]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/f2fs.h
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_EVICT_INODE,
49 FAULT_IO,
50 FAULT_CHECKPOINT,
51 FAULT_MAX,
52 };
53
54 struct f2fs_fault_info {
55 atomic_t inject_ops;
56 unsigned int inject_rate;
57 unsigned int inject_type;
58 };
59
60 extern char *fault_name[FAULT_MAX];
61 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type)))
62 #endif
63
64 /*
65 * For mount options
66 */
67 #define F2FS_MOUNT_BG_GC 0x00000001
68 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
69 #define F2FS_MOUNT_DISCARD 0x00000004
70 #define F2FS_MOUNT_NOHEAP 0x00000008
71 #define F2FS_MOUNT_XATTR_USER 0x00000010
72 #define F2FS_MOUNT_POSIX_ACL 0x00000020
73 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
74 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
75 #define F2FS_MOUNT_INLINE_DATA 0x00000100
76 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
77 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
78 #define F2FS_MOUNT_NOBARRIER 0x00000800
79 #define F2FS_MOUNT_FASTBOOT 0x00001000
80 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
81 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
82 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
83 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
84 #define F2FS_MOUNT_ADAPTIVE 0x00020000
85 #define F2FS_MOUNT_LFS 0x00040000
86
87 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
88 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
89 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
90
91 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
92 typecheck(unsigned long long, b) && \
93 ((long long)((a) - (b)) > 0))
94
95 typedef u32 block_t; /*
96 * should not change u32, since it is the on-disk block
97 * address format, __le32.
98 */
99 typedef u32 nid_t;
100
101 struct f2fs_mount_info {
102 unsigned int opt;
103 };
104
105 #define F2FS_FEATURE_ENCRYPT 0x0001
106 #define F2FS_FEATURE_BLKZONED 0x0002
107
108 #define F2FS_HAS_FEATURE(sb, mask) \
109 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
110 #define F2FS_SET_FEATURE(sb, mask) \
111 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
112 #define F2FS_CLEAR_FEATURE(sb, mask) \
113 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
114
115 /*
116 * For checkpoint manager
117 */
118 enum {
119 NAT_BITMAP,
120 SIT_BITMAP
121 };
122
123 enum {
124 CP_UMOUNT,
125 CP_FASTBOOT,
126 CP_SYNC,
127 CP_RECOVERY,
128 CP_DISCARD,
129 };
130
131 #define DEF_BATCHED_TRIM_SECTIONS 2
132 #define BATCHED_TRIM_SEGMENTS(sbi) \
133 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
134 #define BATCHED_TRIM_BLOCKS(sbi) \
135 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
136 #define DEF_CP_INTERVAL 60 /* 60 secs */
137 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
138
139 struct cp_control {
140 int reason;
141 __u64 trim_start;
142 __u64 trim_end;
143 __u64 trim_minlen;
144 __u64 trimmed;
145 };
146
147 /*
148 * For CP/NAT/SIT/SSA readahead
149 */
150 enum {
151 META_CP,
152 META_NAT,
153 META_SIT,
154 META_SSA,
155 META_POR,
156 };
157
158 /* for the list of ino */
159 enum {
160 ORPHAN_INO, /* for orphan ino list */
161 APPEND_INO, /* for append ino list */
162 UPDATE_INO, /* for update ino list */
163 MAX_INO_ENTRY, /* max. list */
164 };
165
166 struct ino_entry {
167 struct list_head list; /* list head */
168 nid_t ino; /* inode number */
169 };
170
171 /* for the list of inodes to be GCed */
172 struct inode_entry {
173 struct list_head list; /* list head */
174 struct inode *inode; /* vfs inode pointer */
175 };
176
177 /* for the list of blockaddresses to be discarded */
178 struct discard_entry {
179 struct list_head list; /* list head */
180 block_t blkaddr; /* block address to be discarded */
181 int len; /* # of consecutive blocks of the discard */
182 };
183
184 struct bio_entry {
185 struct list_head list;
186 struct bio *bio;
187 struct completion event;
188 int error;
189 };
190
191 /* for the list of fsync inodes, used only during recovery */
192 struct fsync_inode_entry {
193 struct list_head list; /* list head */
194 struct inode *inode; /* vfs inode pointer */
195 block_t blkaddr; /* block address locating the last fsync */
196 block_t last_dentry; /* block address locating the last dentry */
197 };
198
199 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
200 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
201
202 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
203 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
204 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
205 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
206
207 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
208 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
209
210 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
211 {
212 int before = nats_in_cursum(journal);
213 journal->n_nats = cpu_to_le16(before + i);
214 return before;
215 }
216
217 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
218 {
219 int before = sits_in_cursum(journal);
220 journal->n_sits = cpu_to_le16(before + i);
221 return before;
222 }
223
224 static inline bool __has_cursum_space(struct f2fs_journal *journal,
225 int size, int type)
226 {
227 if (type == NAT_JOURNAL)
228 return size <= MAX_NAT_JENTRIES(journal);
229 return size <= MAX_SIT_JENTRIES(journal);
230 }
231
232 /*
233 * ioctl commands
234 */
235 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
236 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
237 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
238
239 #define F2FS_IOCTL_MAGIC 0xf5
240 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
241 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
242 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
243 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
244 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
245 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
246 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
247 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
248 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
249 struct f2fs_move_range)
250
251 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
252 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
253 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
254
255 /*
256 * should be same as XFS_IOC_GOINGDOWN.
257 * Flags for going down operation used by FS_IOC_GOINGDOWN
258 */
259 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
260 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
261 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
262 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
263 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
264
265 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
266 /*
267 * ioctl commands in 32 bit emulation
268 */
269 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
270 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
271 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
272 #endif
273
274 struct f2fs_defragment {
275 u64 start;
276 u64 len;
277 };
278
279 struct f2fs_move_range {
280 u32 dst_fd; /* destination fd */
281 u64 pos_in; /* start position in src_fd */
282 u64 pos_out; /* start position in dst_fd */
283 u64 len; /* size to move */
284 };
285
286 /*
287 * For INODE and NODE manager
288 */
289 /* for directory operations */
290 struct f2fs_dentry_ptr {
291 struct inode *inode;
292 const void *bitmap;
293 struct f2fs_dir_entry *dentry;
294 __u8 (*filename)[F2FS_SLOT_LEN];
295 int max;
296 };
297
298 static inline void make_dentry_ptr(struct inode *inode,
299 struct f2fs_dentry_ptr *d, void *src, int type)
300 {
301 d->inode = inode;
302
303 if (type == 1) {
304 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
305 d->max = NR_DENTRY_IN_BLOCK;
306 d->bitmap = &t->dentry_bitmap;
307 d->dentry = t->dentry;
308 d->filename = t->filename;
309 } else {
310 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
311 d->max = NR_INLINE_DENTRY;
312 d->bitmap = &t->dentry_bitmap;
313 d->dentry = t->dentry;
314 d->filename = t->filename;
315 }
316 }
317
318 /*
319 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
320 * as its node offset to distinguish from index node blocks.
321 * But some bits are used to mark the node block.
322 */
323 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
324 >> OFFSET_BIT_SHIFT)
325 enum {
326 ALLOC_NODE, /* allocate a new node page if needed */
327 LOOKUP_NODE, /* look up a node without readahead */
328 LOOKUP_NODE_RA, /*
329 * look up a node with readahead called
330 * by get_data_block.
331 */
332 };
333
334 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
335
336 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
337
338 /* vector size for gang look-up from extent cache that consists of radix tree */
339 #define EXT_TREE_VEC_SIZE 64
340
341 /* for in-memory extent cache entry */
342 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
343
344 /* number of extent info in extent cache we try to shrink */
345 #define EXTENT_CACHE_SHRINK_NUMBER 128
346
347 struct extent_info {
348 unsigned int fofs; /* start offset in a file */
349 u32 blk; /* start block address of the extent */
350 unsigned int len; /* length of the extent */
351 };
352
353 struct extent_node {
354 struct rb_node rb_node; /* rb node located in rb-tree */
355 struct list_head list; /* node in global extent list of sbi */
356 struct extent_info ei; /* extent info */
357 struct extent_tree *et; /* extent tree pointer */
358 };
359
360 struct extent_tree {
361 nid_t ino; /* inode number */
362 struct rb_root root; /* root of extent info rb-tree */
363 struct extent_node *cached_en; /* recently accessed extent node */
364 struct extent_info largest; /* largested extent info */
365 struct list_head list; /* to be used by sbi->zombie_list */
366 rwlock_t lock; /* protect extent info rb-tree */
367 atomic_t node_cnt; /* # of extent node in rb-tree*/
368 };
369
370 /*
371 * This structure is taken from ext4_map_blocks.
