]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: support zone capacity less than zone size
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / f2fs.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (unlikely(condition)) { \
37 WARN_ON(1); \
38 set_sbi_flag(sbi, SBI_NEED_FSCK); \
39 } \
40 } while (0)
41 #endif
42
43 enum {
44 FAULT_KMALLOC,
45 FAULT_KVMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_READ_IO,
56 FAULT_CHECKPOINT,
57 FAULT_DISCARD,
58 FAULT_WRITE_IO,
59 FAULT_MAX,
60 };
61
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
64
65 struct f2fs_fault_info {
66 atomic_t inject_ops;
67 unsigned int inject_rate;
68 unsigned int inject_type;
69 };
70
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74
75 /*
76 * For mount options
77 */
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
79 #define F2FS_MOUNT_DISCARD 0x00000004
80 #define F2FS_MOUNT_NOHEAP 0x00000008
81 #define F2FS_MOUNT_XATTR_USER 0x00000010
82 #define F2FS_MOUNT_POSIX_ACL 0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
85 #define F2FS_MOUNT_INLINE_DATA 0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
88 #define F2FS_MOUNT_NOBARRIER 0x00000800
89 #define F2FS_MOUNT_FASTBOOT 0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
91 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
93 #define F2FS_MOUNT_USRQUOTA 0x00080000
94 #define F2FS_MOUNT_GRPQUOTA 0x00100000
95 #define F2FS_MOUNT_PRJQUOTA 0x00200000
96 #define F2FS_MOUNT_QUOTA 0x00400000
97 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
98 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
99 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
100 #define F2FS_MOUNT_NORECOVERY 0x04000000
101
102 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
103 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
104 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
105 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
106
107 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
108 typecheck(unsigned long long, b) && \
109 ((long long)((a) - (b)) > 0))
110
111 typedef u32 block_t; /*
112 * should not change u32, since it is the on-disk block
113 * address format, __le32.
114 */
115 typedef u32 nid_t;
116
117 #define COMPRESS_EXT_NUM 16
118
119 struct f2fs_mount_info {
120 unsigned int opt;
121 int write_io_size_bits; /* Write IO size bits */
122 block_t root_reserved_blocks; /* root reserved blocks */
123 kuid_t s_resuid; /* reserved blocks for uid */
124 kgid_t s_resgid; /* reserved blocks for gid */
125 int active_logs; /* # of active logs */
126 int inline_xattr_size; /* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 struct f2fs_fault_info fault_info; /* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 /* Names of quota files with journalled quota */
132 char *s_qf_names[MAXQUOTAS];
133 int s_jquota_fmt; /* Format of quota to use */
134 #endif
135 /* For which write hints are passed down to block layer */
136 int whint_mode;
137 int alloc_mode; /* segment allocation policy */
138 int fsync_mode; /* fsync policy */
139 int fs_mode; /* fs mode: LFS or ADAPTIVE */
140 int bggc_mode; /* bggc mode: off, on or sync */
141 struct fscrypt_dummy_context dummy_enc_ctx; /* test dummy encryption */
142 block_t unusable_cap_perc; /* percentage for cap */
143 block_t unusable_cap; /* Amount of space allowed to be
144 * unusable when disabling checkpoint
145 */
146
147 /* For compression */
148 unsigned char compress_algorithm; /* algorithm type */
149 unsigned compress_log_size; /* cluster log size */
150 unsigned char compress_ext_cnt; /* extension count */
151 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
152 };
153
154 #define F2FS_FEATURE_ENCRYPT 0x0001
155 #define F2FS_FEATURE_BLKZONED 0x0002
156 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
157 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
158 #define F2FS_FEATURE_PRJQUOTA 0x0010
159 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
160 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
161 #define F2FS_FEATURE_QUOTA_INO 0x0080
162 #define F2FS_FEATURE_INODE_CRTIME 0x0100
163 #define F2FS_FEATURE_LOST_FOUND 0x0200
164 #define F2FS_FEATURE_VERITY 0x0400
165 #define F2FS_FEATURE_SB_CHKSUM 0x0800
166 #define F2FS_FEATURE_CASEFOLD 0x1000
167 #define F2FS_FEATURE_COMPRESSION 0x2000
168
169 #define __F2FS_HAS_FEATURE(raw_super, mask) \
170 ((raw_super->feature & cpu_to_le32(mask)) != 0)
171 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
172 #define F2FS_SET_FEATURE(sbi, mask) \
173 (sbi->raw_super->feature |= cpu_to_le32(mask))
174 #define F2FS_CLEAR_FEATURE(sbi, mask) \
175 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
176
177 /*
178 * Default values for user and/or group using reserved blocks
179 */
180 #define F2FS_DEF_RESUID 0
181 #define F2FS_DEF_RESGID 0
182
183 /*
184 * For checkpoint manager
185 */
186 enum {
187 NAT_BITMAP,
188 SIT_BITMAP
189 };
190
191 #define CP_UMOUNT 0x00000001
192 #define CP_FASTBOOT 0x00000002
193 #define CP_SYNC 0x00000004
194 #define CP_RECOVERY 0x00000008
195 #define CP_DISCARD 0x00000010
196 #define CP_TRIMMED 0x00000020
197 #define CP_PAUSE 0x00000040
198 #define CP_RESIZE 0x00000080
199
200 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
201 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
202 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
203 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
204 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
205 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
206 #define DEF_CP_INTERVAL 60 /* 60 secs */
207 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
208 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
209 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
210 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
211
212 struct cp_control {
213 int reason;
214 __u64 trim_start;
215 __u64 trim_end;
216 __u64 trim_minlen;
217 };
218
219 /*
220 * indicate meta/data type
221 */
222 enum {
223 META_CP,
224 META_NAT,
225 META_SIT,
226 META_SSA,
227 META_MAX,
228 META_POR,
229 DATA_GENERIC, /* check range only */
230 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
231 DATA_GENERIC_ENHANCE_READ, /*
232 * strong check on range and segment
233 * bitmap but no warning due to race
234 * condition of read on truncated area
235 * by extent_cache
236 */
237 META_GENERIC,
238 };
239
240 /* for the list of ino */
241 enum {
242 ORPHAN_INO, /* for orphan ino list */
243 APPEND_INO, /* for append ino list */
244 UPDATE_INO, /* for update ino list */
245 TRANS_DIR_INO, /* for trasactions dir ino list */
246 FLUSH_INO, /* for multiple device flushing */
247 MAX_INO_ENTRY, /* max. list */
248 };
249
250 struct ino_entry {
251 struct list_head list; /* list head */
252 nid_t ino; /* inode number */
253 unsigned int dirty_device; /* dirty device bitmap */
254 };
255
256 /* for the list of inodes to be GCed */
257 struct inode_entry {
258 struct list_head list; /* list head */
259 struct inode *inode; /* vfs inode pointer */
260 };
261
262 struct fsync_node_entry {
263 struct list_head list; /* list head */
264 struct page *page; /* warm node page pointer */
265 unsigned int seq_id; /* sequence id */
266 };
267
268 /* for the bitmap indicate blocks to be discarded */
269 struct discard_entry {
270 struct list_head list; /* list head */
271 block_t start_blkaddr; /* start blockaddr of current segment */
272 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
273 };
274
275 /* default discard granularity of inner discard thread, unit: block count */
276 #define DEFAULT_DISCARD_GRANULARITY 16
277
278 /* max discard pend list number */
279 #define MAX_PLIST_NUM 512
280 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
281 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
282
283 enum {
284 D_PREP, /* initial */
285 D_PARTIAL, /* partially submitted */
286 D_SUBMIT, /* all submitted */
287 D_DONE, /* finished */
288 };
289
290 struct discard_info {
291 block_t lstart; /* logical start address */
292 block_t len; /* length */
293 block_t start; /* actual start address in dev */
294 };
295
296 struct discard_cmd {
297 struct rb_node rb_node; /* rb node located in rb-tree */
298 union {
299 struct {
300 block_t lstart; /* logical start address */
301 block_t len; /* length */
302 block_t start; /* actual start address in dev */
303 };
304 struct discard_info di; /* discard info */
305
306 };
307 struct list_head list; /* command list */
308 struct completion wait; /* compleation */
309 struct block_device *bdev; /* bdev */
310 unsigned short ref; /* reference count */
311 unsigned char state; /* state */
312 unsigned char queued; /* queued discard */
313 int error; /* bio error */
314 spinlock_t lock; /* for state/bio_ref updating */
315 unsigned short bio_ref; /* bio reference count */
316 };
317
318 enum {
319 DPOLICY_BG,
320 DPOLICY_FORCE,
321 DPOLICY_FSTRIM,
322 DPOLICY_UMOUNT,
323 MAX_DPOLICY,
324 };
325
326 struct discard_policy {
327 int type; /* type of discard */
328 unsigned int min_interval; /* used for candidates exist */
329 unsigned int mid_interval; /* used for device busy */
330 unsigned int max_interval; /* used for candidates not exist */
331 unsigned int max_requests; /* # of discards issued per round */
332 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
333 bool io_aware; /* issue discard in idle time */
334 bool sync; /* submit discard with REQ_SYNC flag */
335 bool ordered; /* issue discard by lba order */
336 bool timeout; /* discard timeout for put_super */
337 unsigned int granularity; /* discard granularity */
338 };
339
340 struct discard_cmd_control {
341 struct task_struct *f2fs_issue_discard; /* discard thread */
342 struct list_head entry_list; /* 4KB discard entry list */
343 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
344 struct list_head wait_list; /* store on-flushing entries */
345 struct list_head fstrim_list; /* in-flight discard from fstrim */
346 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
347 unsigned int discard_wake; /* to wake up discard thread */
348 struct mutex cmd_lock;
349 unsigned int nr_discards; /* # of discards in the list */
350 unsigned int max_discards; /* max. discards to be issued */
351 unsigned int discard_granularity; /* discard granularity */
352 unsigned int undiscard_blks; /* # of undiscard blocks */
353 unsigned int next_pos; /* next discard position */
354 atomic_t issued_discard; /* # of issued discard */
355 atomic_t queued_discard; /* # of queued discard */
356 atomic_t discard_cmd_cnt; /* # of cached cmd count */
357 struct rb_root_cached root; /* root of discard rb-tree */
358 bool rbtree_check; /* config for consistence check */
359 };
360
361 /* for the list of fsync inodes, used only during recovery */
362 struct fsync_inode_entry {
363 struct list_head list; /* list head */
364 struct inode *inode; /* vfs inode pointer */
365 block_t blkaddr; /* block address locating the last fsync */
366 block_t last_dentry; /* block address locating the last dentry */
367 };
368
369 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
370 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
371
372 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
373 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
374 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
375 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
376
377 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
378 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
379
380 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
381 {
382 int before = nats_in_cursum(journal);
383
384 journal->n_nats = cpu_to_le16(before + i);
385 return before;
386 }
387
388 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
389 {
390 int before = sits_in_cursum(journal);
391
392 journal->n_sits = cpu_to_le16(before + i);
393 return before;
394 }
395
396 static inline bool __has_cursum_space(struct f2fs_journal *journal,
397 int size, int type)
398 {
399 if (type == NAT_JOURNAL)
400 return size <= MAX_NAT_JENTRIES(journal);
401 return size <= MAX_SIT_JENTRIES(journal);
402 }
403
404 /*
405 * f2fs-specific ioctl commands
406 */
407 #define F2FS_IOCTL_MAGIC 0xf5
408 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
409 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
410 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
411 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
412 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
413 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
414 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
415 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
416 struct f2fs_defragment)
417 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
418 struct f2fs_move_range)
419 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
420 struct f2fs_flush_device)
421 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
422 struct f2fs_gc_range)
423 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
424 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
425 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
426 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15)
427 #define F2FS_IOC_RESIZE_FS _IOW(F2FS_IOCTL_MAGIC, 16, __u64)
428 #define F2FS_IOC_GET_COMPRESS_BLOCKS _IOR(F2FS_IOCTL_MAGIC, 17, __u64)
429 #define F2FS_IOC_RELEASE_COMPRESS_BLOCKS \
430 _IOR(F2FS_IOCTL_MAGIC, 18, __u64)
431 #define F2FS_IOC_RESERVE_COMPRESS_BLOCKS \
432 _IOR(F2FS_IOCTL_MAGIC, 19, __u64)
433 #define F2FS_IOC_SEC_TRIM_FILE _IOW(F2FS_IOCTL_MAGIC, 20, \
434 struct f2fs_sectrim_range)
435
436 /*
437 * should be same as XFS_IOC_GOINGDOWN.
438 * Flags for going down operation used by FS_IOC_GOINGDOWN
439 */
440 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
441 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
442 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
443 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
444 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
445 #define F2FS_GOING_DOWN_NEED_FSCK 0x4 /* going down to trigger fsck */
446
447 /*
448 * Flags used by F2FS_IOC_SEC_TRIM_FILE
449 */
450 #define F2FS_TRIM_FILE_DISCARD 0x1 /* send discard command */
451 #define F2FS_TRIM_FILE_ZEROOUT 0x2 /* zero out */
452 #define F2FS_TRIM_FILE_MASK 0x3
453
454 struct f2fs_gc_range {
455 u32 sync;
456 u64 start;
457 u64 len;
458 };
459
460 struct f2fs_defragment {
461 u64 start;
462 u64 len;
463 };
464
465 struct f2fs_move_range {
466 u32 dst_fd; /* destination fd */
467 u64 pos_in; /* start position in src_fd */
468 u64 pos_out; /* start position in dst_fd */
469 u64 len; /* size to move */
470 };
471
472 struct f2fs_flush_device {
473 u32 dev_num; /* device number to flush */
474 u32 segments; /* # of segments to flush */
475 };
476
477 struct f2fs_sectrim_range {
478 u64 start;
479 u64 len;
480 u64 flags;
481 };
482
483 /* for inline stuff */
484 #define DEF_INLINE_RESERVED_SIZE 1
485 static inline int get_extra_isize(struct inode *inode);
486 static inline int get_inline_xattr_addrs(struct inode *inode);
487 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
488 (CUR_ADDRS_PER_INODE(inode) - \
489 get_inline_xattr_addrs(inode) - \
490 DEF_INLINE_RESERVED_SIZE))
491
492 /* for inline dir */
493 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
494 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
495 BITS_PER_BYTE + 1))
496 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
497 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
498 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
499 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
500 NR_INLINE_DENTRY(inode) + \
501 INLINE_DENTRY_BITMAP_SIZE(inode)))
502
503 /*
504 * For INODE and NODE manager
505 */
506 /* for directory operations */
507
508 struct f2fs_filename {
509 /*
510 * The filename the user specified. This is NULL for some
511 * filesystem-internal operations, e.g. converting an inline directory
512 * to a non-inline one, or roll-forward recovering an encrypted dentry.
513 */
514 const struct qstr *usr_fname;
515
516 /*
517 * The on-disk filename. For encrypted directories, this is encrypted.
518 * This may be NULL for lookups in an encrypted dir without the key.
519 */
520 struct fscrypt_str disk_name;
521
522 /* The dirhash of this filename */
523 f2fs_hash_t hash;
524
525 #ifdef CONFIG_FS_ENCRYPTION
526 /*
527 * For lookups in encrypted directories: either the buffer backing
528 * disk_name, or a buffer that holds the decoded no-key name.
