]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: introduce f2fs_replace_block() for reuse
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 set_sbi_flag(sbi, SBI_NEED_FSCK); \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
54
55 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
56 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
57 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
58
59 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
60 typecheck(unsigned long long, b) && \
61 ((long long)((a) - (b)) > 0))
62
63 typedef u32 block_t; /*
64 * should not change u32, since it is the on-disk block
65 * address format, __le32.
66 */
67 typedef u32 nid_t;
68
69 struct f2fs_mount_info {
70 unsigned int opt;
71 };
72
73 #define F2FS_HAS_FEATURE(sb, mask) \
74 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
75 #define F2FS_SET_FEATURE(sb, mask) \
76 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
77 #define F2FS_CLEAR_FEATURE(sb, mask) \
78 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
79
80 #define CRCPOLY_LE 0xedb88320
81
82 static inline __u32 f2fs_crc32(void *buf, size_t len)
83 {
84 unsigned char *p = (unsigned char *)buf;
85 __u32 crc = F2FS_SUPER_MAGIC;
86 int i;
87
88 while (len--) {
89 crc ^= *p++;
90 for (i = 0; i < 8; i++)
91 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
92 }
93 return crc;
94 }
95
96 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
97 {
98 return f2fs_crc32(buf, buf_size) == blk_crc;
99 }
100
101 /*
102 * For checkpoint manager
103 */
104 enum {
105 NAT_BITMAP,
106 SIT_BITMAP
107 };
108
109 enum {
110 CP_UMOUNT,
111 CP_FASTBOOT,
112 CP_SYNC,
113 CP_RECOVERY,
114 CP_DISCARD,
115 };
116
117 #define DEF_BATCHED_TRIM_SECTIONS 32
118 #define BATCHED_TRIM_SEGMENTS(sbi) \
119 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
120 #define BATCHED_TRIM_BLOCKS(sbi) \
121 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
122
123 struct cp_control {
124 int reason;
125 __u64 trim_start;
126 __u64 trim_end;
127 __u64 trim_minlen;
128 __u64 trimmed;
129 };
130
131 /*
132 * For CP/NAT/SIT/SSA readahead
133 */
134 enum {
135 META_CP,
136 META_NAT,
137 META_SIT,
138 META_SSA,
139 META_POR,
140 };
141
142 /* for the list of ino */
143 enum {
144 ORPHAN_INO, /* for orphan ino list */
145 APPEND_INO, /* for append ino list */
146 UPDATE_INO, /* for update ino list */
147 MAX_INO_ENTRY, /* max. list */
148 };
149
150 struct ino_entry {
151 struct list_head list; /* list head */
152 nid_t ino; /* inode number */
153 };
154
155 /*
156 * for the list of directory inodes or gc inodes.
157 * NOTE: there are two slab users for this structure, if we add/modify/delete
158 * fields in structure for one of slab users, it may affect fields or size of
159 * other one, in this condition, it's better to split both of slab and related
160 * data structure.
161 */
162 struct inode_entry {
163 struct list_head list; /* list head */
164 struct inode *inode; /* vfs inode pointer */
165 };
166
167 /* for the list of blockaddresses to be discarded */
168 struct discard_entry {
169 struct list_head list; /* list head */
170 block_t blkaddr; /* block address to be discarded */
171 int len; /* # of consecutive blocks of the discard */
172 };
173
174 /* for the list of fsync inodes, used only during recovery */
175 struct fsync_inode_entry {
176 struct list_head list; /* list head */
177 struct inode *inode; /* vfs inode pointer */
178 block_t blkaddr; /* block address locating the last fsync */
179 block_t last_dentry; /* block address locating the last dentry */
180 block_t last_inode; /* block address locating the last inode */
181 };
182
183 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
184 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
185
186 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
187 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
188 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
189 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
190
191 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
192 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
193
194 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
195 {
196 int before = nats_in_cursum(rs);
197 rs->n_nats = cpu_to_le16(before + i);
198 return before;
199 }
200
201 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
202 {
203 int before = sits_in_cursum(rs);
204 rs->n_sits = cpu_to_le16(before + i);
205 return before;
206 }
207
208 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
209 int type)
210 {
211 if (type == NAT_JOURNAL)
212 return size <= MAX_NAT_JENTRIES(sum);
213 return size <= MAX_SIT_JENTRIES(sum);
214 }
215
216 /*
217 * ioctl commands
218 */
219 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
220 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
221 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
222
223 #define F2FS_IOCTL_MAGIC 0xf5
224 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
225 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
226 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
227 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
228 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
229
230 /*
231 * should be same as XFS_IOC_GOINGDOWN.
232 * Flags for going down operation used by FS_IOC_GOINGDOWN
233 */
234 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
235 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
236 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
237 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
238
239 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
240 /*
241 * ioctl commands in 32 bit emulation
242 */
243 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
244 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
245 #endif
246
247 /*
248 * For INODE and NODE manager
249 */
250 /* for directory operations */
251 struct f2fs_dentry_ptr {
252 const void *bitmap;
253 struct f2fs_dir_entry *dentry;
254 __u8 (*filename)[F2FS_SLOT_LEN];
255 int max;
256 };
257
258 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
259 void *src, int type)
260 {
261 if (type == 1) {
262 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
263 d->max = NR_DENTRY_IN_BLOCK;
264 d->bitmap = &t->dentry_bitmap;
265 d->dentry = t->dentry;
266 d->filename = t->filename;
267 } else {
268 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
269 d->max = NR_INLINE_DENTRY;
270 d->bitmap = &t->dentry_bitmap;
271 d->dentry = t->dentry;
272 d->filename = t->filename;
273 }
274 }
275
276 /*
277 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
278 * as its node offset to distinguish from index node blocks.
279 * But some bits are used to mark the node block.
280 */
281 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
282 >> OFFSET_BIT_SHIFT)
283 enum {
284 ALLOC_NODE, /* allocate a new node page if needed */
285 LOOKUP_NODE, /* look up a node without readahead */
286 LOOKUP_NODE_RA, /*
287 * look up a node with readahead called
288 * by get_data_block.
289 */
290 };
291
292 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
293
294 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
295
296 /* vector size for gang look-up from extent cache that consists of radix tree */
297 #define EXT_TREE_VEC_SIZE 64
298
299 /* for in-memory extent cache entry */
300 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
301
302 /* number of extent info in extent cache we try to shrink */
303 #define EXTENT_CACHE_SHRINK_NUMBER 128
304
305 struct extent_info {
306 unsigned int fofs; /* start offset in a file */
307 u32 blk; /* start block address of the extent */
308 unsigned int len; /* length of the extent */
309 };
310
311 struct extent_node {
312 struct rb_node rb_node; /* rb node located in rb-tree */
313 struct list_head list; /* node in global extent list of sbi */
314 struct extent_info ei; /* extent info */
315 };
316
317 struct extent_tree {
318 nid_t ino; /* inode number */
319 struct rb_root root; /* root of extent info rb-tree */
320 struct extent_node *cached_en; /* recently accessed extent node */
321 rwlock_t lock; /* protect extent info rb-tree */
322 atomic_t refcount; /* reference count of rb-tree */
323 unsigned int count; /* # of extent node in rb-tree*/
324 };
325
326 /*
327 * This structure is taken from ext4_map_blocks.