372 *
373 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
374 */
375 #define F2FS_MAP_NEW (1 << BH_New)
376 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
377 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
378 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
379 F2FS_MAP_UNWRITTEN)
380
381 struct f2fs_map_blocks {
382 block_t m_pblk;
383 block_t m_lblk;
384 unsigned int m_len;
385 unsigned int m_flags;
386 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
387 };
388
389 /* for flag in get_data_block */
390 #define F2FS_GET_BLOCK_READ 0
391 #define F2FS_GET_BLOCK_DIO 1
392 #define F2FS_GET_BLOCK_FIEMAP 2
393 #define F2FS_GET_BLOCK_BMAP 3
394 #define F2FS_GET_BLOCK_PRE_DIO 4
395 #define F2FS_GET_BLOCK_PRE_AIO 5
396
397 /*
398 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
399 */
400 #define FADVISE_COLD_BIT 0x01
401 #define FADVISE_LOST_PINO_BIT 0x02
402 #define FADVISE_ENCRYPT_BIT 0x04
403 #define FADVISE_ENC_NAME_BIT 0x08
404 #define FADVISE_KEEP_SIZE_BIT 0x10
405
406 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
407 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
408 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
409 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
410 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
411 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
412 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
413 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
414 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
415 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
416 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
417 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
418 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
419
420 #define DEF_DIR_LEVEL 0
421
422 struct f2fs_inode_info {
423 struct inode vfs_inode; /* serve a vfs inode */
424 unsigned long i_flags; /* keep an inode flags for ioctl */
425 unsigned char i_advise; /* use to give file attribute hints */
426 unsigned char i_dir_level; /* use for dentry level for large dir */
427 unsigned int i_current_depth; /* use only in directory structure */
428 unsigned int i_pino; /* parent inode number */
429 umode_t i_acl_mode; /* keep file acl mode temporarily */
430
431 /* Use below internally in f2fs*/
432 unsigned long flags; /* use to pass per-file flags */
433 struct rw_semaphore i_sem; /* protect fi info */
434 atomic_t dirty_pages; /* # of dirty pages */
435 f2fs_hash_t chash; /* hash value of given file name */
436 unsigned int clevel; /* maximum level of given file name */
437 nid_t i_xattr_nid; /* node id that contains xattrs */
438 unsigned long long xattr_ver; /* cp version of xattr modification */
439 loff_t last_disk_size; /* lastly written file size */
440
441 struct list_head dirty_list; /* dirty list for dirs and files */
442 struct list_head gdirty_list; /* linked in global dirty list */
443 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
444 struct mutex inmem_lock; /* lock for inmemory pages */
445 struct extent_tree *extent_tree; /* cached extent_tree entry */
446 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
447 };
448
449 static inline void get_extent_info(struct extent_info *ext,
450 struct f2fs_extent *i_ext)
451 {
452 ext->fofs = le32_to_cpu(i_ext->fofs);
453 ext->blk = le32_to_cpu(i_ext->blk);
454 ext->len = le32_to_cpu(i_ext->len);
455 }
456
457 static inline void set_raw_extent(struct extent_info *ext,
458 struct f2fs_extent *i_ext)
459 {
460 i_ext->fofs = cpu_to_le32(ext->fofs);
461 i_ext->blk = cpu_to_le32(ext->blk);
462 i_ext->len = cpu_to_le32(ext->len);
463 }
464
465 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
466 u32 blk, unsigned int len)
467 {
468 ei->fofs = fofs;
469 ei->blk = blk;
470 ei->len = len;
471 }
472
473 static inline bool __is_extent_same(struct extent_info *ei1,
474 struct extent_info *ei2)
475 {
476 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
477 ei1->len == ei2->len);
478 }
479
480 static inline bool __is_extent_mergeable(struct extent_info *back,
481 struct extent_info *front)
482 {
483 return (back->fofs + back->len == front->fofs &&
484 back->blk + back->len == front->blk);
485 }
486
487 static inline bool __is_back_mergeable(struct extent_info *cur,
488 struct extent_info *back)
489 {
490 return __is_extent_mergeable(back, cur);
491 }
492
493 static inline bool __is_front_mergeable(struct extent_info *cur,
494 struct extent_info *front)
495 {
496 return __is_extent_mergeable(cur, front);
497 }
498
499 extern void f2fs_mark_inode_dirty_sync(struct inode *, bool);
500 static inline void __try_update_largest_extent(struct inode *inode,
501 struct extent_tree *et, struct extent_node *en)
502 {
503 if (en->ei.len > et->largest.len) {
504 et->largest = en->ei;
505 f2fs_mark_inode_dirty_sync(inode, true);
506 }
507 }
508
509 enum nid_list {
510 FREE_NID_LIST,
511 ALLOC_NID_LIST,
512 MAX_NID_LIST,
513 };
514
515 struct f2fs_nm_info {
516 block_t nat_blkaddr; /* base disk address of NAT */
517 nid_t max_nid; /* maximum possible node ids */
518 nid_t available_nids; /* # of available node ids */
519 nid_t next_scan_nid; /* the next nid to be scanned */
520 unsigned int ram_thresh; /* control the memory footprint */
521 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
522 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
523
524 /* NAT cache management */
525 struct radix_tree_root nat_root;/* root of the nat entry cache */
526 struct radix_tree_root nat_set_root;/* root of the nat set cache */
527 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
528 struct list_head nat_entries; /* cached nat entry list (clean) */
529 unsigned int nat_cnt; /* the # of cached nat entries */
530 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
531
532 /* free node ids management */
533 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
534 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
535 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */
536 spinlock_t nid_list_lock; /* protect nid lists ops */
537 struct mutex build_lock; /* lock for build free nids */
538
539 /* for checkpoint */
540 char *nat_bitmap; /* NAT bitmap pointer */
541 int bitmap_size; /* bitmap size */
542 };
543
544 /*
545 * this structure is used as one of function parameters.
546 * all the information are dedicated to a given direct node block determined
547 * by the data offset in a file.
548 */
549 struct dnode_of_data {
550 struct inode *inode; /* vfs inode pointer */
551 struct page *inode_page; /* its inode page, NULL is possible */
552 struct page *node_page; /* cached direct node page */
553 nid_t nid; /* node id of the direct node block */
554 unsigned int ofs_in_node; /* data offset in the node page */
555 bool inode_page_locked; /* inode page is locked or not */
556 bool node_changed; /* is node block changed */
557 char cur_level; /* level of hole node page */
558 char max_level; /* level of current page located */
559 block_t data_blkaddr; /* block address of the node block */
560 };
561
562 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
563 struct page *ipage, struct page *npage, nid_t nid)
564 {
565 memset(dn, 0, sizeof(*dn));
566 dn->inode = inode;
567 dn->inode_page = ipage;
568 dn->node_page = npage;
569 dn->nid = nid;
570 }
571
572 /*
573 * For SIT manager
574 *
575 * By default, there are 6 active log areas across the whole main area.
576 * When considering hot and cold data separation to reduce cleaning overhead,
577 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
578 * respectively.
579 * In the current design, you should not change the numbers intentionally.
580 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
581 * logs individually according to the underlying devices. (default: 6)
582 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
583 * data and 8 for node logs.
584 */
585 #define NR_CURSEG_DATA_TYPE (3)
586 #define NR_CURSEG_NODE_TYPE (3)
587 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
588
589 enum {
590 CURSEG_HOT_DATA = 0, /* directory entry blocks */
591 CURSEG_WARM_DATA, /* data blocks */
592 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
593 CURSEG_HOT_NODE, /* direct node blocks of directory files */
594 CURSEG_WARM_NODE, /* direct node blocks of normal files */
595 CURSEG_COLD_NODE, /* indirect node blocks */
596 NO_CHECK_TYPE,
597 };
598
599 struct flush_cmd {
600 struct completion wait;
601 struct llist_node llnode;
602 int ret;
603 };
604
605 struct flush_cmd_control {
606 struct task_struct *f2fs_issue_flush; /* flush thread */
607 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
608 atomic_t submit_flush; /* # of issued flushes */
609 struct llist_head issue_list; /* list for command issue */
610 struct llist_node *dispatch_list; /* list for command dispatch */
611 };
612
613 struct f2fs_sm_info {
614 struct sit_info *sit_info; /* whole segment information */
615 struct free_segmap_info *free_info; /* free segment information */
616 struct dirty_seglist_info *dirty_info; /* dirty segment information */
617 struct curseg_info *curseg_array; /* active segment information */
618
619 block_t seg0_blkaddr; /* block address of 0'th segment */
620 block_t main_blkaddr; /* start block address of main area */
621 block_t ssa_blkaddr; /* start block address of SSA area */
622
623 unsigned int segment_count; /* total # of segments */
624 unsigned int main_segments; /* # of segments in main area */
625 unsigned int reserved_segments; /* # of reserved segments */
626 unsigned int ovp_segments; /* # of overprovision segments */
627
628 /* a threshold to reclaim prefree segments */
629 unsigned int rec_prefree_segments;
630
631 /* for small discard management */
632 struct list_head discard_list; /* 4KB discard list */
633 struct list_head wait_list; /* linked with issued discard bio */
634 int nr_discards; /* # of discards in the list */
635 int max_discards; /* max. discards to be issued */
636
637 /* for batched trimming */
638 unsigned int trim_sections; /* # of sections to trim */
639
640 struct list_head sit_entry_set; /* sit entry set list */
641
642 unsigned int ipu_policy; /* in-place-update policy */
643 unsigned int min_ipu_util; /* in-place-update threshold */
644 unsigned int min_fsync_blocks; /* threshold for fsync */
645
646 /* for flush command control */
647 struct flush_cmd_control *cmd_control_info;
648
649 };
650
651 /*
652 * For superblock
653 */
654 /*
655 * COUNT_TYPE for monitoring
656 *
657 * f2fs monitors the number of several block types such as on-writeback,
658 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
659 */
660 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
661 enum count_type {
662 F2FS_DIRTY_DENTS,
663 F2FS_DIRTY_DATA,
664 F2FS_DIRTY_NODES,
665 F2FS_DIRTY_META,
666 F2FS_INMEM_PAGES,
667 F2FS_DIRTY_IMETA,
668 F2FS_WB_CP_DATA,
669 F2FS_WB_DATA,
670 NR_COUNT_TYPE,
671 };
672
673 /*
674 * The below are the page types of bios used in submit_bio().