529 */
530 struct fscrypt_str crypto_buf;
531 #endif
532 #ifdef CONFIG_UNICODE
533 /*
534 * For casefolded directories: the casefolded name, but it's left NULL
535 * if the original name is not valid Unicode or if the filesystem is
536 * doing an internal operation where usr_fname is also NULL. In these
537 * cases we fall back to treating the name as an opaque byte sequence.
538 */
539 struct fscrypt_str cf_name;
540 #endif
541 };
542
543 struct f2fs_dentry_ptr {
544 struct inode *inode;
545 void *bitmap;
546 struct f2fs_dir_entry *dentry;
547 __u8 (*filename)[F2FS_SLOT_LEN];
548 int max;
549 int nr_bitmap;
550 };
551
552 static inline void make_dentry_ptr_block(struct inode *inode,
553 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
554 {
555 d->inode = inode;
556 d->max = NR_DENTRY_IN_BLOCK;
557 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
558 d->bitmap = t->dentry_bitmap;
559 d->dentry = t->dentry;
560 d->filename = t->filename;
561 }
562
563 static inline void make_dentry_ptr_inline(struct inode *inode,
564 struct f2fs_dentry_ptr *d, void *t)
565 {
566 int entry_cnt = NR_INLINE_DENTRY(inode);
567 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
568 int reserved_size = INLINE_RESERVED_SIZE(inode);
569
570 d->inode = inode;
571 d->max = entry_cnt;
572 d->nr_bitmap = bitmap_size;
573 d->bitmap = t;
574 d->dentry = t + bitmap_size + reserved_size;
575 d->filename = t + bitmap_size + reserved_size +
576 SIZE_OF_DIR_ENTRY * entry_cnt;
577 }
578
579 /*
580 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
581 * as its node offset to distinguish from index node blocks.
582 * But some bits are used to mark the node block.
583 */
584 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
585 >> OFFSET_BIT_SHIFT)
586 enum {
587 ALLOC_NODE, /* allocate a new node page if needed */
588 LOOKUP_NODE, /* look up a node without readahead */
589 LOOKUP_NODE_RA, /*
590 * look up a node with readahead called
591 * by get_data_block.
592 */
593 };
594
595 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
596
597 /* congestion wait timeout value, default: 20ms */
598 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
599
600 /* maximum retry quota flush count */
601 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
602
603 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
604
605 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
606
607 /* for in-memory extent cache entry */
608 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
609
610 /* number of extent info in extent cache we try to shrink */
611 #define EXTENT_CACHE_SHRINK_NUMBER 128
612
613 struct rb_entry {
614 struct rb_node rb_node; /* rb node located in rb-tree */
615 unsigned int ofs; /* start offset of the entry */
616 unsigned int len; /* length of the entry */
617 };
618
619 struct extent_info {
620 unsigned int fofs; /* start offset in a file */
621 unsigned int len; /* length of the extent */
622 u32 blk; /* start block address of the extent */
623 };
624
625 struct extent_node {
626 struct rb_node rb_node; /* rb node located in rb-tree */
627 struct extent_info ei; /* extent info */
628 struct list_head list; /* node in global extent list of sbi */
629 struct extent_tree *et; /* extent tree pointer */
630 };
631
632 struct extent_tree {
633 nid_t ino; /* inode number */
634 struct rb_root_cached root; /* root of extent info rb-tree */
635 struct extent_node *cached_en; /* recently accessed extent node */
636 struct extent_info largest; /* largested extent info */
637 struct list_head list; /* to be used by sbi->zombie_list */
638 rwlock_t lock; /* protect extent info rb-tree */
639 atomic_t node_cnt; /* # of extent node in rb-tree*/
640 bool largest_updated; /* largest extent updated */
641 };
642
643 /*
644 * This structure is taken from ext4_map_blocks.
645 *
646 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
647 */
648 #define F2FS_MAP_NEW (1 << BH_New)
649 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
650 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
651 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
652 F2FS_MAP_UNWRITTEN)
653
654 struct f2fs_map_blocks {
655 block_t m_pblk;
656 block_t m_lblk;
657 unsigned int m_len;
658 unsigned int m_flags;
659 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
660 pgoff_t *m_next_extent; /* point to next possible extent */
661 int m_seg_type;
662 bool m_may_create; /* indicate it is from write path */
663 };
664
665 /* for flag in get_data_block */
666 enum {
667 F2FS_GET_BLOCK_DEFAULT,
668 F2FS_GET_BLOCK_FIEMAP,
669 F2FS_GET_BLOCK_BMAP,
670 F2FS_GET_BLOCK_DIO,
671 F2FS_GET_BLOCK_PRE_DIO,
672 F2FS_GET_BLOCK_PRE_AIO,
673 F2FS_GET_BLOCK_PRECACHE,
674 };
675
676 /*
677 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
678 */
679 #define FADVISE_COLD_BIT 0x01
680 #define FADVISE_LOST_PINO_BIT 0x02
681 #define FADVISE_ENCRYPT_BIT 0x04
682 #define FADVISE_ENC_NAME_BIT 0x08
683 #define FADVISE_KEEP_SIZE_BIT 0x10
684 #define FADVISE_HOT_BIT 0x20
685 #define FADVISE_VERITY_BIT 0x40
686
687 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
688
689 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
690 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
691 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
692 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
693 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
694 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
695 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
696 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
697 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
698 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
699 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
700 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
701 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
702 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
703 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
704 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
705 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
706 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
707
708 #define DEF_DIR_LEVEL 0
709
710 enum {
711 GC_FAILURE_PIN,
712 GC_FAILURE_ATOMIC,
713 MAX_GC_FAILURE
714 };
715
716 /* used for f2fs_inode_info->flags */
717 enum {
718 FI_NEW_INODE, /* indicate newly allocated inode */
719 FI_DIRTY_INODE, /* indicate inode is dirty or not */
720 FI_AUTO_RECOVER, /* indicate inode is recoverable */
721 FI_DIRTY_DIR, /* indicate directory has dirty pages */
722 FI_INC_LINK, /* need to increment i_nlink */
723 FI_ACL_MODE, /* indicate acl mode */
724 FI_NO_ALLOC, /* should not allocate any blocks */
725 FI_FREE_NID, /* free allocated nide */
726 FI_NO_EXTENT, /* not to use the extent cache */
727 FI_INLINE_XATTR, /* used for inline xattr */
728 FI_INLINE_DATA, /* used for inline data*/
729 FI_INLINE_DENTRY, /* used for inline dentry */
730 FI_APPEND_WRITE, /* inode has appended data */
731 FI_UPDATE_WRITE, /* inode has in-place-update data */
732 FI_NEED_IPU, /* used for ipu per file */
733 FI_ATOMIC_FILE, /* indicate atomic file */
734 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
735 FI_VOLATILE_FILE, /* indicate volatile file */
736 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
737 FI_DROP_CACHE, /* drop dirty page cache */
738 FI_DATA_EXIST, /* indicate data exists */
739 FI_INLINE_DOTS, /* indicate inline dot dentries */
740 FI_DO_DEFRAG, /* indicate defragment is running */
741 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
742 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
743 FI_HOT_DATA, /* indicate file is hot */
744 FI_EXTRA_ATTR, /* indicate file has extra attribute */
745 FI_PROJ_INHERIT, /* indicate file inherits projectid */
746 FI_PIN_FILE, /* indicate file should not be gced */
747 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
748 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
749 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
750 FI_MMAP_FILE, /* indicate file was mmapped */
751 FI_MAX, /* max flag, never be used */
752 };
753
754 struct f2fs_inode_info {
755 struct inode vfs_inode; /* serve a vfs inode */
756 unsigned long i_flags; /* keep an inode flags for ioctl */
757 unsigned char i_advise; /* use to give file attribute hints */
758 unsigned char i_dir_level; /* use for dentry level for large dir */
759 unsigned int i_current_depth; /* only for directory depth */
760 /* for gc failure statistic */
761 unsigned int i_gc_failures[MAX_GC_FAILURE];
762 unsigned int i_pino; /* parent inode number */
763 umode_t i_acl_mode; /* keep file acl mode temporarily */
764
765 /* Use below internally in f2fs*/
766 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
767 struct rw_semaphore i_sem; /* protect fi info */
768 atomic_t dirty_pages; /* # of dirty pages */
769 f2fs_hash_t chash; /* hash value of given file name */
770 unsigned int clevel; /* maximum level of given file name */
771 struct task_struct *task; /* lookup and create consistency */
772 struct task_struct *cp_task; /* separate cp/wb IO stats*/
773 nid_t i_xattr_nid; /* node id that contains xattrs */
774 loff_t last_disk_size; /* lastly written file size */
775 spinlock_t i_size_lock; /* protect last_disk_size */
776
777 #ifdef CONFIG_QUOTA
778 struct dquot *i_dquot[MAXQUOTAS];
779
780 /* quota space reservation, managed internally by quota code */
781 qsize_t i_reserved_quota;
782 #endif
783 struct list_head dirty_list; /* dirty list for dirs and files */
784 struct list_head gdirty_list; /* linked in global dirty list */
785 struct list_head inmem_ilist; /* list for inmem inodes */
786 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
787 struct task_struct *inmem_task; /* store inmemory task */
788 struct mutex inmem_lock; /* lock for inmemory pages */
789 pgoff_t ra_offset; /* ongoing readahead offset */
790 struct extent_tree *extent_tree; /* cached extent_tree entry */
791
792 /* avoid racing between foreground op and gc */
793 struct rw_semaphore i_gc_rwsem[2];
794 struct rw_semaphore i_mmap_sem;
795 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
796
797 int i_extra_isize; /* size of extra space located in i_addr */
798 kprojid_t i_projid; /* id for project quota */
799 int i_inline_xattr_size; /* inline xattr size */
800 struct timespec64 i_crtime; /* inode creation time */
801 struct timespec64 i_disk_time[4];/* inode disk times */
802
803 /* for file compress */
804 u64 i_compr_blocks; /* # of compressed blocks */
805 unsigned char i_compress_algorithm; /* algorithm type */
806 unsigned char i_log_cluster_size; /* log of cluster size */
807 unsigned int i_cluster_size; /* cluster size */
808 };
809
810 static inline void get_extent_info(struct extent_info *ext,
811 struct f2fs_extent *i_ext)
812 {
813 ext->fofs = le32_to_cpu(i_ext->fofs);
814 ext->blk = le32_to_cpu(i_ext->blk);
815 ext->len = le32_to_cpu(i_ext->len);
816 }
817
818 static inline void set_raw_extent(struct extent_info *ext,
819 struct f2fs_extent *i_ext)
820 {
821 i_ext->fofs = cpu_to_le32(ext->fofs);
822 i_ext->blk = cpu_to_le32(ext->blk);
823 i_ext->len = cpu_to_le32(ext->len);
824 }
825
826 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
827 u32 blk, unsigned int len)
828 {
829 ei->fofs = fofs;
830 ei->blk = blk;
831 ei->len = len;
832 }
833
834 static inline bool __is_discard_mergeable(struct discard_info *back,
835 struct discard_info *front, unsigned int max_len)
836 {
837 return (back->lstart + back->len == front->lstart) &&
838 (back->len + front->len <= max_len);
839 }
840
841 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
842 struct discard_info *back, unsigned int max_len)
843 {
844 return __is_discard_mergeable(back, cur, max_len);
845 }
846
847 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
848 struct discard_info *front, unsigned int max_len)
849 {
850 return __is_discard_mergeable(cur, front, max_len);
851 }
852
853 static inline bool __is_extent_mergeable(struct extent_info *back,
854 struct extent_info *front)
855 {
856 return (back->fofs + back->len == front->fofs &&
857 back->blk + back->len == front->blk);
858 }
859
860 static inline bool __is_back_mergeable(struct extent_info *cur,
861 struct extent_info *back)
862 {
863 return __is_extent_mergeable(back, cur);
864 }
865
866 static inline bool __is_front_mergeable(struct extent_info *cur,
867 struct extent_info *front)
868 {
869 return __is_extent_mergeable(cur, front);
870 }
871
872 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
873 static inline void __try_update_largest_extent(struct extent_tree *et,
874 struct extent_node *en)
875 {
876 if (en->ei.len > et->largest.len) {
877 et->largest = en->ei;
878 et->largest_updated = true;
879 }
880 }
881
882 /*
883 * For free nid management
884 */
885 enum nid_state {
886 FREE_NID, /* newly added to free nid list */
887 PREALLOC_NID, /* it is preallocated */
888 MAX_NID_STATE,
889 };
890
891 struct f2fs_nm_info {
892 block_t nat_blkaddr; /* base disk address of NAT */
893 nid_t max_nid; /* maximum possible node ids */
894 nid_t available_nids; /* # of available node ids */
895 nid_t next_scan_nid; /* the next nid to be scanned */
896 unsigned int ram_thresh; /* control the memory footprint */
897 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
898 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
899
900 /* NAT cache management */
901 struct radix_tree_root nat_root;/* root of the nat entry cache */
902 struct radix_tree_root nat_set_root;/* root of the nat set cache */
903 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
904 struct list_head nat_entries; /* cached nat entry list (clean) */
905 spinlock_t nat_list_lock; /* protect clean nat entry list */
906 unsigned int nat_cnt; /* the # of cached nat entries */
907 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
908 unsigned int nat_blocks; /* # of nat blocks */
909
910 /* free node ids management */
911 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
912 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
913 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
914 spinlock_t nid_list_lock; /* protect nid lists ops */
915 struct mutex build_lock; /* lock for build free nids */
916 unsigned char **free_nid_bitmap;
917 unsigned char *nat_block_bitmap;
918 unsigned short *free_nid_count; /* free nid count of NAT block */
919
920 /* for checkpoint */
921 char *nat_bitmap; /* NAT bitmap pointer */
922
923 unsigned int nat_bits_blocks; /* # of nat bits blocks */
924 unsigned char *nat_bits; /* NAT bits blocks */
925 unsigned char *full_nat_bits; /* full NAT pages */
926 unsigned char *empty_nat_bits; /* empty NAT pages */
927 #ifdef CONFIG_F2FS_CHECK_FS
928 char *nat_bitmap_mir; /* NAT bitmap mirror */
929 #endif
930 int bitmap_size; /* bitmap size */
931 };
932
933 /*
934 * this structure is used as one of function parameters.
935 * all the information are dedicated to a given direct node block determined
936 * by the data offset in a file.
937 */
938 struct dnode_of_data {
939 struct inode *inode; /* vfs inode pointer */
940 struct page *inode_page; /* its inode page, NULL is possible */
941 struct page *node_page; /* cached direct node page */
942 nid_t nid; /* node id of the direct node block */
943 unsigned int ofs_in_node; /* data offset in the node page */
944 bool inode_page_locked; /* inode page is locked or not */
945 bool node_changed; /* is node block changed */
946 char cur_level; /* level of hole node page */
947 char max_level; /* level of current page located */
948 block_t data_blkaddr; /* block address of the node block */
949 };
950
951 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
952 struct page *ipage, struct page *npage, nid_t nid)
953 {
954 memset(dn, 0, sizeof(*dn));
955 dn->inode = inode;
956 dn->inode_page = ipage;
957 dn->node_page = npage;
958 dn->nid = nid;
959 }
960
961 /*
962 * For SIT manager
963 *
964 * By default, there are 6 active log areas across the whole main area.
