]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: avoid race condition for shrinker count
[mirror_ubuntu-hirsute-kernel.git] / fs / f2fs / f2fs.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (WARN_ON(condition)) \
37 set_sbi_flag(sbi, SBI_NEED_FSCK); \
38 } while (0)
39 #endif
40
41 enum {
42 FAULT_KMALLOC,
43 FAULT_KVMALLOC,
44 FAULT_PAGE_ALLOC,
45 FAULT_PAGE_GET,
46 FAULT_ALLOC_BIO,
47 FAULT_ALLOC_NID,
48 FAULT_ORPHAN,
49 FAULT_BLOCK,
50 FAULT_DIR_DEPTH,
51 FAULT_EVICT_INODE,
52 FAULT_TRUNCATE,
53 FAULT_READ_IO,
54 FAULT_CHECKPOINT,
55 FAULT_DISCARD,
56 FAULT_WRITE_IO,
57 FAULT_MAX,
58 };
59
60 #ifdef CONFIG_F2FS_FAULT_INJECTION
61 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
62
63 struct f2fs_fault_info {
64 atomic_t inject_ops;
65 unsigned int inject_rate;
66 unsigned int inject_type;
67 };
68
69 extern const char *f2fs_fault_name[FAULT_MAX];
70 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
71 #endif
72
73 /*
74 * For mount options
75 */
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
77 #define F2FS_MOUNT_DISCARD 0x00000004
78 #define F2FS_MOUNT_NOHEAP 0x00000008
79 #define F2FS_MOUNT_XATTR_USER 0x00000010
80 #define F2FS_MOUNT_POSIX_ACL 0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
83 #define F2FS_MOUNT_INLINE_DATA 0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
86 #define F2FS_MOUNT_NOBARRIER 0x00000800
87 #define F2FS_MOUNT_FASTBOOT 0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
89 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
90 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
91 #define F2FS_MOUNT_USRQUOTA 0x00080000
92 #define F2FS_MOUNT_GRPQUOTA 0x00100000
93 #define F2FS_MOUNT_PRJQUOTA 0x00200000
94 #define F2FS_MOUNT_QUOTA 0x00400000
95 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
96 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
97 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
98 #define F2FS_MOUNT_NORECOVERY 0x04000000
99 #define F2FS_MOUNT_ATGC 0x08000000
100
101 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
102 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105
106 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
107 typecheck(unsigned long long, b) && \
108 ((long long)((a) - (b)) > 0))
109
110 typedef u32 block_t; /*
111 * should not change u32, since it is the on-disk block
112 * address format, __le32.
113 */
114 typedef u32 nid_t;
115
116 #define COMPRESS_EXT_NUM 16
117
118 struct f2fs_mount_info {
119 unsigned int opt;
120 int write_io_size_bits; /* Write IO size bits */
121 block_t root_reserved_blocks; /* root reserved blocks */
122 kuid_t s_resuid; /* reserved blocks for uid */
123 kgid_t s_resgid; /* reserved blocks for gid */
124 int active_logs; /* # of active logs */
125 int inline_xattr_size; /* inline xattr size */
126 #ifdef CONFIG_F2FS_FAULT_INJECTION
127 struct f2fs_fault_info fault_info; /* For fault injection */
128 #endif
129 #ifdef CONFIG_QUOTA
130 /* Names of quota files with journalled quota */
131 char *s_qf_names[MAXQUOTAS];
132 int s_jquota_fmt; /* Format of quota to use */
133 #endif
134 /* For which write hints are passed down to block layer */
135 int whint_mode;
136 int alloc_mode; /* segment allocation policy */
137 int fsync_mode; /* fsync policy */
138 int fs_mode; /* fs mode: LFS or ADAPTIVE */
139 int bggc_mode; /* bggc mode: off, on or sync */
140 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
141 block_t unusable_cap_perc; /* percentage for cap */
142 block_t unusable_cap; /* Amount of space allowed to be
143 * unusable when disabling checkpoint
144 */
145
146 /* For compression */
147 unsigned char compress_algorithm; /* algorithm type */
148 unsigned char compress_log_size; /* cluster log size */
149 bool compress_chksum; /* compressed data chksum */
150 unsigned char compress_ext_cnt; /* extension count */
151 int compress_mode; /* compression mode */
152 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
153 };
154
155 #define F2FS_FEATURE_ENCRYPT 0x0001
156 #define F2FS_FEATURE_BLKZONED 0x0002
157 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
158 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
159 #define F2FS_FEATURE_PRJQUOTA 0x0010
160 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
161 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
162 #define F2FS_FEATURE_QUOTA_INO 0x0080
163 #define F2FS_FEATURE_INODE_CRTIME 0x0100
164 #define F2FS_FEATURE_LOST_FOUND 0x0200
165 #define F2FS_FEATURE_VERITY 0x0400
166 #define F2FS_FEATURE_SB_CHKSUM 0x0800
167 #define F2FS_FEATURE_CASEFOLD 0x1000
168 #define F2FS_FEATURE_COMPRESSION 0x2000
169
170 #define __F2FS_HAS_FEATURE(raw_super, mask) \
171 ((raw_super->feature & cpu_to_le32(mask)) != 0)
172 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
173 #define F2FS_SET_FEATURE(sbi, mask) \
174 (sbi->raw_super->feature |= cpu_to_le32(mask))
175 #define F2FS_CLEAR_FEATURE(sbi, mask) \
176 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
177
178 /*
179 * Default values for user and/or group using reserved blocks
180 */
181 #define F2FS_DEF_RESUID 0
182 #define F2FS_DEF_RESGID 0
183
184 /*
185 * For checkpoint manager
186 */
187 enum {
188 NAT_BITMAP,
189 SIT_BITMAP
190 };
191
192 #define CP_UMOUNT 0x00000001
193 #define CP_FASTBOOT 0x00000002
194 #define CP_SYNC 0x00000004
195 #define CP_RECOVERY 0x00000008
196 #define CP_DISCARD 0x00000010
197 #define CP_TRIMMED 0x00000020
198 #define CP_PAUSE 0x00000040
199 #define CP_RESIZE 0x00000080
200
201 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
202 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
203 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
204 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
205 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
206 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
207 #define DEF_CP_INTERVAL 60 /* 60 secs */
208 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
209 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
210 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
211 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
212
213 struct cp_control {
214 int reason;
215 __u64 trim_start;
216 __u64 trim_end;
217 __u64 trim_minlen;
218 };
219
220 /*
221 * indicate meta/data type
222 */
223 enum {
224 META_CP,
225 META_NAT,
226 META_SIT,
227 META_SSA,
228 META_MAX,
229 META_POR,
230 DATA_GENERIC, /* check range only */
231 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
232 DATA_GENERIC_ENHANCE_READ, /*
233 * strong check on range and segment
234 * bitmap but no warning due to race
235 * condition of read on truncated area
236 * by extent_cache
237 */
238 META_GENERIC,
239 };
240
241 /* for the list of ino */
242 enum {
243 ORPHAN_INO, /* for orphan ino list */
244 APPEND_INO, /* for append ino list */
245 UPDATE_INO, /* for update ino list */
246 TRANS_DIR_INO, /* for trasactions dir ino list */
247 FLUSH_INO, /* for multiple device flushing */
248 MAX_INO_ENTRY, /* max. list */
249 };
250
251 struct ino_entry {
252 struct list_head list; /* list head */
253 nid_t ino; /* inode number */
254 unsigned int dirty_device; /* dirty device bitmap */
255 };
256
257 /* for the list of inodes to be GCed */
258 struct inode_entry {
259 struct list_head list; /* list head */
260 struct inode *inode; /* vfs inode pointer */
261 };
262
263 struct fsync_node_entry {
264 struct list_head list; /* list head */
265 struct page *page; /* warm node page pointer */
266 unsigned int seq_id; /* sequence id */
267 };
268
269 /* for the bitmap indicate blocks to be discarded */
270 struct discard_entry {
271 struct list_head list; /* list head */
272 block_t start_blkaddr; /* start blockaddr of current segment */
273 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
274 };
275
276 /* default discard granularity of inner discard thread, unit: block count */
277 #define DEFAULT_DISCARD_GRANULARITY 16
278
279 /* max discard pend list number */
280 #define MAX_PLIST_NUM 512
281 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
282 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
283
284 enum {
285 D_PREP, /* initial */
286 D_PARTIAL, /* partially submitted */
287 D_SUBMIT, /* all submitted */
288 D_DONE, /* finished */
289 };
290
291 struct discard_info {
292 block_t lstart; /* logical start address */
293 block_t len; /* length */
294 block_t start; /* actual start address in dev */
295 };
296
297 struct discard_cmd {
298 struct rb_node rb_node; /* rb node located in rb-tree */
299 union {
300 struct {
301 block_t lstart; /* logical start address */
302 block_t len; /* length */
303 block_t start; /* actual start address in dev */
304 };
305 struct discard_info di; /* discard info */
306
307 };
308 struct list_head list; /* command list */
309 struct completion wait; /* compleation */
310 struct block_device *bdev; /* bdev */
311 unsigned short ref; /* reference count */
312 unsigned char state; /* state */
313 unsigned char queued; /* queued discard */
314 int error; /* bio error */
315 spinlock_t lock; /* for state/bio_ref updating */
316 unsigned short bio_ref; /* bio reference count */
317 };
318
319 enum {
320 DPOLICY_BG,
321 DPOLICY_FORCE,
322 DPOLICY_FSTRIM,
323 DPOLICY_UMOUNT,
324 MAX_DPOLICY,
325 };
326
327 struct discard_policy {
328 int type; /* type of discard */
329 unsigned int min_interval; /* used for candidates exist */
330 unsigned int mid_interval; /* used for device busy */
331 unsigned int max_interval; /* used for candidates not exist */
332 unsigned int max_requests; /* # of discards issued per round */
333 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
334 bool io_aware; /* issue discard in idle time */
335 bool sync; /* submit discard with REQ_SYNC flag */
336 bool ordered; /* issue discard by lba order */
337 bool timeout; /* discard timeout for put_super */
338 unsigned int granularity; /* discard granularity */
339 };
340
341 struct discard_cmd_control {
342 struct task_struct *f2fs_issue_discard; /* discard thread */
343 struct list_head entry_list; /* 4KB discard entry list */
344 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
345 struct list_head wait_list; /* store on-flushing entries */
346 struct list_head fstrim_list; /* in-flight discard from fstrim */
347 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
348 unsigned int discard_wake; /* to wake up discard thread */
349 struct mutex cmd_lock;
350 unsigned int nr_discards; /* # of discards in the list */
351 unsigned int max_discards; /* max. discards to be issued */
352 unsigned int discard_granularity; /* discard granularity */
353 unsigned int undiscard_blks; /* # of undiscard blocks */
354 unsigned int next_pos; /* next discard position */
355 atomic_t issued_discard; /* # of issued discard */
356 atomic_t queued_discard; /* # of queued discard */
357 atomic_t discard_cmd_cnt; /* # of cached cmd count */
358 struct rb_root_cached root; /* root of discard rb-tree */
359 bool rbtree_check; /* config for consistence check */
360 };
361
362 /* for the list of fsync inodes, used only during recovery */
363 struct fsync_inode_entry {
364 struct list_head list; /* list head */
365 struct inode *inode; /* vfs inode pointer */
366 block_t blkaddr; /* block address locating the last fsync */
367 block_t last_dentry; /* block address locating the last dentry */
368 };
369
370 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
371 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
372
373 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
374 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
375 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
376 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
377
378 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
379 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
380
381 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
382 {
383 int before = nats_in_cursum(journal);
384
385 journal->n_nats = cpu_to_le16(before + i);
386 return before;
387 }
388
389 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
390 {
391 int before = sits_in_cursum(journal);
392
393 journal->n_sits = cpu_to_le16(before + i);
394 return before;
395 }
396
397 static inline bool __has_cursum_space(struct f2fs_journal *journal,
398 int size, int type)
399 {
400 if (type == NAT_JOURNAL)
401 return size <= MAX_NAT_JENTRIES(journal);
402 return size <= MAX_SIT_JENTRIES(journal);
403 }
404
405 /* for inline stuff */
406 #define DEF_INLINE_RESERVED_SIZE 1
407 static inline int get_extra_isize(struct inode *inode);
408 static inline int get_inline_xattr_addrs(struct inode *inode);
409 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
410 (CUR_ADDRS_PER_INODE(inode) - \
411 get_inline_xattr_addrs(inode) - \
412 DEF_INLINE_RESERVED_SIZE))
413
414 /* for inline dir */
415 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
416 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
417 BITS_PER_BYTE + 1))
418 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
419 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
420 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
421 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
422 NR_INLINE_DENTRY(inode) + \
423 INLINE_DENTRY_BITMAP_SIZE(inode)))
424
425 /*
426 * For INODE and NODE manager
427 */
428 /* for directory operations */
429
430 struct f2fs_filename {
431 /*
432 * The filename the user specified. This is NULL for some
433 * filesystem-internal operations, e.g. converting an inline directory
434 * to a non-inline one, or roll-forward recovering an encrypted dentry.
435 */
436 const struct qstr *usr_fname;
437
438 /*
439 * The on-disk filename. For encrypted directories, this is encrypted.
440 * This may be NULL for lookups in an encrypted dir without the key.
441 */
442 struct fscrypt_str disk_name;
443
444 /* The dirhash of this filename */
445 f2fs_hash_t hash;
446
447 #ifdef CONFIG_FS_ENCRYPTION
448 /*
449 * For lookups in encrypted directories: either the buffer backing
450 * disk_name, or a buffer that holds the decoded no-key name.
451 */
452 struct fscrypt_str crypto_buf;
453 #endif
454 #ifdef CONFIG_UNICODE
455 /*
456 * For casefolded directories: the casefolded name, but it's left NULL
457 * if the original name is not valid Unicode, if the directory is both
458 * casefolded and encrypted and its encryption key is unavailable, or if
459 * the filesystem is doing an internal operation where usr_fname is also
460 * NULL. In all these cases we fall back to treating the name as an
461 * opaque byte sequence.
462 */
463 struct fscrypt_str cf_name;
464 #endif
465 };
466
467 struct f2fs_dentry_ptr {
468 struct inode *inode;
469 void *bitmap;
470 struct f2fs_dir_entry *dentry;
471 __u8 (*filename)[F2FS_SLOT_LEN];
472 int max;
473 int nr_bitmap;
474 };
475
476 static inline void make_dentry_ptr_block(struct inode *inode,
477 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
478 {
479 d->inode = inode;
480 d->max = NR_DENTRY_IN_BLOCK;
481 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
482 d->bitmap = t->dentry_bitmap;
483 d->dentry = t->dentry;
484 d->filename = t->filename;
485 }
486
487 static inline void make_dentry_ptr_inline(struct inode *inode,
488 struct f2fs_dentry_ptr *d, void *t)
489 {
490 int entry_cnt = NR_INLINE_DENTRY(inode);
491 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
492 int reserved_size = INLINE_RESERVED_SIZE(inode);
493
494 d->inode = inode;
495 d->max = entry_cnt;
496 d->nr_bitmap = bitmap_size;
497 d->bitmap = t;
498 d->dentry = t + bitmap_size + reserved_size;
499 d->filename = t + bitmap_size + reserved_size +
500 SIZE_OF_DIR_ENTRY * entry_cnt;
501 }
502
503 /*
504 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
505 * as its node offset to distinguish from index node blocks.