328 *
329 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
330 */
331 #define F2FS_MAP_NEW (1 << BH_New)
332 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
333 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED)
334
335 struct f2fs_map_blocks {
336 block_t m_pblk;
337 block_t m_lblk;
338 unsigned int m_len;
339 unsigned int m_flags;
340 };
341
342 /*
343 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
344 */
345 #define FADVISE_COLD_BIT 0x01
346 #define FADVISE_LOST_PINO_BIT 0x02
347
348 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
349 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
350 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
351 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
352 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
353 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
354
355 #define DEF_DIR_LEVEL 0
356
357 struct f2fs_inode_info {
358 struct inode vfs_inode; /* serve a vfs inode */
359 unsigned long i_flags; /* keep an inode flags for ioctl */
360 unsigned char i_advise; /* use to give file attribute hints */
361 unsigned char i_dir_level; /* use for dentry level for large dir */
362 unsigned int i_current_depth; /* use only in directory structure */
363 unsigned int i_pino; /* parent inode number */
364 umode_t i_acl_mode; /* keep file acl mode temporarily */
365
366 /* Use below internally in f2fs*/
367 unsigned long flags; /* use to pass per-file flags */
368 struct rw_semaphore i_sem; /* protect fi info */
369 atomic_t dirty_pages; /* # of dirty pages */
370 f2fs_hash_t chash; /* hash value of given file name */
371 unsigned int clevel; /* maximum level of given file name */
372 nid_t i_xattr_nid; /* node id that contains xattrs */
373 unsigned long long xattr_ver; /* cp version of xattr modification */
374 struct extent_info ext; /* in-memory extent cache entry */
375 rwlock_t ext_lock; /* rwlock for single extent cache */
376 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
377
378 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
379 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
380 struct mutex inmem_lock; /* lock for inmemory pages */
381 };
382
383 static inline void get_extent_info(struct extent_info *ext,
384 struct f2fs_extent i_ext)
385 {
386 ext->fofs = le32_to_cpu(i_ext.fofs);
387 ext->blk = le32_to_cpu(i_ext.blk);
388 ext->len = le32_to_cpu(i_ext.len);
389 }
390
391 static inline void set_raw_extent(struct extent_info *ext,
392 struct f2fs_extent *i_ext)
393 {
394 i_ext->fofs = cpu_to_le32(ext->fofs);
395 i_ext->blk = cpu_to_le32(ext->blk);
396 i_ext->len = cpu_to_le32(ext->len);
397 }
398
399 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
400 u32 blk, unsigned int len)
401 {
402 ei->fofs = fofs;
403 ei->blk = blk;
404 ei->len = len;
405 }
406
407 static inline bool __is_extent_same(struct extent_info *ei1,
408 struct extent_info *ei2)
409 {
410 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
411 ei1->len == ei2->len);
412 }
413
414 static inline bool __is_extent_mergeable(struct extent_info *back,
415 struct extent_info *front)
416 {
417 return (back->fofs + back->len == front->fofs &&
418 back->blk + back->len == front->blk);
419 }
420
421 static inline bool __is_back_mergeable(struct extent_info *cur,
422 struct extent_info *back)
423 {
424 return __is_extent_mergeable(back, cur);
425 }
426
427 static inline bool __is_front_mergeable(struct extent_info *cur,
428 struct extent_info *front)
429 {
430 return __is_extent_mergeable(cur, front);
431 }
432
433 struct f2fs_nm_info {
434 block_t nat_blkaddr; /* base disk address of NAT */
435 nid_t max_nid; /* maximum possible node ids */
436 nid_t available_nids; /* maximum available node ids */
437 nid_t next_scan_nid; /* the next nid to be scanned */
438 unsigned int ram_thresh; /* control the memory footprint */
439
440 /* NAT cache management */
441 struct radix_tree_root nat_root;/* root of the nat entry cache */
442 struct radix_tree_root nat_set_root;/* root of the nat set cache */
443 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
444 struct list_head nat_entries; /* cached nat entry list (clean) */
445 unsigned int nat_cnt; /* the # of cached nat entries */
446 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
447
448 /* free node ids management */
449 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
450 struct list_head free_nid_list; /* a list for free nids */
451 spinlock_t free_nid_list_lock; /* protect free nid list */
452 unsigned int fcnt; /* the number of free node id */
453 struct mutex build_lock; /* lock for build free nids */
454
455 /* for checkpoint */
456 char *nat_bitmap; /* NAT bitmap pointer */
457 int bitmap_size; /* bitmap size */
458 };
459
460 /*
461 * this structure is used as one of function parameters.
462 * all the information are dedicated to a given direct node block determined
463 * by the data offset in a file.
464 */
465 struct dnode_of_data {
466 struct inode *inode; /* vfs inode pointer */
467 struct page *inode_page; /* its inode page, NULL is possible */
468 struct page *node_page; /* cached direct node page */
469 nid_t nid; /* node id of the direct node block */
470 unsigned int ofs_in_node; /* data offset in the node page */
471 bool inode_page_locked; /* inode page is locked or not */
472 block_t data_blkaddr; /* block address of the node block */
473 };
474
475 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
476 struct page *ipage, struct page *npage, nid_t nid)
477 {
478 memset(dn, 0, sizeof(*dn));
479 dn->inode = inode;
480 dn->inode_page = ipage;
481 dn->node_page = npage;
482 dn->nid = nid;
483 }
484
485 /*
486 * For SIT manager
487 *
488 * By default, there are 6 active log areas across the whole main area.
489 * When considering hot and cold data separation to reduce cleaning overhead,
490 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
491 * respectively.
492 * In the current design, you should not change the numbers intentionally.
493 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
494 * logs individually according to the underlying devices. (default: 6)
495 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
496 * data and 8 for node logs.