965 * When considering hot and cold data separation to reduce cleaning overhead,
966 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
967 * respectively.
968 * In the current design, you should not change the numbers intentionally.
969 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
970 * logs individually according to the underlying devices. (default: 6)
971 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
972 * data and 8 for node logs.
973 */
974 #define NR_CURSEG_DATA_TYPE (3)
975 #define NR_CURSEG_NODE_TYPE (3)
976 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
977
978 enum {
979 CURSEG_HOT_DATA = 0, /* directory entry blocks */
980 CURSEG_WARM_DATA, /* data blocks */
981 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
982 CURSEG_HOT_NODE, /* direct node blocks of directory files */
983 CURSEG_WARM_NODE, /* direct node blocks of normal files */
984 CURSEG_COLD_NODE, /* indirect node blocks */
985 NO_CHECK_TYPE,
986 CURSEG_COLD_DATA_PINNED,/* cold data for pinned file */
987 };
988
989 struct flush_cmd {
990 struct completion wait;
991 struct llist_node llnode;
992 nid_t ino;
993 int ret;
994 };
995
996 struct flush_cmd_control {
997 struct task_struct *f2fs_issue_flush; /* flush thread */
998 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
999 atomic_t issued_flush; /* # of issued flushes */
1000 atomic_t queued_flush; /* # of queued flushes */
1001 struct llist_head issue_list; /* list for command issue */
1002 struct llist_node *dispatch_list; /* list for command dispatch */
1003 };
1004
1005 struct f2fs_sm_info {
1006 struct sit_info *sit_info; /* whole segment information */
1007 struct free_segmap_info *free_info; /* free segment information */
1008 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1009 struct curseg_info *curseg_array; /* active segment information */
1010
1011 struct rw_semaphore curseg_lock; /* for preventing curseg change */
1012
1013 block_t seg0_blkaddr; /* block address of 0'th segment */
1014 block_t main_blkaddr; /* start block address of main area */
1015 block_t ssa_blkaddr; /* start block address of SSA area */
1016
1017 unsigned int segment_count; /* total # of segments */
1018 unsigned int main_segments; /* # of segments in main area */
1019 unsigned int reserved_segments; /* # of reserved segments */
1020 unsigned int ovp_segments; /* # of overprovision segments */
1021
1022 /* a threshold to reclaim prefree segments */
1023 unsigned int rec_prefree_segments;
1024
1025 /* for batched trimming */
1026 unsigned int trim_sections; /* # of sections to trim */
1027
1028 struct list_head sit_entry_set; /* sit entry set list */
1029
1030 unsigned int ipu_policy; /* in-place-update policy */
1031 unsigned int min_ipu_util; /* in-place-update threshold */
1032 unsigned int min_fsync_blocks; /* threshold for fsync */
1033 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1034 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1035 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1036
1037 /* for flush command control */
1038 struct flush_cmd_control *fcc_info;
1039
1040 /* for discard command control */
1041 struct discard_cmd_control *dcc_info;
1042 };
1043
1044 /*
1045 * For superblock
1046 */
1047 /*
1048 * COUNT_TYPE for monitoring
1049 *
1050 * f2fs monitors the number of several block types such as on-writeback,
1051 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1052 */
1053 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1054 enum count_type {
1055 F2FS_DIRTY_DENTS,
1056 F2FS_DIRTY_DATA,
1057 F2FS_DIRTY_QDATA,
1058 F2FS_DIRTY_NODES,
1059 F2FS_DIRTY_META,
1060 F2FS_INMEM_PAGES,
1061 F2FS_DIRTY_IMETA,
1062 F2FS_WB_CP_DATA,
1063 F2FS_WB_DATA,
1064 F2FS_RD_DATA,
1065 F2FS_RD_NODE,
1066 F2FS_RD_META,
1067 F2FS_DIO_WRITE,
1068 F2FS_DIO_READ,
1069 NR_COUNT_TYPE,
1070 };
1071
1072 /*
1073 * The below are the page types of bios used in submit_bio().
1074 * The available types are:
1075 * DATA User data pages. It operates as async mode.
1076 * NODE Node pages. It operates as async mode.
1077 * META FS metadata pages such as SIT, NAT, CP.
1078 * NR_PAGE_TYPE The number of page types.
1079 * META_FLUSH Make sure the previous pages are written
1080 * with waiting the bio's completion
1081 * ... Only can be used with META.
1082 */
1083 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1084 enum page_type {
1085 DATA,
1086 NODE,
1087 META,
1088 NR_PAGE_TYPE,
1089 META_FLUSH,
1090 INMEM, /* the below types are used by tracepoints only. */
1091 INMEM_DROP,
1092 INMEM_INVALIDATE,
1093 INMEM_REVOKE,
1094 IPU,
1095 OPU,
1096 };
1097
1098 enum temp_type {
1099 HOT = 0, /* must be zero for meta bio */
1100 WARM,
1101 COLD,
1102 NR_TEMP_TYPE,
1103 };
1104
1105 enum need_lock_type {
1106 LOCK_REQ = 0,
1107 LOCK_DONE,
1108 LOCK_RETRY,
1109 };
1110
1111 enum cp_reason_type {
1112 CP_NO_NEEDED,
1113 CP_NON_REGULAR,
1114 CP_COMPRESSED,
1115 CP_HARDLINK,
1116 CP_SB_NEED_CP,
1117 CP_WRONG_PINO,
1118 CP_NO_SPC_ROLL,
1119 CP_NODE_NEED_CP,
1120 CP_FASTBOOT_MODE,
1121 CP_SPEC_LOG_NUM,
1122 CP_RECOVER_DIR,
1123 };
1124
1125 enum iostat_type {
1126 /* WRITE IO */
1127 APP_DIRECT_IO, /* app direct write IOs */
1128 APP_BUFFERED_IO, /* app buffered write IOs */
1129 APP_WRITE_IO, /* app write IOs */
1130 APP_MAPPED_IO, /* app mapped IOs */
1131 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1132 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1133 FS_META_IO, /* meta IOs from kworker/reclaimer */
1134 FS_GC_DATA_IO, /* data IOs from forground gc */
1135 FS_GC_NODE_IO, /* node IOs from forground gc */
1136 FS_CP_DATA_IO, /* data IOs from checkpoint */
1137 FS_CP_NODE_IO, /* node IOs from checkpoint */
1138 FS_CP_META_IO, /* meta IOs from checkpoint */
1139
1140 /* READ IO */
1141 APP_DIRECT_READ_IO, /* app direct read IOs */
1142 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1143 APP_READ_IO, /* app read IOs */
1144 APP_MAPPED_READ_IO, /* app mapped read IOs */
1145 FS_DATA_READ_IO, /* data read IOs */
1146 FS_GDATA_READ_IO, /* data read IOs from background gc */
1147 FS_CDATA_READ_IO, /* compressed data read IOs */
1148 FS_NODE_READ_IO, /* node read IOs */
1149 FS_META_READ_IO, /* meta read IOs */
1150
1151 /* other */
1152 FS_DISCARD, /* discard */
1153 NR_IO_TYPE,
1154 };
1155
1156 struct f2fs_io_info {
1157 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1158 nid_t ino; /* inode number */
1159 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1160 enum temp_type temp; /* contains HOT/WARM/COLD */
1161 int op; /* contains REQ_OP_ */
1162 int op_flags; /* req_flag_bits */
1163 block_t new_blkaddr; /* new block address to be written */
1164 block_t old_blkaddr; /* old block address before Cow */
1165 struct page *page; /* page to be written */
1166 struct page *encrypted_page; /* encrypted page */
1167 struct page *compressed_page; /* compressed page */
1168 struct list_head list; /* serialize IOs */
1169 bool submitted; /* indicate IO submission */
1170 int need_lock; /* indicate we need to lock cp_rwsem */
1171 bool in_list; /* indicate fio is in io_list */
1172 bool is_por; /* indicate IO is from recovery or not */
1173 bool retry; /* need to reallocate block address */
1174 int compr_blocks; /* # of compressed block addresses */
1175 bool encrypted; /* indicate file is encrypted */
1176 enum iostat_type io_type; /* io type */
1177 struct writeback_control *io_wbc; /* writeback control */
1178 struct bio **bio; /* bio for ipu */
1179 sector_t *last_block; /* last block number in bio */
1180 unsigned char version; /* version of the node */
1181 };
1182
1183 struct bio_entry {
1184 struct bio *bio;
1185 struct list_head list;
1186 };
1187
1188 #define is_read_io(rw) ((rw) == READ)
1189 struct f2fs_bio_info {
1190 struct f2fs_sb_info *sbi; /* f2fs superblock */
1191 struct bio *bio; /* bios to merge */
1192 sector_t last_block_in_bio; /* last block number */
1193 struct f2fs_io_info fio; /* store buffered io info. */
1194 struct rw_semaphore io_rwsem; /* blocking op for bio */
1195 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1196 struct list_head io_list; /* track fios */
1197 struct list_head bio_list; /* bio entry list head */
1198 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */
1199 };
1200
1201 #define FDEV(i) (sbi->devs[i])
1202 #define RDEV(i) (raw_super->devs[i])
1203 struct f2fs_dev_info {
1204 struct block_device *bdev;
1205 char path[MAX_PATH_LEN];
1206 unsigned int total_segments;
1207 block_t start_blk;
1208 block_t end_blk;
1209 #ifdef CONFIG_BLK_DEV_ZONED
1210 unsigned int nr_blkz; /* Total number of zones */
1211 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1212 block_t *zone_capacity_blocks; /* Array of zone capacity in blks */
1213 #endif
1214 };
1215
1216 enum inode_type {
1217 DIR_INODE, /* for dirty dir inode */
1218 FILE_INODE, /* for dirty regular/symlink inode */
1219 DIRTY_META, /* for all dirtied inode metadata */
1220 ATOMIC_FILE, /* for all atomic files */
1221 NR_INODE_TYPE,
1222 };
1223
1224 /* for inner inode cache management */
1225 struct inode_management {
1226 struct radix_tree_root ino_root; /* ino entry array */
1227 spinlock_t ino_lock; /* for ino entry lock */
1228 struct list_head ino_list; /* inode list head */
1229 unsigned long ino_num; /* number of entries */
1230 };
1231
1232 /* For s_flag in struct f2fs_sb_info */
1233 enum {
1234 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1235 SBI_IS_CLOSE, /* specify unmounting */
1236 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1237 SBI_POR_DOING, /* recovery is doing or not */
1238 SBI_NEED_SB_WRITE, /* need to recover superblock */
1239 SBI_NEED_CP, /* need to checkpoint */
1240 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1241 SBI_IS_RECOVERED, /* recovered orphan/data */
1242 SBI_CP_DISABLED, /* CP was disabled last mount */
1243 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1244 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1245 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1246 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1247 SBI_IS_RESIZEFS, /* resizefs is in process */
1248 };
1249
1250 enum {
1251 CP_TIME,
1252 REQ_TIME,
1253 DISCARD_TIME,
1254 GC_TIME,
1255 DISABLE_TIME,
1256 UMOUNT_DISCARD_TIMEOUT,
1257 MAX_TIME,
1258 };
1259
1260 enum {
1261 GC_NORMAL,
1262 GC_IDLE_CB,
1263 GC_IDLE_GREEDY,
1264 GC_URGENT_HIGH,
1265 GC_URGENT_LOW,
1266 };
1267
1268 enum {
1269 BGGC_MODE_ON, /* background gc is on */
1270 BGGC_MODE_OFF, /* background gc is off */
1271 BGGC_MODE_SYNC, /*
1272 * background gc is on, migrating blocks
1273 * like foreground gc
1274 */
1275 };
1276
1277 enum {
1278 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1279 FS_MODE_LFS, /* use lfs allocation only */
1280 };
1281
1282 enum {
1283 WHINT_MODE_OFF, /* not pass down write hints */
1284 WHINT_MODE_USER, /* try to pass down hints given by users */
1285 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1286 };
1287
1288 enum {
1289 ALLOC_MODE_DEFAULT, /* stay default */
1290 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1291 };
1292
1293 enum fsync_mode {
1294 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1295 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1296 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1297 };
1298
1299 /*
1300 * this value is set in page as a private data which indicate that
1301 * the page is atomically written, and it is in inmem_pages list.