675 * The available types are:
676 * DATA User data pages. It operates as async mode.
677 * NODE Node pages. It operates as async mode.
678 * META FS metadata pages such as SIT, NAT, CP.
679 * NR_PAGE_TYPE The number of page types.
680 * META_FLUSH Make sure the previous pages are written
681 * with waiting the bio's completion
682 * ... Only can be used with META.
683 */
684 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
685 enum page_type {
686 DATA,
687 NODE,
688 META,
689 NR_PAGE_TYPE,
690 META_FLUSH,
691 INMEM, /* the below types are used by tracepoints only. */
692 INMEM_DROP,
693 INMEM_REVOKE,
694 IPU,
695 OPU,
696 };
697
698 struct f2fs_io_info {
699 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
700 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
701 int op; /* contains REQ_OP_ */
702 int op_flags; /* req_flag_bits */
703 block_t new_blkaddr; /* new block address to be written */
704 block_t old_blkaddr; /* old block address before Cow */
705 struct page *page; /* page to be written */
706 struct page *encrypted_page; /* encrypted page */
707 };
708
709 #define is_read_io(rw) (rw == READ)
710 struct f2fs_bio_info {
711 struct f2fs_sb_info *sbi; /* f2fs superblock */
712 struct bio *bio; /* bios to merge */
713 sector_t last_block_in_bio; /* last block number */
714 struct f2fs_io_info fio; /* store buffered io info. */
715 struct rw_semaphore io_rwsem; /* blocking op for bio */
716 };
717
718 #define FDEV(i) (sbi->devs[i])
719 #define RDEV(i) (raw_super->devs[i])
720 struct f2fs_dev_info {
721 struct block_device *bdev;
722 char path[MAX_PATH_LEN];
723 unsigned int total_segments;
724 block_t start_blk;
725 block_t end_blk;
726 #ifdef CONFIG_BLK_DEV_ZONED
727 unsigned int nr_blkz; /* Total number of zones */
728 u8 *blkz_type; /* Array of zones type */
729 #endif
730 };
731
732 enum inode_type {
733 DIR_INODE, /* for dirty dir inode */
734 FILE_INODE, /* for dirty regular/symlink inode */
735 DIRTY_META, /* for all dirtied inode metadata */
736 NR_INODE_TYPE,
737 };
738
739 /* for inner inode cache management */
740 struct inode_management {
741 struct radix_tree_root ino_root; /* ino entry array */
742 spinlock_t ino_lock; /* for ino entry lock */
743 struct list_head ino_list; /* inode list head */
744 unsigned long ino_num; /* number of entries */
745 };
746
747 /* For s_flag in struct f2fs_sb_info */
748 enum {
749 SBI_IS_DIRTY, /* dirty flag for checkpoint */
750 SBI_IS_CLOSE, /* specify unmounting */
751 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
752 SBI_POR_DOING, /* recovery is doing or not */
753 SBI_NEED_SB_WRITE, /* need to recover superblock */
754 SBI_NEED_CP, /* need to checkpoint */
755 };
756
757 enum {
758 CP_TIME,
759 REQ_TIME,
760 MAX_TIME,
761 };
762
763 #ifdef CONFIG_F2FS_FS_ENCRYPTION
764 #define F2FS_KEY_DESC_PREFIX "f2fs:"
765 #define F2FS_KEY_DESC_PREFIX_SIZE 5
766 #endif
767 struct f2fs_sb_info {
768 struct super_block *sb; /* pointer to VFS super block */
769 struct proc_dir_entry *s_proc; /* proc entry */
770 struct f2fs_super_block *raw_super; /* raw super block pointer */
771 int valid_super_block; /* valid super block no */
772 unsigned long s_flag; /* flags for sbi */
773
774 #ifdef CONFIG_F2FS_FS_ENCRYPTION
775 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
776 u8 key_prefix_size;
777 #endif
778
779 #ifdef CONFIG_BLK_DEV_ZONED
780 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
781 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
782 #endif
783
784 /* for node-related operations */
785 struct f2fs_nm_info *nm_info; /* node manager */
786 struct inode *node_inode; /* cache node blocks */
787
788 /* for segment-related operations */
789 struct f2fs_sm_info *sm_info; /* segment manager */
790
791 /* for bio operations */
792 struct f2fs_bio_info read_io; /* for read bios */
793 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
794 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */
795
796 /* for checkpoint */
797 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
798 int cur_cp_pack; /* remain current cp pack */
799 spinlock_t cp_lock; /* for flag in ckpt */
800 struct inode *meta_inode; /* cache meta blocks */
801 struct mutex cp_mutex; /* checkpoint procedure lock */
802 struct rw_semaphore cp_rwsem; /* blocking FS operations */
803 struct rw_semaphore node_write; /* locking node writes */
804 wait_queue_head_t cp_wait;
805 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
806 long interval_time[MAX_TIME]; /* to store thresholds */
807
808 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
809
810 /* for orphan inode, use 0'th array */
811 unsigned int max_orphans; /* max orphan inodes */
812
813 /* for inode management */
814 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
815 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
816
817 /* for extent tree cache */
818 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
819 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
820 struct list_head extent_list; /* lru list for shrinker */
821 spinlock_t extent_lock; /* locking extent lru list */
822 atomic_t total_ext_tree; /* extent tree count */
823 struct list_head zombie_list; /* extent zombie tree list */
824 atomic_t total_zombie_tree; /* extent zombie tree count */
825 atomic_t total_ext_node; /* extent info count */
826
827 /* basic filesystem units */
828 unsigned int log_sectors_per_block; /* log2 sectors per block */
829 unsigned int log_blocksize; /* log2 block size */
830 unsigned int blocksize; /* block size */
831 unsigned int root_ino_num; /* root inode number*/
832 unsigned int node_ino_num; /* node inode number*/
833 unsigned int meta_ino_num; /* meta inode number*/
834 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
835 unsigned int blocks_per_seg; /* blocks per segment */
836 unsigned int segs_per_sec; /* segments per section */
837 unsigned int secs_per_zone; /* sections per zone */
838 unsigned int total_sections; /* total section count */
839 unsigned int total_node_count; /* total node block count */
840 unsigned int total_valid_node_count; /* valid node block count */
841 loff_t max_file_blocks; /* max block index of file */
842 int active_logs; /* # of active logs */
843 int dir_level; /* directory level */
844
845 block_t user_block_count; /* # of user blocks */
846 block_t total_valid_block_count; /* # of valid blocks */
847 block_t discard_blks; /* discard command candidats */
848 block_t last_valid_block_count; /* for recovery */
849 u32 s_next_generation; /* for NFS support */
850
851 /* # of pages, see count_type */
852 atomic_t nr_pages[NR_COUNT_TYPE];
853 /* # of allocated blocks */
854 struct percpu_counter alloc_valid_block_count;
855
856 /* valid inode count */
857 struct percpu_counter total_valid_inode_count;
858
859 struct f2fs_mount_info mount_opt; /* mount options */
860
861 /* for cleaning operations */
862 struct mutex gc_mutex; /* mutex for GC */
863 struct f2fs_gc_kthread *gc_thread; /* GC thread */
864 unsigned int cur_victim_sec; /* current victim section num */
865
866 /* maximum # of trials to find a victim segment for SSR and GC */
867 unsigned int max_victim_search;
868
869 /*
870 * for stat information.
871 * one is for the LFS mode, and the other is for the SSR mode.
872 */
873 #ifdef CONFIG_F2FS_STAT_FS
874 struct f2fs_stat_info *stat_info; /* FS status information */
875 unsigned int segment_count[2]; /* # of allocated segments */
876 unsigned int block_count[2]; /* # of allocated blocks */
877 atomic_t inplace_count; /* # of inplace update */
878 atomic64_t total_hit_ext; /* # of lookup extent cache */
879 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
880 atomic64_t read_hit_largest; /* # of hit largest extent node */
881 atomic64_t read_hit_cached; /* # of hit cached extent node */
882 atomic_t inline_xattr; /* # of inline_xattr inodes */
883 atomic_t inline_inode; /* # of inline_data inodes */
884 atomic_t inline_dir; /* # of inline_dentry inodes */
885 int bg_gc; /* background gc calls */
886 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
887 #endif
888 unsigned int last_victim[2]; /* last victim segment # */
889 spinlock_t stat_lock; /* lock for stat operations */
890
891 /* For sysfs suppport */
892 struct kobject s_kobj;
893 struct completion s_kobj_unregister;
894
895 /* For shrinker support */
896 struct list_head s_list;
897 int s_ndevs; /* number of devices */
898 struct f2fs_dev_info *devs; /* for device list */
899 struct mutex umount_mutex;
900 unsigned int shrinker_run_no;
901
902 /* For write statistics */
903 u64 sectors_written_start;
904 u64 kbytes_written;
905
906 /* Reference to checksum algorithm driver via cryptoapi */
907 struct crypto_shash *s_chksum_driver;
908
909 /* For fault injection */
910 #ifdef CONFIG_F2FS_FAULT_INJECTION
911 struct f2fs_fault_info fault_info;
912 #endif
913 };
914
915 #ifdef CONFIG_F2FS_FAULT_INJECTION
916 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
917 {
918 struct f2fs_fault_info *ffi = &sbi->fault_info;
919
920 if (!ffi->inject_rate)
921 return false;
922
923 if (!IS_FAULT_SET(ffi, type))
924 return false;
925
926 atomic_inc(&ffi->inject_ops);
927 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
928 atomic_set(&ffi->inject_ops, 0);
929 printk("%sF2FS-fs : inject %s in %pF\n",
930 KERN_INFO,
931 fault_name[type],
932 __builtin_return_address(0));
933 return true;
934 }
935 return false;
936 }
937 #endif
938
939 /* For write statistics. Suppose sector size is 512 bytes,
940 * and the return value is in kbytes. s is of struct f2fs_sb_info.