506 * But some bits are used to mark the node block.
507 */
508 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
509 >> OFFSET_BIT_SHIFT)
510 enum {
511 ALLOC_NODE, /* allocate a new node page if needed */
512 LOOKUP_NODE, /* look up a node without readahead */
513 LOOKUP_NODE_RA, /*
514 * look up a node with readahead called
515 * by get_data_block.
516 */
517 };
518
519 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
520
521 /* congestion wait timeout value, default: 20ms */
522 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
523
524 /* maximum retry quota flush count */
525 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
526
527 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
528
529 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
530
531 /* for in-memory extent cache entry */
532 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
533
534 /* number of extent info in extent cache we try to shrink */
535 #define EXTENT_CACHE_SHRINK_NUMBER 128
536
537 struct rb_entry {
538 struct rb_node rb_node; /* rb node located in rb-tree */
539 union {
540 struct {
541 unsigned int ofs; /* start offset of the entry */
542 unsigned int len; /* length of the entry */
543 };
544 unsigned long long key; /* 64-bits key */
545 } __packed;
546 };
547
548 struct extent_info {
549 unsigned int fofs; /* start offset in a file */
550 unsigned int len; /* length of the extent */
551 u32 blk; /* start block address of the extent */
552 };
553
554 struct extent_node {
555 struct rb_node rb_node; /* rb node located in rb-tree */
556 struct extent_info ei; /* extent info */
557 struct list_head list; /* node in global extent list of sbi */
558 struct extent_tree *et; /* extent tree pointer */
559 };
560
561 struct extent_tree {
562 nid_t ino; /* inode number */
563 struct rb_root_cached root; /* root of extent info rb-tree */
564 struct extent_node *cached_en; /* recently accessed extent node */
565 struct extent_info largest; /* largested extent info */
566 struct list_head list; /* to be used by sbi->zombie_list */
567 rwlock_t lock; /* protect extent info rb-tree */
568 atomic_t node_cnt; /* # of extent node in rb-tree*/
569 bool largest_updated; /* largest extent updated */
570 };
571
572 /*
573 * This structure is taken from ext4_map_blocks.
574 *
575 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
576 */
577 #define F2FS_MAP_NEW (1 << BH_New)
578 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
579 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
580 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
581 F2FS_MAP_UNWRITTEN)
582
583 struct f2fs_map_blocks {
584 block_t m_pblk;
585 block_t m_lblk;
586 unsigned int m_len;
587 unsigned int m_flags;
588 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
589 pgoff_t *m_next_extent; /* point to next possible extent */
590 int m_seg_type;
591 bool m_may_create; /* indicate it is from write path */
592 };
593
594 /* for flag in get_data_block */
595 enum {
596 F2FS_GET_BLOCK_DEFAULT,
597 F2FS_GET_BLOCK_FIEMAP,
598 F2FS_GET_BLOCK_BMAP,
599 F2FS_GET_BLOCK_DIO,
600 F2FS_GET_BLOCK_PRE_DIO,
601 F2FS_GET_BLOCK_PRE_AIO,
602 F2FS_GET_BLOCK_PRECACHE,
603 };
604
605 /*
606 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
607 */
608 #define FADVISE_COLD_BIT 0x01
609 #define FADVISE_LOST_PINO_BIT 0x02
610 #define FADVISE_ENCRYPT_BIT 0x04
611 #define FADVISE_ENC_NAME_BIT 0x08
612 #define FADVISE_KEEP_SIZE_BIT 0x10
613 #define FADVISE_HOT_BIT 0x20
614 #define FADVISE_VERITY_BIT 0x40
615
616 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
617
618 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
619 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
620 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
621 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
622 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
623 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
624 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
625 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
626 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
627 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
628 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
629 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
630 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
631 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
632 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
633 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
634 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
635 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
636
637 #define DEF_DIR_LEVEL 0
638
639 enum {
640 GC_FAILURE_PIN,
641 GC_FAILURE_ATOMIC,
642 MAX_GC_FAILURE
643 };
644
645 /* used for f2fs_inode_info->flags */
646 enum {
647 FI_NEW_INODE, /* indicate newly allocated inode */
648 FI_DIRTY_INODE, /* indicate inode is dirty or not */
649 FI_AUTO_RECOVER, /* indicate inode is recoverable */
650 FI_DIRTY_DIR, /* indicate directory has dirty pages */
651 FI_INC_LINK, /* need to increment i_nlink */
652 FI_ACL_MODE, /* indicate acl mode */
653 FI_NO_ALLOC, /* should not allocate any blocks */
654 FI_FREE_NID, /* free allocated nide */
655 FI_NO_EXTENT, /* not to use the extent cache */
656 FI_INLINE_XATTR, /* used for inline xattr */
657 FI_INLINE_DATA, /* used for inline data*/
658 FI_INLINE_DENTRY, /* used for inline dentry */
659 FI_APPEND_WRITE, /* inode has appended data */
660 FI_UPDATE_WRITE, /* inode has in-place-update data */
661 FI_NEED_IPU, /* used for ipu per file */
662 FI_ATOMIC_FILE, /* indicate atomic file */
663 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
664 FI_VOLATILE_FILE, /* indicate volatile file */
665 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
666 FI_DROP_CACHE, /* drop dirty page cache */
667 FI_DATA_EXIST, /* indicate data exists */
668 FI_INLINE_DOTS, /* indicate inline dot dentries */
669 FI_DO_DEFRAG, /* indicate defragment is running */
670 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
671 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
672 FI_HOT_DATA, /* indicate file is hot */
673 FI_EXTRA_ATTR, /* indicate file has extra attribute */
674 FI_PROJ_INHERIT, /* indicate file inherits projectid */
675 FI_PIN_FILE, /* indicate file should not be gced */
676 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
677 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
678 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
679 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
680 FI_MMAP_FILE, /* indicate file was mmapped */
681 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
682 FI_MAX, /* max flag, never be used */
683 };
684
685 struct f2fs_inode_info {
686 struct inode vfs_inode; /* serve a vfs inode */
687 unsigned long i_flags; /* keep an inode flags for ioctl */
688 unsigned char i_advise; /* use to give file attribute hints */
689 unsigned char i_dir_level; /* use for dentry level for large dir */
690 unsigned int i_current_depth; /* only for directory depth */
691 /* for gc failure statistic */
692 unsigned int i_gc_failures[MAX_GC_FAILURE];
693 unsigned int i_pino; /* parent inode number */
694 umode_t i_acl_mode; /* keep file acl mode temporarily */
695
696 /* Use below internally in f2fs*/
697 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
698 struct rw_semaphore i_sem; /* protect fi info */
699 atomic_t dirty_pages; /* # of dirty pages */
700 f2fs_hash_t chash; /* hash value of given file name */
701 unsigned int clevel; /* maximum level of given file name */
702 struct task_struct *task; /* lookup and create consistency */
703 struct task_struct *cp_task; /* separate cp/wb IO stats*/
704 nid_t i_xattr_nid; /* node id that contains xattrs */
705 loff_t last_disk_size; /* lastly written file size */
706 spinlock_t i_size_lock; /* protect last_disk_size */
707
708 #ifdef CONFIG_QUOTA
709 struct dquot *i_dquot[MAXQUOTAS];
710
711 /* quota space reservation, managed internally by quota code */
712 qsize_t i_reserved_quota;
713 #endif
714 struct list_head dirty_list; /* dirty list for dirs and files */
715 struct list_head gdirty_list; /* linked in global dirty list */
716 struct list_head inmem_ilist; /* list for inmem inodes */
717 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
718 struct task_struct *inmem_task; /* store inmemory task */
719 struct mutex inmem_lock; /* lock for inmemory pages */
720 pgoff_t ra_offset; /* ongoing readahead offset */
721 struct extent_tree *extent_tree; /* cached extent_tree entry */
722
723 /* avoid racing between foreground op and gc */
724 struct rw_semaphore i_gc_rwsem[2];
725 struct rw_semaphore i_mmap_sem;
726 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
727
728 int i_extra_isize; /* size of extra space located in i_addr */
729 kprojid_t i_projid; /* id for project quota */
730 int i_inline_xattr_size; /* inline xattr size */
731 struct timespec64 i_crtime; /* inode creation time */
732 struct timespec64 i_disk_time[4];/* inode disk times */
733
734 /* for file compress */
735 atomic_t i_compr_blocks; /* # of compressed blocks */
736 unsigned char i_compress_algorithm; /* algorithm type */
737 unsigned char i_log_cluster_size; /* log of cluster size */
738 unsigned short i_compress_flag; /* compress flag */
739 unsigned int i_cluster_size; /* cluster size */
740 };
741
742 static inline void get_extent_info(struct extent_info *ext,
743 struct f2fs_extent *i_ext)
744 {
745 ext->fofs = le32_to_cpu(i_ext->fofs);
746 ext->blk = le32_to_cpu(i_ext->blk);
747 ext->len = le32_to_cpu(i_ext->len);
748 }
749
750 static inline void set_raw_extent(struct extent_info *ext,
751 struct f2fs_extent *i_ext)
752 {
753 i_ext->fofs = cpu_to_le32(ext->fofs);
754 i_ext->blk = cpu_to_le32(ext->blk);
755 i_ext->len = cpu_to_le32(ext->len);
756 }
757
758 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
759 u32 blk, unsigned int len)
760 {
761 ei->fofs = fofs;
762 ei->blk = blk;
763 ei->len = len;
764 }
765
766 static inline bool __is_discard_mergeable(struct discard_info *back,
767 struct discard_info *front, unsigned int max_len)
768 {
769 return (back->lstart + back->len == front->lstart) &&
770 (back->len + front->len <= max_len);
771 }
772
773 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
774 struct discard_info *back, unsigned int max_len)
775 {
776 return __is_discard_mergeable(back, cur, max_len);
777 }
778
779 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
780 struct discard_info *front, unsigned int max_len)
781 {
782 return __is_discard_mergeable(cur, front, max_len);
783 }
784
785 static inline bool __is_extent_mergeable(struct extent_info *back,
786 struct extent_info *front)
787 {
788 return (back->fofs + back->len == front->fofs &&
789 back->blk + back->len == front->blk);
790 }
791
792 static inline bool __is_back_mergeable(struct extent_info *cur,
793 struct extent_info *back)
794 {
795 return __is_extent_mergeable(back, cur);
796 }
797
798 static inline bool __is_front_mergeable(struct extent_info *cur,
799 struct extent_info *front)
800 {
801 return __is_extent_mergeable(cur, front);
802 }
803
804 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
805 static inline void __try_update_largest_extent(struct extent_tree *et,
806 struct extent_node *en)
807 {
808 if (en->ei.len > et->largest.len) {
809 et->largest = en->ei;
810 et->largest_updated = true;
811 }
812 }
813
814 /*
815 * For free nid management
816 */
817 enum nid_state {
818 FREE_NID, /* newly added to free nid list */
819 PREALLOC_NID, /* it is preallocated */
820 MAX_NID_STATE,
821 };
822
823 enum nat_state {
824 TOTAL_NAT,
825 DIRTY_NAT,
826 RECLAIMABLE_NAT,
827 MAX_NAT_STATE,
828 };
829
830 struct f2fs_nm_info {
831 block_t nat_blkaddr; /* base disk address of NAT */
832 nid_t max_nid; /* maximum possible node ids */
833 nid_t available_nids; /* # of available node ids */
834 nid_t next_scan_nid; /* the next nid to be scanned */
835 unsigned int ram_thresh; /* control the memory footprint */
836 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
837 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
838
839 /* NAT cache management */
840 struct radix_tree_root nat_root;/* root of the nat entry cache */
841 struct radix_tree_root nat_set_root;/* root of the nat set cache */
842 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
843 struct list_head nat_entries; /* cached nat entry list (clean) */
844 spinlock_t nat_list_lock; /* protect clean nat entry list */
845 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
846 unsigned int nat_blocks; /* # of nat blocks */
847
848 /* free node ids management */
849 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
850 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
851 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
852 spinlock_t nid_list_lock; /* protect nid lists ops */
853 struct mutex build_lock; /* lock for build free nids */
854 unsigned char **free_nid_bitmap;
855 unsigned char *nat_block_bitmap;
856 unsigned short *free_nid_count; /* free nid count of NAT block */
857
858 /* for checkpoint */
859 char *nat_bitmap; /* NAT bitmap pointer */
860
861 unsigned int nat_bits_blocks; /* # of nat bits blocks */
862 unsigned char *nat_bits; /* NAT bits blocks */
863 unsigned char *full_nat_bits; /* full NAT pages */
864 unsigned char *empty_nat_bits; /* empty NAT pages */
865 #ifdef CONFIG_F2FS_CHECK_FS
866 char *nat_bitmap_mir; /* NAT bitmap mirror */
867 #endif
868 int bitmap_size; /* bitmap size */
869 };
870
871 /*
872 * this structure is used as one of function parameters.
873 * all the information are dedicated to a given direct node block determined
874 * by the data offset in a file.
875 */
876 struct dnode_of_data {
877 struct inode *inode; /* vfs inode pointer */
878 struct page *inode_page; /* its inode page, NULL is possible */
879 struct page *node_page; /* cached direct node page */
880 nid_t nid; /* node id of the direct node block */
881 unsigned int ofs_in_node; /* data offset in the node page */
882 bool inode_page_locked; /* inode page is locked or not */
883 bool node_changed; /* is node block changed */
884 char cur_level; /* level of hole node page */
885 char max_level; /* level of current page located */
886 block_t data_blkaddr; /* block address of the node block */
887 };
888
889 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
890 struct page *ipage, struct page *npage, nid_t nid)
891 {
892 memset(dn, 0, sizeof(*dn));
893 dn->inode = inode;
894 dn->inode_page = ipage;
895 dn->node_page = npage;
896 dn->nid = nid;
897 }
898
899 /*
900 * For SIT manager
901 *
902 * By default, there are 6 active log areas across the whole main area.
903 * When considering hot and cold data separation to reduce cleaning overhead,
904 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
905 * respectively.
906 * In the current design, you should not change the numbers intentionally.
907 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
908 * logs individually according to the underlying devices. (default: 6)
909 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
910 * data and 8 for node logs.