497 */
498 #define NR_CURSEG_DATA_TYPE (3)
499 #define NR_CURSEG_NODE_TYPE (3)
500 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
501
502 enum {
503 CURSEG_HOT_DATA = 0, /* directory entry blocks */
504 CURSEG_WARM_DATA, /* data blocks */
505 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
506 CURSEG_HOT_NODE, /* direct node blocks of directory files */
507 CURSEG_WARM_NODE, /* direct node blocks of normal files */
508 CURSEG_COLD_NODE, /* indirect node blocks */
509 NO_CHECK_TYPE,
510 CURSEG_DIRECT_IO, /* to use for the direct IO path */
511 };
512
513 struct flush_cmd {
514 struct completion wait;
515 struct llist_node llnode;
516 int ret;
517 };
518
519 struct flush_cmd_control {
520 struct task_struct *f2fs_issue_flush; /* flush thread */
521 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
522 struct llist_head issue_list; /* list for command issue */
523 struct llist_node *dispatch_list; /* list for command dispatch */
524 };
525
526 struct f2fs_sm_info {
527 struct sit_info *sit_info; /* whole segment information */
528 struct free_segmap_info *free_info; /* free segment information */
529 struct dirty_seglist_info *dirty_info; /* dirty segment information */
530 struct curseg_info *curseg_array; /* active segment information */
531
532 block_t seg0_blkaddr; /* block address of 0'th segment */
533 block_t main_blkaddr; /* start block address of main area */
534 block_t ssa_blkaddr; /* start block address of SSA area */
535
536 unsigned int segment_count; /* total # of segments */
537 unsigned int main_segments; /* # of segments in main area */
538 unsigned int reserved_segments; /* # of reserved segments */
539 unsigned int ovp_segments; /* # of overprovision segments */
540
541 /* a threshold to reclaim prefree segments */
542 unsigned int rec_prefree_segments;
543
544 /* for small discard management */
545 struct list_head discard_list; /* 4KB discard list */
546 int nr_discards; /* # of discards in the list */
547 int max_discards; /* max. discards to be issued */
548
549 /* for batched trimming */
550 unsigned int trim_sections; /* # of sections to trim */
551
552 struct list_head sit_entry_set; /* sit entry set list */
553
554 unsigned int ipu_policy; /* in-place-update policy */
555 unsigned int min_ipu_util; /* in-place-update threshold */
556 unsigned int min_fsync_blocks; /* threshold for fsync */
557
558 /* for flush command control */
559 struct flush_cmd_control *cmd_control_info;
560
561 };
562
563 /*
564 * For superblock
565 */
566 /*
567 * COUNT_TYPE for monitoring
568 *
569 * f2fs monitors the number of several block types such as on-writeback,
570 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
571 */
572 enum count_type {
573 F2FS_WRITEBACK,
574 F2FS_DIRTY_DENTS,
575 F2FS_DIRTY_NODES,
576 F2FS_DIRTY_META,
577 F2FS_INMEM_PAGES,
578 NR_COUNT_TYPE,
579 };
580
581 /*
582 * The below are the page types of bios used in submit_bio().
583 * The available types are:
584 * DATA User data pages. It operates as async mode.
585 * NODE Node pages. It operates as async mode.
586 * META FS metadata pages such as SIT, NAT, CP.
587 * NR_PAGE_TYPE The number of page types.
588 * META_FLUSH Make sure the previous pages are written
589 * with waiting the bio's completion
590 * ... Only can be used with META.
591 */
592 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
593 enum page_type {
594 DATA,
595 NODE,
596 META,
597 NR_PAGE_TYPE,
598 META_FLUSH,
599 INMEM, /* the below types are used by tracepoints only. */
600 INMEM_DROP,
601 IPU,
602 OPU,
603 };
604
605 struct f2fs_io_info {
606 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
607 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
608 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
609 block_t blk_addr; /* block address to be written */
610 struct page *page; /* page to be written */
611 };
612
613 #define is_read_io(rw) (((rw) & 1) == READ)
614 struct f2fs_bio_info {
615 struct f2fs_sb_info *sbi; /* f2fs superblock */
616 struct bio *bio; /* bios to merge */
617 sector_t last_block_in_bio; /* last block number */
618 struct f2fs_io_info fio; /* store buffered io info. */
619 struct rw_semaphore io_rwsem; /* blocking op for bio */
620 };
621
622 /* for inner inode cache management */
623 struct inode_management {
624 struct radix_tree_root ino_root; /* ino entry array */
625 spinlock_t ino_lock; /* for ino entry lock */
626 struct list_head ino_list; /* inode list head */
627 unsigned long ino_num; /* number of entries */
628 };
629
630 /* For s_flag in struct f2fs_sb_info */
631 enum {
632 SBI_IS_DIRTY, /* dirty flag for checkpoint */
633 SBI_IS_CLOSE, /* specify unmounting */
634 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
635 SBI_POR_DOING, /* recovery is doing or not */
636 };
637
638 struct f2fs_sb_info {
639 struct super_block *sb; /* pointer to VFS super block */
640 struct proc_dir_entry *s_proc; /* proc entry */
641 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
642 struct f2fs_super_block *raw_super; /* raw super block pointer */
643 int s_flag; /* flags for sbi */
644
645 /* for node-related operations */
646 struct f2fs_nm_info *nm_info; /* node manager */
647 struct inode *node_inode; /* cache node blocks */
648
649 /* for segment-related operations */
650 struct f2fs_sm_info *sm_info; /* segment manager */
651
652 /* for bio operations */
653 struct f2fs_bio_info read_io; /* for read bios */
654 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
655
656 /* for checkpoint */
657 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
658 struct inode *meta_inode; /* cache meta blocks */
659 struct mutex cp_mutex; /* checkpoint procedure lock */
660 struct rw_semaphore cp_rwsem; /* blocking FS operations */
661 struct rw_semaphore node_write; /* locking node writes */
662 struct mutex writepages; /* mutex for writepages() */
663 wait_queue_head_t cp_wait;
664
665 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
666
667 /* for orphan inode, use 0'th array */
668 unsigned int max_orphans; /* max orphan inodes */
669
670 /* for directory inode management */
671 struct list_head dir_inode_list; /* dir inode list */
672 spinlock_t dir_inode_lock; /* for dir inode list lock */
673
674 /* for extent tree cache */
675 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
676 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
677 struct list_head extent_list; /* lru list for shrinker */
678 spinlock_t extent_lock; /* locking extent lru list */
679 int total_ext_tree; /* extent tree count */
680 atomic_t total_ext_node; /* extent info count */
681
682 /* basic filesystem units */
683 unsigned int log_sectors_per_block; /* log2 sectors per block */
684 unsigned int log_blocksize; /* log2 block size */
685 unsigned int blocksize; /* block size */
686 unsigned int root_ino_num; /* root inode number*/
687 unsigned int node_ino_num; /* node inode number*/
688 unsigned int meta_ino_num; /* meta inode number*/
689 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
690 unsigned int blocks_per_seg; /* blocks per segment */
691 unsigned int segs_per_sec; /* segments per section */
692 unsigned int secs_per_zone; /* sections per zone */
693 unsigned int total_sections; /* total section count */
694 unsigned int total_node_count; /* total node block count */
695 unsigned int total_valid_node_count; /* valid node block count */
696 unsigned int total_valid_inode_count; /* valid inode count */
697 int active_logs; /* # of active logs */
698 int dir_level; /* directory level */
699
700 block_t user_block_count; /* # of user blocks */
701 block_t total_valid_block_count; /* # of valid blocks */
702 block_t alloc_valid_block_count; /* # of allocated blocks */
703 block_t discard_blks; /* discard command candidats */
704 block_t last_valid_block_count; /* for recovery */
705 u32 s_next_generation; /* for NFS support */
706 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
707
708 struct f2fs_mount_info mount_opt; /* mount options */
709
710 /* for cleaning operations */
711 struct mutex gc_mutex; /* mutex for GC */
712 struct f2fs_gc_kthread *gc_thread; /* GC thread */
713 unsigned int cur_victim_sec; /* current victim section num */
714
715 /* maximum # of trials to find a victim segment for SSR and GC */
716 unsigned int max_victim_search;
717
718 /*
719 * for stat information.