1302 */
1303 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
1304 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
1305
1306 #define IS_ATOMIC_WRITTEN_PAGE(page) \
1307 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
1308 #define IS_DUMMY_WRITTEN_PAGE(page) \
1309 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
1310
1311 #ifdef CONFIG_F2FS_IO_TRACE
1312 #define IS_IO_TRACED_PAGE(page) \
1313 (page_private(page) > 0 && \
1314 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1315 #else
1316 #define IS_IO_TRACED_PAGE(page) (0)
1317 #endif
1318
1319 #ifdef CONFIG_FS_ENCRYPTION
1320 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1321 (unlikely(F2FS_OPTION(sbi).dummy_enc_ctx.ctx != NULL))
1322 #else
1323 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1324 #endif
1325
1326 /* For compression */
1327 enum compress_algorithm_type {
1328 COMPRESS_LZO,
1329 COMPRESS_LZ4,
1330 COMPRESS_ZSTD,
1331 COMPRESS_LZORLE,
1332 COMPRESS_MAX,
1333 };
1334
1335 #define COMPRESS_DATA_RESERVED_SIZE 5
1336 struct compress_data {
1337 __le32 clen; /* compressed data size */
1338 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1339 u8 cdata[]; /* compressed data */
1340 };
1341
1342 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1343
1344 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1345
1346 /* compress context */
1347 struct compress_ctx {
1348 struct inode *inode; /* inode the context belong to */
1349 pgoff_t cluster_idx; /* cluster index number */
1350 unsigned int cluster_size; /* page count in cluster */
1351 unsigned int log_cluster_size; /* log of cluster size */
1352 struct page **rpages; /* pages store raw data in cluster */
1353 unsigned int nr_rpages; /* total page number in rpages */
1354 struct page **cpages; /* pages store compressed data in cluster */
1355 unsigned int nr_cpages; /* total page number in cpages */
1356 void *rbuf; /* virtual mapped address on rpages */
1357 struct compress_data *cbuf; /* virtual mapped address on cpages */
1358 size_t rlen; /* valid data length in rbuf */
1359 size_t clen; /* valid data length in cbuf */
1360 void *private; /* payload buffer for specified compression algorithm */
1361 void *private2; /* extra payload buffer */
1362 };
1363
1364 /* compress context for write IO path */
1365 struct compress_io_ctx {
1366 u32 magic; /* magic number to indicate page is compressed */
1367 struct inode *inode; /* inode the context belong to */
1368 struct page **rpages; /* pages store raw data in cluster */
1369 unsigned int nr_rpages; /* total page number in rpages */
1370 refcount_t ref; /* referrence count of raw page */
1371 };
1372
1373 /* decompress io context for read IO path */
1374 struct decompress_io_ctx {
1375 u32 magic; /* magic number to indicate page is compressed */
1376 struct inode *inode; /* inode the context belong to */
1377 pgoff_t cluster_idx; /* cluster index number */
1378 unsigned int cluster_size; /* page count in cluster */
1379 unsigned int log_cluster_size; /* log of cluster size */
1380 struct page **rpages; /* pages store raw data in cluster */
1381 unsigned int nr_rpages; /* total page number in rpages */
1382 struct page **cpages; /* pages store compressed data in cluster */
1383 unsigned int nr_cpages; /* total page number in cpages */
1384 struct page **tpages; /* temp pages to pad holes in cluster */
1385 void *rbuf; /* virtual mapped address on rpages */
1386 struct compress_data *cbuf; /* virtual mapped address on cpages */
1387 size_t rlen; /* valid data length in rbuf */
1388 size_t clen; /* valid data length in cbuf */
1389 refcount_t ref; /* referrence count of compressed page */
1390 bool failed; /* indicate IO error during decompression */
1391 void *private; /* payload buffer for specified decompression algorithm */
1392 void *private2; /* extra payload buffer */
1393 };
1394
1395 #define NULL_CLUSTER ((unsigned int)(~0))
1396 #define MIN_COMPRESS_LOG_SIZE 2
1397 #define MAX_COMPRESS_LOG_SIZE 8
1398 #define MAX_COMPRESS_WINDOW_SIZE ((PAGE_SIZE) << MAX_COMPRESS_LOG_SIZE)
1399
1400 struct f2fs_sb_info {
1401 struct super_block *sb; /* pointer to VFS super block */
1402 struct proc_dir_entry *s_proc; /* proc entry */
1403 struct f2fs_super_block *raw_super; /* raw super block pointer */
1404 struct rw_semaphore sb_lock; /* lock for raw super block */
1405 int valid_super_block; /* valid super block no */
1406 unsigned long s_flag; /* flags for sbi */
1407 struct mutex writepages; /* mutex for writepages() */
1408 #ifdef CONFIG_UNICODE
1409 struct unicode_map *s_encoding;
1410 __u16 s_encoding_flags;
1411 #endif
1412
1413 #ifdef CONFIG_BLK_DEV_ZONED
1414 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1415 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1416 #endif
1417
1418 /* for node-related operations */
1419 struct f2fs_nm_info *nm_info; /* node manager */
1420 struct inode *node_inode; /* cache node blocks */
1421
1422 /* for segment-related operations */
1423 struct f2fs_sm_info *sm_info; /* segment manager */
1424
1425 /* for bio operations */
1426 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1427 /* keep migration IO order for LFS mode */
1428 struct rw_semaphore io_order_lock;
1429 mempool_t *write_io_dummy; /* Dummy pages */
1430
1431 /* for checkpoint */
1432 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1433 int cur_cp_pack; /* remain current cp pack */
1434 spinlock_t cp_lock; /* for flag in ckpt */
1435 struct inode *meta_inode; /* cache meta blocks */
1436 struct mutex cp_mutex; /* checkpoint procedure lock */
1437 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1438 struct rw_semaphore node_write; /* locking node writes */
1439 struct rw_semaphore node_change; /* locking node change */
1440 wait_queue_head_t cp_wait;
1441 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1442 long interval_time[MAX_TIME]; /* to store thresholds */
1443
1444 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1445
1446 spinlock_t fsync_node_lock; /* for node entry lock */
1447 struct list_head fsync_node_list; /* node list head */
1448 unsigned int fsync_seg_id; /* sequence id */
1449 unsigned int fsync_node_num; /* number of node entries */
1450
1451 /* for orphan inode, use 0'th array */
1452 unsigned int max_orphans; /* max orphan inodes */
1453
1454 /* for inode management */
1455 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1456 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1457 struct mutex flush_lock; /* for flush exclusion */
1458
1459 /* for extent tree cache */
1460 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1461 struct mutex extent_tree_lock; /* locking extent radix tree */
1462 struct list_head extent_list; /* lru list for shrinker */
1463 spinlock_t extent_lock; /* locking extent lru list */
1464 atomic_t total_ext_tree; /* extent tree count */
1465 struct list_head zombie_list; /* extent zombie tree list */
1466 atomic_t total_zombie_tree; /* extent zombie tree count */
1467 atomic_t total_ext_node; /* extent info count */
1468
1469 /* basic filesystem units */
1470 unsigned int log_sectors_per_block; /* log2 sectors per block */
1471 unsigned int log_blocksize; /* log2 block size */
1472 unsigned int blocksize; /* block size */
1473 unsigned int root_ino_num; /* root inode number*/
1474 unsigned int node_ino_num; /* node inode number*/
1475 unsigned int meta_ino_num; /* meta inode number*/
1476 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1477 unsigned int blocks_per_seg; /* blocks per segment */
1478 unsigned int segs_per_sec; /* segments per section */
1479 unsigned int secs_per_zone; /* sections per zone */
1480 unsigned int total_sections; /* total section count */
1481 unsigned int total_node_count; /* total node block count */
1482 unsigned int total_valid_node_count; /* valid node block count */
1483 loff_t max_file_blocks; /* max block index of file */
1484 int dir_level; /* directory level */
1485 int readdir_ra; /* readahead inode in readdir */
1486
1487 block_t user_block_count; /* # of user blocks */
1488 block_t total_valid_block_count; /* # of valid blocks */
1489 block_t discard_blks; /* discard command candidats */
1490 block_t last_valid_block_count; /* for recovery */
1491 block_t reserved_blocks; /* configurable reserved blocks */
1492 block_t current_reserved_blocks; /* current reserved blocks */
1493
1494 /* Additional tracking for no checkpoint mode */
1495 block_t unusable_block_count; /* # of blocks saved by last cp */
1496
1497 unsigned int nquota_files; /* # of quota sysfile */
1498 struct rw_semaphore quota_sem; /* blocking cp for flags */
1499
1500 /* # of pages, see count_type */
1501 atomic_t nr_pages[NR_COUNT_TYPE];
1502 /* # of allocated blocks */
1503 struct percpu_counter alloc_valid_block_count;
1504
1505 /* writeback control */
1506 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1507
1508 /* valid inode count */
1509 struct percpu_counter total_valid_inode_count;
1510
1511 struct f2fs_mount_info mount_opt; /* mount options */
1512
1513 /* for cleaning operations */
1514 struct rw_semaphore gc_lock; /*
1515 * semaphore for GC, avoid
1516 * race between GC and GC or CP
1517 */
1518 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1519 unsigned int cur_victim_sec; /* current victim section num */
1520 unsigned int gc_mode; /* current GC state */
1521 unsigned int next_victim_seg[2]; /* next segment in victim section */
1522
1523 /* for skip statistic */
1524 unsigned int atomic_files; /* # of opened atomic file */
1525 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1526 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1527
1528 /* threshold for gc trials on pinned files */
1529 u64 gc_pin_file_threshold;
1530 struct rw_semaphore pin_sem;
1531
1532 /* maximum # of trials to find a victim segment for SSR and GC */
1533 unsigned int max_victim_search;
1534 /* migration granularity of garbage collection, unit: segment */
1535 unsigned int migration_granularity;
1536
1537 /*
1538 * for stat information.
1539 * one is for the LFS mode, and the other is for the SSR mode.
1540 */
1541 #ifdef CONFIG_F2FS_STAT_FS
1542 struct f2fs_stat_info *stat_info; /* FS status information */
1543 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1544 unsigned int segment_count[2]; /* # of allocated segments */
1545 unsigned int block_count[2]; /* # of allocated blocks */
1546 atomic_t inplace_count; /* # of inplace update */
1547 atomic64_t total_hit_ext; /* # of lookup extent cache */
1548 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1549 atomic64_t read_hit_largest; /* # of hit largest extent node */
1550 atomic64_t read_hit_cached; /* # of hit cached extent node */
1551 atomic_t inline_xattr; /* # of inline_xattr inodes */
1552 atomic_t inline_inode; /* # of inline_data inodes */
1553 atomic_t inline_dir; /* # of inline_dentry inodes */
1554 atomic_t compr_inode; /* # of compressed inodes */
1555 atomic_t compr_blocks; /* # of compressed blocks */
1556 atomic_t vw_cnt; /* # of volatile writes */
1557 atomic_t max_aw_cnt; /* max # of atomic writes */
1558 atomic_t max_vw_cnt; /* max # of volatile writes */
1559 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1560 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1561 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1562 #endif
1563 spinlock_t stat_lock; /* lock for stat operations */
1564
1565 /* For app/fs IO statistics */
1566 spinlock_t iostat_lock;
1567 unsigned long long rw_iostat[NR_IO_TYPE];
1568 unsigned long long prev_rw_iostat[NR_IO_TYPE];
1569 bool iostat_enable;
1570 unsigned long iostat_next_period;
1571 unsigned int iostat_period_ms;
1572
1573 /* to attach REQ_META|REQ_FUA flags */
1574 unsigned int data_io_flag;
1575 unsigned int node_io_flag;
1576
1577 /* For sysfs suppport */
1578 struct kobject s_kobj;
1579 struct completion s_kobj_unregister;
1580
1581 /* For shrinker support */
1582 struct list_head s_list;
1583 int s_ndevs; /* number of devices */
1584 struct f2fs_dev_info *devs; /* for device list */
1585 unsigned int dirty_device; /* for checkpoint data flush */
1586 spinlock_t dev_lock; /* protect dirty_device */
1587 struct mutex umount_mutex;
1588 unsigned int shrinker_run_no;
1589
1590 /* For write statistics */
1591 u64 sectors_written_start;
1592 u64 kbytes_written;
1593
1594 /* Reference to checksum algorithm driver via cryptoapi */
1595 struct crypto_shash *s_chksum_driver;
1596
1597 /* Precomputed FS UUID checksum for seeding other checksums */
1598 __u32 s_chksum_seed;
1599
1600 struct workqueue_struct *post_read_wq; /* post read workqueue */
1601
1602 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1603 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1604 };
1605
1606 struct f2fs_private_dio {
1607 struct inode *inode;
1608 void *orig_private;
1609 bio_end_io_t *orig_end_io;
1610 bool write;
1611 };
1612
1613 #ifdef CONFIG_F2FS_FAULT_INJECTION
1614 #define f2fs_show_injection_info(sbi, type) \
1615 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1616 KERN_INFO, sbi->sb->s_id, \
1617 f2fs_fault_name[type], \
1618 __func__, __builtin_return_address(0))
1619 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1620 {
1621 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1622
1623 if (!ffi->inject_rate)
1624 return false;
1625
1626 if (!IS_FAULT_SET(ffi, type))
1627 return false;
1628
1629 atomic_inc(&ffi->inject_ops);
1630 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1631 atomic_set(&ffi->inject_ops, 0);
1632 return true;
1633 }
1634 return false;
1635 }
1636 #else
1637 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1638 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1639 {
1640 return false;
1641 }
1642 #endif
1643
1644 /*
1645 * Test if the mounted volume is a multi-device volume.
1646 * - For a single regular disk volume, sbi->s_ndevs is 0.
1647 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1648 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1649 */
1650 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1651 {
1652 return sbi->s_ndevs > 1;
1653 }
1654
1655 /* For write statistics. Suppose sector size is 512 bytes,
1656 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1657 */
1658 #define BD_PART_WRITTEN(s) \
1659 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \
1660 (s)->sectors_written_start) >> 1)
1661
1662 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1663 {
1664 unsigned long now = jiffies;
1665
1666 sbi->last_time[type] = now;
1667
1668 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1669 if (type == REQ_TIME) {
1670 sbi->last_time[DISCARD_TIME] = now;
1671 sbi->last_time[GC_TIME] = now;
1672 }
1673 }
1674
1675 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1676 {
1677 unsigned long interval = sbi->interval_time[type] * HZ;
1678
1679 return time_after(jiffies, sbi->last_time[type] + interval);
1680 }
1681
1682 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1683 int type)
1684 {
1685 unsigned long interval = sbi->interval_time[type] * HZ;
1686 unsigned int wait_ms = 0;
1687 long delta;
1688
1689 delta = (sbi->last_time[type] + interval) - jiffies;
1690 if (delta > 0)
1691 wait_ms = jiffies_to_msecs(delta);
1692
1693 return wait_ms;
1694 }
1695
1696 /*
1697 * Inline functions
1698 */
1699 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1700 const void *address, unsigned int length)
1701 {
1702 struct {
1703 struct shash_desc shash;
1704 char ctx[4];
1705 } desc;
1706 int err;
1707
1708 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1709
1710 desc.shash.tfm = sbi->s_chksum_driver;
1711 *(u32 *)desc.ctx = crc;
1712
1713 err = crypto_shash_update(&desc.shash, address, length);
1714 BUG_ON(err);
1715
1716 return *(u32 *)desc.ctx;
1717 }
1718
1719 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1720 unsigned int length)
1721 {
1722 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1723 }
1724
1725 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1726 void *buf, size_t buf_size)
1727 {
1728 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1729 }
1730
1731 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1732 const void *address, unsigned int length)
1733 {
1734 return __f2fs_crc32(sbi, crc, address, length);
1735 }
1736
1737 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1738 {
1739 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1740 }
1741
1742 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1743 {
1744 return sb->s_fs_info;
1745 }
1746
1747 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1748 {
1749 return F2FS_SB(inode->i_sb);
1750 }
1751
1752 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1753 {
1754 return F2FS_I_SB(mapping->host);
1755 }
1756
1757 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1758 {
1759 return F2FS_M_SB(page_file_mapping(page));
1760 }
1761
1762 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1763 {
1764 return (struct f2fs_super_block *)(sbi->raw_super);
1765 }
1766
1767 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1768 {
1769 return (struct f2fs_checkpoint *)(sbi->ckpt);
1770 }
1771
1772 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1773 {
1774 return (struct f2fs_node *)page_address(page);
1775 }
1776
1777 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1778 {
1779 return &((struct f2fs_node *)page_address(page))->i;
1780 }
1781
1782 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1783 {
1784 return (struct f2fs_nm_info *)(sbi->nm_info);
1785 }
1786
1787 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1788 {
1789 return (struct f2fs_sm_info *)(sbi->sm_info);
1790 }
1791
1792 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1793 {
1794 return (struct sit_info *)(SM_I(sbi)->sit_info);
1795 }
1796
1797 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1798 {
1799 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1800 }
1801
1802 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1803 {
1804 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1805 }
1806
1807 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1808 {
1809 return sbi->meta_inode->i_mapping;
1810 }
1811
1812 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1813 {
1814 return sbi->node_inode->i_mapping;
1815 }
1816
1817 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1818 {
1819 return test_bit(type, &sbi->s_flag);
1820 }
1821
1822 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1823 {
1824 set_bit(type, &sbi->s_flag);
1825 }
1826
1827 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1828 {
1829 clear_bit(type, &sbi->s_flag);
1830 }
1831
1832 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1833 {
1834 return le64_to_cpu(cp->checkpoint_ver);
1835 }
1836
1837 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1838 {
1839 if (type < F2FS_MAX_QUOTAS)
1840 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1841 return 0;
1842 }
1843
1844 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1845 {
1846 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1847 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1848 }
1849
1850 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1851 {
1852 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1853
1854 return ckpt_flags & f;
1855 }
1856
1857 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1858 {
1859 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1860 }
1861
1862 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1863 {
1864 unsigned int ckpt_flags;
1865
1866 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1867 ckpt_flags |= f;
1868 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1869 }
1870
1871 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1872 {
1873 unsigned long flags;
1874
1875 spin_lock_irqsave(&sbi->cp_lock, flags);
1876 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1877 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1878 }
1879
1880 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1881 {
1882 unsigned int ckpt_flags;
1883
1884 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1885 ckpt_flags &= (~f);
1886 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1887 }
1888
1889 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1890 {
1891 unsigned long flags;
1892
1893 spin_lock_irqsave(&sbi->cp_lock, flags);
1894 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1895 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1896 }
1897
1898 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1899 {
1900 unsigned long flags;
1901 unsigned char *nat_bits;
1902
1903 /*
1904 * In order to re-enable nat_bits we need to call fsck.f2fs by
1905 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1906 * so let's rely on regular fsck or unclean shutdown.