911 */
912 #define NR_CURSEG_DATA_TYPE (3)
913 #define NR_CURSEG_NODE_TYPE (3)
914 #define NR_CURSEG_INMEM_TYPE (2)
915 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
916 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
917
918 enum {
919 CURSEG_HOT_DATA = 0, /* directory entry blocks */
920 CURSEG_WARM_DATA, /* data blocks */
921 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
922 CURSEG_HOT_NODE, /* direct node blocks of directory files */
923 CURSEG_WARM_NODE, /* direct node blocks of normal files */
924 CURSEG_COLD_NODE, /* indirect node blocks */
925 NR_PERSISTENT_LOG, /* number of persistent log */
926 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
927 /* pinned file that needs consecutive block address */
928 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
929 NO_CHECK_TYPE, /* number of persistent & inmem log */
930 };
931
932 struct flush_cmd {
933 struct completion wait;
934 struct llist_node llnode;
935 nid_t ino;
936 int ret;
937 };
938
939 struct flush_cmd_control {
940 struct task_struct *f2fs_issue_flush; /* flush thread */
941 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
942 atomic_t issued_flush; /* # of issued flushes */
943 atomic_t queued_flush; /* # of queued flushes */
944 struct llist_head issue_list; /* list for command issue */
945 struct llist_node *dispatch_list; /* list for command dispatch */
946 };
947
948 struct f2fs_sm_info {
949 struct sit_info *sit_info; /* whole segment information */
950 struct free_segmap_info *free_info; /* free segment information */
951 struct dirty_seglist_info *dirty_info; /* dirty segment information */
952 struct curseg_info *curseg_array; /* active segment information */
953
954 struct rw_semaphore curseg_lock; /* for preventing curseg change */
955
956 block_t seg0_blkaddr; /* block address of 0'th segment */
957 block_t main_blkaddr; /* start block address of main area */
958 block_t ssa_blkaddr; /* start block address of SSA area */
959
960 unsigned int segment_count; /* total # of segments */
961 unsigned int main_segments; /* # of segments in main area */
962 unsigned int reserved_segments; /* # of reserved segments */
963 unsigned int ovp_segments; /* # of overprovision segments */
964
965 /* a threshold to reclaim prefree segments */
966 unsigned int rec_prefree_segments;
967
968 /* for batched trimming */
969 unsigned int trim_sections; /* # of sections to trim */
970
971 struct list_head sit_entry_set; /* sit entry set list */
972
973 unsigned int ipu_policy; /* in-place-update policy */
974 unsigned int min_ipu_util; /* in-place-update threshold */
975 unsigned int min_fsync_blocks; /* threshold for fsync */
976 unsigned int min_seq_blocks; /* threshold for sequential blocks */
977 unsigned int min_hot_blocks; /* threshold for hot block allocation */
978 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
979
980 /* for flush command control */
981 struct flush_cmd_control *fcc_info;
982
983 /* for discard command control */
984 struct discard_cmd_control *dcc_info;
985 };
986
987 /*
988 * For superblock
989 */
990 /*
991 * COUNT_TYPE for monitoring
992 *
993 * f2fs monitors the number of several block types such as on-writeback,
994 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
995 */
996 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
997 enum count_type {
998 F2FS_DIRTY_DENTS,
999 F2FS_DIRTY_DATA,
1000 F2FS_DIRTY_QDATA,
1001 F2FS_DIRTY_NODES,
1002 F2FS_DIRTY_META,
1003 F2FS_INMEM_PAGES,
1004 F2FS_DIRTY_IMETA,
1005 F2FS_WB_CP_DATA,
1006 F2FS_WB_DATA,
1007 F2FS_RD_DATA,
1008 F2FS_RD_NODE,
1009 F2FS_RD_META,
1010 F2FS_DIO_WRITE,
1011 F2FS_DIO_READ,
1012 NR_COUNT_TYPE,
1013 };
1014
1015 /*
1016 * The below are the page types of bios used in submit_bio().
1017 * The available types are:
1018 * DATA User data pages. It operates as async mode.
1019 * NODE Node pages. It operates as async mode.
1020 * META FS metadata pages such as SIT, NAT, CP.
1021 * NR_PAGE_TYPE The number of page types.
1022 * META_FLUSH Make sure the previous pages are written
1023 * with waiting the bio's completion
1024 * ... Only can be used with META.
1025 */
1026 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1027 enum page_type {
1028 DATA,
1029 NODE,
1030 META,
1031 NR_PAGE_TYPE,
1032 META_FLUSH,
1033 INMEM, /* the below types are used by tracepoints only. */
1034 INMEM_DROP,
1035 INMEM_INVALIDATE,
1036 INMEM_REVOKE,
1037 IPU,
1038 OPU,
1039 };
1040
1041 enum temp_type {
1042 HOT = 0, /* must be zero for meta bio */
1043 WARM,
1044 COLD,
1045 NR_TEMP_TYPE,
1046 };
1047
1048 enum need_lock_type {
1049 LOCK_REQ = 0,
1050 LOCK_DONE,
1051 LOCK_RETRY,
1052 };
1053
1054 enum cp_reason_type {
1055 CP_NO_NEEDED,
1056 CP_NON_REGULAR,
1057 CP_COMPRESSED,
1058 CP_HARDLINK,
1059 CP_SB_NEED_CP,
1060 CP_WRONG_PINO,
1061 CP_NO_SPC_ROLL,
1062 CP_NODE_NEED_CP,
1063 CP_FASTBOOT_MODE,
1064 CP_SPEC_LOG_NUM,
1065 CP_RECOVER_DIR,
1066 };
1067
1068 enum iostat_type {
1069 /* WRITE IO */
1070 APP_DIRECT_IO, /* app direct write IOs */
1071 APP_BUFFERED_IO, /* app buffered write IOs */
1072 APP_WRITE_IO, /* app write IOs */
1073 APP_MAPPED_IO, /* app mapped IOs */
1074 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1075 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1076 FS_META_IO, /* meta IOs from kworker/reclaimer */
1077 FS_GC_DATA_IO, /* data IOs from forground gc */
1078 FS_GC_NODE_IO, /* node IOs from forground gc */
1079 FS_CP_DATA_IO, /* data IOs from checkpoint */
1080 FS_CP_NODE_IO, /* node IOs from checkpoint */
1081 FS_CP_META_IO, /* meta IOs from checkpoint */
1082
1083 /* READ IO */
1084 APP_DIRECT_READ_IO, /* app direct read IOs */
1085 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1086 APP_READ_IO, /* app read IOs */
1087 APP_MAPPED_READ_IO, /* app mapped read IOs */
1088 FS_DATA_READ_IO, /* data read IOs */
1089 FS_GDATA_READ_IO, /* data read IOs from background gc */
1090 FS_CDATA_READ_IO, /* compressed data read IOs */
1091 FS_NODE_READ_IO, /* node read IOs */
1092 FS_META_READ_IO, /* meta read IOs */
1093
1094 /* other */
1095 FS_DISCARD, /* discard */
1096 NR_IO_TYPE,
1097 };
1098
1099 struct f2fs_io_info {
1100 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1101 nid_t ino; /* inode number */
1102 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1103 enum temp_type temp; /* contains HOT/WARM/COLD */
1104 int op; /* contains REQ_OP_ */
1105 int op_flags; /* req_flag_bits */
1106 block_t new_blkaddr; /* new block address to be written */
1107 block_t old_blkaddr; /* old block address before Cow */
1108 struct page *page; /* page to be written */
1109 struct page *encrypted_page; /* encrypted page */
1110 struct page *compressed_page; /* compressed page */
1111 struct list_head list; /* serialize IOs */
1112 bool submitted; /* indicate IO submission */
1113 int need_lock; /* indicate we need to lock cp_rwsem */
1114 bool in_list; /* indicate fio is in io_list */
1115 bool is_por; /* indicate IO is from recovery or not */
1116 bool retry; /* need to reallocate block address */
1117 int compr_blocks; /* # of compressed block addresses */
1118 bool encrypted; /* indicate file is encrypted */
1119 enum iostat_type io_type; /* io type */
1120 struct writeback_control *io_wbc; /* writeback control */
1121 struct bio **bio; /* bio for ipu */
1122 sector_t *last_block; /* last block number in bio */
1123 unsigned char version; /* version of the node */
1124 };
1125
1126 struct bio_entry {
1127 struct bio *bio;
1128 struct list_head list;
1129 };
1130
1131 #define is_read_io(rw) ((rw) == READ)
1132 struct f2fs_bio_info {
1133 struct f2fs_sb_info *sbi; /* f2fs superblock */
1134 struct bio *bio; /* bios to merge */
1135 sector_t last_block_in_bio; /* last block number */
1136 struct f2fs_io_info fio; /* store buffered io info. */
1137 struct rw_semaphore io_rwsem; /* blocking op for bio */
1138 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1139 struct list_head io_list; /* track fios */
1140 struct list_head bio_list; /* bio entry list head */
1141 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */
1142 };
1143
1144 #define FDEV(i) (sbi->devs[i])
1145 #define RDEV(i) (raw_super->devs[i])
1146 struct f2fs_dev_info {
1147 struct block_device *bdev;
1148 char path[MAX_PATH_LEN];
1149 unsigned int total_segments;
1150 block_t start_blk;
1151 block_t end_blk;
1152 #ifdef CONFIG_BLK_DEV_ZONED
1153 unsigned int nr_blkz; /* Total number of zones */
1154 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1155 block_t *zone_capacity_blocks; /* Array of zone capacity in blks */
1156 #endif
1157 };
1158
1159 enum inode_type {
1160 DIR_INODE, /* for dirty dir inode */
1161 FILE_INODE, /* for dirty regular/symlink inode */
1162 DIRTY_META, /* for all dirtied inode metadata */
1163 ATOMIC_FILE, /* for all atomic files */
1164 NR_INODE_TYPE,
1165 };
1166
1167 /* for inner inode cache management */
1168 struct inode_management {
1169 struct radix_tree_root ino_root; /* ino entry array */
1170 spinlock_t ino_lock; /* for ino entry lock */
1171 struct list_head ino_list; /* inode list head */
1172 unsigned long ino_num; /* number of entries */
1173 };
1174
1175 /* for GC_AT */
1176 struct atgc_management {
1177 bool atgc_enabled; /* ATGC is enabled or not */
1178 struct rb_root_cached root; /* root of victim rb-tree */
1179 struct list_head victim_list; /* linked with all victim entries */
1180 unsigned int victim_count; /* victim count in rb-tree */
1181 unsigned int candidate_ratio; /* candidate ratio */
1182 unsigned int max_candidate_count; /* max candidate count */
1183 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1184 unsigned long long age_threshold; /* age threshold */
1185 };
1186
1187 /* For s_flag in struct f2fs_sb_info */
1188 enum {
1189 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1190 SBI_IS_CLOSE, /* specify unmounting */
1191 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1192 SBI_POR_DOING, /* recovery is doing or not */
1193 SBI_NEED_SB_WRITE, /* need to recover superblock */
1194 SBI_NEED_CP, /* need to checkpoint */
1195 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1196 SBI_IS_RECOVERED, /* recovered orphan/data */
1197 SBI_CP_DISABLED, /* CP was disabled last mount */
1198 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1199 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1200 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1201 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1202 SBI_IS_RESIZEFS, /* resizefs is in process */
1203 };
1204
1205 enum {
1206 CP_TIME,
1207 REQ_TIME,
1208 DISCARD_TIME,
1209 GC_TIME,
1210 DISABLE_TIME,
1211 UMOUNT_DISCARD_TIMEOUT,
1212 MAX_TIME,
1213 };
1214
1215 enum {
1216 GC_NORMAL,
1217 GC_IDLE_CB,
1218 GC_IDLE_GREEDY,
1219 GC_IDLE_AT,
1220 GC_URGENT_HIGH,
1221 GC_URGENT_LOW,
1222 };
1223
1224 enum {
1225 BGGC_MODE_ON, /* background gc is on */
1226 BGGC_MODE_OFF, /* background gc is off */
1227 BGGC_MODE_SYNC, /*
1228 * background gc is on, migrating blocks
1229 * like foreground gc
1230 */
1231 };
1232
1233 enum {
1234 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1235 FS_MODE_LFS, /* use lfs allocation only */
1236 };
1237
1238 enum {
1239 WHINT_MODE_OFF, /* not pass down write hints */
1240 WHINT_MODE_USER, /* try to pass down hints given by users */
1241 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1242 };
1243
1244 enum {
1245 ALLOC_MODE_DEFAULT, /* stay default */
1246 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1247 };
1248
1249 enum fsync_mode {
1250 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1251 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1252 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1253 };
1254
1255 enum {
1256 COMPR_MODE_FS, /*
1257 * automatically compress compression
1258 * enabled files
1259 */
1260 COMPR_MODE_USER, /*
1261 * automatical compression is disabled.
1262 * user can control the file compression
1263 * using ioctls
1264 */
1265 };
1266
1267 /*
1268 * this value is set in page as a private data which indicate that
1269 * the page is atomically written, and it is in inmem_pages list.