720 * one is for the LFS mode, and the other is for the SSR mode.
721 */
722 #ifdef CONFIG_F2FS_STAT_FS
723 struct f2fs_stat_info *stat_info; /* FS status information */
724 unsigned int segment_count[2]; /* # of allocated segments */
725 unsigned int block_count[2]; /* # of allocated blocks */
726 atomic_t inplace_count; /* # of inplace update */
727 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
728 atomic_t inline_inode; /* # of inline_data inodes */
729 atomic_t inline_dir; /* # of inline_dentry inodes */
730 int bg_gc; /* background gc calls */
731 unsigned int n_dirty_dirs; /* # of dir inodes */
732 #endif
733 unsigned int last_victim[2]; /* last victim segment # */
734 spinlock_t stat_lock; /* lock for stat operations */
735
736 /* For sysfs suppport */
737 struct kobject s_kobj;
738 struct completion s_kobj_unregister;
739 };
740
741 /*
742 * Inline functions
743 */
744 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
745 {
746 return container_of(inode, struct f2fs_inode_info, vfs_inode);
747 }
748
749 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
750 {
751 return sb->s_fs_info;
752 }
753
754 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
755 {
756 return F2FS_SB(inode->i_sb);
757 }
758
759 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
760 {
761 return F2FS_I_SB(mapping->host);
762 }
763
764 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
765 {
766 return F2FS_M_SB(page->mapping);
767 }
768
769 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
770 {
771 return (struct f2fs_super_block *)(sbi->raw_super);
772 }
773
774 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
775 {
776 return (struct f2fs_checkpoint *)(sbi->ckpt);
777 }
778
779 static inline struct f2fs_node *F2FS_NODE(struct page *page)
780 {
781 return (struct f2fs_node *)page_address(page);
782 }
783
784 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
785 {
786 return &((struct f2fs_node *)page_address(page))->i;
787 }
788
789 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
790 {
791 return (struct f2fs_nm_info *)(sbi->nm_info);
792 }
793
794 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
795 {
796 return (struct f2fs_sm_info *)(sbi->sm_info);
797 }
798
799 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
800 {
801 return (struct sit_info *)(SM_I(sbi)->sit_info);
802 }
803
804 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
805 {
806 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
807 }
808
809 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
810 {
811 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
812 }
813
814 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
815 {
816 return sbi->meta_inode->i_mapping;
817 }
818
819 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
820 {
821 return sbi->node_inode->i_mapping;
822 }
823
824 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
825 {
826 return sbi->s_flag & (0x01 << type);
827 }
828
829 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
830 {
831 sbi->s_flag |= (0x01 << type);
832 }
833
834 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
835 {
836 sbi->s_flag &= ~(0x01 << type);
837 }
838
839 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
840 {
841 return le64_to_cpu(cp->checkpoint_ver);
842 }
843
844 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
845 {
846 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
847 return ckpt_flags & f;
848 }
849
850 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
851 {
852 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
853 ckpt_flags |= f;
854 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
855 }
856
857 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
858 {
859 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
860 ckpt_flags &= (~f);
861 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
862 }
863
864 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
865 {
866 down_read(&sbi->cp_rwsem);
867 }
868
869 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
870 {
871 up_read(&sbi->cp_rwsem);
872 }
873
874 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
875 {
876 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
877 }
878
879 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
880 {
881 up_write(&sbi->cp_rwsem);
882 }
883
884 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
885 {
886 int reason = CP_SYNC;
887
888 if (test_opt(sbi, FASTBOOT))
889 reason = CP_FASTBOOT;
890 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
891 reason = CP_UMOUNT;
892 return reason;
893 }
894
895 static inline bool __remain_node_summaries(int reason)
896 {
897 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
898 }
899
900 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
901 {
902 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
903 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
904 }
905
906 /*
907 * Check whether the given nid is within node id range.
908 */
909 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
910 {
911 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
912 return -EINVAL;
913 if (unlikely(nid >= NM_I(sbi)->max_nid))
914 return -EINVAL;
915 return 0;
916 }
917
918 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
919
920 /*
921 * Check whether the inode has blocks or not
922 */
923 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
924 {
925 if (F2FS_I(inode)->i_xattr_nid)
926 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
927 else
928 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
929 }
930
931 static inline bool f2fs_has_xattr_block(unsigned int ofs)
932 {
933 return ofs == XATTR_NODE_OFFSET;
934 }
935
936 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
937 struct inode *inode, blkcnt_t count)
938 {
939 block_t valid_block_count;
940
941 spin_lock(&sbi->stat_lock);
942 valid_block_count =
943 sbi->total_valid_block_count + (block_t)count;
944 if (unlikely(valid_block_count > sbi->user_block_count)) {
945 spin_unlock(&sbi->stat_lock);
946 return false;
947 }
948 inode->i_blocks += count;
949 sbi->total_valid_block_count = valid_block_count;
950 sbi->alloc_valid_block_count += (block_t)count;
951 spin_unlock(&sbi->stat_lock);
952 return true;
953 }
954
955 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
956 struct inode *inode,
957 blkcnt_t count)
958 {
959 spin_lock(&sbi->stat_lock);
960 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
961 f2fs_bug_on(sbi, inode->i_blocks < count);
962 inode->i_blocks -= count;
963 sbi->total_valid_block_count -= (block_t)count;
964 spin_unlock(&sbi->stat_lock);
965 }
966
967 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
968 {
969 atomic_inc(&sbi->nr_pages[count_type]);
970 set_sbi_flag(sbi, SBI_IS_DIRTY);
971 }
972
973 static inline void inode_inc_dirty_pages(struct inode *inode)
974 {
975 atomic_inc(&F2FS_I(inode)->dirty_pages);
976 if (S_ISDIR(inode->i_mode))
977 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
978 }
979
980 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
981 {
982 atomic_dec(&sbi->nr_pages[count_type]);
983 }
984
985 static inline void inode_dec_dirty_pages(struct inode *inode)
986 {
987 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
988 return;
989
990 atomic_dec(&F2FS_I(inode)->dirty_pages);
991
992 if (S_ISDIR(inode->i_mode))
993 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
994 }
995
996 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
997 {
998 return atomic_read(&sbi->nr_pages[count_type]);
999 }
1000
1001 static inline int get_dirty_pages(struct inode *inode)
1002 {
1003 return atomic_read(&F2FS_I(inode)->dirty_pages);
1004 }
1005
1006 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1007 {
1008 unsigned int pages_per_sec = sbi->segs_per_sec *
1009 (1 << sbi->log_blocks_per_seg);
1010 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1011 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1012 }
1013
1014 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1015 {
1016 return sbi->total_valid_block_count;
1017 }
1018
1019 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1020 {
1021 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1022
1023 /* return NAT or SIT bitmap */
1024 if (flag == NAT_BITMAP)
1025 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1026 else if (flag == SIT_BITMAP)
1027 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1028
1029 return 0;
1030 }
1031
1032 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1033 {
1034 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1035 }
1036
1037 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1038 {
1039 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1040 int offset;
1041
1042 if (__cp_payload(sbi) > 0) {
1043 if (flag == NAT_BITMAP)
1044 return &ckpt->sit_nat_version_bitmap;
1045 else
1046 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1047 } else {
1048 offset = (flag == NAT_BITMAP) ?