1907 */
1908
1909 if (lock)
1910 spin_lock_irqsave(&sbi->cp_lock, flags);
1911 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1912 nat_bits = NM_I(sbi)->nat_bits;
1913 NM_I(sbi)->nat_bits = NULL;
1914 if (lock)
1915 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1916
1917 kvfree(nat_bits);
1918 }
1919
1920 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1921 struct cp_control *cpc)
1922 {
1923 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1924
1925 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1926 }
1927
1928 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1929 {
1930 down_read(&sbi->cp_rwsem);
1931 }
1932
1933 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1934 {
1935 return down_read_trylock(&sbi->cp_rwsem);
1936 }
1937
1938 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1939 {
1940 up_read(&sbi->cp_rwsem);
1941 }
1942
1943 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1944 {
1945 down_write(&sbi->cp_rwsem);
1946 }
1947
1948 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1949 {
1950 up_write(&sbi->cp_rwsem);
1951 }
1952
1953 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1954 {
1955 int reason = CP_SYNC;
1956
1957 if (test_opt(sbi, FASTBOOT))
1958 reason = CP_FASTBOOT;
1959 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1960 reason = CP_UMOUNT;
1961 return reason;
1962 }
1963
1964 static inline bool __remain_node_summaries(int reason)
1965 {
1966 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1967 }
1968
1969 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1970 {
1971 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1972 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1973 }
1974
1975 /*
1976 * Check whether the inode has blocks or not
1977 */
1978 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1979 {
1980 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1981
1982 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1983 }
1984
1985 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1986 {
1987 return ofs == XATTR_NODE_OFFSET;
1988 }
1989
1990 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1991 struct inode *inode, bool cap)
1992 {
1993 if (!inode)
1994 return true;
1995 if (!test_opt(sbi, RESERVE_ROOT))
1996 return false;
1997 if (IS_NOQUOTA(inode))
1998 return true;
1999 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2000 return true;
2001 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2002 in_group_p(F2FS_OPTION(sbi).s_resgid))
2003 return true;
2004 if (cap && capable(CAP_SYS_RESOURCE))
2005 return true;
2006 return false;
2007 }
2008
2009 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2010 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2011 struct inode *inode, blkcnt_t *count)
2012 {
2013 blkcnt_t diff = 0, release = 0;
2014 block_t avail_user_block_count;
2015 int ret;
2016
2017 ret = dquot_reserve_block(inode, *count);
2018 if (ret)
2019 return ret;
2020
2021 if (time_to_inject(sbi, FAULT_BLOCK)) {
2022 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2023 release = *count;
2024 goto release_quota;
2025 }
2026
2027 /*
2028 * let's increase this in prior to actual block count change in order
2029 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2030 */
2031 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2032
2033 spin_lock(&sbi->stat_lock);
2034 sbi->total_valid_block_count += (block_t)(*count);
2035 avail_user_block_count = sbi->user_block_count -
2036 sbi->current_reserved_blocks;
2037
2038 if (!__allow_reserved_blocks(sbi, inode, true))
2039 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2040 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2041 if (avail_user_block_count > sbi->unusable_block_count)
2042 avail_user_block_count -= sbi->unusable_block_count;
2043 else
2044 avail_user_block_count = 0;
2045 }
2046 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2047 diff = sbi->total_valid_block_count - avail_user_block_count;
2048 if (diff > *count)
2049 diff = *count;
2050 *count -= diff;
2051 release = diff;
2052 sbi->total_valid_block_count -= diff;
2053 if (!*count) {
2054 spin_unlock(&sbi->stat_lock);
2055 goto enospc;
2056 }
2057 }
2058 spin_unlock(&sbi->stat_lock);
2059
2060 if (unlikely(release)) {
2061 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2062 dquot_release_reservation_block(inode, release);
2063 }
2064 f2fs_i_blocks_write(inode, *count, true, true);
2065 return 0;
2066
2067 enospc:
2068 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2069 release_quota:
2070 dquot_release_reservation_block(inode, release);
2071 return -ENOSPC;
2072 }
2073
2074 __printf(2, 3)
2075 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2076
2077 #define f2fs_err(sbi, fmt, ...) \
2078 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2079 #define f2fs_warn(sbi, fmt, ...) \
2080 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2081 #define f2fs_notice(sbi, fmt, ...) \
2082 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2083 #define f2fs_info(sbi, fmt, ...) \
2084 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2085 #define f2fs_debug(sbi, fmt, ...) \
2086 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2087
2088 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2089 struct inode *inode,
2090 block_t count)
2091 {
2092 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2093
2094 spin_lock(&sbi->stat_lock);
2095 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2096 sbi->total_valid_block_count -= (block_t)count;
2097 if (sbi->reserved_blocks &&
2098 sbi->current_reserved_blocks < sbi->reserved_blocks)
2099 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2100 sbi->current_reserved_blocks + count);
2101 spin_unlock(&sbi->stat_lock);
2102 if (unlikely(inode->i_blocks < sectors)) {
2103 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2104 inode->i_ino,
2105 (unsigned long long)inode->i_blocks,
2106 (unsigned long long)sectors);
2107 set_sbi_flag(sbi, SBI_NEED_FSCK);
2108 return;
2109 }
2110 f2fs_i_blocks_write(inode, count, false, true);
2111 }
2112
2113 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2114 {
2115 atomic_inc(&sbi->nr_pages[count_type]);
2116
2117 if (count_type == F2FS_DIRTY_DENTS ||
2118 count_type == F2FS_DIRTY_NODES ||
2119 count_type == F2FS_DIRTY_META ||
2120 count_type == F2FS_DIRTY_QDATA ||
2121 count_type == F2FS_DIRTY_IMETA)
2122 set_sbi_flag(sbi, SBI_IS_DIRTY);
2123 }
2124
2125 static inline void inode_inc_dirty_pages(struct inode *inode)
2126 {
2127 atomic_inc(&F2FS_I(inode)->dirty_pages);
2128 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2129 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2130 if (IS_NOQUOTA(inode))
2131 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2132 }
2133
2134 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2135 {
2136 atomic_dec(&sbi->nr_pages[count_type]);
2137 }
2138
2139 static inline void inode_dec_dirty_pages(struct inode *inode)
2140 {
2141 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2142 !S_ISLNK(inode->i_mode))
2143 return;
2144
2145 atomic_dec(&F2FS_I(inode)->dirty_pages);
2146 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2147 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2148 if (IS_NOQUOTA(inode))
2149 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2150 }
2151
2152 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2153 {
2154 return atomic_read(&sbi->nr_pages[count_type]);
2155 }
2156
2157 static inline int get_dirty_pages(struct inode *inode)
2158 {
2159 return atomic_read(&F2FS_I(inode)->dirty_pages);
2160 }
2161
2162 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2163 {
2164 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2165 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2166 sbi->log_blocks_per_seg;
2167
2168 return segs / sbi->segs_per_sec;
2169 }
2170
2171 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2172 {
2173 return sbi->total_valid_block_count;
2174 }
2175
2176 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2177 {
2178 return sbi->discard_blks;
2179 }
2180
2181 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2182 {
2183 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2184
2185 /* return NAT or SIT bitmap */
2186 if (flag == NAT_BITMAP)
2187 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2188 else if (flag == SIT_BITMAP)
2189 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2190
2191 return 0;
2192 }
2193
2194 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2195 {
2196 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2197 }
2198
2199 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2200 {
2201 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2202 int offset;
2203
2204 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2205 offset = (flag == SIT_BITMAP) ?
2206 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2207 /*
2208 * if large_nat_bitmap feature is enabled, leave checksum
2209 * protection for all nat/sit bitmaps.
2210 */
2211 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2212 }
2213
2214 if (__cp_payload(sbi) > 0) {
2215 if (flag == NAT_BITMAP)
2216 return &ckpt->sit_nat_version_bitmap;
2217 else
2218 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2219 } else {
2220 offset = (flag == NAT_BITMAP) ?
2221 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2222 return &ckpt->sit_nat_version_bitmap + offset;
2223 }
2224 }
2225
2226 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2227 {
2228 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2229
2230 if (sbi->cur_cp_pack == 2)
2231 start_addr += sbi->blocks_per_seg;
2232 return start_addr;
2233 }
2234
2235 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2236 {
2237 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2238
2239 if (sbi->cur_cp_pack == 1)
2240 start_addr += sbi->blocks_per_seg;
2241 return start_addr;
2242 }
2243
2244 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2245 {
2246 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2247 }
2248
2249 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2250 {
2251 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2252 }
2253
2254 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2255 struct inode *inode, bool is_inode)
2256 {
2257 block_t valid_block_count;
2258 unsigned int valid_node_count, user_block_count;
2259 int err;
2260
2261 if (is_inode) {
2262 if (inode) {
2263 err = dquot_alloc_inode(inode);
2264 if (err)
2265 return err;
2266 }
2267 } else {
2268 err = dquot_reserve_block(inode, 1);
2269 if (err)
2270 return err;
2271 }
2272
2273 if (time_to_inject(sbi, FAULT_BLOCK)) {
2274 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2275 goto enospc;
2276 }
2277
2278 spin_lock(&sbi->stat_lock);
2279
2280 valid_block_count = sbi->total_valid_block_count +
2281 sbi->current_reserved_blocks + 1;
2282
2283 if (!__allow_reserved_blocks(sbi, inode, false))
2284 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2285 user_block_count = sbi->user_block_count;
2286 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2287 user_block_count -= sbi->unusable_block_count;
2288
2289 if (unlikely(valid_block_count > user_block_count)) {
2290 spin_unlock(&sbi->stat_lock);
2291 goto enospc;
2292 }
2293
2294 valid_node_count = sbi->total_valid_node_count + 1;
2295 if (unlikely(valid_node_count > sbi->total_node_count)) {
2296 spin_unlock(&sbi->stat_lock);
2297 goto enospc;
2298 }
2299
2300 sbi->total_valid_node_count++;
2301 sbi->total_valid_block_count++;
2302 spin_unlock(&sbi->stat_lock);
2303
2304 if (inode) {
2305 if (is_inode)
2306 f2fs_mark_inode_dirty_sync(inode, true);
2307 else
2308 f2fs_i_blocks_write(inode, 1, true, true);
2309 }
2310
2311 percpu_counter_inc(&sbi->alloc_valid_block_count);
2312 return 0;
2313
2314 enospc:
2315 if (is_inode) {
2316 if (inode)
2317 dquot_free_inode(inode);
2318 } else {
2319 dquot_release_reservation_block(inode, 1);
2320 }
2321 return -ENOSPC;
2322 }
2323
2324 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2325 struct inode *inode, bool is_inode)
2326 {
2327 spin_lock(&sbi->stat_lock);
2328
2329 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2330 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2331
2332 sbi->total_valid_node_count--;
2333 sbi->total_valid_block_count--;
2334 if (sbi->reserved_blocks &&
2335 sbi->current_reserved_blocks < sbi->reserved_blocks)
2336 sbi->current_reserved_blocks++;
2337
2338 spin_unlock(&sbi->stat_lock);
2339
2340 if (is_inode) {
2341 dquot_free_inode(inode);
2342 } else {
2343 if (unlikely(inode->i_blocks == 0)) {
2344 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2345 inode->i_ino,
2346 (unsigned long long)inode->i_blocks);
2347 set_sbi_flag(sbi, SBI_NEED_FSCK);
2348 return;
2349 }
2350 f2fs_i_blocks_write(inode, 1, false, true);
2351 }
2352 }
2353
2354 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2355 {
2356 return sbi->total_valid_node_count;
2357 }
2358
2359 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2360 {
2361 percpu_counter_inc(&sbi->total_valid_inode_count);
2362 }
2363
2364 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2365 {
2366 percpu_counter_dec(&sbi->total_valid_inode_count);
2367 }
2368
2369 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2370 {
2371 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2372 }
2373
2374 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2375 pgoff_t index, bool for_write)
2376 {
2377 struct page *page;
2378
2379 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2380 if (!for_write)
2381 page = find_get_page_flags(mapping, index,
2382 FGP_LOCK | FGP_ACCESSED);
2383 else
2384 page = find_lock_page(mapping, index);
2385 if (page)
2386 return page;
2387
2388 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2389 f2fs_show_injection_info(F2FS_M_SB(mapping),
2390 FAULT_PAGE_ALLOC);
2391 return NULL;
2392 }
2393 }
2394
2395 if (!for_write)
2396 return grab_cache_page(mapping, index);
2397 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2398 }
2399
2400 static inline struct page *f2fs_pagecache_get_page(
2401 struct address_space *mapping, pgoff_t index,
2402 int fgp_flags, gfp_t gfp_mask)
2403 {
2404 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2405 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2406 return NULL;
2407 }
2408
2409 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2410 }
2411
2412 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2413 {
2414 char *src_kaddr = kmap(src);
2415 char *dst_kaddr = kmap(dst);
2416
2417 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2418 kunmap(dst);
2419 kunmap(src);
2420 }
2421
2422 static inline void f2fs_put_page(struct page *page, int unlock)
2423 {
2424 if (!page)
2425 return;
2426
2427 if (unlock) {
2428 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2429 unlock_page(page);
2430 }
2431 put_page(page);
2432 }
2433
2434 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2435 {
2436 if (dn->node_page)
2437 f2fs_put_page(dn->node_page, 1);
2438 if (dn->inode_page && dn->node_page != dn->inode_page)
2439 f2fs_put_page(dn->inode_page, 0);
2440 dn->node_page = NULL;
2441 dn->inode_page = NULL;
2442 }
2443
2444 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2445 size_t size)
2446 {
2447 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2448 }
2449
2450 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2451 gfp_t flags)
2452 {
2453 void *entry;
2454
2455 entry = kmem_cache_alloc(cachep, flags);