941 */
942 #define BD_PART_WRITTEN(s) \
943 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
944 s->sectors_written_start) >> 1)
945
946 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
947 {
948 sbi->last_time[type] = jiffies;
949 }
950
951 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
952 {
953 struct timespec ts = {sbi->interval_time[type], 0};
954 unsigned long interval = timespec_to_jiffies(&ts);
955
956 return time_after(jiffies, sbi->last_time[type] + interval);
957 }
958
959 static inline bool is_idle(struct f2fs_sb_info *sbi)
960 {
961 struct block_device *bdev = sbi->sb->s_bdev;
962 struct request_queue *q = bdev_get_queue(bdev);
963 struct request_list *rl = &q->root_rl;
964
965 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
966 return 0;
967
968 return f2fs_time_over(sbi, REQ_TIME);
969 }
970
971 /*
972 * Inline functions
973 */
974 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
975 unsigned int length)
976 {
977 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
978 u32 *ctx = (u32 *)shash_desc_ctx(shash);
979 int err;
980
981 shash->tfm = sbi->s_chksum_driver;
982 shash->flags = 0;
983 *ctx = F2FS_SUPER_MAGIC;
984
985 err = crypto_shash_update(shash, address, length);
986 BUG_ON(err);
987
988 return *ctx;
989 }
990
991 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
992 void *buf, size_t buf_size)
993 {
994 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
995 }
996
997 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
998 {
999 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1000 }
1001
1002 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1003 {
1004 return sb->s_fs_info;
1005 }
1006
1007 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1008 {
1009 return F2FS_SB(inode->i_sb);
1010 }
1011
1012 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1013 {
1014 return F2FS_I_SB(mapping->host);
1015 }
1016
1017 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1018 {
1019 return F2FS_M_SB(page->mapping);
1020 }
1021
1022 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1023 {
1024 return (struct f2fs_super_block *)(sbi->raw_super);
1025 }
1026
1027 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1028 {
1029 return (struct f2fs_checkpoint *)(sbi->ckpt);
1030 }
1031
1032 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1033 {
1034 return (struct f2fs_node *)page_address(page);
1035 }
1036
1037 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1038 {
1039 return &((struct f2fs_node *)page_address(page))->i;
1040 }
1041
1042 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1043 {
1044 return (struct f2fs_nm_info *)(sbi->nm_info);
1045 }
1046
1047 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1048 {
1049 return (struct f2fs_sm_info *)(sbi->sm_info);
1050 }
1051
1052 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1053 {
1054 return (struct sit_info *)(SM_I(sbi)->sit_info);
1055 }
1056
1057 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1058 {
1059 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1060 }
1061
1062 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1063 {
1064 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1065 }
1066
1067 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1068 {
1069 return sbi->meta_inode->i_mapping;
1070 }
1071
1072 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1073 {
1074 return sbi->node_inode->i_mapping;
1075 }
1076
1077 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1078 {
1079 return test_bit(type, &sbi->s_flag);
1080 }
1081
1082 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1083 {
1084 set_bit(type, &sbi->s_flag);
1085 }
1086
1087 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1088 {
1089 clear_bit(type, &sbi->s_flag);
1090 }
1091
1092 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1093 {
1094 return le64_to_cpu(cp->checkpoint_ver);
1095 }
1096
1097 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1098 {
1099 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1100
1101 return ckpt_flags & f;
1102 }
1103
1104 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1105 {
1106 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1107 }
1108
1109 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1110 {
1111 unsigned int ckpt_flags;
1112
1113 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1114 ckpt_flags |= f;
1115 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1116 }
1117
1118 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1119 {
1120 spin_lock(&sbi->cp_lock);
1121 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1122 spin_unlock(&sbi->cp_lock);
1123 }
1124
1125 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1126 {
1127 unsigned int ckpt_flags;
1128
1129 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1130 ckpt_flags &= (~f);
1131 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1132 }
1133
1134 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1135 {
1136 spin_lock(&sbi->cp_lock);
1137 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1138 spin_unlock(&sbi->cp_lock);
1139 }
1140
1141 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1142 {
1143 down_read(&sbi->cp_rwsem);
1144 }
1145
1146 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1147 {
1148 up_read(&sbi->cp_rwsem);
1149 }
1150
1151 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1152 {
1153 down_write(&sbi->cp_rwsem);
1154 }
1155
1156 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1157 {
1158 up_write(&sbi->cp_rwsem);
1159 }
1160
1161 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1162 {
1163 int reason = CP_SYNC;
1164
1165 if (test_opt(sbi, FASTBOOT))
1166 reason = CP_FASTBOOT;
1167 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1168 reason = CP_UMOUNT;
1169 return reason;
1170 }
1171
1172 static inline bool __remain_node_summaries(int reason)
1173 {
1174 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1175 }
1176
1177 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1178 {
1179 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1180 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1181 }
1182
1183 /*
1184 * Check whether the given nid is within node id range.
1185 */
1186 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1187 {
1188 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1189 return -EINVAL;
1190 if (unlikely(nid >= NM_I(sbi)->max_nid))
1191 return -EINVAL;
1192 return 0;
1193 }
1194
1195 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1196
1197 /*
1198 * Check whether the inode has blocks or not
1199 */
1200 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1201 {
1202 if (F2FS_I(inode)->i_xattr_nid)
1203 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1204 else
1205 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1206 }
1207
1208 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1209 {
1210 return ofs == XATTR_NODE_OFFSET;
1211 }
1212
1213 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1214 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1215 struct inode *inode, blkcnt_t *count)
1216 {
1217 blkcnt_t diff;
1218
1219 #ifdef CONFIG_F2FS_FAULT_INJECTION
1220 if (time_to_inject(sbi, FAULT_BLOCK))
1221 return false;
1222 #endif
1223 /*
1224 * let's increase this in prior to actual block count change in order
1225 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1226 */
1227 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1228
1229 spin_lock(&sbi->stat_lock);
1230 sbi->total_valid_block_count += (block_t)(*count);
1231 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1232 diff = sbi->total_valid_block_count - sbi->user_block_count;
1233 *count -= diff;
1234 sbi->total_valid_block_count = sbi->user_block_count;
1235 if (!*count) {
1236 spin_unlock(&sbi->stat_lock);
1237 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1238 return false;
1239 }
1240 }
1241 spin_unlock(&sbi->stat_lock);
1242
1243 f2fs_i_blocks_write(inode, *count, true);
1244 return true;
1245 }
1246
1247 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1248 struct inode *inode,
1249 blkcnt_t count)
1250 {
1251 spin_lock(&sbi->stat_lock);
1252 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1253 f2fs_bug_on(sbi, inode->i_blocks < count);
1254 sbi->total_valid_block_count -= (block_t)count;
1255 spin_unlock(&sbi->stat_lock);
1256 f2fs_i_blocks_write(inode, count, false);
1257 }
1258
1259 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1260 {
1261 atomic_inc(&sbi->nr_pages[count_type]);
1262
1263 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1264 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1265 return;
1266
1267 set_sbi_flag(sbi, SBI_IS_DIRTY);
1268 }
1269
1270 static inline void inode_inc_dirty_pages(struct inode *inode)
1271 {
1272 atomic_inc(&F2FS_I(inode)->dirty_pages);
1273 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1274 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1275 }
1276
1277 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1278 {
1279 atomic_dec(&sbi->nr_pages[count_type]);
1280 }
1281
1282 static inline void inode_dec_dirty_pages(struct inode *inode)
1283 {
1284 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1285 !S_ISLNK(inode->i_mode))
1286 return;
1287
1288 atomic_dec(&F2FS_I(inode)->dirty_pages);
1289 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1290 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1291 }
1292
1293 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1294 {
1295 return atomic_read(&sbi->nr_pages[count_type]);
1296 }
1297
1298 static inline int get_dirty_pages(struct inode *inode)
1299 {
1300 return atomic_read(&F2FS_I(inode)->dirty_pages);
1301 }
1302
1303 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1304 {
1305 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1306 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1307 sbi->log_blocks_per_seg;
1308
1309 return segs / sbi->segs_per_sec;
1310 }
1311
1312 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1313 {
1314 return sbi->total_valid_block_count;
1315 }
1316
1317 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1318 {
1319 return sbi->discard_blks;
1320 }
1321
1322 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1323 {
1324 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1325
1326 /* return NAT or SIT bitmap */
1327 if (flag == NAT_BITMAP)
1328 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1329 else if (flag == SIT_BITMAP)
1330 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1331
1332 return 0;
1333 }
1334
1335 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1336 {
1337 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1338 }
1339
1340 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1341 {
1342 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1343 int offset;
1344
1345 if (__cp_payload(sbi) > 0) {
1346 if (flag == NAT_BITMAP)
1347 return &ckpt->sit_nat_version_bitmap;
1348 else
1349 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1350 } else {
1351 offset = (flag == NAT_BITMAP) ?