1049 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1050 return &ckpt->sit_nat_version_bitmap + offset;
1051 }
1052 }
1053
1054 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1055 {
1056 block_t start_addr;
1057 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1058 unsigned long long ckpt_version = cur_cp_version(ckpt);
1059
1060 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1061
1062 /*
1063 * odd numbered checkpoint should at cp segment 0
1064 * and even segment must be at cp segment 1
1065 */
1066 if (!(ckpt_version & 1))
1067 start_addr += sbi->blocks_per_seg;
1068
1069 return start_addr;
1070 }
1071
1072 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1073 {
1074 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1075 }
1076
1077 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1078 struct inode *inode)
1079 {
1080 block_t valid_block_count;
1081 unsigned int valid_node_count;
1082
1083 spin_lock(&sbi->stat_lock);
1084
1085 valid_block_count = sbi->total_valid_block_count + 1;
1086 if (unlikely(valid_block_count > sbi->user_block_count)) {
1087 spin_unlock(&sbi->stat_lock);
1088 return false;
1089 }
1090
1091 valid_node_count = sbi->total_valid_node_count + 1;
1092 if (unlikely(valid_node_count > sbi->total_node_count)) {
1093 spin_unlock(&sbi->stat_lock);
1094 return false;
1095 }
1096
1097 if (inode)
1098 inode->i_blocks++;
1099
1100 sbi->alloc_valid_block_count++;
1101 sbi->total_valid_node_count++;
1102 sbi->total_valid_block_count++;
1103 spin_unlock(&sbi->stat_lock);
1104
1105 return true;
1106 }
1107
1108 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1109 struct inode *inode)
1110 {
1111 spin_lock(&sbi->stat_lock);
1112
1113 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1114 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1115 f2fs_bug_on(sbi, !inode->i_blocks);
1116
1117 inode->i_blocks--;
1118 sbi->total_valid_node_count--;
1119 sbi->total_valid_block_count--;
1120
1121 spin_unlock(&sbi->stat_lock);
1122 }
1123
1124 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1125 {
1126 return sbi->total_valid_node_count;
1127 }
1128
1129 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1130 {
1131 spin_lock(&sbi->stat_lock);
1132 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1133 sbi->total_valid_inode_count++;
1134 spin_unlock(&sbi->stat_lock);
1135 }
1136
1137 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1138 {
1139 spin_lock(&sbi->stat_lock);
1140 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1141 sbi->total_valid_inode_count--;
1142 spin_unlock(&sbi->stat_lock);
1143 }
1144
1145 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1146 {
1147 return sbi->total_valid_inode_count;
1148 }
1149
1150 static inline void f2fs_put_page(struct page *page, int unlock)
1151 {
1152 if (!page)
1153 return;
1154
1155 if (unlock) {
1156 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1157 unlock_page(page);
1158 }
1159 page_cache_release(page);
1160 }
1161
1162 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1163 {
1164 if (dn->node_page)
1165 f2fs_put_page(dn->node_page, 1);
1166 if (dn->inode_page && dn->node_page != dn->inode_page)
1167 f2fs_put_page(dn->inode_page, 0);
1168 dn->node_page = NULL;
1169 dn->inode_page = NULL;
1170 }
1171
1172 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1173 size_t size)
1174 {
1175 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1176 }
1177
1178 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1179 gfp_t flags)
1180 {
1181 void *entry;
1182 retry:
1183 entry = kmem_cache_alloc(cachep, flags);
1184 if (!entry) {
1185 cond_resched();
1186 goto retry;
1187 }
1188
1189 return entry;
1190 }
1191
1192 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1193 unsigned long index, void *item)
1194 {
1195 while (radix_tree_insert(root, index, item))
1196 cond_resched();
1197 }
1198
1199 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1200
1201 static inline bool IS_INODE(struct page *page)
1202 {
1203 struct f2fs_node *p = F2FS_NODE(page);
1204 return RAW_IS_INODE(p);
1205 }
1206
1207 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1208 {
1209 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1210 }
1211
1212 static inline block_t datablock_addr(struct page *node_page,
1213 unsigned int offset)
1214 {
1215 struct f2fs_node *raw_node;
1216 __le32 *addr_array;
1217 raw_node = F2FS_NODE(node_page);
1218 addr_array = blkaddr_in_node(raw_node);
1219 return le32_to_cpu(addr_array[offset]);
1220 }
1221
1222 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1223 {
1224 int mask;
1225
1226 addr += (nr >> 3);
1227 mask = 1 << (7 - (nr & 0x07));
1228 return mask & *addr;
1229 }
1230
1231 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1232 {
1233 int mask;
1234
1235 addr += (nr >> 3);
1236 mask = 1 << (7 - (nr & 0x07));
1237 *addr |= mask;
1238 }
1239
1240 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1241 {
1242 int mask;
1243
1244 addr += (nr >> 3);
1245 mask = 1 << (7 - (nr & 0x07));
1246 *addr &= ~mask;
1247 }
1248
1249 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1250 {
1251 int mask;
1252 int ret;
1253
1254 addr += (nr >> 3);
1255 mask = 1 << (7 - (nr & 0x07));
1256 ret = mask & *addr;
1257 *addr |= mask;
1258 return ret;
1259 }
1260
1261 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1262 {
1263 int mask;
1264 int ret;
1265
1266 addr += (nr >> 3);
1267 mask = 1 << (7 - (nr & 0x07));
1268 ret = mask & *addr;
1269 *addr &= ~mask;
1270 return ret;
1271 }
1272
1273 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1274 {
1275 int mask;
1276
1277 addr += (nr >> 3);
1278 mask = 1 << (7 - (nr & 0x07));
1279 *addr ^= mask;
1280 }
1281
1282 /* used for f2fs_inode_info->flags */
1283 enum {
1284 FI_NEW_INODE, /* indicate newly allocated inode */
1285 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1286 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1287 FI_INC_LINK, /* need to increment i_nlink */