1270 */
1271 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
1272 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
1273
1274 #define IS_ATOMIC_WRITTEN_PAGE(page) \
1275 (page_private(page) == ATOMIC_WRITTEN_PAGE)
1276 #define IS_DUMMY_WRITTEN_PAGE(page) \
1277 (page_private(page) == DUMMY_WRITTEN_PAGE)
1278
1279 #ifdef CONFIG_F2FS_IO_TRACE
1280 #define IS_IO_TRACED_PAGE(page) \
1281 (page_private(page) > 0 && \
1282 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1283 #else
1284 #define IS_IO_TRACED_PAGE(page) (0)
1285 #endif
1286
1287 /* For compression */
1288 enum compress_algorithm_type {
1289 COMPRESS_LZO,
1290 COMPRESS_LZ4,
1291 COMPRESS_ZSTD,
1292 COMPRESS_LZORLE,
1293 COMPRESS_MAX,
1294 };
1295
1296 enum compress_flag {
1297 COMPRESS_CHKSUM,
1298 COMPRESS_MAX_FLAG,
1299 };
1300
1301 #define COMPRESS_DATA_RESERVED_SIZE 4
1302 struct compress_data {
1303 __le32 clen; /* compressed data size */
1304 __le32 chksum; /* compressed data chksum */
1305 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1306 u8 cdata[]; /* compressed data */
1307 };
1308
1309 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1310
1311 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1312
1313 /* compress context */
1314 struct compress_ctx {
1315 struct inode *inode; /* inode the context belong to */
1316 pgoff_t cluster_idx; /* cluster index number */
1317 unsigned int cluster_size; /* page count in cluster */
1318 unsigned int log_cluster_size; /* log of cluster size */
1319 struct page **rpages; /* pages store raw data in cluster */
1320 unsigned int nr_rpages; /* total page number in rpages */
1321 struct page **cpages; /* pages store compressed data in cluster */
1322 unsigned int nr_cpages; /* total page number in cpages */
1323 void *rbuf; /* virtual mapped address on rpages */
1324 struct compress_data *cbuf; /* virtual mapped address on cpages */
1325 size_t rlen; /* valid data length in rbuf */
1326 size_t clen; /* valid data length in cbuf */
1327 void *private; /* payload buffer for specified compression algorithm */
1328 void *private2; /* extra payload buffer */
1329 };
1330
1331 /* compress context for write IO path */
1332 struct compress_io_ctx {
1333 u32 magic; /* magic number to indicate page is compressed */
1334 struct inode *inode; /* inode the context belong to */
1335 struct page **rpages; /* pages store raw data in cluster */
1336 unsigned int nr_rpages; /* total page number in rpages */
1337 atomic_t pending_pages; /* in-flight compressed page count */
1338 };
1339
1340 /* decompress io context for read IO path */
1341 struct decompress_io_ctx {
1342 u32 magic; /* magic number to indicate page is compressed */
1343 struct inode *inode; /* inode the context belong to */
1344 pgoff_t cluster_idx; /* cluster index number */
1345 unsigned int cluster_size; /* page count in cluster */
1346 unsigned int log_cluster_size; /* log of cluster size */
1347 struct page **rpages; /* pages store raw data in cluster */
1348 unsigned int nr_rpages; /* total page number in rpages */
1349 struct page **cpages; /* pages store compressed data in cluster */
1350 unsigned int nr_cpages; /* total page number in cpages */
1351 struct page **tpages; /* temp pages to pad holes in cluster */
1352 void *rbuf; /* virtual mapped address on rpages */
1353 struct compress_data *cbuf; /* virtual mapped address on cpages */
1354 size_t rlen; /* valid data length in rbuf */
1355 size_t clen; /* valid data length in cbuf */
1356 atomic_t pending_pages; /* in-flight compressed page count */
1357 bool failed; /* indicate IO error during decompression */
1358 void *private; /* payload buffer for specified decompression algorithm */
1359 void *private2; /* extra payload buffer */
1360 };
1361
1362 #define NULL_CLUSTER ((unsigned int)(~0))
1363 #define MIN_COMPRESS_LOG_SIZE 2
1364 #define MAX_COMPRESS_LOG_SIZE 8
1365 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1366
1367 struct f2fs_sb_info {
1368 struct super_block *sb; /* pointer to VFS super block */
1369 struct proc_dir_entry *s_proc; /* proc entry */
1370 struct f2fs_super_block *raw_super; /* raw super block pointer */
1371 struct rw_semaphore sb_lock; /* lock for raw super block */
1372 int valid_super_block; /* valid super block no */
1373 unsigned long s_flag; /* flags for sbi */
1374 struct mutex writepages; /* mutex for writepages() */
1375
1376 #ifdef CONFIG_BLK_DEV_ZONED
1377 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1378 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1379 #endif
1380
1381 /* for node-related operations */
1382 struct f2fs_nm_info *nm_info; /* node manager */
1383 struct inode *node_inode; /* cache node blocks */
1384
1385 /* for segment-related operations */
1386 struct f2fs_sm_info *sm_info; /* segment manager */
1387
1388 /* for bio operations */
1389 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1390 /* keep migration IO order for LFS mode */
1391 struct rw_semaphore io_order_lock;
1392 mempool_t *write_io_dummy; /* Dummy pages */
1393
1394 /* for checkpoint */
1395 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1396 int cur_cp_pack; /* remain current cp pack */
1397 spinlock_t cp_lock; /* for flag in ckpt */
1398 struct inode *meta_inode; /* cache meta blocks */
1399 struct rw_semaphore cp_global_sem; /* checkpoint procedure lock */
1400 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1401 struct rw_semaphore node_write; /* locking node writes */
1402 struct rw_semaphore node_change; /* locking node change */
1403 wait_queue_head_t cp_wait;
1404 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1405 long interval_time[MAX_TIME]; /* to store thresholds */
1406
1407 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1408
1409 spinlock_t fsync_node_lock; /* for node entry lock */
1410 struct list_head fsync_node_list; /* node list head */
1411 unsigned int fsync_seg_id; /* sequence id */
1412 unsigned int fsync_node_num; /* number of node entries */
1413
1414 /* for orphan inode, use 0'th array */
1415 unsigned int max_orphans; /* max orphan inodes */
1416
1417 /* for inode management */
1418 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1419 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1420 struct mutex flush_lock; /* for flush exclusion */
1421
1422 /* for extent tree cache */
1423 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1424 struct mutex extent_tree_lock; /* locking extent radix tree */
1425 struct list_head extent_list; /* lru list for shrinker */
1426 spinlock_t extent_lock; /* locking extent lru list */
1427 atomic_t total_ext_tree; /* extent tree count */
1428 struct list_head zombie_list; /* extent zombie tree list */
1429 atomic_t total_zombie_tree; /* extent zombie tree count */
1430 atomic_t total_ext_node; /* extent info count */
1431
1432 /* basic filesystem units */
1433 unsigned int log_sectors_per_block; /* log2 sectors per block */
1434 unsigned int log_blocksize; /* log2 block size */
1435 unsigned int blocksize; /* block size */
1436 unsigned int root_ino_num; /* root inode number*/
1437 unsigned int node_ino_num; /* node inode number*/
1438 unsigned int meta_ino_num; /* meta inode number*/
1439 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1440 unsigned int blocks_per_seg; /* blocks per segment */
1441 unsigned int segs_per_sec; /* segments per section */
1442 unsigned int secs_per_zone; /* sections per zone */
1443 unsigned int total_sections; /* total section count */
1444 unsigned int total_node_count; /* total node block count */
1445 unsigned int total_valid_node_count; /* valid node block count */
1446 loff_t max_file_blocks; /* max block index of file */
1447 int dir_level; /* directory level */
1448 int readdir_ra; /* readahead inode in readdir */
1449
1450 block_t user_block_count; /* # of user blocks */
1451 block_t total_valid_block_count; /* # of valid blocks */
1452 block_t discard_blks; /* discard command candidats */
1453 block_t last_valid_block_count; /* for recovery */
1454 block_t reserved_blocks; /* configurable reserved blocks */
1455 block_t current_reserved_blocks; /* current reserved blocks */
1456
1457 /* Additional tracking for no checkpoint mode */
1458 block_t unusable_block_count; /* # of blocks saved by last cp */
1459
1460 unsigned int nquota_files; /* # of quota sysfile */
1461 struct rw_semaphore quota_sem; /* blocking cp for flags */
1462
1463 /* # of pages, see count_type */
1464 atomic_t nr_pages[NR_COUNT_TYPE];
1465 /* # of allocated blocks */
1466 struct percpu_counter alloc_valid_block_count;
1467
1468 /* writeback control */
1469 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1470
1471 /* valid inode count */
1472 struct percpu_counter total_valid_inode_count;
1473
1474 struct f2fs_mount_info mount_opt; /* mount options */
1475
1476 /* for cleaning operations */
1477 struct rw_semaphore gc_lock; /*
1478 * semaphore for GC, avoid
1479 * race between GC and GC or CP
1480 */
1481 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1482 struct atgc_management am; /* atgc management */
1483 unsigned int cur_victim_sec; /* current victim section num */
1484 unsigned int gc_mode; /* current GC state */
1485 unsigned int next_victim_seg[2]; /* next segment in victim section */
1486
1487 /* for skip statistic */
1488 unsigned int atomic_files; /* # of opened atomic file */
1489 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1490 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1491
1492 /* threshold for gc trials on pinned files */
1493 u64 gc_pin_file_threshold;
1494 struct rw_semaphore pin_sem;
1495
1496 /* maximum # of trials to find a victim segment for SSR and GC */
1497 unsigned int max_victim_search;
1498 /* migration granularity of garbage collection, unit: segment */
1499 unsigned int migration_granularity;
1500
1501 /*
1502 * for stat information.
1503 * one is for the LFS mode, and the other is for the SSR mode.
1504 */
1505 #ifdef CONFIG_F2FS_STAT_FS
1506 struct f2fs_stat_info *stat_info; /* FS status information */
1507 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1508 unsigned int segment_count[2]; /* # of allocated segments */
1509 unsigned int block_count[2]; /* # of allocated blocks */
1510 atomic_t inplace_count; /* # of inplace update */
1511 atomic64_t total_hit_ext; /* # of lookup extent cache */
1512 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1513 atomic64_t read_hit_largest; /* # of hit largest extent node */
1514 atomic64_t read_hit_cached; /* # of hit cached extent node */
1515 atomic_t inline_xattr; /* # of inline_xattr inodes */
1516 atomic_t inline_inode; /* # of inline_data inodes */
1517 atomic_t inline_dir; /* # of inline_dentry inodes */
1518 atomic_t compr_inode; /* # of compressed inodes */
1519 atomic64_t compr_blocks; /* # of compressed blocks */
1520 atomic_t vw_cnt; /* # of volatile writes */
1521 atomic_t max_aw_cnt; /* max # of atomic writes */
1522 atomic_t max_vw_cnt; /* max # of volatile writes */
1523 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1524 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1525 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1526 #endif
1527 spinlock_t stat_lock; /* lock for stat operations */
1528
1529 /* For app/fs IO statistics */
1530 spinlock_t iostat_lock;
1531 unsigned long long rw_iostat[NR_IO_TYPE];
1532 unsigned long long prev_rw_iostat[NR_IO_TYPE];
1533 bool iostat_enable;
1534 unsigned long iostat_next_period;
1535 unsigned int iostat_period_ms;
1536
1537 /* to attach REQ_META|REQ_FUA flags */
1538 unsigned int data_io_flag;
1539 unsigned int node_io_flag;
1540
1541 /* For sysfs suppport */
1542 struct kobject s_kobj;
1543 struct completion s_kobj_unregister;
1544
1545 /* For shrinker support */
1546 struct list_head s_list;
1547 int s_ndevs; /* number of devices */
1548 struct f2fs_dev_info *devs; /* for device list */
1549 unsigned int dirty_device; /* for checkpoint data flush */
1550 spinlock_t dev_lock; /* protect dirty_device */
1551 struct mutex umount_mutex;
1552 unsigned int shrinker_run_no;
1553
1554 /* For write statistics */
1555 u64 sectors_written_start;
1556 u64 kbytes_written;
1557
1558 /* Reference to checksum algorithm driver via cryptoapi */
1559 struct crypto_shash *s_chksum_driver;
1560
1561 /* Precomputed FS UUID checksum for seeding other checksums */
1562 __u32 s_chksum_seed;
1563
1564 struct workqueue_struct *post_read_wq; /* post read workqueue */
1565
1566 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1567 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1568
1569 #ifdef CONFIG_F2FS_FS_COMPRESSION
1570 struct kmem_cache *page_array_slab; /* page array entry */
1571 unsigned int page_array_slab_size; /* default page array slab size */
1572 #endif
1573 };
1574
1575 struct f2fs_private_dio {
1576 struct inode *inode;
1577 void *orig_private;
1578 bio_end_io_t *orig_end_io;
1579 bool write;
1580 };
1581
1582 #ifdef CONFIG_F2FS_FAULT_INJECTION
1583 #define f2fs_show_injection_info(sbi, type) \
1584 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1585 KERN_INFO, sbi->sb->s_id, \
1586 f2fs_fault_name[type], \
1587 __func__, __builtin_return_address(0))
1588 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1589 {
1590 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1591
1592 if (!ffi->inject_rate)
1593 return false;
1594
1595 if (!IS_FAULT_SET(ffi, type))
1596 return false;
1597
1598 atomic_inc(&ffi->inject_ops);
1599 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1600 atomic_set(&ffi->inject_ops, 0);
1601 return true;
1602 }
1603 return false;
1604 }
1605 #else
1606 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1607 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1608 {
1609 return false;
1610 }
1611 #endif
1612
1613 /*
1614 * Test if the mounted volume is a multi-device volume.
1615 * - For a single regular disk volume, sbi->s_ndevs is 0.
1616 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1617 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1618 */
1619 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1620 {
1621 return sbi->s_ndevs > 1;
1622 }
1623
1624 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1625 {
1626 unsigned long now = jiffies;
1627
1628 sbi->last_time[type] = now;
1629
1630 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1631 if (type == REQ_TIME) {
1632 sbi->last_time[DISCARD_TIME] = now;
1633 sbi->last_time[GC_TIME] = now;
1634 }
1635 }
1636
1637 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1638 {
1639 unsigned long interval = sbi->interval_time[type] * HZ;
1640
1641 return time_after(jiffies, sbi->last_time[type] + interval);
1642 }
1643
1644 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1645 int type)
1646 {
1647 unsigned long interval = sbi->interval_time[type] * HZ;
1648 unsigned int wait_ms = 0;
1649 long delta;
1650
1651 delta = (sbi->last_time[type] + interval) - jiffies;
1652 if (delta > 0)
1653 wait_ms = jiffies_to_msecs(delta);
1654
1655 return wait_ms;
1656 }
1657
1658 /*
1659 * Inline functions
1660 */
1661 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1662 const void *address, unsigned int length)
1663 {
1664 struct {
1665 struct shash_desc shash;
1666 char ctx[4];
1667 } desc;
1668 int err;
1669
1670 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1671
1672 desc.shash.tfm = sbi->s_chksum_driver;
1673 *(u32 *)desc.ctx = crc;
1674
1675 err = crypto_shash_update(&desc.shash, address, length);
1676 BUG_ON(err);
1677
1678 return *(u32 *)desc.ctx;
1679 }
1680
1681 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1682 unsigned int length)
1683 {
1684 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1685 }
1686
1687 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1688 void *buf, size_t buf_size)
1689 {
1690 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1691 }
1692
1693 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1694 const void *address, unsigned int length)
1695 {
1696 return __f2fs_crc32(sbi, crc, address, length);
1697 }
1698
1699 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1700 {
1701 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1702 }
1703
1704 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1705 {
1706 return sb->s_fs_info;
1707 }
1708
1709 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1710 {
1711 return F2FS_SB(inode->i_sb);
1712 }
1713
1714 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1715 {
1716 return F2FS_I_SB(mapping->host);
1717 }
1718
1719 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1720 {
1721 return F2FS_M_SB(page_file_mapping(page));
1722 }
1723
1724 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1725 {
1726 return (struct f2fs_super_block *)(sbi->raw_super);
1727 }
1728
1729 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1730 {
1731 return (struct f2fs_checkpoint *)(sbi->ckpt);
1732 }
1733
1734 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1735 {
1736 return (struct f2fs_node *)page_address(page);
1737 }
1738
1739 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1740 {
1741 return &((struct f2fs_node *)page_address(page))->i;
1742 }
1743
1744 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1745 {
1746 return (struct f2fs_nm_info *)(sbi->nm_info);
1747 }
1748
1749 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1750 {
1751 return (struct f2fs_sm_info *)(sbi->sm_info);
1752 }
1753
1754 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1755 {
1756 return (struct sit_info *)(SM_I(sbi)->sit_info);
1757 }
1758
1759 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1760 {
1761 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1762 }
1763
1764 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1765 {
1766 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1767 }
1768
1769 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1770 {
1771 return sbi->meta_inode->i_mapping;
1772 }
1773
1774 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1775 {
1776 return sbi->node_inode->i_mapping;
1777 }
1778
1779 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1780 {
1781 return test_bit(type, &sbi->s_flag);
1782 }
1783
1784 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1785 {
1786 set_bit(type, &sbi->s_flag);
1787 }
1788
1789 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1790 {
1791 clear_bit(type, &sbi->s_flag);
1792 }
1793
1794 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1795 {
1796 return le64_to_cpu(cp->checkpoint_ver);
1797 }
1798
1799 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1800 {
1801 if (type < F2FS_MAX_QUOTAS)
1802 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1803 return 0;
1804 }
1805
1806 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1807 {
1808 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1809 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1810 }
1811
1812 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1813 {
1814 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1815
1816 return ckpt_flags & f;
1817 }
1818
1819 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1820 {
1821 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1822 }
1823
1824 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1825 {
1826 unsigned int ckpt_flags;
1827
1828 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1829 ckpt_flags |= f;
1830 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1831 }
1832
1833 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1834 {
1835 unsigned long flags;
1836
1837 spin_lock_irqsave(&sbi->cp_lock, flags);
1838 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1839 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1840 }
1841
1842 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1843 {
1844 unsigned int ckpt_flags;
1845
1846 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1847 ckpt_flags &= (~f);
1848 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1849 }
1850
1851 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1852 {
1853 unsigned long flags;
1854
1855 spin_lock_irqsave(&sbi->cp_lock, flags);
1856 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1857 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1858 }
1859
1860 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1861 {
1862 unsigned long flags;
1863 unsigned char *nat_bits;
1864
1865 /*
1866 * In order to re-enable nat_bits we need to call fsck.f2fs by
1867 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1868 * so let's rely on regular fsck or unclean shutdown.