2456 if (!entry)
2457 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2458 return entry;
2459 }
2460
2461 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2462 {
2463 if (sbi->gc_mode == GC_URGENT_HIGH)
2464 return true;
2465
2466 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2467 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2468 get_pages(sbi, F2FS_WB_CP_DATA) ||
2469 get_pages(sbi, F2FS_DIO_READ) ||
2470 get_pages(sbi, F2FS_DIO_WRITE))
2471 return false;
2472
2473 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2474 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2475 return false;
2476
2477 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2478 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2479 return false;
2480
2481 if (sbi->gc_mode == GC_URGENT_LOW &&
2482 (type == DISCARD_TIME || type == GC_TIME))
2483 return true;
2484
2485 return f2fs_time_over(sbi, type);
2486 }
2487
2488 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2489 unsigned long index, void *item)
2490 {
2491 while (radix_tree_insert(root, index, item))
2492 cond_resched();
2493 }
2494
2495 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2496
2497 static inline bool IS_INODE(struct page *page)
2498 {
2499 struct f2fs_node *p = F2FS_NODE(page);
2500
2501 return RAW_IS_INODE(p);
2502 }
2503
2504 static inline int offset_in_addr(struct f2fs_inode *i)
2505 {
2506 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2507 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2508 }
2509
2510 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2511 {
2512 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2513 }
2514
2515 static inline int f2fs_has_extra_attr(struct inode *inode);
2516 static inline block_t data_blkaddr(struct inode *inode,
2517 struct page *node_page, unsigned int offset)
2518 {
2519 struct f2fs_node *raw_node;
2520 __le32 *addr_array;
2521 int base = 0;
2522 bool is_inode = IS_INODE(node_page);
2523
2524 raw_node = F2FS_NODE(node_page);
2525
2526 if (is_inode) {
2527 if (!inode)
2528 /* from GC path only */
2529 base = offset_in_addr(&raw_node->i);
2530 else if (f2fs_has_extra_attr(inode))
2531 base = get_extra_isize(inode);
2532 }
2533
2534 addr_array = blkaddr_in_node(raw_node);
2535 return le32_to_cpu(addr_array[base + offset]);
2536 }
2537
2538 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2539 {
2540 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2541 }
2542
2543 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2544 {
2545 int mask;
2546
2547 addr += (nr >> 3);
2548 mask = 1 << (7 - (nr & 0x07));
2549 return mask & *addr;
2550 }
2551
2552 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2553 {
2554 int mask;
2555
2556 addr += (nr >> 3);
2557 mask = 1 << (7 - (nr & 0x07));
2558 *addr |= mask;
2559 }
2560
2561 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2562 {
2563 int mask;
2564
2565 addr += (nr >> 3);
2566 mask = 1 << (7 - (nr & 0x07));
2567 *addr &= ~mask;
2568 }
2569
2570 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2571 {
2572 int mask;
2573 int ret;
2574
2575 addr += (nr >> 3);
2576 mask = 1 << (7 - (nr & 0x07));
2577 ret = mask & *addr;
2578 *addr |= mask;
2579 return ret;
2580 }
2581
2582 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2583 {
2584 int mask;
2585 int ret;
2586
2587 addr += (nr >> 3);
2588 mask = 1 << (7 - (nr & 0x07));
2589 ret = mask & *addr;
2590 *addr &= ~mask;
2591 return ret;
2592 }
2593
2594 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2595 {
2596 int mask;
2597
2598 addr += (nr >> 3);
2599 mask = 1 << (7 - (nr & 0x07));
2600 *addr ^= mask;
2601 }
2602
2603 /*
2604 * On-disk inode flags (f2fs_inode::i_flags)
2605 */
2606 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2607 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2608 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2609 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2610 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2611 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2612 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2613 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2614 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2615 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2616 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2617
2618 /* Flags that should be inherited by new inodes from their parent. */
2619 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2620 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2621 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2622
2623 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2624 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2625 F2FS_CASEFOLD_FL))
2626
2627 /* Flags that are appropriate for non-directories/regular files. */
2628 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2629
2630 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2631 {
2632 if (S_ISDIR(mode))
2633 return flags;
2634 else if (S_ISREG(mode))
2635 return flags & F2FS_REG_FLMASK;
2636 else
2637 return flags & F2FS_OTHER_FLMASK;
2638 }
2639
2640 static inline void __mark_inode_dirty_flag(struct inode *inode,
2641 int flag, bool set)
2642 {
2643 switch (flag) {
2644 case FI_INLINE_XATTR:
2645 case FI_INLINE_DATA:
2646 case FI_INLINE_DENTRY:
2647 case FI_NEW_INODE:
2648 if (set)
2649 return;
2650 fallthrough;
2651 case FI_DATA_EXIST:
2652 case FI_INLINE_DOTS:
2653 case FI_PIN_FILE:
2654 f2fs_mark_inode_dirty_sync(inode, true);
2655 }
2656 }
2657
2658 static inline void set_inode_flag(struct inode *inode, int flag)
2659 {
2660 set_bit(flag, F2FS_I(inode)->flags);
2661 __mark_inode_dirty_flag(inode, flag, true);
2662 }
2663
2664 static inline int is_inode_flag_set(struct inode *inode, int flag)
2665 {
2666 return test_bit(flag, F2FS_I(inode)->flags);
2667 }
2668
2669 static inline void clear_inode_flag(struct inode *inode, int flag)
2670 {
2671 clear_bit(flag, F2FS_I(inode)->flags);
2672 __mark_inode_dirty_flag(inode, flag, false);
2673 }
2674
2675 static inline bool f2fs_verity_in_progress(struct inode *inode)
2676 {
2677 return IS_ENABLED(CONFIG_FS_VERITY) &&
2678 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2679 }
2680
2681 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2682 {
2683 F2FS_I(inode)->i_acl_mode = mode;
2684 set_inode_flag(inode, FI_ACL_MODE);
2685 f2fs_mark_inode_dirty_sync(inode, false);
2686 }
2687
2688 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2689 {
2690 if (inc)
2691 inc_nlink(inode);
2692 else
2693 drop_nlink(inode);
2694 f2fs_mark_inode_dirty_sync(inode, true);
2695 }
2696
2697 static inline void f2fs_i_blocks_write(struct inode *inode,
2698 block_t diff, bool add, bool claim)
2699 {
2700 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2701 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2702
2703 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2704 if (add) {
2705 if (claim)
2706 dquot_claim_block(inode, diff);
2707 else
2708 dquot_alloc_block_nofail(inode, diff);
2709 } else {
2710 dquot_free_block(inode, diff);
2711 }
2712
2713 f2fs_mark_inode_dirty_sync(inode, true);
2714 if (clean || recover)
2715 set_inode_flag(inode, FI_AUTO_RECOVER);
2716 }
2717
2718 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2719 {
2720 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2721 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2722
2723 if (i_size_read(inode) == i_size)
2724 return;
2725
2726 i_size_write(inode, i_size);
2727 f2fs_mark_inode_dirty_sync(inode, true);
2728 if (clean || recover)
2729 set_inode_flag(inode, FI_AUTO_RECOVER);
2730 }
2731
2732 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2733 {
2734 F2FS_I(inode)->i_current_depth = depth;
2735 f2fs_mark_inode_dirty_sync(inode, true);
2736 }
2737
2738 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2739 unsigned int count)
2740 {
2741 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2742 f2fs_mark_inode_dirty_sync(inode, true);
2743 }
2744
2745 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2746 {
2747 F2FS_I(inode)->i_xattr_nid = xnid;
2748 f2fs_mark_inode_dirty_sync(inode, true);
2749 }
2750
2751 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2752 {
2753 F2FS_I(inode)->i_pino = pino;
2754 f2fs_mark_inode_dirty_sync(inode, true);
2755 }
2756
2757 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2758 {
2759 struct f2fs_inode_info *fi = F2FS_I(inode);
2760
2761 if (ri->i_inline & F2FS_INLINE_XATTR)
2762 set_bit(FI_INLINE_XATTR, fi->flags);
2763 if (ri->i_inline & F2FS_INLINE_DATA)
2764 set_bit(FI_INLINE_DATA, fi->flags);
2765 if (ri->i_inline & F2FS_INLINE_DENTRY)
2766 set_bit(FI_INLINE_DENTRY, fi->flags);
2767 if (ri->i_inline & F2FS_DATA_EXIST)
2768 set_bit(FI_DATA_EXIST, fi->flags);
2769 if (ri->i_inline & F2FS_INLINE_DOTS)
2770 set_bit(FI_INLINE_DOTS, fi->flags);
2771 if (ri->i_inline & F2FS_EXTRA_ATTR)
2772 set_bit(FI_EXTRA_ATTR, fi->flags);
2773 if (ri->i_inline & F2FS_PIN_FILE)
2774 set_bit(FI_PIN_FILE, fi->flags);
2775 }
2776
2777 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2778 {
2779 ri->i_inline = 0;
2780
2781 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2782 ri->i_inline |= F2FS_INLINE_XATTR;
2783 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2784 ri->i_inline |= F2FS_INLINE_DATA;
2785 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2786 ri->i_inline |= F2FS_INLINE_DENTRY;
2787 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2788 ri->i_inline |= F2FS_DATA_EXIST;
2789 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2790 ri->i_inline |= F2FS_INLINE_DOTS;
2791 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2792 ri->i_inline |= F2FS_EXTRA_ATTR;
2793 if (is_inode_flag_set(inode, FI_PIN_FILE))
2794 ri->i_inline |= F2FS_PIN_FILE;
2795 }
2796
2797 static inline int f2fs_has_extra_attr(struct inode *inode)
2798 {
2799 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2800 }
2801
2802 static inline int f2fs_has_inline_xattr(struct inode *inode)
2803 {
2804 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2805 }
2806
2807 static inline int f2fs_compressed_file(struct inode *inode)
2808 {
2809 return S_ISREG(inode->i_mode) &&
2810 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2811 }
2812
2813 static inline unsigned int addrs_per_inode(struct inode *inode)
2814 {
2815 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2816 get_inline_xattr_addrs(inode);
2817
2818 if (!f2fs_compressed_file(inode))
2819 return addrs;
2820 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2821 }
2822
2823 static inline unsigned int addrs_per_block(struct inode *inode)
2824 {
2825 if (!f2fs_compressed_file(inode))
2826 return DEF_ADDRS_PER_BLOCK;
2827 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2828 }
2829
2830 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2831 {
2832 struct f2fs_inode *ri = F2FS_INODE(page);
2833
2834 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2835 get_inline_xattr_addrs(inode)]);
2836 }
2837
2838 static inline int inline_xattr_size(struct inode *inode)
2839 {
2840 if (f2fs_has_inline_xattr(inode))
2841 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2842 return 0;
2843 }
2844
2845 static inline int f2fs_has_inline_data(struct inode *inode)
2846 {
2847 return is_inode_flag_set(inode, FI_INLINE_DATA);
2848 }
2849
2850 static inline int f2fs_exist_data(struct inode *inode)
2851 {
2852 return is_inode_flag_set(inode, FI_DATA_EXIST);
2853 }
2854
2855 static inline int f2fs_has_inline_dots(struct inode *inode)
2856 {
2857 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2858 }
2859
2860 static inline int f2fs_is_mmap_file(struct inode *inode)
2861 {
2862 return is_inode_flag_set(inode, FI_MMAP_FILE);
2863 }
2864
2865 static inline bool f2fs_is_pinned_file(struct inode *inode)
2866 {
2867 return is_inode_flag_set(inode, FI_PIN_FILE);
2868 }
2869
2870 static inline bool f2fs_is_atomic_file(struct inode *inode)
2871 {
2872 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2873 }
2874
2875 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2876 {
2877 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2878 }
2879
2880 static inline bool f2fs_is_volatile_file(struct inode *inode)
2881 {
2882 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2883 }
2884
2885 static inline bool f2fs_is_first_block_written(struct inode *inode)
2886 {
2887 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2888 }
2889
2890 static inline bool f2fs_is_drop_cache(struct inode *inode)
2891 {
2892 return is_inode_flag_set(inode, FI_DROP_CACHE);
2893 }
2894
2895 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2896 {
2897 struct f2fs_inode *ri = F2FS_INODE(page);
2898 int extra_size = get_extra_isize(inode);
2899
2900 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2901 }
2902
2903 static inline int f2fs_has_inline_dentry(struct inode *inode)
2904 {
2905 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2906 }
2907
2908 static inline int is_file(struct inode *inode, int type)
2909 {
2910 return F2FS_I(inode)->i_advise & type;
2911 }
2912
2913 static inline void set_file(struct inode *inode, int type)
2914 {
2915 F2FS_I(inode)->i_advise |= type;
2916 f2fs_mark_inode_dirty_sync(inode, true);
2917 }
2918
2919 static inline void clear_file(struct inode *inode, int type)
2920 {
2921 F2FS_I(inode)->i_advise &= ~type;
2922 f2fs_mark_inode_dirty_sync(inode, true);
2923 }
2924
2925 static inline bool f2fs_is_time_consistent(struct inode *inode)
2926 {
2927 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2928 return false;
2929 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2930 return false;
2931 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2932 return false;
2933 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2934 &F2FS_I(inode)->i_crtime))
2935 return false;
2936 return true;
2937 }
2938
2939 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2940 {
2941 bool ret;
2942
2943 if (dsync) {
2944 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2945
2946 spin_lock(&sbi->inode_lock[DIRTY_META]);
2947 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2948 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2949 return ret;
2950 }
2951 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2952 file_keep_isize(inode) ||
2953 i_size_read(inode) & ~PAGE_MASK)
2954 return false;
2955
2956 if (!f2fs_is_time_consistent(inode))
2957 return false;
2958
2959 spin_lock(&F2FS_I(inode)->i_size_lock);
2960 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2961 spin_unlock(&F2FS_I(inode)->i_size_lock);
2962
2963 return ret;
2964 }
2965
2966 static inline bool f2fs_readonly(struct super_block *sb)
2967 {
2968 return sb_rdonly(sb);
2969 }
2970
2971 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2972 {
2973 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2974 }
2975
2976 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2977 {
2978 if (len == 1 && name[0] == '.')
2979 return true;
2980
2981 if (len == 2 && name[0] == '.' && name[1] == '.')
2982 return true;
2983
2984 return false;
2985 }
2986
2987 static inline bool f2fs_may_extent_tree(struct inode *inode)
2988 {
2989 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2990
2991 if (!test_opt(sbi, EXTENT_CACHE) ||
2992 is_inode_flag_set(inode, FI_NO_EXTENT) ||
2993 is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2994 return false;
2995
2996 /*
2997 * for recovered files during mount do not create extents
2998 * if shrinker is not registered.