1352 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1353 return &ckpt->sit_nat_version_bitmap + offset;
1354 }
1355 }
1356
1357 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1358 {
1359 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1360
1361 if (sbi->cur_cp_pack == 2)
1362 start_addr += sbi->blocks_per_seg;
1363 return start_addr;
1364 }
1365
1366 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1367 {
1368 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1369
1370 if (sbi->cur_cp_pack == 1)
1371 start_addr += sbi->blocks_per_seg;
1372 return start_addr;
1373 }
1374
1375 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1376 {
1377 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1378 }
1379
1380 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1381 {
1382 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1383 }
1384
1385 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1386 struct inode *inode)
1387 {
1388 block_t valid_block_count;
1389 unsigned int valid_node_count;
1390
1391 spin_lock(&sbi->stat_lock);
1392
1393 valid_block_count = sbi->total_valid_block_count + 1;
1394 if (unlikely(valid_block_count > sbi->user_block_count)) {
1395 spin_unlock(&sbi->stat_lock);
1396 return false;
1397 }
1398
1399 valid_node_count = sbi->total_valid_node_count + 1;
1400 if (unlikely(valid_node_count > sbi->total_node_count)) {
1401 spin_unlock(&sbi->stat_lock);
1402 return false;
1403 }
1404
1405 if (inode)
1406 f2fs_i_blocks_write(inode, 1, true);
1407
1408 sbi->total_valid_node_count++;
1409 sbi->total_valid_block_count++;
1410 spin_unlock(&sbi->stat_lock);
1411
1412 percpu_counter_inc(&sbi->alloc_valid_block_count);
1413 return true;
1414 }
1415
1416 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1417 struct inode *inode)
1418 {
1419 spin_lock(&sbi->stat_lock);
1420
1421 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1422 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1423 f2fs_bug_on(sbi, !inode->i_blocks);
1424
1425 f2fs_i_blocks_write(inode, 1, false);
1426 sbi->total_valid_node_count--;
1427 sbi->total_valid_block_count--;
1428
1429 spin_unlock(&sbi->stat_lock);
1430 }
1431
1432 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1433 {
1434 return sbi->total_valid_node_count;
1435 }
1436
1437 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1438 {
1439 percpu_counter_inc(&sbi->total_valid_inode_count);
1440 }
1441
1442 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1443 {
1444 percpu_counter_dec(&sbi->total_valid_inode_count);
1445 }
1446
1447 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1448 {
1449 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1450 }
1451
1452 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1453 pgoff_t index, bool for_write)
1454 {
1455 #ifdef CONFIG_F2FS_FAULT_INJECTION
1456 struct page *page = find_lock_page(mapping, index);
1457 if (page)
1458 return page;
1459
1460 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
1461 return NULL;
1462 #endif
1463 if (!for_write)
1464 return grab_cache_page(mapping, index);
1465 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1466 }
1467
1468 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1469 {
1470 char *src_kaddr = kmap(src);
1471 char *dst_kaddr = kmap(dst);
1472
1473 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1474 kunmap(dst);
1475 kunmap(src);
1476 }
1477
1478 static inline void f2fs_put_page(struct page *page, int unlock)
1479 {
1480 if (!page)
1481 return;
1482
1483 if (unlock) {
1484 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1485 unlock_page(page);
1486 }
1487 put_page(page);
1488 }
1489
1490 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1491 {
1492 if (dn->node_page)
1493 f2fs_put_page(dn->node_page, 1);
1494 if (dn->inode_page && dn->node_page != dn->inode_page)
1495 f2fs_put_page(dn->inode_page, 0);
1496 dn->node_page = NULL;
1497 dn->inode_page = NULL;
1498 }
1499
1500 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1501 size_t size)
1502 {
1503 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1504 }
1505
1506 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1507 gfp_t flags)
1508 {
1509 void *entry;
1510
1511 entry = kmem_cache_alloc(cachep, flags);
1512 if (!entry)
1513 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1514 return entry;
1515 }
1516
1517 static inline struct bio *f2fs_bio_alloc(int npages)
1518 {
1519 struct bio *bio;
1520
1521 /* No failure on bio allocation */
1522 bio = bio_alloc(GFP_NOIO, npages);
1523 if (!bio)
1524 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1525 return bio;
1526 }
1527
1528 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1529 unsigned long index, void *item)
1530 {
1531 while (radix_tree_insert(root, index, item))
1532 cond_resched();
1533 }
1534
1535 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1536
1537 static inline bool IS_INODE(struct page *page)
1538 {
1539 struct f2fs_node *p = F2FS_NODE(page);
1540 return RAW_IS_INODE(p);
1541 }
1542
1543 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1544 {
1545 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1546 }
1547
1548 static inline block_t datablock_addr(struct page *node_page,
1549 unsigned int offset)
1550 {
1551 struct f2fs_node *raw_node;
1552 __le32 *addr_array;
1553 raw_node = F2FS_NODE(node_page);
1554 addr_array = blkaddr_in_node(raw_node);
1555 return le32_to_cpu(addr_array[offset]);
1556 }
1557
1558 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1559 {
1560 int mask;
1561
1562 addr += (nr >> 3);
1563 mask = 1 << (7 - (nr & 0x07));
1564 return mask & *addr;
1565 }
1566
1567 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1568 {
1569 int mask;
1570
1571 addr += (nr >> 3);
1572 mask = 1 << (7 - (nr & 0x07));
1573 *addr |= mask;
1574 }
1575
1576 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1577 {
1578 int mask;
1579
1580 addr += (nr >> 3);
1581 mask = 1 << (7 - (nr & 0x07));
1582 *addr &= ~mask;
1583 }
1584
1585 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1586 {
1587 int mask;
1588 int ret;
1589
1590 addr += (nr >> 3);
1591 mask = 1 << (7 - (nr & 0x07));
1592 ret = mask & *addr;
1593 *addr |= mask;
1594 return ret;
1595 }
1596
1597 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1598 {
1599 int mask;
1600 int ret;
1601
1602 addr += (nr >> 3);
1603 mask = 1 << (7 - (nr & 0x07));
1604 ret = mask & *addr;
1605 *addr &= ~mask;
1606 return ret;
1607 }
1608
1609 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1610 {
1611 int mask;
1612
1613 addr += (nr >> 3);
1614 mask = 1 << (7 - (nr & 0x07));
1615 *addr ^= mask;
1616 }
1617
1618 /* used for f2fs_inode_info->flags */
1619 enum {
1620 FI_NEW_INODE, /* indicate newly allocated inode */
1621 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1622 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1623 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1624 FI_INC_LINK, /* need to increment i_nlink */
1625 FI_ACL_MODE, /* indicate acl mode */
1626 FI_NO_ALLOC, /* should not allocate any blocks */
1627 FI_FREE_NID, /* free allocated nide */
1628 FI_NO_EXTENT, /* not to use the extent cache */
1629 FI_INLINE_XATTR, /* used for inline xattr */
1630 FI_INLINE_DATA, /* used for inline data*/
1631 FI_INLINE_DENTRY, /* used for inline dentry */
1632 FI_APPEND_WRITE, /* inode has appended data */
1633 FI_UPDATE_WRITE, /* inode has in-place-update data */
1634 FI_NEED_IPU, /* used for ipu per file */
1635 FI_ATOMIC_FILE, /* indicate atomic file */
1636 FI_VOLATILE_FILE, /* indicate volatile file */
1637 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1638 FI_DROP_CACHE, /* drop dirty page cache */
1639 FI_DATA_EXIST, /* indicate data exists */
1640 FI_INLINE_DOTS, /* indicate inline dot dentries */