1869 */
1870
1871 if (lock)
1872 spin_lock_irqsave(&sbi->cp_lock, flags);
1873 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1874 nat_bits = NM_I(sbi)->nat_bits;
1875 NM_I(sbi)->nat_bits = NULL;
1876 if (lock)
1877 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1878
1879 kvfree(nat_bits);
1880 }
1881
1882 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1883 struct cp_control *cpc)
1884 {
1885 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1886
1887 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1888 }
1889
1890 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1891 {
1892 down_read(&sbi->cp_rwsem);
1893 }
1894
1895 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1896 {
1897 return down_read_trylock(&sbi->cp_rwsem);
1898 }
1899
1900 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1901 {
1902 up_read(&sbi->cp_rwsem);
1903 }
1904
1905 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1906 {
1907 down_write(&sbi->cp_rwsem);
1908 }
1909
1910 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1911 {
1912 up_write(&sbi->cp_rwsem);
1913 }
1914
1915 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1916 {
1917 int reason = CP_SYNC;
1918
1919 if (test_opt(sbi, FASTBOOT))
1920 reason = CP_FASTBOOT;
1921 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1922 reason = CP_UMOUNT;
1923 return reason;
1924 }
1925
1926 static inline bool __remain_node_summaries(int reason)
1927 {
1928 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1929 }
1930
1931 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1932 {
1933 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1934 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1935 }
1936
1937 /*
1938 * Check whether the inode has blocks or not
1939 */
1940 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1941 {
1942 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1943
1944 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1945 }
1946
1947 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1948 {
1949 return ofs == XATTR_NODE_OFFSET;
1950 }
1951
1952 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1953 struct inode *inode, bool cap)
1954 {
1955 if (!inode)
1956 return true;
1957 if (!test_opt(sbi, RESERVE_ROOT))
1958 return false;
1959 if (IS_NOQUOTA(inode))
1960 return true;
1961 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1962 return true;
1963 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1964 in_group_p(F2FS_OPTION(sbi).s_resgid))
1965 return true;
1966 if (cap && capable(CAP_SYS_RESOURCE))
1967 return true;
1968 return false;
1969 }
1970
1971 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1972 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1973 struct inode *inode, blkcnt_t *count)
1974 {
1975 blkcnt_t diff = 0, release = 0;
1976 block_t avail_user_block_count;
1977 int ret;
1978
1979 ret = dquot_reserve_block(inode, *count);
1980 if (ret)
1981 return ret;
1982
1983 if (time_to_inject(sbi, FAULT_BLOCK)) {
1984 f2fs_show_injection_info(sbi, FAULT_BLOCK);
1985 release = *count;
1986 goto release_quota;
1987 }
1988
1989 /*
1990 * let's increase this in prior to actual block count change in order
1991 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1992 */
1993 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1994
1995 spin_lock(&sbi->stat_lock);
1996 sbi->total_valid_block_count += (block_t)(*count);
1997 avail_user_block_count = sbi->user_block_count -
1998 sbi->current_reserved_blocks;
1999
2000 if (!__allow_reserved_blocks(sbi, inode, true))
2001 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2002 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2003 if (avail_user_block_count > sbi->unusable_block_count)
2004 avail_user_block_count -= sbi->unusable_block_count;
2005 else
2006 avail_user_block_count = 0;
2007 }
2008 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2009 diff = sbi->total_valid_block_count - avail_user_block_count;
2010 if (diff > *count)
2011 diff = *count;
2012 *count -= diff;
2013 release = diff;
2014 sbi->total_valid_block_count -= diff;
2015 if (!*count) {
2016 spin_unlock(&sbi->stat_lock);
2017 goto enospc;
2018 }
2019 }
2020 spin_unlock(&sbi->stat_lock);
2021
2022 if (unlikely(release)) {
2023 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2024 dquot_release_reservation_block(inode, release);
2025 }
2026 f2fs_i_blocks_write(inode, *count, true, true);
2027 return 0;
2028
2029 enospc:
2030 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2031 release_quota:
2032 dquot_release_reservation_block(inode, release);
2033 return -ENOSPC;
2034 }
2035
2036 __printf(2, 3)
2037 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2038
2039 #define f2fs_err(sbi, fmt, ...) \
2040 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2041 #define f2fs_warn(sbi, fmt, ...) \
2042 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2043 #define f2fs_notice(sbi, fmt, ...) \
2044 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2045 #define f2fs_info(sbi, fmt, ...) \
2046 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2047 #define f2fs_debug(sbi, fmt, ...) \
2048 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2049
2050 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2051 struct inode *inode,
2052 block_t count)
2053 {
2054 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2055
2056 spin_lock(&sbi->stat_lock);
2057 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2058 sbi->total_valid_block_count -= (block_t)count;
2059 if (sbi->reserved_blocks &&
2060 sbi->current_reserved_blocks < sbi->reserved_blocks)
2061 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2062 sbi->current_reserved_blocks + count);
2063 spin_unlock(&sbi->stat_lock);
2064 if (unlikely(inode->i_blocks < sectors)) {
2065 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2066 inode->i_ino,
2067 (unsigned long long)inode->i_blocks,
2068 (unsigned long long)sectors);
2069 set_sbi_flag(sbi, SBI_NEED_FSCK);
2070 return;
2071 }
2072 f2fs_i_blocks_write(inode, count, false, true);
2073 }
2074
2075 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2076 {
2077 atomic_inc(&sbi->nr_pages[count_type]);
2078
2079 if (count_type == F2FS_DIRTY_DENTS ||
2080 count_type == F2FS_DIRTY_NODES ||
2081 count_type == F2FS_DIRTY_META ||
2082 count_type == F2FS_DIRTY_QDATA ||
2083 count_type == F2FS_DIRTY_IMETA)
2084 set_sbi_flag(sbi, SBI_IS_DIRTY);
2085 }
2086
2087 static inline void inode_inc_dirty_pages(struct inode *inode)
2088 {
2089 atomic_inc(&F2FS_I(inode)->dirty_pages);
2090 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2091 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2092 if (IS_NOQUOTA(inode))
2093 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2094 }
2095
2096 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2097 {
2098 atomic_dec(&sbi->nr_pages[count_type]);
2099 }
2100
2101 static inline void inode_dec_dirty_pages(struct inode *inode)
2102 {
2103 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2104 !S_ISLNK(inode->i_mode))
2105 return;
2106
2107 atomic_dec(&F2FS_I(inode)->dirty_pages);
2108 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2109 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2110 if (IS_NOQUOTA(inode))
2111 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2112 }
2113
2114 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2115 {
2116 return atomic_read(&sbi->nr_pages[count_type]);
2117 }
2118
2119 static inline int get_dirty_pages(struct inode *inode)
2120 {
2121 return atomic_read(&F2FS_I(inode)->dirty_pages);
2122 }
2123
2124 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2125 {
2126 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2127 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2128 sbi->log_blocks_per_seg;
2129
2130 return segs / sbi->segs_per_sec;
2131 }
2132
2133 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2134 {
2135 return sbi->total_valid_block_count;
2136 }
2137
2138 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2139 {
2140 return sbi->discard_blks;
2141 }
2142
2143 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2144 {
2145 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2146
2147 /* return NAT or SIT bitmap */
2148 if (flag == NAT_BITMAP)
2149 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2150 else if (flag == SIT_BITMAP)
2151 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2152
2153 return 0;
2154 }
2155
2156 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2157 {
2158 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2159 }
2160
2161 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2162 {
2163 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2164 int offset;
2165
2166 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2167 offset = (flag == SIT_BITMAP) ?
2168 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2169 /*
2170 * if large_nat_bitmap feature is enabled, leave checksum
2171 * protection for all nat/sit bitmaps.
2172 */
2173 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2174 }
2175
2176 if (__cp_payload(sbi) > 0) {
2177 if (flag == NAT_BITMAP)
2178 return &ckpt->sit_nat_version_bitmap;
2179 else
2180 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2181 } else {
2182 offset = (flag == NAT_BITMAP) ?
2183 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2184 return &ckpt->sit_nat_version_bitmap + offset;
2185 }
2186 }
2187
2188 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2189 {
2190 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2191
2192 if (sbi->cur_cp_pack == 2)
2193 start_addr += sbi->blocks_per_seg;
2194 return start_addr;
2195 }
2196
2197 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2198 {
2199 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2200
2201 if (sbi->cur_cp_pack == 1)
2202 start_addr += sbi->blocks_per_seg;
2203 return start_addr;
2204 }
2205
2206 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2207 {
2208 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2209 }
2210
2211 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2212 {
2213 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2214 }
2215
2216 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2217 struct inode *inode, bool is_inode)
2218 {
2219 block_t valid_block_count;
2220 unsigned int valid_node_count, user_block_count;
2221 int err;
2222
2223 if (is_inode) {
2224 if (inode) {
2225 err = dquot_alloc_inode(inode);
2226 if (err)
2227 return err;
2228 }
2229 } else {
2230 err = dquot_reserve_block(inode, 1);
2231 if (err)
2232 return err;
2233 }
2234
2235 if (time_to_inject(sbi, FAULT_BLOCK)) {
2236 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2237 goto enospc;
2238 }
2239
2240 spin_lock(&sbi->stat_lock);
2241
2242 valid_block_count = sbi->total_valid_block_count +
2243 sbi->current_reserved_blocks + 1;
2244
2245 if (!__allow_reserved_blocks(sbi, inode, false))
2246 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2247 user_block_count = sbi->user_block_count;
2248 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2249 user_block_count -= sbi->unusable_block_count;
2250
2251 if (unlikely(valid_block_count > user_block_count)) {
2252 spin_unlock(&sbi->stat_lock);
2253 goto enospc;
2254 }
2255
2256 valid_node_count = sbi->total_valid_node_count + 1;
2257 if (unlikely(valid_node_count > sbi->total_node_count)) {
2258 spin_unlock(&sbi->stat_lock);
2259 goto enospc;
2260 }
2261
2262 sbi->total_valid_node_count++;
2263 sbi->total_valid_block_count++;
2264 spin_unlock(&sbi->stat_lock);
2265
2266 if (inode) {
2267 if (is_inode)
2268 f2fs_mark_inode_dirty_sync(inode, true);
2269 else
2270 f2fs_i_blocks_write(inode, 1, true, true);
2271 }
2272
2273 percpu_counter_inc(&sbi->alloc_valid_block_count);
2274 return 0;
2275
2276 enospc:
2277 if (is_inode) {
2278 if (inode)
2279 dquot_free_inode(inode);
2280 } else {
2281 dquot_release_reservation_block(inode, 1);
2282 }
2283 return -ENOSPC;
2284 }
2285
2286 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2287 struct inode *inode, bool is_inode)
2288 {
2289 spin_lock(&sbi->stat_lock);
2290
2291 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2292 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2293
2294 sbi->total_valid_node_count--;
2295 sbi->total_valid_block_count--;
2296 if (sbi->reserved_blocks &&
2297 sbi->current_reserved_blocks < sbi->reserved_blocks)
2298 sbi->current_reserved_blocks++;
2299
2300 spin_unlock(&sbi->stat_lock);
2301
2302 if (is_inode) {
2303 dquot_free_inode(inode);
2304 } else {
2305 if (unlikely(inode->i_blocks == 0)) {
2306 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2307 inode->i_ino,
2308 (unsigned long long)inode->i_blocks);
2309 set_sbi_flag(sbi, SBI_NEED_FSCK);
2310 return;
2311 }
2312 f2fs_i_blocks_write(inode, 1, false, true);
2313 }
2314 }
2315
2316 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2317 {
2318 return sbi->total_valid_node_count;
2319 }
2320
2321 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2322 {
2323 percpu_counter_inc(&sbi->total_valid_inode_count);
2324 }
2325
2326 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2327 {
2328 percpu_counter_dec(&sbi->total_valid_inode_count);
2329 }
2330
2331 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2332 {
2333 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2334 }
2335
2336 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2337 pgoff_t index, bool for_write)
2338 {
2339 struct page *page;
2340
2341 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2342 if (!for_write)
2343 page = find_get_page_flags(mapping, index,
2344 FGP_LOCK | FGP_ACCESSED);
2345 else
2346 page = find_lock_page(mapping, index);
2347 if (page)
2348 return page;
2349
2350 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2351 f2fs_show_injection_info(F2FS_M_SB(mapping),
2352 FAULT_PAGE_ALLOC);
2353 return NULL;
2354 }
2355 }
2356
2357 if (!for_write)
2358 return grab_cache_page(mapping, index);
2359 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2360 }
2361
2362 static inline struct page *f2fs_pagecache_get_page(
2363 struct address_space *mapping, pgoff_t index,
2364 int fgp_flags, gfp_t gfp_mask)
2365 {
2366 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2367 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2368 return NULL;
2369 }
2370
2371 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2372 }
2373
2374 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2375 {
2376 char *src_kaddr = kmap(src);
2377 char *dst_kaddr = kmap(dst);
2378
2379 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2380 kunmap(dst);
2381 kunmap(src);
2382 }
2383
2384 static inline void f2fs_put_page(struct page *page, int unlock)
2385 {
2386 if (!page)
2387 return;
2388
2389 if (unlock) {
2390 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2391 unlock_page(page);
2392 }
2393 put_page(page);
2394 }
2395
2396 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2397 {
2398 if (dn->node_page)
2399 f2fs_put_page(dn->node_page, 1);
2400 if (dn->inode_page && dn->node_page != dn->inode_page)
2401 f2fs_put_page(dn->inode_page, 0);
2402 dn->node_page = NULL;
2403 dn->inode_page = NULL;
2404 }
2405
2406 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2407 size_t size)
2408 {
2409 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2410 }
2411
2412 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2413 gfp_t flags)
2414 {
2415 void *entry;
2416
2417 entry = kmem_cache_alloc(cachep, flags);
2418 if (!entry)
2419 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2420 return entry;
2421 }
2422
2423 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2424 {
2425 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2426 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2427 get_pages(sbi, F2FS_WB_CP_DATA) ||