2999 */
3000 if (list_empty(&sbi->s_list))
3001 return false;
3002
3003 return S_ISREG(inode->i_mode);
3004 }
3005
3006 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3007 size_t size, gfp_t flags)
3008 {
3009 if (time_to_inject(sbi, FAULT_KMALLOC)) {
3010 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3011 return NULL;
3012 }
3013
3014 return kmalloc(size, flags);
3015 }
3016
3017 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3018 size_t size, gfp_t flags)
3019 {
3020 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3021 }
3022
3023 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3024 size_t size, gfp_t flags)
3025 {
3026 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3027 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3028 return NULL;
3029 }
3030
3031 return kvmalloc(size, flags);
3032 }
3033
3034 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3035 size_t size, gfp_t flags)
3036 {
3037 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3038 }
3039
3040 static inline int get_extra_isize(struct inode *inode)
3041 {
3042 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3043 }
3044
3045 static inline int get_inline_xattr_addrs(struct inode *inode)
3046 {
3047 return F2FS_I(inode)->i_inline_xattr_size;
3048 }
3049
3050 #define f2fs_get_inode_mode(i) \
3051 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3052 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3053
3054 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3055 (offsetof(struct f2fs_inode, i_extra_end) - \
3056 offsetof(struct f2fs_inode, i_extra_isize)) \
3057
3058 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3059 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3060 ((offsetof(typeof(*(f2fs_inode)), field) + \
3061 sizeof((f2fs_inode)->field)) \
3062 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3063
3064 #define DEFAULT_IOSTAT_PERIOD_MS 3000
3065 #define MIN_IOSTAT_PERIOD_MS 100
3066 /* maximum period of iostat tracing is 1 day */
3067 #define MAX_IOSTAT_PERIOD_MS 8640000
3068
3069 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3070 {
3071 int i;
3072
3073 spin_lock(&sbi->iostat_lock);
3074 for (i = 0; i < NR_IO_TYPE; i++) {
3075 sbi->rw_iostat[i] = 0;
3076 sbi->prev_rw_iostat[i] = 0;
3077 }
3078 spin_unlock(&sbi->iostat_lock);
3079 }
3080
3081 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3082
3083 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3084 enum iostat_type type, unsigned long long io_bytes)
3085 {
3086 if (!sbi->iostat_enable)
3087 return;
3088 spin_lock(&sbi->iostat_lock);
3089 sbi->rw_iostat[type] += io_bytes;
3090
3091 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3092 sbi->rw_iostat[APP_BUFFERED_IO] =
3093 sbi->rw_iostat[APP_WRITE_IO] -
3094 sbi->rw_iostat[APP_DIRECT_IO];
3095
3096 if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3097 sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3098 sbi->rw_iostat[APP_READ_IO] -
3099 sbi->rw_iostat[APP_DIRECT_READ_IO];
3100 spin_unlock(&sbi->iostat_lock);
3101
3102 f2fs_record_iostat(sbi);
3103 }
3104
3105 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3106
3107 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3108
3109 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3110 block_t blkaddr, int type);
3111 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3112 block_t blkaddr, int type)
3113 {
3114 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3115 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3116 blkaddr, type);
3117 f2fs_bug_on(sbi, 1);
3118 }
3119 }
3120
3121 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3122 {
3123 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3124 blkaddr == COMPRESS_ADDR)
3125 return false;
3126 return true;
3127 }
3128
3129 static inline void f2fs_set_page_private(struct page *page,
3130 unsigned long data)
3131 {
3132 if (PagePrivate(page))
3133 return;
3134
3135 attach_page_private(page, (void *)data);
3136 }
3137
3138 static inline void f2fs_clear_page_private(struct page *page)
3139 {
3140 detach_page_private(page);
3141 }
3142
3143 /*
3144 * file.c
3145 */
3146 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3147 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3148 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3149 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3150 int f2fs_truncate(struct inode *inode);
3151 int f2fs_getattr(const struct path *path, struct kstat *stat,
3152 u32 request_mask, unsigned int flags);
3153 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3154 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3155 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3156 int f2fs_precache_extents(struct inode *inode);
3157 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3158 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3159 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3160 int f2fs_pin_file_control(struct inode *inode, bool inc);
3161
3162 /*
3163 * inode.c
3164 */
3165 void f2fs_set_inode_flags(struct inode *inode);
3166 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3167 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3168 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3169 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3170 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3171 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3172 void f2fs_update_inode_page(struct inode *inode);
3173 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3174 void f2fs_evict_inode(struct inode *inode);
3175 void f2fs_handle_failed_inode(struct inode *inode);
3176
3177 /*
3178 * namei.c
3179 */
3180 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3181 bool hot, bool set);
3182 struct dentry *f2fs_get_parent(struct dentry *child);
3183
3184 /*
3185 * dir.c
3186 */
3187 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3188 int f2fs_init_casefolded_name(const struct inode *dir,
3189 struct f2fs_filename *fname);
3190 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3191 int lookup, struct f2fs_filename *fname);
3192 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3193 struct f2fs_filename *fname);
3194 void f2fs_free_filename(struct f2fs_filename *fname);
3195 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3196 const struct f2fs_filename *fname, int *max_slots);
3197 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3198 unsigned int start_pos, struct fscrypt_str *fstr);
3199 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3200 struct f2fs_dentry_ptr *d);
3201 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3202 const struct f2fs_filename *fname, struct page *dpage);
3203 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3204 unsigned int current_depth);
3205 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3206 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3207 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3208 const struct f2fs_filename *fname,
3209 struct page **res_page);
3210 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3211 const struct qstr *child, struct page **res_page);
3212 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3213 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3214 struct page **page);
3215 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3216 struct page *page, struct inode *inode);
3217 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3218 const struct f2fs_filename *fname);
3219 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3220 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3221 unsigned int bit_pos);
3222 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3223 struct inode *inode, nid_t ino, umode_t mode);
3224 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3225 struct inode *inode, nid_t ino, umode_t mode);
3226 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3227 struct inode *inode, nid_t ino, umode_t mode);
3228 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3229 struct inode *dir, struct inode *inode);
3230 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3231 bool f2fs_empty_dir(struct inode *dir);
3232
3233 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3234 {
3235 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3236 inode, inode->i_ino, inode->i_mode);
3237 }
3238
3239 /*
3240 * super.c
3241 */
3242 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3243 void f2fs_inode_synced(struct inode *inode);
3244 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3245 int f2fs_quota_sync(struct super_block *sb, int type);
3246 void f2fs_quota_off_umount(struct super_block *sb);
3247 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3248 int f2fs_sync_fs(struct super_block *sb, int sync);
3249 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3250
3251 /*
3252 * hash.c
3253 */
3254 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3255
3256 /*
3257 * node.c
3258 */
3259 struct dnode_of_data;
3260 struct node_info;
3261
3262 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3263 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3264 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3265 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3266 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3267 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3268 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3269 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3270 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3271 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3272 struct node_info *ni);
3273 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3274 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3275 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3276 int f2fs_truncate_xattr_node(struct inode *inode);
3277 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3278 unsigned int seq_id);
3279 int f2fs_remove_inode_page(struct inode *inode);
3280 struct page *f2fs_new_inode_page(struct inode *inode);
3281 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3282 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3283 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3284 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3285 int f2fs_move_node_page(struct page *node_page, int gc_type);
3286 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3287 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3288 struct writeback_control *wbc, bool atomic,
3289 unsigned int *seq_id);
3290 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3291 struct writeback_control *wbc,
3292 bool do_balance, enum iostat_type io_type);
3293 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3294 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3295 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3296 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3297 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3298 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3299 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3300 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3301 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3302 unsigned int segno, struct f2fs_summary_block *sum);
3303 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3304 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3305 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3306 int __init f2fs_create_node_manager_caches(void);
3307 void f2fs_destroy_node_manager_caches(void);
3308
3309 /*
3310 * segment.c
3311 */
3312 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3313 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3314 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3315 void f2fs_drop_inmem_pages(struct inode *inode);
3316 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3317 int f2fs_commit_inmem_pages(struct inode *inode);
3318 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3319 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3320 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3321 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3322 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3323 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3324 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3325 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3326 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3327 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3328 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3329 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3330 struct cp_control *cpc);
3331 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3332 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3333 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3334 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3335 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3336 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3337 unsigned int start, unsigned int end);
3338 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3339 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3340 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3341 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3342 struct cp_control *cpc);
3343 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3344 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3345 block_t blk_addr);
3346 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3347 enum iostat_type io_type);
3348 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3349 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3350 struct f2fs_io_info *fio);
3351 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3352 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3353 block_t old_blkaddr, block_t new_blkaddr,
3354 bool recover_curseg, bool recover_newaddr);
3355 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3356 block_t old_addr, block_t new_addr,
3357 unsigned char version, bool recover_curseg,
3358 bool recover_newaddr);
3359 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3360 block_t old_blkaddr, block_t *new_blkaddr,
3361 struct f2fs_summary *sum, int type,
3362 struct f2fs_io_info *fio);
3363 void f2fs_wait_on_page_writeback(struct page *page,
3364 enum page_type type, bool ordered, bool locked);
3365 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3366 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3367 block_t len);
3368 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3369 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3370 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3371 unsigned int val, int alloc);
3372 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3373 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3374 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3375 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3376 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3377 int __init f2fs_create_segment_manager_caches(void);
3378 void f2fs_destroy_segment_manager_caches(void);
3379 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3380 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3381 enum page_type type, enum temp_type temp);
3382 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3383 unsigned int segno);
3384 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3385 unsigned int segno);
3386
3387 /*
3388 * checkpoint.c
3389 */
3390 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3391 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3392 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3393 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3394 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3395 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3396 block_t blkaddr, int type);
3397 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3398 int type, bool sync);
3399 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3400 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3401 long nr_to_write, enum iostat_type io_type);
3402 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3403 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3404 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3405 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3406 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3407 unsigned int devidx, int type);
3408 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3409 unsigned int devidx, int type);
3410 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3411 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3412 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3413 void f2fs_add_orphan_inode(struct inode *inode);
3414 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3415 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3416 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3417 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3418 void f2fs_remove_dirty_inode(struct inode *inode);
3419 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3420 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3421 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3422 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3423 int __init f2fs_create_checkpoint_caches(void);
3424 void f2fs_destroy_checkpoint_caches(void);
3425
3426 /*
3427 * data.c
3428 */
3429 int __init f2fs_init_bioset(void);
3430 void f2fs_destroy_bioset(void);
3431 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3432 int f2fs_init_bio_entry_cache(void);
3433 void f2fs_destroy_bio_entry_cache(void);
3434 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3435 struct bio *bio, enum page_type type);
3436 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3437 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3438 struct inode *inode, struct page *page,
3439 nid_t ino, enum page_type type);
3440 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3441 struct bio **bio, struct page *page);
3442 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3443 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3444 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3445 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3446 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3447 block_t blk_addr, struct bio *bio);
3448 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3449 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3450 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3451 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3452 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3453 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3454 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3455 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3456 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3457 int op_flags, bool for_write);
3458 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3459 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3460 bool for_write);
3461 struct page *f2fs_get_new_data_page(struct inode *inode,
3462 struct page *ipage, pgoff_t index, bool new_i_size);
3463 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3464 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3465 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3466 int create, int flag);
3467 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3468 u64 start, u64 len);
3469 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3470 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3471 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3472 int f2fs_write_single_data_page(struct page *page, int *submitted,
3473 struct bio **bio, sector_t *last_block,
3474 struct writeback_control *wbc,
3475 enum iostat_type io_type,
3476 int compr_blocks);
3477 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3478 unsigned int length);
3479 int f2fs_release_page(struct page *page, gfp_t wait);
3480 #ifdef CONFIG_MIGRATION
3481 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3482 struct page *page, enum migrate_mode mode);
3483 #endif
3484 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3485 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3486 int f2fs_init_post_read_processing(void);
3487 void f2fs_destroy_post_read_processing(void);
3488 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3489 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3490
3491 /*
3492 * gc.c
3493 */
3494 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3495 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3496 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3497 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3498 unsigned int segno);
3499 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3500 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3501
3502 /*
3503 * recovery.c
3504 */
3505 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3506 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3507
3508 /*
3509 * debug.c
3510 */
3511 #ifdef CONFIG_F2FS_STAT_FS
3512 struct f2fs_stat_info {
3513 struct list_head stat_list;
3514 struct f2fs_sb_info *sbi;
3515 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3516 int main_area_segs, main_area_sections, main_area_zones;
3517 unsigned long long hit_largest, hit_cached, hit_rbtree;
3518 unsigned long long hit_total, total_ext;
3519 int ext_tree, zombie_tree, ext_node;
3520 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3521 int ndirty_data, ndirty_qdata;
3522 int inmem_pages;
3523 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3524 int nats, dirty_nats, sits, dirty_sits;
3525 int free_nids, avail_nids, alloc_nids;
3526 int total_count, utilization;
3527 int bg_gc, nr_wb_cp_data, nr_wb_data;
3528 int nr_rd_data, nr_rd_node, nr_rd_meta;
3529 int nr_dio_read, nr_dio_write;
3530 unsigned int io_skip_bggc, other_skip_bggc;
3531 int nr_flushing, nr_flushed, flush_list_empty;
3532 int nr_discarding, nr_discarded;
3533 int nr_discard_cmd;
3534 unsigned int undiscard_blks;
3535 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3536 int compr_inode, compr_blocks;
3537 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3538 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3539 unsigned int bimodal, avg_vblocks;
3540 int util_free, util_valid, util_invalid;
3541 int rsvd_segs, overp_segs;
3542 int dirty_count, node_pages, meta_pages;
3543 int prefree_count, call_count, cp_count, bg_cp_count;
3544 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3545 int bg_node_segs, bg_data_segs;