1641 FI_DO_DEFRAG, /* indicate defragment is running */
1642 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1643 };
1644
1645 static inline void __mark_inode_dirty_flag(struct inode *inode,
1646 int flag, bool set)
1647 {
1648 switch (flag) {
1649 case FI_INLINE_XATTR:
1650 case FI_INLINE_DATA:
1651 case FI_INLINE_DENTRY:
1652 if (set)
1653 return;
1654 case FI_DATA_EXIST:
1655 case FI_INLINE_DOTS:
1656 f2fs_mark_inode_dirty_sync(inode, true);
1657 }
1658 }
1659
1660 static inline void set_inode_flag(struct inode *inode, int flag)
1661 {
1662 if (!test_bit(flag, &F2FS_I(inode)->flags))
1663 set_bit(flag, &F2FS_I(inode)->flags);
1664 __mark_inode_dirty_flag(inode, flag, true);
1665 }
1666
1667 static inline int is_inode_flag_set(struct inode *inode, int flag)
1668 {
1669 return test_bit(flag, &F2FS_I(inode)->flags);
1670 }
1671
1672 static inline void clear_inode_flag(struct inode *inode, int flag)
1673 {
1674 if (test_bit(flag, &F2FS_I(inode)->flags))
1675 clear_bit(flag, &F2FS_I(inode)->flags);
1676 __mark_inode_dirty_flag(inode, flag, false);
1677 }
1678
1679 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1680 {
1681 F2FS_I(inode)->i_acl_mode = mode;
1682 set_inode_flag(inode, FI_ACL_MODE);
1683 f2fs_mark_inode_dirty_sync(inode, false);
1684 }
1685
1686 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1687 {
1688 if (inc)
1689 inc_nlink(inode);
1690 else
1691 drop_nlink(inode);
1692 f2fs_mark_inode_dirty_sync(inode, true);
1693 }
1694
1695 static inline void f2fs_i_blocks_write(struct inode *inode,
1696 blkcnt_t diff, bool add)
1697 {
1698 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1699 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1700
1701 inode->i_blocks = add ? inode->i_blocks + diff :
1702 inode->i_blocks - diff;
1703 f2fs_mark_inode_dirty_sync(inode, true);
1704 if (clean || recover)
1705 set_inode_flag(inode, FI_AUTO_RECOVER);
1706 }
1707
1708 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1709 {
1710 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1711 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1712
1713 if (i_size_read(inode) == i_size)
1714 return;
1715
1716 i_size_write(inode, i_size);
1717 f2fs_mark_inode_dirty_sync(inode, true);
1718 if (clean || recover)
1719 set_inode_flag(inode, FI_AUTO_RECOVER);
1720 }
1721
1722 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1723 {
1724 F2FS_I(inode)->i_current_depth = depth;
1725 f2fs_mark_inode_dirty_sync(inode, true);
1726 }
1727
1728 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1729 {
1730 F2FS_I(inode)->i_xattr_nid = xnid;
1731 f2fs_mark_inode_dirty_sync(inode, true);
1732 }
1733
1734 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1735 {
1736 F2FS_I(inode)->i_pino = pino;
1737 f2fs_mark_inode_dirty_sync(inode, true);
1738 }
1739
1740 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1741 {
1742 struct f2fs_inode_info *fi = F2FS_I(inode);
1743
1744 if (ri->i_inline & F2FS_INLINE_XATTR)
1745 set_bit(FI_INLINE_XATTR, &fi->flags);
1746 if (ri->i_inline & F2FS_INLINE_DATA)
1747 set_bit(FI_INLINE_DATA, &fi->flags);
1748 if (ri->i_inline & F2FS_INLINE_DENTRY)
1749 set_bit(FI_INLINE_DENTRY, &fi->flags);
1750 if (ri->i_inline & F2FS_DATA_EXIST)
1751 set_bit(FI_DATA_EXIST, &fi->flags);
1752 if (ri->i_inline & F2FS_INLINE_DOTS)
1753 set_bit(FI_INLINE_DOTS, &fi->flags);
1754 }
1755
1756 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1757 {
1758 ri->i_inline = 0;
1759
1760 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1761 ri->i_inline |= F2FS_INLINE_XATTR;
1762 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1763 ri->i_inline |= F2FS_INLINE_DATA;
1764 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1765 ri->i_inline |= F2FS_INLINE_DENTRY;
1766 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1767 ri->i_inline |= F2FS_DATA_EXIST;
1768 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1769 ri->i_inline |= F2FS_INLINE_DOTS;
1770 }
1771
1772 static inline int f2fs_has_inline_xattr(struct inode *inode)
1773 {
1774 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1775 }
1776
1777 static inline unsigned int addrs_per_inode(struct inode *inode)
1778 {
1779 if (f2fs_has_inline_xattr(inode))
1780 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1781 return DEF_ADDRS_PER_INODE;
1782 }
1783
1784 static inline void *inline_xattr_addr(struct page *page)
1785 {
1786 struct f2fs_inode *ri = F2FS_INODE(page);
1787 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1788 F2FS_INLINE_XATTR_ADDRS]);
1789 }
1790
1791 static inline int inline_xattr_size(struct inode *inode)
1792 {
1793 if (f2fs_has_inline_xattr(inode))
1794 return F2FS_INLINE_XATTR_ADDRS << 2;
1795 else
1796 return 0;
1797 }
1798
1799 static inline int f2fs_has_inline_data(struct inode *inode)
1800 {
1801 return is_inode_flag_set(inode, FI_INLINE_DATA);
1802 }
1803
1804 static inline void f2fs_clear_inline_inode(struct inode *inode)
1805 {
1806 clear_inode_flag(inode, FI_INLINE_DATA);
1807 clear_inode_flag(inode, FI_DATA_EXIST);
1808 }
1809
1810 static inline int f2fs_exist_data(struct inode *inode)
1811 {
1812 return is_inode_flag_set(inode, FI_DATA_EXIST);
1813 }
1814
1815 static inline int f2fs_has_inline_dots(struct inode *inode)
1816 {
1817 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1818 }
1819
1820 static inline bool f2fs_is_atomic_file(struct inode *inode)
1821 {
1822 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1823 }
1824
1825 static inline bool f2fs_is_volatile_file(struct inode *inode)
1826 {
1827 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1828 }
1829
1830 static inline bool f2fs_is_first_block_written(struct inode *inode)
1831 {
1832 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1833 }
1834
1835 static inline bool f2fs_is_drop_cache(struct inode *inode)
1836 {
1837 return is_inode_flag_set(inode, FI_DROP_CACHE);
1838 }
1839
1840 static inline void *inline_data_addr(struct page *page)
1841 {
1842 struct f2fs_inode *ri = F2FS_INODE(page);
1843 return (void *)&(ri->i_addr[1]);
1844 }
1845
1846 static inline int f2fs_has_inline_dentry(struct inode *inode)
1847 {
1848 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1849 }
1850
1851 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1852 {
1853 if (!f2fs_has_inline_dentry(dir))
1854 kunmap(page);
1855 }
1856
1857 static inline int is_file(struct inode *inode, int type)
1858 {
1859 return F2FS_I(inode)->i_advise & type;
1860 }
1861
1862 static inline void set_file(struct inode *inode, int type)
1863 {
1864 F2FS_I(inode)->i_advise |= type;
1865 f2fs_mark_inode_dirty_sync(inode, true);
1866 }
1867
1868 static inline void clear_file(struct inode *inode, int type)
1869 {
1870 F2FS_I(inode)->i_advise &= ~type;
1871 f2fs_mark_inode_dirty_sync(inode, true);
1872 }
1873
1874 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
1875 {
1876 if (dsync) {
1877 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1878 bool ret;
1879
1880 spin_lock(&sbi->inode_lock[DIRTY_META]);
1881 ret = list_empty(&F2FS_I(inode)->gdirty_list);
1882 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1883 return ret;
1884 }
1885 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
1886 file_keep_isize(inode) ||
1887 i_size_read(inode) & PAGE_MASK)
1888 return false;
1889 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1890 }
1891
1892 static inline int f2fs_readonly(struct super_block *sb)
1893 {
1894 return sb->s_flags & MS_RDONLY;
1895 }
1896
1897 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1898 {
1899 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
1900 }
1901
1902 static inline bool is_dot_dotdot(const struct qstr *str)
1903 {
1904 if (str->len == 1 && str->name[0] == '.')