2428 get_pages(sbi, F2FS_DIO_READ) ||
2429 get_pages(sbi, F2FS_DIO_WRITE))
2430 return true;
2431
2432 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2433 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2434 return true;
2435
2436 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2437 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2438 return true;
2439 return false;
2440 }
2441
2442 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2443 {
2444 if (sbi->gc_mode == GC_URGENT_HIGH)
2445 return true;
2446
2447 if (is_inflight_io(sbi, type))
2448 return false;
2449
2450 if (sbi->gc_mode == GC_URGENT_LOW &&
2451 (type == DISCARD_TIME || type == GC_TIME))
2452 return true;
2453
2454 return f2fs_time_over(sbi, type);
2455 }
2456
2457 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2458 unsigned long index, void *item)
2459 {
2460 while (radix_tree_insert(root, index, item))
2461 cond_resched();
2462 }
2463
2464 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2465
2466 static inline bool IS_INODE(struct page *page)
2467 {
2468 struct f2fs_node *p = F2FS_NODE(page);
2469
2470 return RAW_IS_INODE(p);
2471 }
2472
2473 static inline int offset_in_addr(struct f2fs_inode *i)
2474 {
2475 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2476 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2477 }
2478
2479 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2480 {
2481 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2482 }
2483
2484 static inline int f2fs_has_extra_attr(struct inode *inode);
2485 static inline block_t data_blkaddr(struct inode *inode,
2486 struct page *node_page, unsigned int offset)
2487 {
2488 struct f2fs_node *raw_node;
2489 __le32 *addr_array;
2490 int base = 0;
2491 bool is_inode = IS_INODE(node_page);
2492
2493 raw_node = F2FS_NODE(node_page);
2494
2495 if (is_inode) {
2496 if (!inode)
2497 /* from GC path only */
2498 base = offset_in_addr(&raw_node->i);
2499 else if (f2fs_has_extra_attr(inode))
2500 base = get_extra_isize(inode);
2501 }
2502
2503 addr_array = blkaddr_in_node(raw_node);
2504 return le32_to_cpu(addr_array[base + offset]);
2505 }
2506
2507 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2508 {
2509 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2510 }
2511
2512 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2513 {
2514 int mask;
2515
2516 addr += (nr >> 3);
2517 mask = 1 << (7 - (nr & 0x07));
2518 return mask & *addr;
2519 }
2520
2521 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2522 {
2523 int mask;
2524
2525 addr += (nr >> 3);
2526 mask = 1 << (7 - (nr & 0x07));
2527 *addr |= mask;
2528 }
2529
2530 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2531 {
2532 int mask;
2533
2534 addr += (nr >> 3);
2535 mask = 1 << (7 - (nr & 0x07));
2536 *addr &= ~mask;
2537 }
2538
2539 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2540 {
2541 int mask;
2542 int ret;
2543
2544 addr += (nr >> 3);
2545 mask = 1 << (7 - (nr & 0x07));
2546 ret = mask & *addr;
2547 *addr |= mask;
2548 return ret;
2549 }
2550
2551 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2552 {
2553 int mask;
2554 int ret;
2555
2556 addr += (nr >> 3);
2557 mask = 1 << (7 - (nr & 0x07));
2558 ret = mask & *addr;
2559 *addr &= ~mask;
2560 return ret;
2561 }
2562
2563 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2564 {
2565 int mask;
2566
2567 addr += (nr >> 3);
2568 mask = 1 << (7 - (nr & 0x07));
2569 *addr ^= mask;
2570 }
2571
2572 /*
2573 * On-disk inode flags (f2fs_inode::i_flags)
2574 */
2575 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2576 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2577 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2578 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2579 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2580 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2581 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2582 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2583 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2584 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2585 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2586
2587 /* Flags that should be inherited by new inodes from their parent. */
2588 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2589 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2590 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2591
2592 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2593 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2594 F2FS_CASEFOLD_FL))
2595
2596 /* Flags that are appropriate for non-directories/regular files. */
2597 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2598
2599 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2600 {
2601 if (S_ISDIR(mode))
2602 return flags;
2603 else if (S_ISREG(mode))
2604 return flags & F2FS_REG_FLMASK;
2605 else
2606 return flags & F2FS_OTHER_FLMASK;
2607 }
2608
2609 static inline void __mark_inode_dirty_flag(struct inode *inode,
2610 int flag, bool set)
2611 {
2612 switch (flag) {
2613 case FI_INLINE_XATTR:
2614 case FI_INLINE_DATA:
2615 case FI_INLINE_DENTRY:
2616 case FI_NEW_INODE:
2617 if (set)
2618 return;
2619 fallthrough;
2620 case FI_DATA_EXIST:
2621 case FI_INLINE_DOTS:
2622 case FI_PIN_FILE:
2623 f2fs_mark_inode_dirty_sync(inode, true);
2624 }
2625 }
2626
2627 static inline void set_inode_flag(struct inode *inode, int flag)
2628 {
2629 set_bit(flag, F2FS_I(inode)->flags);
2630 __mark_inode_dirty_flag(inode, flag, true);
2631 }
2632
2633 static inline int is_inode_flag_set(struct inode *inode, int flag)
2634 {
2635 return test_bit(flag, F2FS_I(inode)->flags);
2636 }
2637
2638 static inline void clear_inode_flag(struct inode *inode, int flag)
2639 {
2640 clear_bit(flag, F2FS_I(inode)->flags);
2641 __mark_inode_dirty_flag(inode, flag, false);
2642 }
2643
2644 static inline bool f2fs_verity_in_progress(struct inode *inode)
2645 {
2646 return IS_ENABLED(CONFIG_FS_VERITY) &&
2647 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2648 }
2649
2650 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2651 {
2652 F2FS_I(inode)->i_acl_mode = mode;
2653 set_inode_flag(inode, FI_ACL_MODE);
2654 f2fs_mark_inode_dirty_sync(inode, false);
2655 }
2656
2657 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2658 {
2659 if (inc)
2660 inc_nlink(inode);
2661 else
2662 drop_nlink(inode);
2663 f2fs_mark_inode_dirty_sync(inode, true);
2664 }
2665
2666 static inline void f2fs_i_blocks_write(struct inode *inode,
2667 block_t diff, bool add, bool claim)
2668 {
2669 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2670 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2671
2672 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2673 if (add) {
2674 if (claim)
2675 dquot_claim_block(inode, diff);
2676 else
2677 dquot_alloc_block_nofail(inode, diff);
2678 } else {
2679 dquot_free_block(inode, diff);
2680 }
2681
2682 f2fs_mark_inode_dirty_sync(inode, true);
2683 if (clean || recover)
2684 set_inode_flag(inode, FI_AUTO_RECOVER);
2685 }
2686
2687 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2688 {
2689 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2690 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2691
2692 if (i_size_read(inode) == i_size)
2693 return;
2694
2695 i_size_write(inode, i_size);
2696 f2fs_mark_inode_dirty_sync(inode, true);
2697 if (clean || recover)
2698 set_inode_flag(inode, FI_AUTO_RECOVER);
2699 }
2700
2701 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2702 {
2703 F2FS_I(inode)->i_current_depth = depth;
2704 f2fs_mark_inode_dirty_sync(inode, true);
2705 }
2706
2707 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2708 unsigned int count)
2709 {
2710 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2711 f2fs_mark_inode_dirty_sync(inode, true);
2712 }
2713
2714 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2715 {
2716 F2FS_I(inode)->i_xattr_nid = xnid;
2717 f2fs_mark_inode_dirty_sync(inode, true);
2718 }
2719
2720 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2721 {
2722 F2FS_I(inode)->i_pino = pino;
2723 f2fs_mark_inode_dirty_sync(inode, true);
2724 }
2725
2726 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2727 {
2728 struct f2fs_inode_info *fi = F2FS_I(inode);
2729
2730 if (ri->i_inline & F2FS_INLINE_XATTR)
2731 set_bit(FI_INLINE_XATTR, fi->flags);
2732 if (ri->i_inline & F2FS_INLINE_DATA)
2733 set_bit(FI_INLINE_DATA, fi->flags);
2734 if (ri->i_inline & F2FS_INLINE_DENTRY)
2735 set_bit(FI_INLINE_DENTRY, fi->flags);
2736 if (ri->i_inline & F2FS_DATA_EXIST)
2737 set_bit(FI_DATA_EXIST, fi->flags);
2738 if (ri->i_inline & F2FS_INLINE_DOTS)
2739 set_bit(FI_INLINE_DOTS, fi->flags);
2740 if (ri->i_inline & F2FS_EXTRA_ATTR)
2741 set_bit(FI_EXTRA_ATTR, fi->flags);
2742 if (ri->i_inline & F2FS_PIN_FILE)
2743 set_bit(FI_PIN_FILE, fi->flags);
2744 }
2745
2746 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2747 {
2748 ri->i_inline = 0;
2749
2750 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2751 ri->i_inline |= F2FS_INLINE_XATTR;
2752 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2753 ri->i_inline |= F2FS_INLINE_DATA;
2754 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2755 ri->i_inline |= F2FS_INLINE_DENTRY;
2756 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2757 ri->i_inline |= F2FS_DATA_EXIST;
2758 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2759 ri->i_inline |= F2FS_INLINE_DOTS;
2760 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2761 ri->i_inline |= F2FS_EXTRA_ATTR;
2762 if (is_inode_flag_set(inode, FI_PIN_FILE))
2763 ri->i_inline |= F2FS_PIN_FILE;
2764 }
2765
2766 static inline int f2fs_has_extra_attr(struct inode *inode)
2767 {
2768 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2769 }
2770
2771 static inline int f2fs_has_inline_xattr(struct inode *inode)
2772 {
2773 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2774 }
2775
2776 static inline int f2fs_compressed_file(struct inode *inode)
2777 {
2778 return S_ISREG(inode->i_mode) &&
2779 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2780 }
2781
2782 static inline bool f2fs_need_compress_data(struct inode *inode)
2783 {
2784 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2785
2786 if (!f2fs_compressed_file(inode))
2787 return false;
2788
2789 if (compress_mode == COMPR_MODE_FS)
2790 return true;
2791 else if (compress_mode == COMPR_MODE_USER &&
2792 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2793 return true;
2794
2795 return false;
2796 }
2797
2798 static inline unsigned int addrs_per_inode(struct inode *inode)
2799 {
2800 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2801 get_inline_xattr_addrs(inode);
2802
2803 if (!f2fs_compressed_file(inode))
2804 return addrs;
2805 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2806 }
2807
2808 static inline unsigned int addrs_per_block(struct inode *inode)
2809 {
2810 if (!f2fs_compressed_file(inode))
2811 return DEF_ADDRS_PER_BLOCK;
2812 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2813 }
2814
2815 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2816 {
2817 struct f2fs_inode *ri = F2FS_INODE(page);
2818
2819 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2820 get_inline_xattr_addrs(inode)]);
2821 }
2822
2823 static inline int inline_xattr_size(struct inode *inode)
2824 {
2825 if (f2fs_has_inline_xattr(inode))
2826 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2827 return 0;
2828 }
2829
2830 static inline int f2fs_has_inline_data(struct inode *inode)
2831 {
2832 return is_inode_flag_set(inode, FI_INLINE_DATA);
2833 }
2834
2835 static inline int f2fs_exist_data(struct inode *inode)
2836 {
2837 return is_inode_flag_set(inode, FI_DATA_EXIST);
2838 }
2839
2840 static inline int f2fs_has_inline_dots(struct inode *inode)
2841 {
2842 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2843 }
2844
2845 static inline int f2fs_is_mmap_file(struct inode *inode)
2846 {
2847 return is_inode_flag_set(inode, FI_MMAP_FILE);
2848 }
2849
2850 static inline bool f2fs_is_pinned_file(struct inode *inode)
2851 {
2852 return is_inode_flag_set(inode, FI_PIN_FILE);
2853 }
2854
2855 static inline bool f2fs_is_atomic_file(struct inode *inode)
2856 {
2857 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2858 }
2859
2860 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2861 {
2862 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2863 }
2864
2865 static inline bool f2fs_is_volatile_file(struct inode *inode)
2866 {
2867 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2868 }
2869
2870 static inline bool f2fs_is_first_block_written(struct inode *inode)
2871 {
2872 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2873 }
2874
2875 static inline bool f2fs_is_drop_cache(struct inode *inode)
2876 {
2877 return is_inode_flag_set(inode, FI_DROP_CACHE);
2878 }
2879
2880 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2881 {
2882 struct f2fs_inode *ri = F2FS_INODE(page);
2883 int extra_size = get_extra_isize(inode);
2884
2885 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2886 }
2887
2888 static inline int f2fs_has_inline_dentry(struct inode *inode)
2889 {
2890 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2891 }
2892
2893 static inline int is_file(struct inode *inode, int type)
2894 {
2895 return F2FS_I(inode)->i_advise & type;
2896 }
2897
2898 static inline void set_file(struct inode *inode, int type)
2899 {
2900 F2FS_I(inode)->i_advise |= type;
2901 f2fs_mark_inode_dirty_sync(inode, true);
2902 }
2903
2904 static inline void clear_file(struct inode *inode, int type)
2905 {
2906 F2FS_I(inode)->i_advise &= ~type;
2907 f2fs_mark_inode_dirty_sync(inode, true);
2908 }
2909
2910 static inline bool f2fs_is_time_consistent(struct inode *inode)
2911 {
2912 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2913 return false;
2914 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2915 return false;
2916 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2917 return false;
2918 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2919 &F2FS_I(inode)->i_crtime))
2920 return false;
2921 return true;
2922 }
2923
2924 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2925 {
2926 bool ret;
2927
2928 if (dsync) {
2929 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2930
2931 spin_lock(&sbi->inode_lock[DIRTY_META]);
2932 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2933 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2934 return ret;
2935 }
2936 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2937 file_keep_isize(inode) ||
2938 i_size_read(inode) & ~PAGE_MASK)
2939 return false;
2940
2941 if (!f2fs_is_time_consistent(inode))
2942 return false;
2943
2944 spin_lock(&F2FS_I(inode)->i_size_lock);
2945 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2946 spin_unlock(&F2FS_I(inode)->i_size_lock);
2947
2948 return ret;
2949 }
2950
2951 static inline bool f2fs_readonly(struct super_block *sb)
2952 {
2953 return sb_rdonly(sb);
2954 }
2955
2956 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2957 {
2958 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2959 }
2960
2961 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2962 {
2963 if (len == 1 && name[0] == '.')
2964 return true;
2965
2966 if (len == 2 && name[0] == '.' && name[1] == '.')
2967 return true;
2968
2969 return false;
2970 }
2971
2972 static inline bool f2fs_may_extent_tree(struct inode *inode)
2973 {
2974 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2975
2976 if (!test_opt(sbi, EXTENT_CACHE) ||
2977 is_inode_flag_set(inode, FI_NO_EXTENT) ||
2978 is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2979 return false;
2980
2981 /*
2982 * for recovered files during mount do not create extents
2983 * if shrinker is not registered.