3546 int tot_blks, data_blks, node_blks;
3547 int bg_data_blks, bg_node_blks;
3548 unsigned long long skipped_atomic_files[2];
3549 int curseg[NR_CURSEG_TYPE];
3550 int cursec[NR_CURSEG_TYPE];
3551 int curzone[NR_CURSEG_TYPE];
3552 unsigned int dirty_seg[NR_CURSEG_TYPE];
3553 unsigned int full_seg[NR_CURSEG_TYPE];
3554 unsigned int valid_blks[NR_CURSEG_TYPE];
3555
3556 unsigned int meta_count[META_MAX];
3557 unsigned int segment_count[2];
3558 unsigned int block_count[2];
3559 unsigned int inplace_count;
3560 unsigned long long base_mem, cache_mem, page_mem;
3561 };
3562
3563 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3564 {
3565 return (struct f2fs_stat_info *)sbi->stat_info;
3566 }
3567
3568 #define stat_inc_cp_count(si) ((si)->cp_count++)
3569 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3570 #define stat_inc_call_count(si) ((si)->call_count++)
3571 #define stat_inc_bggc_count(si) ((si)->bg_gc++)
3572 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3573 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3574 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3575 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3576 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3577 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3578 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3579 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3580 #define stat_inc_inline_xattr(inode) \
3581 do { \
3582 if (f2fs_has_inline_xattr(inode)) \
3583 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3584 } while (0)
3585 #define stat_dec_inline_xattr(inode) \
3586 do { \
3587 if (f2fs_has_inline_xattr(inode)) \
3588 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3589 } while (0)
3590 #define stat_inc_inline_inode(inode) \
3591 do { \
3592 if (f2fs_has_inline_data(inode)) \
3593 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3594 } while (0)
3595 #define stat_dec_inline_inode(inode) \
3596 do { \
3597 if (f2fs_has_inline_data(inode)) \
3598 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3599 } while (0)
3600 #define stat_inc_inline_dir(inode) \
3601 do { \
3602 if (f2fs_has_inline_dentry(inode)) \
3603 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3604 } while (0)
3605 #define stat_dec_inline_dir(inode) \
3606 do { \
3607 if (f2fs_has_inline_dentry(inode)) \
3608 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3609 } while (0)
3610 #define stat_inc_compr_inode(inode) \
3611 do { \
3612 if (f2fs_compressed_file(inode)) \
3613 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3614 } while (0)
3615 #define stat_dec_compr_inode(inode) \
3616 do { \
3617 if (f2fs_compressed_file(inode)) \
3618 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3619 } while (0)
3620 #define stat_add_compr_blocks(inode, blocks) \
3621 (atomic_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3622 #define stat_sub_compr_blocks(inode, blocks) \
3623 (atomic_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3624 #define stat_inc_meta_count(sbi, blkaddr) \
3625 do { \
3626 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3627 atomic_inc(&(sbi)->meta_count[META_CP]); \
3628 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3629 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3630 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3631 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3632 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3633 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3634 } while (0)
3635 #define stat_inc_seg_type(sbi, curseg) \
3636 ((sbi)->segment_count[(curseg)->alloc_type]++)
3637 #define stat_inc_block_count(sbi, curseg) \
3638 ((sbi)->block_count[(curseg)->alloc_type]++)
3639 #define stat_inc_inplace_blocks(sbi) \
3640 (atomic_inc(&(sbi)->inplace_count))
3641 #define stat_update_max_atomic_write(inode) \
3642 do { \
3643 int cur = F2FS_I_SB(inode)->atomic_files; \
3644 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3645 if (cur > max) \
3646 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3647 } while (0)
3648 #define stat_inc_volatile_write(inode) \
3649 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3650 #define stat_dec_volatile_write(inode) \
3651 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3652 #define stat_update_max_volatile_write(inode) \
3653 do { \
3654 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3655 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3656 if (cur > max) \
3657 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3658 } while (0)
3659 #define stat_inc_seg_count(sbi, type, gc_type) \
3660 do { \
3661 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3662 si->tot_segs++; \
3663 if ((type) == SUM_TYPE_DATA) { \
3664 si->data_segs++; \
3665 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3666 } else { \
3667 si->node_segs++; \
3668 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3669 } \
3670 } while (0)
3671
3672 #define stat_inc_tot_blk_count(si, blks) \
3673 ((si)->tot_blks += (blks))
3674
3675 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3676 do { \
3677 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3678 stat_inc_tot_blk_count(si, blks); \
3679 si->data_blks += (blks); \
3680 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3681 } while (0)
3682
3683 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3684 do { \
3685 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3686 stat_inc_tot_blk_count(si, blks); \
3687 si->node_blks += (blks); \
3688 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3689 } while (0)
3690
3691 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3692 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3693 void __init f2fs_create_root_stats(void);
3694 void f2fs_destroy_root_stats(void);
3695 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3696 #else
3697 #define stat_inc_cp_count(si) do { } while (0)
3698 #define stat_inc_bg_cp_count(si) do { } while (0)
3699 #define stat_inc_call_count(si) do { } while (0)
3700 #define stat_inc_bggc_count(si) do { } while (0)
3701 #define stat_io_skip_bggc_count(sbi) do { } while (0)
3702 #define stat_other_skip_bggc_count(sbi) do { } while (0)
3703 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3704 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3705 #define stat_inc_total_hit(sbi) do { } while (0)
3706 #define stat_inc_rbtree_node_hit(sbi) do { } while (0)
3707 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3708 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3709 #define stat_inc_inline_xattr(inode) do { } while (0)
3710 #define stat_dec_inline_xattr(inode) do { } while (0)
3711 #define stat_inc_inline_inode(inode) do { } while (0)
3712 #define stat_dec_inline_inode(inode) do { } while (0)
3713 #define stat_inc_inline_dir(inode) do { } while (0)
3714 #define stat_dec_inline_dir(inode) do { } while (0)
3715 #define stat_inc_compr_inode(inode) do { } while (0)
3716 #define stat_dec_compr_inode(inode) do { } while (0)
3717 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
3718 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
3719 #define stat_inc_atomic_write(inode) do { } while (0)
3720 #define stat_dec_atomic_write(inode) do { } while (0)
3721 #define stat_update_max_atomic_write(inode) do { } while (0)
3722 #define stat_inc_volatile_write(inode) do { } while (0)
3723 #define stat_dec_volatile_write(inode) do { } while (0)
3724 #define stat_update_max_volatile_write(inode) do { } while (0)
3725 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3726 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3727 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3728 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3729 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3730 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3731 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3732 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3733
3734 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3735 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3736 static inline void __init f2fs_create_root_stats(void) { }
3737 static inline void f2fs_destroy_root_stats(void) { }
3738 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3739 #endif
3740
3741 extern const struct file_operations f2fs_dir_operations;
3742 #ifdef CONFIG_UNICODE
3743 extern const struct dentry_operations f2fs_dentry_ops;
3744 #endif
3745 extern const struct file_operations f2fs_file_operations;
3746 extern const struct inode_operations f2fs_file_inode_operations;
3747 extern const struct address_space_operations f2fs_dblock_aops;
3748 extern const struct address_space_operations f2fs_node_aops;
3749 extern const struct address_space_operations f2fs_meta_aops;
3750 extern const struct inode_operations f2fs_dir_inode_operations;
3751 extern const struct inode_operations f2fs_symlink_inode_operations;
3752 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3753 extern const struct inode_operations f2fs_special_inode_operations;
3754 extern struct kmem_cache *f2fs_inode_entry_slab;
3755
3756 /*
3757 * inline.c
3758 */
3759 bool f2fs_may_inline_data(struct inode *inode);
3760 bool f2fs_may_inline_dentry(struct inode *inode);
3761 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3762 void f2fs_truncate_inline_inode(struct inode *inode,
3763 struct page *ipage, u64 from);
3764 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3765 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3766 int f2fs_convert_inline_inode(struct inode *inode);
3767 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3768 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3769 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3770 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3771 const struct f2fs_filename *fname,
3772 struct page **res_page);
3773 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3774 struct page *ipage);
3775 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3776 struct inode *inode, nid_t ino, umode_t mode);
3777 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3778 struct page *page, struct inode *dir,
3779 struct inode *inode);
3780 bool f2fs_empty_inline_dir(struct inode *dir);
3781 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3782 struct fscrypt_str *fstr);
3783 int f2fs_inline_data_fiemap(struct inode *inode,
3784 struct fiemap_extent_info *fieinfo,
3785 __u64 start, __u64 len);
3786
3787 /*
3788 * shrinker.c
3789 */
3790 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3791 struct shrink_control *sc);
3792 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3793 struct shrink_control *sc);
3794 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3795 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3796
3797 /*
3798 * extent_cache.c
3799 */
3800 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3801 struct rb_entry *cached_re, unsigned int ofs);
3802 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3803 struct rb_root_cached *root,
3804 struct rb_node **parent,
3805 unsigned int ofs, bool *leftmost);
3806 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3807 struct rb_entry *cached_re, unsigned int ofs,
3808 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3809 struct rb_node ***insert_p, struct rb_node **insert_parent,
3810 bool force, bool *leftmost);
3811 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3812 struct rb_root_cached *root);
3813 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3814 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3815 void f2fs_drop_extent_tree(struct inode *inode);
3816 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3817 void f2fs_destroy_extent_tree(struct inode *inode);
3818 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3819 struct extent_info *ei);
3820 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3821 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3822 pgoff_t fofs, block_t blkaddr, unsigned int len);
3823 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3824 int __init f2fs_create_extent_cache(void);
3825 void f2fs_destroy_extent_cache(void);
3826
3827 /*
3828 * sysfs.c
3829 */
3830 int __init f2fs_init_sysfs(void);
3831 void f2fs_exit_sysfs(void);
3832 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3833 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3834
3835 /* verity.c */
3836 extern const struct fsverity_operations f2fs_verityops;
3837
3838 /*
3839 * crypto support
3840 */
3841 static inline bool f2fs_encrypted_file(struct inode *inode)
3842 {
3843 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3844 }
3845
3846 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3847 {
3848 #ifdef CONFIG_FS_ENCRYPTION
3849 file_set_encrypt(inode);
3850 f2fs_set_inode_flags(inode);
3851 #endif
3852 }
3853
3854 /*
3855 * Returns true if the reads of the inode's data need to undergo some
3856 * postprocessing step, like decryption or authenticity verification.
3857 */
3858 static inline bool f2fs_post_read_required(struct inode *inode)
3859 {
3860 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3861 f2fs_compressed_file(inode);
3862 }
3863
3864 /*
3865 * compress.c
3866 */
3867 #ifdef CONFIG_F2FS_FS_COMPRESSION
3868 bool f2fs_is_compressed_page(struct page *page);
3869 struct page *f2fs_compress_control_page(struct page *page);
3870 int f2fs_prepare_compress_overwrite(struct inode *inode,
3871 struct page **pagep, pgoff_t index, void **fsdata);
3872 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3873 pgoff_t index, unsigned copied);
3874 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3875 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3876 bool f2fs_is_compress_backend_ready(struct inode *inode);
3877 int f2fs_init_compress_mempool(void);
3878 void f2fs_destroy_compress_mempool(void);
3879 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3880 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3881 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3882 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3883 int f2fs_write_multi_pages(struct compress_ctx *cc,
3884 int *submitted,
3885 struct writeback_control *wbc,
3886 enum iostat_type io_type);
3887 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3888 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3889 unsigned nr_pages, sector_t *last_block_in_bio,
3890 bool is_readahead, bool for_write);
3891 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3892 void f2fs_free_dic(struct decompress_io_ctx *dic);
3893 void f2fs_decompress_end_io(struct page **rpages,
3894 unsigned int cluster_size, bool err, bool verity);
3895 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3896 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3897 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3898 #else
3899 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3900 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3901 {
3902 if (!f2fs_compressed_file(inode))
3903 return true;
3904 /* not support compression */
3905 return false;
3906 }
3907 static inline struct page *f2fs_compress_control_page(struct page *page)
3908 {
3909 WARN_ON_ONCE(1);
3910 return ERR_PTR(-EINVAL);
3911 }
3912 static inline int f2fs_init_compress_mempool(void) { return 0; }
3913 static inline void f2fs_destroy_compress_mempool(void) { }
3914 #endif
3915
3916 static inline void set_compress_context(struct inode *inode)
3917 {
3918 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3919
3920 F2FS_I(inode)->i_compress_algorithm =
3921 F2FS_OPTION(sbi).compress_algorithm;
3922 F2FS_I(inode)->i_log_cluster_size =
3923 F2FS_OPTION(sbi).compress_log_size;
3924 F2FS_I(inode)->i_cluster_size =
3925 1 << F2FS_I(inode)->i_log_cluster_size;
3926 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3927 set_inode_flag(inode, FI_COMPRESSED_FILE);
3928 stat_inc_compr_inode(inode);
3929 f2fs_mark_inode_dirty_sync(inode, true);
3930 }
3931
3932 static inline u64 f2fs_disable_compressed_file(struct inode *inode)
3933 {
3934 struct f2fs_inode_info *fi = F2FS_I(inode);
3935
3936 if (!f2fs_compressed_file(inode))
3937 return 0;
3938 if (S_ISREG(inode->i_mode)) {
3939 if (get_dirty_pages(inode))
3940 return 1;
3941 if (fi->i_compr_blocks)
3942 return fi->i_compr_blocks;
3943 }
3944
3945 fi->i_flags &= ~F2FS_COMPR_FL;
3946 stat_dec_compr_inode(inode);
3947 clear_inode_flag(inode, FI_COMPRESSED_FILE);
3948 f2fs_mark_inode_dirty_sync(inode, true);
3949 return 0;
3950 }
3951
3952 #define F2FS_FEATURE_FUNCS(name, flagname) \
3953 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3954 { \
3955 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3956 }
3957
3958 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3959 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3960 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3961 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3962 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3963 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3964 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3965 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3966 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3967 F2FS_FEATURE_FUNCS(verity, VERITY);
3968 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3969 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3970 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3971
3972 #ifdef CONFIG_BLK_DEV_ZONED
3973 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3974 block_t blkaddr)
3975 {
3976 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3977
3978 return test_bit(zno, FDEV(devi).blkz_seq);
3979 }
3980 #endif
3981
3982 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3983 {
3984 return f2fs_sb_has_blkzoned(sbi);
3985 }
3986
3987 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3988 {
3989 return blk_queue_discard(bdev_get_queue(bdev)) ||
3990 bdev_is_zoned(bdev);
3991 }
3992
3993 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3994 {
3995 int i;
3996
3997 if (!f2fs_is_multi_device(sbi))
3998 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3999
4000 for (i = 0; i < sbi->s_ndevs; i++)
4001 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4002 return true;
4003 return false;
4004 }
4005
4006 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4007 {
4008 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4009 f2fs_hw_should_discard(sbi);
4010 }
4011
4012 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4013 {
4014 int i;
4015
4016 if (!f2fs_is_multi_device(sbi))
4017 return bdev_read_only(sbi->sb->s_bdev);
4018
4019 for (i = 0; i < sbi->s_ndevs; i++)
4020 if (bdev_read_only(FDEV(i).bdev))
4021 return true;
4022 return false;
4023 }
4024
4025 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4026 {
4027 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4028 }
4029
4030 static inline bool f2fs_may_encrypt(struct inode *dir, struct inode *inode)
4031 {
4032 #ifdef CONFIG_FS_ENCRYPTION
4033 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
4034 umode_t mode = inode->i_mode;
4035
4036 /*
4037 * If the directory encrypted or dummy encryption enabled,
4038 * then we should encrypt the inode.
4039 */
4040 if (IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi))
4041 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
4042 #endif
4043 return false;
4044 }
4045
4046 static inline bool f2fs_may_compress(struct inode *inode)
4047 {
4048 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4049 f2fs_is_atomic_file(inode) ||
4050 f2fs_is_volatile_file(inode))
4051 return false;
4052 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4053 }
4054
4055 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4056 u64 blocks, bool add)
4057 {
4058 int diff = F2FS_I(inode)->i_cluster_size - blocks;
4059
4060 /* don't update i_compr_blocks if saved blocks were released */
4061 if (!add && !F2FS_I(inode)->i_compr_blocks)
4062 return;
4063
4064 if (add) {
4065 F2FS_I(inode)->i_compr_blocks += diff;
4066 stat_add_compr_blocks(inode, diff);
4067 } else {
4068 F2FS_I(inode)->i_compr_blocks -= diff;
4069 stat_sub_compr_blocks(inode, diff);
4070 }
4071 f2fs_mark_inode_dirty_sync(inode, true);
4072 }
4073
4074 static inline int block_unaligned_IO(struct inode *inode,
4075 struct kiocb *iocb, struct iov_iter *iter)
4076 {
4077 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4078 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4079 loff_t offset = iocb->ki_pos;
4080 unsigned long align = offset | iov_iter_alignment(iter);
4081
4082 return align & blocksize_mask;
4083 }
4084
4085 static inline int allow_outplace_dio(struct inode *inode,
4086 struct kiocb *iocb, struct iov_iter *iter)
4087 {
4088 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4089 int rw = iov_iter_rw(iter);
4090
4091 return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4092 !block_unaligned_IO(inode, iocb, iter));
4093 }
4094
4095 static inline bool f2fs_force_buffered_io(struct inode *inode,
4096 struct kiocb *iocb, struct iov_iter *iter)
4097 {
4098 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4099 int rw = iov_iter_rw(iter);
4100
4101 if (f2fs_post_read_required(inode))
4102 return true;
4103 if (f2fs_is_multi_device(sbi))
4104 return true;
4105 /*
4106 * for blkzoned device, fallback direct IO to buffered IO, so
4107 * all IOs can be serialized by log-structured write.
4108 */
4109 if (f2fs_sb_has_blkzoned(sbi))
4110 return true;
4111 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4112 if (block_unaligned_IO(inode, iocb, iter))
4113 return true;
4114 if (F2FS_IO_ALIGNED(sbi))
4115 return true;
4116 }
4117 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4118 !IS_SWAPFILE(inode))
4119 return true;
4120
4121 return false;
4122 }
4123
4124 #ifdef CONFIG_F2FS_FAULT_INJECTION
4125 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4126 unsigned int type);
4127 #else
4128 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4129 #endif
4130
4131 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4132 {
4133 #ifdef CONFIG_QUOTA
4134 if (f2fs_sb_has_quota_ino(sbi))
4135 return true;
4136 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4137 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4138 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4139 return true;
4140 #endif
4141 return false;
4142 }
4143
4144 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4145 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4146
4147 #endif /* _LINUX_F2FS_H */