1288 FI_ACL_MODE, /* indicate acl mode */
1289 FI_NO_ALLOC, /* should not allocate any blocks */
1290 FI_UPDATE_DIR, /* should update inode block for consistency */
1291 FI_DELAY_IPUT, /* used for the recovery */
1292 FI_NO_EXTENT, /* not to use the extent cache */
1293 FI_INLINE_XATTR, /* used for inline xattr */
1294 FI_INLINE_DATA, /* used for inline data*/
1295 FI_INLINE_DENTRY, /* used for inline dentry */
1296 FI_APPEND_WRITE, /* inode has appended data */
1297 FI_UPDATE_WRITE, /* inode has in-place-update data */
1298 FI_NEED_IPU, /* used for ipu per file */
1299 FI_ATOMIC_FILE, /* indicate atomic file */
1300 FI_VOLATILE_FILE, /* indicate volatile file */
1301 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1302 FI_DROP_CACHE, /* drop dirty page cache */
1303 FI_DATA_EXIST, /* indicate data exists */
1304 FI_INLINE_DOTS, /* indicate inline dot dentries */
1305 };
1306
1307 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1308 {
1309 if (!test_bit(flag, &fi->flags))
1310 set_bit(flag, &fi->flags);
1311 }
1312
1313 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1314 {
1315 return test_bit(flag, &fi->flags);
1316 }
1317
1318 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1319 {
1320 if (test_bit(flag, &fi->flags))
1321 clear_bit(flag, &fi->flags);
1322 }
1323
1324 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1325 {
1326 fi->i_acl_mode = mode;
1327 set_inode_flag(fi, FI_ACL_MODE);
1328 }
1329
1330 static inline void get_inline_info(struct f2fs_inode_info *fi,
1331 struct f2fs_inode *ri)
1332 {
1333 if (ri->i_inline & F2FS_INLINE_XATTR)
1334 set_inode_flag(fi, FI_INLINE_XATTR);
1335 if (ri->i_inline & F2FS_INLINE_DATA)
1336 set_inode_flag(fi, FI_INLINE_DATA);
1337 if (ri->i_inline & F2FS_INLINE_DENTRY)
1338 set_inode_flag(fi, FI_INLINE_DENTRY);
1339 if (ri->i_inline & F2FS_DATA_EXIST)
1340 set_inode_flag(fi, FI_DATA_EXIST);
1341 if (ri->i_inline & F2FS_INLINE_DOTS)
1342 set_inode_flag(fi, FI_INLINE_DOTS);
1343 }
1344
1345 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1346 struct f2fs_inode *ri)
1347 {
1348 ri->i_inline = 0;
1349
1350 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1351 ri->i_inline |= F2FS_INLINE_XATTR;
1352 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1353 ri->i_inline |= F2FS_INLINE_DATA;
1354 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1355 ri->i_inline |= F2FS_INLINE_DENTRY;
1356 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1357 ri->i_inline |= F2FS_DATA_EXIST;
1358 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1359 ri->i_inline |= F2FS_INLINE_DOTS;
1360 }
1361
1362 static inline int f2fs_has_inline_xattr(struct inode *inode)
1363 {
1364 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1365 }
1366
1367 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1368 {
1369 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1370 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1371 return DEF_ADDRS_PER_INODE;
1372 }
1373
1374 static inline void *inline_xattr_addr(struct page *page)
1375 {
1376 struct f2fs_inode *ri = F2FS_INODE(page);
1377 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1378 F2FS_INLINE_XATTR_ADDRS]);
1379 }
1380
1381 static inline int inline_xattr_size(struct inode *inode)
1382 {
1383 if (f2fs_has_inline_xattr(inode))
1384 return F2FS_INLINE_XATTR_ADDRS << 2;
1385 else
1386 return 0;
1387 }
1388
1389 static inline int f2fs_has_inline_data(struct inode *inode)
1390 {
1391 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1392 }
1393
1394 static inline void f2fs_clear_inline_inode(struct inode *inode)
1395 {
1396 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1397 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1398 }
1399
1400 static inline int f2fs_exist_data(struct inode *inode)
1401 {
1402 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1403 }
1404
1405 static inline int f2fs_has_inline_dots(struct inode *inode)
1406 {
1407 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1408 }
1409
1410 static inline bool f2fs_is_atomic_file(struct inode *inode)
1411 {
1412 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1413 }
1414
1415 static inline bool f2fs_is_volatile_file(struct inode *inode)
1416 {
1417 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1418 }
1419
1420 static inline bool f2fs_is_first_block_written(struct inode *inode)
1421 {
1422 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1423 }
1424
1425 static inline bool f2fs_is_drop_cache(struct inode *inode)
1426 {
1427 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1428 }
1429
1430 static inline void *inline_data_addr(struct page *page)
1431 {
1432 struct f2fs_inode *ri = F2FS_INODE(page);
1433 return (void *)&(ri->i_addr[1]);
1434 }
1435
1436 static inline int f2fs_has_inline_dentry(struct inode *inode)
1437 {
1438 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1439 }
1440
1441 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1442 {
1443 if (!f2fs_has_inline_dentry(dir))
1444 kunmap(page);
1445 }
1446
1447 static inline int is_file(struct inode *inode, int type)
1448 {
1449 return F2FS_I(inode)->i_advise & type;
1450 }
1451
1452 static inline void set_file(struct inode *inode, int type)
1453 {
1454 F2FS_I(inode)->i_advise |= type;
1455 }
1456
1457 static inline void clear_file(struct inode *inode, int type)
1458 {
1459 F2FS_I(inode)->i_advise &= ~type;
1460 }
1461
1462 static inline int f2fs_readonly(struct super_block *sb)
1463 {
1464 return sb->s_flags & MS_RDONLY;
1465 }
1466
1467 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1468 {
1469 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1470 }
1471
1472 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1473 {
1474 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1475 sbi->sb->s_flags |= MS_RDONLY;
1476 }
1477
1478 static inline bool is_dot_dotdot(const struct qstr *str)
1479 {
1480 if (str->len == 1 && str->name[0] == '.')