1905 return true;
1906
1907 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1908 return true;
1909
1910 return false;
1911 }
1912
1913 static inline bool f2fs_may_extent_tree(struct inode *inode)
1914 {
1915 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1916 is_inode_flag_set(inode, FI_NO_EXTENT))
1917 return false;
1918
1919 return S_ISREG(inode->i_mode);
1920 }
1921
1922 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
1923 size_t size, gfp_t flags)
1924 {
1925 #ifdef CONFIG_F2FS_FAULT_INJECTION
1926 if (time_to_inject(sbi, FAULT_KMALLOC))
1927 return NULL;
1928 #endif
1929 return kmalloc(size, flags);
1930 }
1931
1932 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1933 {
1934 void *ret;
1935
1936 ret = kmalloc(size, flags | __GFP_NOWARN);
1937 if (!ret)
1938 ret = __vmalloc(size, flags, PAGE_KERNEL);
1939 return ret;
1940 }
1941
1942 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1943 {
1944 void *ret;
1945
1946 ret = kzalloc(size, flags | __GFP_NOWARN);
1947 if (!ret)
1948 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1949 return ret;
1950 }
1951
1952 #define get_inode_mode(i) \
1953 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1954 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1955
1956 /* get offset of first page in next direct node */
1957 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1958 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1959 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1960 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1961
1962 /*
1963 * file.c
1964 */
1965 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1966 void truncate_data_blocks(struct dnode_of_data *);
1967 int truncate_blocks(struct inode *, u64, bool);
1968 int f2fs_truncate(struct inode *);
1969 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1970 int f2fs_setattr(struct dentry *, struct iattr *);
1971 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1972 int truncate_data_blocks_range(struct dnode_of_data *, int);
1973 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1974 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1975
1976 /*
1977 * inode.c
1978 */
1979 void f2fs_set_inode_flags(struct inode *);
1980 struct inode *f2fs_iget(struct super_block *, unsigned long);
1981 struct inode *f2fs_iget_retry(struct super_block *, unsigned long);
1982 int try_to_free_nats(struct f2fs_sb_info *, int);
1983 int update_inode(struct inode *, struct page *);
1984 int update_inode_page(struct inode *);
1985 int f2fs_write_inode(struct inode *, struct writeback_control *);
1986 void f2fs_evict_inode(struct inode *);
1987 void handle_failed_inode(struct inode *);
1988
1989 /*
1990 * namei.c
1991 */
1992 struct dentry *f2fs_get_parent(struct dentry *child);
1993
1994 /*
1995 * dir.c
1996 */
1997 void set_de_type(struct f2fs_dir_entry *, umode_t);
1998 unsigned char get_de_type(struct f2fs_dir_entry *);
1999 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
2000 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
2001 int f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
2002 unsigned int, struct fscrypt_str *);
2003 void do_make_empty_dir(struct inode *, struct inode *,
2004 struct f2fs_dentry_ptr *);
2005 struct page *init_inode_metadata(struct inode *, struct inode *,
2006 const struct qstr *, const struct qstr *, struct page *);
2007 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
2008 int room_for_filename(const void *, int, int);
2009 void f2fs_drop_nlink(struct inode *, struct inode *);
2010 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *, struct fscrypt_name *,
2011 struct page **);
2012 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *,
2013 struct page **);
2014 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
2015 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **);
2016 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
2017 struct page *, struct inode *);
2018 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
2019 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
2020 const struct qstr *, f2fs_hash_t , unsigned int);
2021 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
2022 const struct qstr *, struct inode *, nid_t, umode_t);
2023 int __f2fs_do_add_link(struct inode *, struct fscrypt_name*, struct inode *,
2024 nid_t, umode_t);
2025 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
2026 umode_t);
2027 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
2028 struct inode *);
2029 int f2fs_do_tmpfile(struct inode *, struct inode *);
2030 bool f2fs_empty_dir(struct inode *);
2031
2032 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2033 {
2034 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2035 inode, inode->i_ino, inode->i_mode);
2036 }
2037
2038 /*
2039 * super.c
2040 */
2041 int f2fs_inode_dirtied(struct inode *, bool);
2042 void f2fs_inode_synced(struct inode *);
2043 int f2fs_commit_super(struct f2fs_sb_info *, bool);
2044 int f2fs_sync_fs(struct super_block *, int);
2045 extern __printf(3, 4)
2046 void f2fs_msg(struct super_block *, const char *, const char *, ...);
2047 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2048
2049 /*
2050 * hash.c
2051 */
2052 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
2053
2054 /*
2055 * node.c
2056 */
2057 struct dnode_of_data;
2058 struct node_info;
2059
2060 bool available_free_memory(struct f2fs_sb_info *, int);
2061 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
2062 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
2063 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
2064 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
2065 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
2066 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
2067 int truncate_inode_blocks(struct inode *, pgoff_t);
2068 int truncate_xattr_node(struct inode *, struct page *);
2069 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
2070 int remove_inode_page(struct inode *);
2071 struct page *new_inode_page(struct inode *);
2072 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
2073 void ra_node_page(struct f2fs_sb_info *, nid_t);
2074 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
2075 struct page *get_node_page_ra(struct page *, int);
2076 void move_node_page(struct page *, int);
2077 int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
2078 struct writeback_control *, bool);
2079 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
2080 void build_free_nids(struct f2fs_sb_info *, bool);
2081 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
2082 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
2083 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
2084 int try_to_free_nids(struct f2fs_sb_info *, int);
2085 void recover_inline_xattr(struct inode *, struct page *);
2086 void recover_xattr_data(struct inode *, struct page *, block_t);
2087 int recover_inode_page(struct f2fs_sb_info *, struct page *);
2088 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
2089 struct f2fs_summary_block *);
2090 void flush_nat_entries(struct f2fs_sb_info *);
2091 int build_node_manager(struct f2fs_sb_info *);
2092 void destroy_node_manager(struct f2fs_sb_info *);
2093 int __init create_node_manager_caches(void);
2094 void destroy_node_manager_caches(void);
2095
2096 /*
2097 * segment.c
2098 */
2099 void register_inmem_page(struct inode *, struct page *);
2100 void drop_inmem_pages(struct inode *);
2101 int commit_inmem_pages(struct inode *);
2102 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
2103 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
2104 int f2fs_issue_flush(struct f2fs_sb_info *);
2105 int create_flush_cmd_control(struct f2fs_sb_info *);
2106 void destroy_flush_cmd_control(struct f2fs_sb_info *, bool);
2107 void invalidate_blocks(struct f2fs_sb_info *, block_t);
2108 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
2109 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
2110 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *);
2111 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
2112 void release_discard_addrs(struct f2fs_sb_info *);
2113 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
2114 void allocate_new_segments(struct f2fs_sb_info *);
2115 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
2116 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
2117 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
2118 void write_meta_page(struct f2fs_sb_info *, struct page *);
2119 void write_node_page(unsigned int, struct f2fs_io_info *);
2120 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2121 void rewrite_data_page(struct f2fs_io_info *);
2122 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2123 block_t, block_t, bool, bool);
2124 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2125 block_t, block_t, unsigned char, bool, bool);
2126 void allocate_data_block(struct f2fs_sb_info *, struct page *,
2127 block_t, block_t *, struct f2fs_summary *, int);
2128 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2129 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2130 void write_data_summaries(struct f2fs_sb_info *, block_t);
2131 void write_node_summaries(struct f2fs_sb_info *, block_t);
2132 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2133 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2134 int build_segment_manager(struct f2fs_sb_info *);
2135 void destroy_segment_manager(struct f2fs_sb_info *);
2136 int __init create_segment_manager_caches(void);
2137 void destroy_segment_manager_caches(void);
2138
2139 /*
2140 * checkpoint.c
2141 */
2142 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2143 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2144 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2145 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2146 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2147 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2148 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2149 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2150 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2151 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2152 void release_ino_entry(struct f2fs_sb_info *, bool);
2153 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2154 int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2155 int acquire_orphan_inode(struct f2fs_sb_info *);
2156 void release_orphan_inode(struct f2fs_sb_info *);
2157 void add_orphan_inode(struct inode *);
2158 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2159 int recover_orphan_inodes(struct f2fs_sb_info *);
2160 int get_valid_checkpoint(struct f2fs_sb_info *);
2161 void update_dirty_page(struct inode *, struct page *);
2162 void remove_dirty_inode(struct inode *);
2163 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2164 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2165 void init_ino_entry_info(struct f2fs_sb_info *);
2166 int __init create_checkpoint_caches(void);
2167 void destroy_checkpoint_caches(void);
2168
2169 /*
2170 * data.c
2171 */
2172 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2173 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2174 struct page *, nid_t, enum page_type, int);
2175 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2176 int f2fs_submit_page_bio(struct f2fs_io_info *);
2177 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2178 struct block_device *f2fs_target_device(struct f2fs_sb_info *,
2179 block_t, struct bio *);
2180 int f2fs_target_device_index(struct f2fs_sb_info *, block_t);
2181 void set_data_blkaddr(struct dnode_of_data *);
2182 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2183 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2184 int reserve_new_block(struct dnode_of_data *);
2185 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2186 int f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2187 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2188 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2189 struct page *find_data_page(struct inode *, pgoff_t);
2190 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2191 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2192 int do_write_data_page(struct f2fs_io_info *);
2193 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2194 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2195 void f2fs_set_page_dirty_nobuffers(struct page *);
2196 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2197 int f2fs_release_page(struct page *, gfp_t);
2198 #ifdef CONFIG_MIGRATION
