *, struct inode *, nid_t, umode_t);
2408 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2409 struct inode *, struct inode *);
2410 bool f2fs_empty_inline_dir(struct inode *);
2411 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2412 struct fscrypt_str *);
2413 int f2fs_inline_data_fiemap(struct inode *,
2414 struct fiemap_extent_info *, __u64, __u64);
2415
2416 /*
2417 * shrinker.c
2418 */
2419 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2420 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2421 void f2fs_join_shrinker(struct f2fs_sb_info *);
2422 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2423
2424 /*
2425 * extent_cache.c
2426 */
2427 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2428 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2429 void f2fs_drop_extent_tree(struct inode *);
2430 unsigned int f2fs_destroy_extent_node(struct inode *);
2431 void f2fs_destroy_extent_tree(struct inode *);
2432 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2433 void f2fs_update_extent_cache(struct dnode_of_data *);
2434 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2435 pgoff_t, block_t, unsigned int);
2436 void init_extent_cache_info(struct f2fs_sb_info *);
2437 int __init create_extent_cache(void);
2438 void destroy_extent_cache(void);
2439
2440 /*
2441 * crypto support
2442 */
2443 static inline bool f2fs_encrypted_inode(struct inode *inode)
2444 {
2445 return file_is_encrypt(inode);
2446 }
2447
2448 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2449 {
2450 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2451 file_set_encrypt(inode);
2452 #endif
2453 }
2454
2455 static inline bool f2fs_bio_encrypted(struct bio *bio)
2456 {
2457 return bio->bi_private != NULL;
2458 }
2459
2460 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2461 {
2462 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2463 }
2464
2465 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2466 {
2467 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2468 }
2469
2470 #ifdef CONFIG_BLK_DEV_ZONED
2471 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2472 struct block_device *bdev, block_t blkaddr)
2473 {
2474 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2475 int i;
2476
2477 for (i = 0; i < sbi->s_ndevs; i++)
2478 if (FDEV(i).bdev == bdev)
2479 return FDEV(i).blkz_type[zno];
2480 return -EINVAL;
2481 }
2482 #endif
2483
2484 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2485 {
2486 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2487
2488 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2489 }
2490
2491 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2492 {
2493 clear_opt(sbi, ADAPTIVE);
2494 clear_opt(sbi, LFS);
2495
2496 switch (mt) {
2497 case F2FS_MOUNT_ADAPTIVE:
2498 set_opt(sbi, ADAPTIVE);
2499 break;
2500 case F2FS_MOUNT_LFS:
2501 set_opt(sbi, LFS);
2502 break;
2503 }
2504 }
2505
2506 static inline bool f2fs_may_encrypt(struct inode *inode)
2507 {
2508 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2509 umode_t mode = inode->i_mode;
2510
2511 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2512 #else
2513 return 0;
2514 #endif
2515 }
2516
2517 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2518 #define fscrypt_set_d_op(i)
2519 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2520 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2521 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2522 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2523 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2524 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2525 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2526 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2527 #define fscrypt_ioctl_set_policy fscrypt_notsupp_ioctl_set_policy
2528 #define fscrypt_ioctl_get_policy fscrypt_notsupp_ioctl_get_policy
2529 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2530 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2531 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2532 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2533 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2534 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2535 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2536 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2537 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2538 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2539 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2540 #endif
2541 #endif