1481 return true;
1482
1483 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1484 return true;
1485
1486 return false;
1487 }
1488
1489 #define get_inode_mode(i) \
1490 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1491 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1492
1493 /* get offset of first page in next direct node */
1494 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1495 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1496 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1497 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1498
1499 /*
1500 * file.c
1501 */
1502 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1503 void truncate_data_blocks(struct dnode_of_data *);
1504 int truncate_blocks(struct inode *, u64, bool);
1505 void f2fs_truncate(struct inode *);
1506 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1507 int f2fs_setattr(struct dentry *, struct iattr *);
1508 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1509 int truncate_data_blocks_range(struct dnode_of_data *, int);
1510 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1511 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1512
1513 /*
1514 * inode.c
1515 */
1516 void f2fs_set_inode_flags(struct inode *);
1517 struct inode *f2fs_iget(struct super_block *, unsigned long);
1518 int try_to_free_nats(struct f2fs_sb_info *, int);
1519 void update_inode(struct inode *, struct page *);
1520 void update_inode_page(struct inode *);
1521 int f2fs_write_inode(struct inode *, struct writeback_control *);
1522 void f2fs_evict_inode(struct inode *);
1523 void handle_failed_inode(struct inode *);
1524
1525 /*
1526 * namei.c
1527 */
1528 struct dentry *f2fs_get_parent(struct dentry *child);
1529
1530 /*
1531 * dir.c
1532 */
1533 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1534 void set_de_type(struct f2fs_dir_entry *, umode_t);
1535 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1536 struct f2fs_dentry_ptr *);
1537 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1538 unsigned int);
1539 void do_make_empty_dir(struct inode *, struct inode *,
1540 struct f2fs_dentry_ptr *);
1541 struct page *init_inode_metadata(struct inode *, struct inode *,
1542 const struct qstr *, struct page *);
1543 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1544 int room_for_filename(const void *, int, int);
1545 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1546 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1547 struct page **);
1548 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1549 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1550 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1551 struct page *, struct inode *);
1552 int update_dent_inode(struct inode *, const struct qstr *);
1553 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1554 const struct qstr *, f2fs_hash_t , unsigned int);
1555 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1556 umode_t);
1557 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1558 struct inode *);
1559 int f2fs_do_tmpfile(struct inode *, struct inode *);
1560 bool f2fs_empty_dir(struct inode *);
1561
1562 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1563 {
1564 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1565 inode, inode->i_ino, inode->i_mode);
1566 }
1567
1568 /*
1569 * super.c
1570 */
1571 int f2fs_commit_super(struct f2fs_sb_info *);
1572 int f2fs_sync_fs(struct super_block *, int);
1573 extern __printf(3, 4)
1574 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1575
1576 /*
1577 * hash.c
1578 */
1579 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1580
1581 /*
1582 * node.c
1583 */
1584 struct dnode_of_data;
1585 struct node_info;
1586
1587 bool available_free_memory(struct f2fs_sb_info *, int);
1588 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1589 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1590 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1591 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1592 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1593 int truncate_inode_blocks(struct inode *, pgoff_t);
1594 int truncate_xattr_node(struct inode *, struct page *);
1595 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1596 void remove_inode_page(struct inode *);
1597 struct page *new_inode_page(struct inode *);
1598 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1599 void ra_node_page(struct f2fs_sb_info *, nid_t);
1600 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1601 struct page *get_node_page_ra(struct page *, int);
1602 void sync_inode_page(struct dnode_of_data *);
1603 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1604 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1605 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1606 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1607 void recover_inline_xattr(struct inode *, struct page *);
1608 void recover_xattr_data(struct inode *, struct page *, block_t);
1609 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1610 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1611 struct f2fs_summary_block *);
1612 void flush_nat_entries(struct f2fs_sb_info *);
1613 int build_node_manager(struct f2fs_sb_info *);
1614 void destroy_node_manager(struct f2fs_sb_info *);
1615 int __init create_node_manager_caches(void);
1616 void destroy_node_manager_caches(void);
1617
1618 /*
1619 * segment.c
1620 */
1621 void register_inmem_page(struct inode *, struct page *);
1622 void commit_inmem_pages(struct inode *, bool);
1623 void f2fs_balance_fs(struct f2fs_sb_info *);
1624 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1625 int f2fs_issue_flush(struct f2fs_sb_info *);
1626 int create_flush_cmd_control(struct f2fs_sb_info *);
1627 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1628 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1629 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1630 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1631 void release_discard_addrs(struct f2fs_sb_info *);
1632 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1633 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1634 void allocate_new_segments(struct f2fs_sb_info *);
1635 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1636 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1637 void write_meta_page(struct f2fs_sb_info *, struct page *);
1638 void write_node_page(unsigned int, struct f2fs_io_info *);
1639 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1640 void rewrite_data_page(struct f2fs_io_info *);
1641 void f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
1642 block_t, block_t, bool);
1643 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1644 block_t, block_t *, struct f2fs_summary *, int);
1645 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1646 void write_data_summaries(struct f2fs_sb_info *, block_t);
1647 void write_node_summaries(struct f2fs_sb_info *, block_t);
1648 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1649 int, unsigned int, int);
1650 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1651 int build_segment_manager(struct f2fs_sb_info *);
1652 void destroy_segment_manager(struct f2fs_sb_info *);
1653 int __init create_segment_manager_caches(void);
1654 void destroy_segment_manager_caches(void);
1655
1656 /*
1657 * checkpoint.c
1658 */
1659 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1660 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1661 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1662 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1663 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1664 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1665 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1666 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1667 void release_dirty_inode(struct f2fs_sb_info *);
1668 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1669 int acquire_orphan_inode(struct f2fs_sb_info *);
1670 void release_orphan_inode(struct f2fs_sb_info *);
1671 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1672 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1673 void recover_orphan_inodes(struct f2fs_sb_info *);
1674 int get_valid_checkpoint(struct f2fs_sb_info *);
1675 void update_dirty_page(struct inode *, struct page *);
1676 void add_dirty_dir_inode(struct inode *);
1677 void remove_dirty_dir_inode(struct inode *);
1678 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1679 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1680 void init_ino_entry_info(struct f2fs_sb_info *);