2199 int f2fs_migrate_page(struct address_space *, struct page *, struct page *,
2200 enum migrate_mode);
2201 #endif
2202
2203 /*
2204 * gc.c
2205 */
2206 int start_gc_thread(struct f2fs_sb_info *);
2207 void stop_gc_thread(struct f2fs_sb_info *);
2208 block_t start_bidx_of_node(unsigned int, struct inode *);
2209 int f2fs_gc(struct f2fs_sb_info *, bool, bool);
2210 void build_gc_manager(struct f2fs_sb_info *);
2211
2212 /*
2213 * recovery.c
2214 */
2215 int recover_fsync_data(struct f2fs_sb_info *, bool);
2216 bool space_for_roll_forward(struct f2fs_sb_info *);
2217
2218 /*
2219 * debug.c
2220 */
2221 #ifdef CONFIG_F2FS_STAT_FS
2222 struct f2fs_stat_info {
2223 struct list_head stat_list;
2224 struct f2fs_sb_info *sbi;
2225 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2226 int main_area_segs, main_area_sections, main_area_zones;
2227 unsigned long long hit_largest, hit_cached, hit_rbtree;
2228 unsigned long long hit_total, total_ext;
2229 int ext_tree, zombie_tree, ext_node;
2230 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2231 int inmem_pages;
2232 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2233 int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids;
2234 int total_count, utilization;
2235 int bg_gc, nr_wb_cp_data, nr_wb_data;
2236 int inline_xattr, inline_inode, inline_dir, orphans;
2237 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2238 unsigned int bimodal, avg_vblocks;
2239 int util_free, util_valid, util_invalid;
2240 int rsvd_segs, overp_segs;
2241 int dirty_count, node_pages, meta_pages;
2242 int prefree_count, call_count, cp_count, bg_cp_count;
2243 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2244 int bg_node_segs, bg_data_segs;
2245 int tot_blks, data_blks, node_blks;
2246 int bg_data_blks, bg_node_blks;
2247 int curseg[NR_CURSEG_TYPE];
2248 int cursec[NR_CURSEG_TYPE];
2249 int curzone[NR_CURSEG_TYPE];
2250
2251 unsigned int segment_count[2];
2252 unsigned int block_count[2];
2253 unsigned int inplace_count;
2254 unsigned long long base_mem, cache_mem, page_mem;
2255 };
2256
2257 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2258 {
2259 return (struct f2fs_stat_info *)sbi->stat_info;
2260 }
2261
2262 #define stat_inc_cp_count(si) ((si)->cp_count++)
2263 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2264 #define stat_inc_call_count(si) ((si)->call_count++)
2265 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2266 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2267 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2268 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2269 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2270 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2271 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2272 #define stat_inc_inline_xattr(inode) \
2273 do { \
2274 if (f2fs_has_inline_xattr(inode)) \
2275 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2276 } while (0)
2277 #define stat_dec_inline_xattr(inode) \
2278 do { \
2279 if (f2fs_has_inline_xattr(inode)) \
2280 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2281 } while (0)
2282 #define stat_inc_inline_inode(inode) \
2283 do { \
2284 if (f2fs_has_inline_data(inode)) \
2285 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2286 } while (0)
2287 #define stat_dec_inline_inode(inode) \
2288 do { \
2289 if (f2fs_has_inline_data(inode)) \
2290 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2291 } while (0)
2292 #define stat_inc_inline_dir(inode) \
2293 do { \
2294 if (f2fs_has_inline_dentry(inode)) \
2295 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2296 } while (0)
2297 #define stat_dec_inline_dir(inode) \
2298 do { \
2299 if (f2fs_has_inline_dentry(inode)) \
2300 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2301 } while (0)
2302 #define stat_inc_seg_type(sbi, curseg) \
2303 ((sbi)->segment_count[(curseg)->alloc_type]++)
2304 #define stat_inc_block_count(sbi, curseg) \
2305 ((sbi)->block_count[(curseg)->alloc_type]++)
2306 #define stat_inc_inplace_blocks(sbi) \
2307 (atomic_inc(&(sbi)->inplace_count))
2308 #define stat_inc_seg_count(sbi, type, gc_type) \
2309 do { \
2310 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2311 (si)->tot_segs++; \
2312 if (type == SUM_TYPE_DATA) { \
2313 si->data_segs++; \
2314 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2315 } else { \
2316 si->node_segs++; \
2317 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2318 } \
2319 } while (0)
2320
2321 #define stat_inc_tot_blk_count(si, blks) \
2322 (si->tot_blks += (blks))
2323
2324 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2325 do { \
2326 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2327 stat_inc_tot_blk_count(si, blks); \
2328 si->data_blks += (blks); \
2329 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2330 } while (0)
2331
2332 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2333 do { \
2334 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2335 stat_inc_tot_blk_count(si, blks); \
2336 si->node_blks += (blks); \
2337 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2338 } while (0)
2339
2340 int f2fs_build_stats(struct f2fs_sb_info *);
2341 void f2fs_destroy_stats(struct f2fs_sb_info *);
2342 int __init f2fs_create_root_stats(void);
2343 void f2fs_destroy_root_stats(void);
2344 #else
2345 #define stat_inc_cp_count(si)
2346 #define stat_inc_bg_cp_count(si)
2347 #define stat_inc_call_count(si)
2348 #define stat_inc_bggc_count(si)
2349 #define stat_inc_dirty_inode(sbi, type)
2350 #define stat_dec_dirty_inode(sbi, type)
2351 #define stat_inc_total_hit(sb)
2352 #define stat_inc_rbtree_node_hit(sb)
2353 #define stat_inc_largest_node_hit(sbi)
2354 #define stat_inc_cached_node_hit(sbi)
2355 #define stat_inc_inline_xattr(inode)
2356 #define stat_dec_inline_xattr(inode)
2357 #define stat_inc_inline_inode(inode)
2358 #define stat_dec_inline_inode(inode)
2359 #define stat_inc_inline_dir(inode)
2360 #define stat_dec_inline_dir(inode)
2361 #define stat_inc_seg_type(sbi, curseg)
2362 #define stat_inc_block_count(sbi, curseg)
2363 #define stat_inc_inplace_blocks(sbi)
2364 #define stat_inc_seg_count(sbi, type, gc_type)
2365 #define stat_inc_tot_blk_count(si, blks)
2366 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2367 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2368
2369 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2370 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2371 static inline int __init f2fs_create_root_stats(void) { return 0; }
2372 static inline void f2fs_destroy_root_stats(void) { }
2373 #endif
2374
2375 extern const struct file_operations f2fs_dir_operations;
2376 extern const struct file_operations f2fs_file_operations;
2377 extern const struct inode_operations f2fs_file_inode_operations;
2378 extern const struct address_space_operations f2fs_dblock_aops;
2379 extern const struct address_space_operations f2fs_node_aops;
2380 extern const struct address_space_operations f2fs_meta_aops;
2381 extern const struct inode_operations f2fs_dir_inode_operations;
2382 extern const struct inode_operations f2fs_symlink_inode_operations;
2383 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2384 extern const struct inode_operations f2fs_special_inode_operations;
2385 extern struct kmem_cache *inode_entry_slab;
2386
2387 /*
2388 * inline.c
2389 */
2390 bool f2fs_may_inline_data(struct inode *);
2391 bool f2fs_may_inline_dentry(struct inode *);
2392 void read_inline_data(struct page *, struct page *);
2393 bool truncate_inline_inode(struct page *, u64);
2394 int f2fs_read_inline_data(struct inode *, struct page *);
2395 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2396 int f2fs_convert_inline_inode(struct inode *);
2397 int f2fs_write_inline_data(struct inode *, struct page *);
2398 bool recover_inline_data(struct inode *, struct page *);
2399 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2400 struct fscrypt_name *, struct page **);
2401 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2402 int f2fs_add_inline_entry(struct inode *, const struct qstr *,
2403 const struct qstr *, struct inode *, nid_t, umode_t);
2404 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2405 struct inode *, struct inode *);
2406 bool f2fs_empty_inline_dir(struct inode *);
2407 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2408 struct fscrypt_str *);
2409 int f2fs_inline_data_fiemap(struct inode *,
2410 struct fiemap_extent_info *, __u64, __u64);
2411
2412 /*
2413 * shrinker.c
2414 */
2415 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2416 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2417 void f2fs_join_shrinker(struct f2fs_sb_info *);
2418 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2419
2420 /*
2421 * extent_cache.c
2422 */
2423 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2424 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2425 void f2fs_drop_extent_tree(struct inode *);
2426 unsigned int f2fs_destroy_extent_node(struct inode *);
2427 void f2fs_destroy_extent_tree(struct inode *);
2428 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2429 void f2fs_update_extent_cache(struct dnode_of_data *);
2430 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2431 pgoff_t, block_t, unsigned int);
2432 void init_extent_cache_info(struct f2fs_sb_info *);
2433 int __init create_extent_cache(void);
2434 void destroy_extent_cache(void);
2435
2436 /*
2437 * crypto support
2438 */
2439 static inline bool f2fs_encrypted_inode(struct inode *inode)
2440 {
2441 return file_is_encrypt(inode);
2442 }
2443
2444 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2445 {
2446 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2447 file_set_encrypt(inode);
2448 #endif
2449 }
2450
2451 static inline bool f2fs_bio_encrypted(struct bio *bio)
2452 {
2453 return bio->bi_private != NULL;
2454 }
2455
2456 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2457 {
2458 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2459 }
2460
2461 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2462 {
2463 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2464 }
2465
2466 #ifdef CONFIG_BLK_DEV_ZONED
2467 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2468 struct block_device *bdev, block_t blkaddr)
2469 {
2470 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2471 int i;
2472
2473 for (i = 0; i < sbi->s_ndevs; i++)
2474 if (FDEV(i).bdev == bdev)
2475 return FDEV(i).blkz_type[zno];
2476 return -EINVAL;
2477 }
2478 #endif
2479
2480 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2481 {
2482 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2483
2484 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2485 }
2486
2487 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2488 {
2489 clear_opt(sbi, ADAPTIVE);
2490 clear_opt(sbi, LFS);
2491
2492 switch (mt) {
2493 case F2FS_MOUNT_ADAPTIVE:
2494 set_opt(sbi, ADAPTIVE);
2495 break;
2496 case F2FS_MOUNT_LFS:
2497 set_opt(sbi, LFS);
2498 break;
2499 }
2500 }
2501
2502 static inline bool f2fs_may_encrypt(struct inode *inode)
2503 {
2504 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2505 umode_t mode = inode->i_mode;
2506
2507 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2508 #else
2509 return 0;
2510 #endif
2511 }
2512
2513 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2514 #define fscrypt_set_d_op(i)
2515 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2516 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2517 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2518 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2519 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2520 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2521 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2522 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2523 #define fscrypt_ioctl_set_policy fscrypt_notsupp_ioctl_set_policy
2524 #define fscrypt_ioctl_get_policy fscrypt_notsupp_ioctl_get_policy
2525 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2526 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2527 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2528 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2529 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2530 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2531 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2532 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2533 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2534 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2535 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2536 #endif
2537 #endif