2984 */
2985 if (list_empty(&sbi->s_list))
2986 return false;
2987
2988 return S_ISREG(inode->i_mode);
2989 }
2990
2991 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2992 size_t size, gfp_t flags)
2993 {
2994 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2995 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2996 return NULL;
2997 }
2998
2999 return kmalloc(size, flags);
3000 }
3001
3002 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3003 size_t size, gfp_t flags)
3004 {
3005 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3006 }
3007
3008 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3009 size_t size, gfp_t flags)
3010 {
3011 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3012 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3013 return NULL;
3014 }
3015
3016 return kvmalloc(size, flags);
3017 }
3018
3019 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3020 size_t size, gfp_t flags)
3021 {
3022 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3023 }
3024
3025 static inline int get_extra_isize(struct inode *inode)
3026 {
3027 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3028 }
3029
3030 static inline int get_inline_xattr_addrs(struct inode *inode)
3031 {
3032 return F2FS_I(inode)->i_inline_xattr_size;
3033 }
3034
3035 #define f2fs_get_inode_mode(i) \
3036 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3037 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3038
3039 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3040 (offsetof(struct f2fs_inode, i_extra_end) - \
3041 offsetof(struct f2fs_inode, i_extra_isize)) \
3042
3043 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3044 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3045 ((offsetof(typeof(*(f2fs_inode)), field) + \
3046 sizeof((f2fs_inode)->field)) \
3047 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3048
3049 #define DEFAULT_IOSTAT_PERIOD_MS 3000
3050 #define MIN_IOSTAT_PERIOD_MS 100
3051 /* maximum period of iostat tracing is 1 day */
3052 #define MAX_IOSTAT_PERIOD_MS 8640000
3053
3054 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3055 {
3056 int i;
3057
3058 spin_lock(&sbi->iostat_lock);
3059 for (i = 0; i < NR_IO_TYPE; i++) {
3060 sbi->rw_iostat[i] = 0;
3061 sbi->prev_rw_iostat[i] = 0;
3062 }
3063 spin_unlock(&sbi->iostat_lock);
3064 }
3065
3066 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3067
3068 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3069 enum iostat_type type, unsigned long long io_bytes)
3070 {
3071 if (!sbi->iostat_enable)
3072 return;
3073 spin_lock(&sbi->iostat_lock);
3074 sbi->rw_iostat[type] += io_bytes;
3075
3076 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3077 sbi->rw_iostat[APP_BUFFERED_IO] =
3078 sbi->rw_iostat[APP_WRITE_IO] -
3079 sbi->rw_iostat[APP_DIRECT_IO];
3080
3081 if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3082 sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3083 sbi->rw_iostat[APP_READ_IO] -
3084 sbi->rw_iostat[APP_DIRECT_READ_IO];
3085 spin_unlock(&sbi->iostat_lock);
3086
3087 f2fs_record_iostat(sbi);
3088 }
3089
3090 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3091
3092 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3093
3094 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3095 block_t blkaddr, int type);
3096 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3097 block_t blkaddr, int type)
3098 {
3099 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3100 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3101 blkaddr, type);
3102 f2fs_bug_on(sbi, 1);
3103 }
3104 }
3105
3106 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3107 {
3108 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3109 blkaddr == COMPRESS_ADDR)
3110 return false;
3111 return true;
3112 }
3113
3114 static inline void f2fs_set_page_private(struct page *page,
3115 unsigned long data)
3116 {
3117 if (PagePrivate(page))
3118 return;
3119
3120 attach_page_private(page, (void *)data);
3121 }
3122
3123 static inline void f2fs_clear_page_private(struct page *page)
3124 {
3125 detach_page_private(page);
3126 }
3127
3128 /*
3129 * file.c
3130 */
3131 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3132 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3133 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3134 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3135 int f2fs_truncate(struct inode *inode);
3136 int f2fs_getattr(const struct path *path, struct kstat *stat,
3137 u32 request_mask, unsigned int flags);
3138 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3139 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3140 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3141 int f2fs_precache_extents(struct inode *inode);
3142 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3143 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3144 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3145 int f2fs_pin_file_control(struct inode *inode, bool inc);
3146
3147 /*
3148 * inode.c
3149 */
3150 void f2fs_set_inode_flags(struct inode *inode);
3151 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3152 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3153 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3154 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3155 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3156 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3157 void f2fs_update_inode_page(struct inode *inode);
3158 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3159 void f2fs_evict_inode(struct inode *inode);
3160 void f2fs_handle_failed_inode(struct inode *inode);
3161
3162 /*
3163 * namei.c
3164 */
3165 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3166 bool hot, bool set);
3167 struct dentry *f2fs_get_parent(struct dentry *child);
3168
3169 /*
3170 * dir.c
3171 */
3172 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3173 int f2fs_init_casefolded_name(const struct inode *dir,
3174 struct f2fs_filename *fname);
3175 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3176 int lookup, struct f2fs_filename *fname);
3177 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3178 struct f2fs_filename *fname);
3179 void f2fs_free_filename(struct f2fs_filename *fname);
3180 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3181 const struct f2fs_filename *fname, int *max_slots);
3182 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3183 unsigned int start_pos, struct fscrypt_str *fstr);
3184 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3185 struct f2fs_dentry_ptr *d);
3186 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3187 const struct f2fs_filename *fname, struct page *dpage);
3188 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3189 unsigned int current_depth);
3190 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3191 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3192 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3193 const struct f2fs_filename *fname,
3194 struct page **res_page);
3195 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3196 const struct qstr *child, struct page **res_page);
3197 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3198 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3199 struct page **page);
3200 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3201 struct page *page, struct inode *inode);
3202 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3203 const struct f2fs_filename *fname);
3204 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3205 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3206 unsigned int bit_pos);
3207 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3208 struct inode *inode, nid_t ino, umode_t mode);
3209 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3210 struct inode *inode, nid_t ino, umode_t mode);
3211 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3212 struct inode *inode, nid_t ino, umode_t mode);
3213 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3214 struct inode *dir, struct inode *inode);
3215 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3216 bool f2fs_empty_dir(struct inode *dir);
3217
3218 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3219 {
3220 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3221 inode, inode->i_ino, inode->i_mode);
3222 }
3223
3224 /*
3225 * super.c
3226 */
3227 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3228 void f2fs_inode_synced(struct inode *inode);
3229 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3230 int f2fs_quota_sync(struct super_block *sb, int type);
3231 void f2fs_quota_off_umount(struct super_block *sb);
3232 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3233 int f2fs_sync_fs(struct super_block *sb, int sync);
3234 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3235
3236 /*
3237 * hash.c
3238 */
3239 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3240
3241 /*
3242 * node.c
3243 */
3244 struct dnode_of_data;
3245 struct node_info;
3246
3247 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3248 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3249 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3250 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3251 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3252 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3253 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3254 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3255 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3256 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3257 struct node_info *ni);
3258 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3259 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3260 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3261 int f2fs_truncate_xattr_node(struct inode *inode);
3262 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3263 unsigned int seq_id);
3264 int f2fs_remove_inode_page(struct inode *inode);
3265 struct page *f2fs_new_inode_page(struct inode *inode);
3266 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3267 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3268 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3269 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3270 int f2fs_move_node_page(struct page *node_page, int gc_type);
3271 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3272 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3273 struct writeback_control *wbc, bool atomic,
3274 unsigned int *seq_id);
3275 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3276 struct writeback_control *wbc,
3277 bool do_balance, enum iostat_type io_type);
3278 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3279 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3280 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3281 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3282 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3283 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3284 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3285 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3286 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3287 unsigned int segno, struct f2fs_summary_block *sum);
3288 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3289 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3290 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3291 int __init f2fs_create_node_manager_caches(void);
3292 void f2fs_destroy_node_manager_caches(void);
3293
3294 /*
3295 * segment.c
3296 */
3297 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3298 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3299 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3300 void f2fs_drop_inmem_pages(struct inode *inode);
3301 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3302 int f2fs_commit_inmem_pages(struct inode *inode);
3303 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3304 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3305 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3306 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3307 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3308 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3309 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3310 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3311 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3312 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3313 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3314 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3315 struct cp_control *cpc);
3316 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3317 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3318 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3319 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3320 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3321 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3322 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3323 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3324 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3325 unsigned int *newseg, bool new_sec, int dir);
3326 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3327 unsigned int start, unsigned int end);
3328 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3329 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3330 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3331 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3332 struct cp_control *cpc);
3333 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3334 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3335 block_t blk_addr);
3336 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3337 enum iostat_type io_type);
3338 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3339 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3340 struct f2fs_io_info *fio);
3341 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3342 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3343 block_t old_blkaddr, block_t new_blkaddr,
3344 bool recover_curseg, bool recover_newaddr,
3345 bool from_gc);
3346 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3347 block_t old_addr, block_t new_addr,
3348 unsigned char version, bool recover_curseg,
3349 bool recover_newaddr);
3350 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3351 block_t old_blkaddr, block_t *new_blkaddr,
3352 struct f2fs_summary *sum, int type,
3353 struct f2fs_io_info *fio);
3354 void f2fs_wait_on_page_writeback(struct page *page,
3355 enum page_type type, bool ordered, bool locked);
3356 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3357 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3358 block_t len);
3359 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3360 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3361 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3362 unsigned int val, int alloc);
3363 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3364 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3365 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3366 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3367 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3368 int __init f2fs_create_segment_manager_caches(void);
3369 void f2fs_destroy_segment_manager_caches(void);
3370 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3371 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3372 enum page_type type, enum temp_type temp);
3373 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3374 unsigned int segno);
3375 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3376 unsigned int segno);
3377
3378 /*
3379 * checkpoint.c
3380 */
3381 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3382 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3383 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3384 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3385 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3386 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3387 block_t blkaddr, int type);
3388 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3389 int type, bool sync);
3390 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3391 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3392 long nr_to_write, enum iostat_type io_type);
3393 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3394 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3395 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3396 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3397 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3398 unsigned int devidx, int type);
3399 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3400 unsigned int devidx, int type);
3401 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3402 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3403 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3404 void f2fs_add_orphan_inode(struct inode *inode);
3405 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3406 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3407 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3408 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3409 void f2fs_remove_dirty_inode(struct inode *inode);
3410 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3411 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3412 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3413 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3414 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3415 int __init f2fs_create_checkpoint_caches(void);
3416 void f2fs_destroy_checkpoint_caches(void);
3417
3418 /*
3419 * data.c
3420 */
3421 int __init f2fs_init_bioset(void);
3422 void f2fs_destroy_bioset(void);
3423 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3424 int f2fs_init_bio_entry_cache(void);
3425 void f2fs_destroy_bio_entry_cache(void);
3426 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3427 struct bio *bio, enum page_type type);
3428 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3429 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3430 struct inode *inode, struct page *page,
3431 nid_t ino, enum page_type type);
3432 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3433 struct bio **bio, struct page *page);
3434 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3435 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3436 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3437 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3438 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3439 block_t blk_addr, struct bio *bio);
3440 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3441 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3442 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3443 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3444 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3445 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3446 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3447 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3448 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3449 int op_flags, bool for_write);
3450 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3451 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3452 bool for_write);
3453 struct page *f2fs_get_new_data_page(struct inode *inode,
3454 struct page *ipage, pgoff_t index, bool new_i_size);
3455 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3456 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3457 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3458 int create, int flag);
3459 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3460 u64 start, u64 len);
3461 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3462 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3463 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3464 int f2fs_write_single_data_page(struct page *page, int *submitted,
3465 struct bio **bio, sector_t *last_block,
3466 struct writeback_control *wbc,
3467 enum iostat_type io_type,
3468 int compr_blocks);
3469 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3470 unsigned int length);
3471 int f2fs_release_page(struct page *page, gfp_t wait);
3472 #ifdef CONFIG_MIGRATION
3473 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3474 struct page *page, enum migrate_mode mode);
3475 #endif
3476 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3477 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3478 int f2fs_init_post_read_processing(void);
3479 void f2fs_destroy_post_read_processing(void);
3480 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3481 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3482
3483 /*
3484 * gc.c
3485 */
3486 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3487 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3488 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3489 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3490 unsigned int segno);
3491 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3492 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3493 int __init f2fs_create_garbage_collection_cache(void);
3494 void f2fs_destroy_garbage_collection_cache(void);
3495
3496 /*
3497 * recovery.c
3498 */
3499 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3500 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3501
3502 /*
3503 * debug.c
3504 */
3505 #ifdef CONFIG_F2FS_STAT_FS
3506 struct f2fs_stat_info {
3507 struct list_head stat_list;
3508 struct f2fs_sb_info *sbi;
3509 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3510 int main_area_segs, main_area_sections, main_area_zones;
3511 unsigned long long hit_largest, hit_cached, hit_rbtree;
3512 unsigned long long hit_total, total_ext;
3513 int ext_tree, zombie_tree, ext_node;
3514 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3515 int ndirty_data, ndirty_qdata;
3516 int inmem_pages;
3517 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3518 int nats, dirty_nats, sits, dirty_sits;
3519 int free_nids, avail_nids, alloc_nids;
3520 int total_count, utilization;
3521 int bg_gc, nr_wb_cp_data, nr_wb_data;
3522 int nr_rd_data, nr_rd_node, nr_rd_meta;
3523 int nr_dio_read, nr_dio_write;
3524 unsigned int io_skip_bggc, other_skip_bggc;
3525 int nr_flushing, nr_flushed, flush_list_empty;
3526 int nr_discarding, nr_discarded;
3527 int nr_discard_cmd;
3528 unsigned int undiscard_blks;
3529 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3530 int compr_inode;
3531 unsigned long long compr_blocks;
3532 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3533 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3534 unsigned int bimodal, avg_vblocks;
3535 int util_free, util_valid, util_invalid;
3536 int rsvd_segs, overp_segs;