1681 int __init create_checkpoint_caches(void);
1682 void destroy_checkpoint_caches(void);
1683
1684 /*
1685 * data.c
1686 */
1687 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1688 int f2fs_submit_page_bio(struct f2fs_io_info *);
1689 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1690 void set_data_blkaddr(struct dnode_of_data *);
1691 int reserve_new_block(struct dnode_of_data *);
1692 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1693 void f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
1694 void f2fs_destroy_extent_tree(struct inode *);
1695 void f2fs_init_extent_cache(struct inode *, struct f2fs_extent *);
1696 void f2fs_update_extent_cache(struct dnode_of_data *);
1697 void f2fs_preserve_extent_tree(struct inode *);
1698 struct page *get_read_data_page(struct inode *, pgoff_t, int);
1699 struct page *find_data_page(struct inode *, pgoff_t);
1700 struct page *get_lock_data_page(struct inode *, pgoff_t);
1701 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1702 int do_write_data_page(struct f2fs_io_info *);
1703 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1704 void init_extent_cache_info(struct f2fs_sb_info *);
1705 int __init create_extent_cache(void);
1706 void destroy_extent_cache(void);
1707 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1708 int f2fs_release_page(struct page *, gfp_t);
1709
1710 /*
1711 * gc.c
1712 */
1713 int start_gc_thread(struct f2fs_sb_info *);
1714 void stop_gc_thread(struct f2fs_sb_info *);
1715 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1716 int f2fs_gc(struct f2fs_sb_info *);
1717 void build_gc_manager(struct f2fs_sb_info *);
1718
1719 /*
1720 * recovery.c
1721 */
1722 int recover_fsync_data(struct f2fs_sb_info *);
1723 bool space_for_roll_forward(struct f2fs_sb_info *);
1724
1725 /*
1726 * debug.c
1727 */
1728 #ifdef CONFIG_F2FS_STAT_FS
1729 struct f2fs_stat_info {
1730 struct list_head stat_list;
1731 struct f2fs_sb_info *sbi;
1732 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1733 int main_area_segs, main_area_sections, main_area_zones;
1734 int hit_ext, total_ext, ext_tree, ext_node;
1735 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1736 int nats, dirty_nats, sits, dirty_sits, fnids;
1737 int total_count, utilization;
1738 int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1739 unsigned int valid_count, valid_node_count, valid_inode_count;
1740 unsigned int bimodal, avg_vblocks;
1741 int util_free, util_valid, util_invalid;
1742 int rsvd_segs, overp_segs;
1743 int dirty_count, node_pages, meta_pages;
1744 int prefree_count, call_count, cp_count;
1745 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1746 int bg_node_segs, bg_data_segs;
1747 int tot_blks, data_blks, node_blks;
1748 int bg_data_blks, bg_node_blks;
1749 int curseg[NR_CURSEG_TYPE];
1750 int cursec[NR_CURSEG_TYPE];
1751 int curzone[NR_CURSEG_TYPE];
1752
1753 unsigned int segment_count[2];
1754 unsigned int block_count[2];
1755 unsigned int inplace_count;
1756 unsigned base_mem, cache_mem, page_mem;
1757 };
1758
1759 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1760 {
1761 return (struct f2fs_stat_info *)sbi->stat_info;
1762 }
1763
1764 #define stat_inc_cp_count(si) ((si)->cp_count++)
1765 #define stat_inc_call_count(si) ((si)->call_count++)
1766 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1767 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1768 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1769 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1770 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1771 #define stat_inc_inline_inode(inode) \
1772 do { \
1773 if (f2fs_has_inline_data(inode)) \
1774 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1775 } while (0)
1776 #define stat_dec_inline_inode(inode) \
1777 do { \
1778 if (f2fs_has_inline_data(inode)) \
1779 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1780 } while (0)
1781 #define stat_inc_inline_dir(inode) \
1782 do { \
1783 if (f2fs_has_inline_dentry(inode)) \
1784 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1785 } while (0)
1786 #define stat_dec_inline_dir(inode) \
1787 do { \
1788 if (f2fs_has_inline_dentry(inode)) \
1789 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1790 } while (0)
1791 #define stat_inc_seg_type(sbi, curseg) \
1792 ((sbi)->segment_count[(curseg)->alloc_type]++)
1793 #define stat_inc_block_count(sbi, curseg) \
1794 ((sbi)->block_count[(curseg)->alloc_type]++)
1795 #define stat_inc_inplace_blocks(sbi) \
1796 (atomic_inc(&(sbi)->inplace_count))
1797 #define stat_inc_seg_count(sbi, type, gc_type) \
1798 do { \
1799 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1800 (si)->tot_segs++; \
1801 if (type == SUM_TYPE_DATA) { \
1802 si->data_segs++; \
1803 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1804 } else { \
1805 si->node_segs++; \
1806 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1807 } \
1808 } while (0)
1809
1810 #define stat_inc_tot_blk_count(si, blks) \
1811 (si->tot_blks += (blks))
1812
1813 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1814 do { \
1815 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1816 stat_inc_tot_blk_count(si, blks); \
1817 si->data_blks += (blks); \
1818 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1819 } while (0)
1820
1821 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1822 do { \
1823 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1824 stat_inc_tot_blk_count(si, blks); \
1825 si->node_blks += (blks); \
1826 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
1827 } while (0)
1828
1829 int f2fs_build_stats(struct f2fs_sb_info *);
1830 void f2fs_destroy_stats(struct f2fs_sb_info *);
1831 void __init f2fs_create_root_stats(void);
1832 void f2fs_destroy_root_stats(void);
1833 #else
1834 #define stat_inc_cp_count(si)
1835 #define stat_inc_call_count(si)
1836 #define stat_inc_bggc_count(si)
1837 #define stat_inc_dirty_dir(sbi)
1838 #define stat_dec_dirty_dir(sbi)
1839 #define stat_inc_total_hit(sb)
1840 #define stat_inc_read_hit(sb)
1841 #define stat_inc_inline_inode(inode)
1842 #define stat_dec_inline_inode(inode)
1843 #define stat_inc_inline_dir(inode)
1844 #define stat_dec_inline_dir(inode)
1845 #define stat_inc_seg_type(sbi, curseg)
1846 #define stat_inc_block_count(sbi, curseg)
1847 #define stat_inc_inplace_blocks(sbi)
1848 #define stat_inc_seg_count(sbi, type, gc_type)
1849 #define stat_inc_tot_blk_count(si, blks)
1850 #define stat_inc_data_blk_count(sbi, blks, gc_type)
1851 #define stat_inc_node_blk_count(sbi, blks, gc_type)
1852
1853 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1854 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1855 static inline void __init f2fs_create_root_stats(void) { }
1856 static inline void f2fs_destroy_root_stats(void) { }
1857 #endif
1858
1859 extern const struct file_operations f2fs_dir_operations;
1860 extern const struct file_operations f2fs_file_operations;
1861 extern const struct inode_operations f2fs_file_inode_operations;
1862 extern const struct address_space_operations f2fs_dblock_aops;
1863 extern const struct address_space_operations f2fs_node_aops;
1864 extern const struct address_space_operations f2fs_meta_aops;
1865 extern const struct inode_operations f2fs_dir_inode_operations;
1866 extern const struct inode_operations f2fs_symlink_inode_operations;
1867 extern const struct inode_operations f2fs_special_inode_operations;
1868 extern struct kmem_cache *inode_entry_slab;
1869
1870 /*
1871 * inline.c
1872 */
1873 bool f2fs_may_inline_data(struct inode *);
1874 bool f2fs_may_inline_dentry(struct inode *);
1875 void read_inline_data(struct page *, struct page *);
1876 bool truncate_inline_inode(struct page *, u64);
1877 int f2fs_read_inline_data(struct inode *, struct page *);
1878 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1879 int f2fs_convert_inline_inode(struct inode *);
1880 int f2fs_write_inline_data(struct inode *, struct page *);
1881 bool recover_inline_data(struct inode *, struct page *);
1882 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1883 struct page **);
1884 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1885 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1886 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
1887 nid_t, umode_t);
1888 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1889 struct inode *, struct inode *);
1890 bool f2fs_empty_inline_dir(struct inode *);
1891 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1892 #endif