3537 int dirty_count, node_pages, meta_pages;
3538 int prefree_count, call_count, cp_count, bg_cp_count;
3539 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3540 int bg_node_segs, bg_data_segs;
3541 int tot_blks, data_blks, node_blks;
3542 int bg_data_blks, bg_node_blks;
3543 unsigned long long skipped_atomic_files[2];
3544 int curseg[NR_CURSEG_TYPE];
3545 int cursec[NR_CURSEG_TYPE];
3546 int curzone[NR_CURSEG_TYPE];
3547 unsigned int dirty_seg[NR_CURSEG_TYPE];
3548 unsigned int full_seg[NR_CURSEG_TYPE];
3549 unsigned int valid_blks[NR_CURSEG_TYPE];
3550
3551 unsigned int meta_count[META_MAX];
3552 unsigned int segment_count[2];
3553 unsigned int block_count[2];
3554 unsigned int inplace_count;
3555 unsigned long long base_mem, cache_mem, page_mem;
3556 };
3557
3558 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3559 {
3560 return (struct f2fs_stat_info *)sbi->stat_info;
3561 }
3562
3563 #define stat_inc_cp_count(si) ((si)->cp_count++)
3564 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3565 #define stat_inc_call_count(si) ((si)->call_count++)
3566 #define stat_inc_bggc_count(si) ((si)->bg_gc++)
3567 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3568 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3569 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3570 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3571 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3572 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3573 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3574 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3575 #define stat_inc_inline_xattr(inode) \
3576 do { \
3577 if (f2fs_has_inline_xattr(inode)) \
3578 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3579 } while (0)
3580 #define stat_dec_inline_xattr(inode) \
3581 do { \
3582 if (f2fs_has_inline_xattr(inode)) \
3583 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3584 } while (0)
3585 #define stat_inc_inline_inode(inode) \
3586 do { \
3587 if (f2fs_has_inline_data(inode)) \
3588 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3589 } while (0)
3590 #define stat_dec_inline_inode(inode) \
3591 do { \
3592 if (f2fs_has_inline_data(inode)) \
3593 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3594 } while (0)
3595 #define stat_inc_inline_dir(inode) \
3596 do { \
3597 if (f2fs_has_inline_dentry(inode)) \
3598 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3599 } while (0)
3600 #define stat_dec_inline_dir(inode) \
3601 do { \
3602 if (f2fs_has_inline_dentry(inode)) \
3603 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3604 } while (0)
3605 #define stat_inc_compr_inode(inode) \
3606 do { \
3607 if (f2fs_compressed_file(inode)) \
3608 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3609 } while (0)
3610 #define stat_dec_compr_inode(inode) \
3611 do { \
3612 if (f2fs_compressed_file(inode)) \
3613 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3614 } while (0)
3615 #define stat_add_compr_blocks(inode, blocks) \
3616 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3617 #define stat_sub_compr_blocks(inode, blocks) \
3618 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3619 #define stat_inc_meta_count(sbi, blkaddr) \
3620 do { \
3621 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3622 atomic_inc(&(sbi)->meta_count[META_CP]); \
3623 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3624 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3625 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3626 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3627 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3628 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3629 } while (0)
3630 #define stat_inc_seg_type(sbi, curseg) \
3631 ((sbi)->segment_count[(curseg)->alloc_type]++)
3632 #define stat_inc_block_count(sbi, curseg) \
3633 ((sbi)->block_count[(curseg)->alloc_type]++)
3634 #define stat_inc_inplace_blocks(sbi) \
3635 (atomic_inc(&(sbi)->inplace_count))
3636 #define stat_update_max_atomic_write(inode) \
3637 do { \
3638 int cur = F2FS_I_SB(inode)->atomic_files; \
3639 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3640 if (cur > max) \
3641 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3642 } while (0)
3643 #define stat_inc_volatile_write(inode) \
3644 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3645 #define stat_dec_volatile_write(inode) \
3646 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3647 #define stat_update_max_volatile_write(inode) \
3648 do { \
3649 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3650 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3651 if (cur > max) \
3652 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3653 } while (0)
3654 #define stat_inc_seg_count(sbi, type, gc_type) \
3655 do { \
3656 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3657 si->tot_segs++; \
3658 if ((type) == SUM_TYPE_DATA) { \
3659 si->data_segs++; \
3660 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3661 } else { \
3662 si->node_segs++; \
3663 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3664 } \
3665 } while (0)
3666
3667 #define stat_inc_tot_blk_count(si, blks) \
3668 ((si)->tot_blks += (blks))
3669
3670 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3671 do { \
3672 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3673 stat_inc_tot_blk_count(si, blks); \
3674 si->data_blks += (blks); \
3675 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3676 } while (0)
3677
3678 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3679 do { \
3680 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3681 stat_inc_tot_blk_count(si, blks); \
3682 si->node_blks += (blks); \
3683 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3684 } while (0)
3685
3686 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3687 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3688 void __init f2fs_create_root_stats(void);
3689 void f2fs_destroy_root_stats(void);
3690 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3691 #else
3692 #define stat_inc_cp_count(si) do { } while (0)
3693 #define stat_inc_bg_cp_count(si) do { } while (0)
3694 #define stat_inc_call_count(si) do { } while (0)
3695 #define stat_inc_bggc_count(si) do { } while (0)
3696 #define stat_io_skip_bggc_count(sbi) do { } while (0)
3697 #define stat_other_skip_bggc_count(sbi) do { } while (0)
3698 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3699 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3700 #define stat_inc_total_hit(sbi) do { } while (0)
3701 #define stat_inc_rbtree_node_hit(sbi) do { } while (0)
3702 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3703 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3704 #define stat_inc_inline_xattr(inode) do { } while (0)
3705 #define stat_dec_inline_xattr(inode) do { } while (0)
3706 #define stat_inc_inline_inode(inode) do { } while (0)
3707 #define stat_dec_inline_inode(inode) do { } while (0)
3708 #define stat_inc_inline_dir(inode) do { } while (0)
3709 #define stat_dec_inline_dir(inode) do { } while (0)
3710 #define stat_inc_compr_inode(inode) do { } while (0)
3711 #define stat_dec_compr_inode(inode) do { } while (0)
3712 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
3713 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
3714 #define stat_inc_atomic_write(inode) do { } while (0)
3715 #define stat_dec_atomic_write(inode) do { } while (0)
3716 #define stat_update_max_atomic_write(inode) do { } while (0)
3717 #define stat_inc_volatile_write(inode) do { } while (0)
3718 #define stat_dec_volatile_write(inode) do { } while (0)
3719 #define stat_update_max_volatile_write(inode) do { } while (0)
3720 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3721 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3722 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3723 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3724 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3725 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3726 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3727 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3728
3729 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3730 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3731 static inline void __init f2fs_create_root_stats(void) { }
3732 static inline void f2fs_destroy_root_stats(void) { }
3733 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3734 #endif
3735
3736 extern const struct file_operations f2fs_dir_operations;
3737 extern const struct file_operations f2fs_file_operations;
3738 extern const struct inode_operations f2fs_file_inode_operations;
3739 extern const struct address_space_operations f2fs_dblock_aops;
3740 extern const struct address_space_operations f2fs_node_aops;
3741 extern const struct address_space_operations f2fs_meta_aops;
3742 extern const struct inode_operations f2fs_dir_inode_operations;
3743 extern const struct inode_operations f2fs_symlink_inode_operations;
3744 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3745 extern const struct inode_operations f2fs_special_inode_operations;
3746 extern struct kmem_cache *f2fs_inode_entry_slab;
3747
3748 /*
3749 * inline.c
3750 */
3751 bool f2fs_may_inline_data(struct inode *inode);
3752 bool f2fs_may_inline_dentry(struct inode *inode);
3753 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3754 void f2fs_truncate_inline_inode(struct inode *inode,
3755 struct page *ipage, u64 from);
3756 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3757 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3758 int f2fs_convert_inline_inode(struct inode *inode);
3759 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3760 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3761 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3762 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3763 const struct f2fs_filename *fname,
3764 struct page **res_page);
3765 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3766 struct page *ipage);
3767 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3768 struct inode *inode, nid_t ino, umode_t mode);
3769 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3770 struct page *page, struct inode *dir,
3771 struct inode *inode);
3772 bool f2fs_empty_inline_dir(struct inode *dir);
3773 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3774 struct fscrypt_str *fstr);
3775 int f2fs_inline_data_fiemap(struct inode *inode,
3776 struct fiemap_extent_info *fieinfo,
3777 __u64 start, __u64 len);
3778
3779 /*
3780 * shrinker.c
3781 */
3782 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3783 struct shrink_control *sc);
3784 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3785 struct shrink_control *sc);
3786 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3787 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3788
3789 /*
3790 * extent_cache.c
3791 */
3792 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3793 struct rb_entry *cached_re, unsigned int ofs);
3794 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3795 struct rb_root_cached *root,
3796 struct rb_node **parent,
3797 unsigned long long key, bool *left_most);
3798 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3799 struct rb_root_cached *root,
3800 struct rb_node **parent,
3801 unsigned int ofs, bool *leftmost);
3802 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3803 struct rb_entry *cached_re, unsigned int ofs,
3804 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3805 struct rb_node ***insert_p, struct rb_node **insert_parent,
3806 bool force, bool *leftmost);
3807 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3808 struct rb_root_cached *root, bool check_key);
3809 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3810 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3811 void f2fs_drop_extent_tree(struct inode *inode);
3812 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3813 void f2fs_destroy_extent_tree(struct inode *inode);
3814 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3815 struct extent_info *ei);
3816 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3817 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3818 pgoff_t fofs, block_t blkaddr, unsigned int len);
3819 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3820 int __init f2fs_create_extent_cache(void);
3821 void f2fs_destroy_extent_cache(void);
3822
3823 /*
3824 * sysfs.c
3825 */
3826 int __init f2fs_init_sysfs(void);
3827 void f2fs_exit_sysfs(void);
3828 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3829 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3830
3831 /* verity.c */
3832 extern const struct fsverity_operations f2fs_verityops;
3833
3834 /*
3835 * crypto support
3836 */
3837 static inline bool f2fs_encrypted_file(struct inode *inode)
3838 {
3839 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3840 }
3841
3842 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3843 {
3844 #ifdef CONFIG_FS_ENCRYPTION
3845 file_set_encrypt(inode);
3846 f2fs_set_inode_flags(inode);
3847 #endif
3848 }
3849
3850 /*
3851 * Returns true if the reads of the inode's data need to undergo some
3852 * postprocessing step, like decryption or authenticity verification.
3853 */
3854 static inline bool f2fs_post_read_required(struct inode *inode)
3855 {
3856 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3857 f2fs_compressed_file(inode);
3858 }
3859
3860 /*
3861 * compress.c
3862 */
3863 #ifdef CONFIG_F2FS_FS_COMPRESSION
3864 bool f2fs_is_compressed_page(struct page *page);
3865 struct page *f2fs_compress_control_page(struct page *page);
3866 int f2fs_prepare_compress_overwrite(struct inode *inode,
3867 struct page **pagep, pgoff_t index, void **fsdata);
3868 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3869 pgoff_t index, unsigned copied);
3870 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3871 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3872 bool f2fs_is_compress_backend_ready(struct inode *inode);
3873 int f2fs_init_compress_mempool(void);
3874 void f2fs_destroy_compress_mempool(void);
3875 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3876 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3877 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3878 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3879 int f2fs_write_multi_pages(struct compress_ctx *cc,
3880 int *submitted,
3881 struct writeback_control *wbc,
3882 enum iostat_type io_type);
3883 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3884 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3885 unsigned nr_pages, sector_t *last_block_in_bio,
3886 bool is_readahead, bool for_write);
3887 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3888 void f2fs_free_dic(struct decompress_io_ctx *dic);
3889 void f2fs_decompress_end_io(struct page **rpages,
3890 unsigned int cluster_size, bool err, bool verity);
3891 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3892 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3893 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3894 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3895 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3896 int __init f2fs_init_compress_cache(void);
3897 void f2fs_destroy_compress_cache(void);
3898 #else
3899 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3900 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3901 {
3902 if (!f2fs_compressed_file(inode))
3903 return true;
3904 /* not support compression */
3905 return false;
3906 }
3907 static inline struct page *f2fs_compress_control_page(struct page *page)
3908 {
3909 WARN_ON_ONCE(1);
3910 return ERR_PTR(-EINVAL);
3911 }
3912 static inline int f2fs_init_compress_mempool(void) { return 0; }
3913 static inline void f2fs_destroy_compress_mempool(void) { }
3914 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
3915 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
3916 static inline int __init f2fs_init_compress_cache(void) { return 0; }
3917 static inline void f2fs_destroy_compress_cache(void) { }
3918 #endif
3919
3920 static inline void set_compress_context(struct inode *inode)
3921 {
3922 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3923
3924 F2FS_I(inode)->i_compress_algorithm =
3925 F2FS_OPTION(sbi).compress_algorithm;
3926 F2FS_I(inode)->i_log_cluster_size =
3927 F2FS_OPTION(sbi).compress_log_size;
3928 F2FS_I(inode)->i_compress_flag =
3929 F2FS_OPTION(sbi).compress_chksum ?
3930 1 << COMPRESS_CHKSUM : 0;
3931 F2FS_I(inode)->i_cluster_size =
3932 1 << F2FS_I(inode)->i_log_cluster_size;
3933 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3934 set_inode_flag(inode, FI_COMPRESSED_FILE);
3935 stat_inc_compr_inode(inode);
3936 f2fs_mark_inode_dirty_sync(inode, true);
3937 }
3938
3939 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3940 {
3941 struct f2fs_inode_info *fi = F2FS_I(inode);
3942
3943 if (!f2fs_compressed_file(inode))
3944 return true;
3945 if (S_ISREG(inode->i_mode) &&
3946 (get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
3947 return false;
3948
3949 fi->i_flags &= ~F2FS_COMPR_FL;
3950 stat_dec_compr_inode(inode);
3951 clear_inode_flag(inode, FI_COMPRESSED_FILE);
3952 f2fs_mark_inode_dirty_sync(inode, true);
3953 return true;
3954 }
3955
3956 #define F2FS_FEATURE_FUNCS(name, flagname) \
3957 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3958 { \
3959 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3960 }
3961
3962 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3963 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3964 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3965 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3966 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3967 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3968 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3969 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3970 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3971 F2FS_FEATURE_FUNCS(verity, VERITY);
3972 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3973 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3974 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3975
3976 #ifdef CONFIG_BLK_DEV_ZONED
3977 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3978 block_t blkaddr)
3979 {
3980 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3981
3982 return test_bit(zno, FDEV(devi).blkz_seq);
3983 }
3984 #endif
3985
3986 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3987 {
3988 return f2fs_sb_has_blkzoned(sbi);
3989 }
3990
3991 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3992 {
3993 return blk_queue_discard(bdev_get_queue(bdev)) ||
3994 bdev_is_zoned(bdev);
3995 }
3996
3997 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3998 {
3999 int i;
4000
4001 if (!f2fs_is_multi_device(sbi))
4002 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4003
4004 for (i = 0; i < sbi->s_ndevs; i++)
4005 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4006 return true;
4007 return false;
4008 }
4009
4010 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4011 {
4012 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4013 f2fs_hw_should_discard(sbi);
4014 }
4015
4016 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4017 {
4018 int i;
4019
4020 if (!f2fs_is_multi_device(sbi))
4021 return bdev_read_only(sbi->sb->s_bdev);
4022
4023 for (i = 0; i < sbi->s_ndevs; i++)
4024 if (bdev_read_only(FDEV(i).bdev))
4025 return true;
4026 return false;
4027 }
4028
4029 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4030 {
4031 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4032 }
4033
4034 static inline bool f2fs_may_compress(struct inode *inode)
4035 {
4036 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4037 f2fs_is_atomic_file(inode) ||
4038 f2fs_is_volatile_file(inode))
4039 return false;
4040 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4041 }
4042
4043 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4044 u64 blocks, bool add)
4045 {
4046 int diff = F2FS_I(inode)->i_cluster_size - blocks;
4047 struct f2fs_inode_info *fi = F2FS_I(inode);
4048
4049 /* don't update i_compr_blocks if saved blocks were released */
4050 if (!add && !atomic_read(&fi->i_compr_blocks))
4051 return;
4052
4053 if (add) {
4054 atomic_add(diff, &fi->i_compr_blocks);
4055 stat_add_compr_blocks(inode, diff);
4056 } else {
4057 atomic_sub(diff, &fi->i_compr_blocks);
4058 stat_sub_compr_blocks(inode, diff);
4059 }
4060 f2fs_mark_inode_dirty_sync(inode, true);
4061 }
4062
4063 static inline int block_unaligned_IO(struct inode *inode,
4064 struct kiocb *iocb, struct iov_iter *iter)
4065 {
4066 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4067 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4068 loff_t offset = iocb->ki_pos;
4069 unsigned long align = offset | iov_iter_alignment(iter);
4070
4071 return align & blocksize_mask;
4072 }
4073
4074 static inline int allow_outplace_dio(struct inode *inode,
4075 struct kiocb *iocb, struct iov_iter *iter)
4076 {
4077 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4078 int rw = iov_iter_rw(iter);
4079
4080 return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4081 !block_unaligned_IO(inode, iocb, iter));
4082 }
4083
4084 static inline bool f2fs_force_buffered_io(struct inode *inode,
4085 struct kiocb *iocb, struct iov_iter *iter)
4086 {
4087 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4088 int rw = iov_iter_rw(iter);
4089
4090 if (f2fs_post_read_required(inode))
4091 return true;
4092 if (f2fs_is_multi_device(sbi))
4093 return true;
4094 /*
4095 * for blkzoned device, fallback direct IO to buffered IO, so
4096 * all IOs can be serialized by log-structured write.
4097 */
4098 if (f2fs_sb_has_blkzoned(sbi))
4099 return true;
4100 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4101 if (block_unaligned_IO(inode, iocb, iter))
4102 return true;
4103 if (F2FS_IO_ALIGNED(sbi))
4104 return true;
4105 }
4106 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4107 !IS_SWAPFILE(inode))
4108 return true;
4109
4110 return false;
4111 }
4112
4113 #ifdef CONFIG_F2FS_FAULT_INJECTION
4114 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4115 unsigned int type);
4116 #else
4117 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4118 #endif
4119
4120 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4121 {
4122 #ifdef CONFIG_QUOTA
4123 if (f2fs_sb_has_quota_ino(sbi))
4124 return true;
4125 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4126 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4127 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4128 return true;
4129 #endif
4130 return false;
4131 }
4132
4133 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4134 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4135
4136 #endif /* _LINUX_F2FS_H */