]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: introduce time and interval facility
[mirror_ubuntu-hirsute-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24
25 #ifdef CONFIG_F2FS_CHECK_FS
26 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
27 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
28 #else
29 #define f2fs_bug_on(sbi, condition) \
30 do { \
31 if (unlikely(condition)) { \
32 WARN_ON(1); \
33 set_sbi_flag(sbi, SBI_NEED_FSCK); \
34 } \
35 } while (0)
36 #define f2fs_down_write(x, y) down_write(x)
37 #endif
38
39 /*
40 * For mount options
41 */
42 #define F2FS_MOUNT_BG_GC 0x00000001
43 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
44 #define F2FS_MOUNT_DISCARD 0x00000004
45 #define F2FS_MOUNT_NOHEAP 0x00000008
46 #define F2FS_MOUNT_XATTR_USER 0x00000010
47 #define F2FS_MOUNT_POSIX_ACL 0x00000020
48 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
49 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
50 #define F2FS_MOUNT_INLINE_DATA 0x00000100
51 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
52 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
53 #define F2FS_MOUNT_NOBARRIER 0x00000800
54 #define F2FS_MOUNT_FASTBOOT 0x00001000
55 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
56 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
57 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
58
59 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
60 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
61 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
62
63 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
64 typecheck(unsigned long long, b) && \
65 ((long long)((a) - (b)) > 0))
66
67 typedef u32 block_t; /*
68 * should not change u32, since it is the on-disk block
69 * address format, __le32.
70 */
71 typedef u32 nid_t;
72
73 struct f2fs_mount_info {
74 unsigned int opt;
75 };
76
77 #define F2FS_FEATURE_ENCRYPT 0x0001
78
79 #define F2FS_HAS_FEATURE(sb, mask) \
80 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
81 #define F2FS_SET_FEATURE(sb, mask) \
82 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
83 #define F2FS_CLEAR_FEATURE(sb, mask) \
84 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
85
86 #define CRCPOLY_LE 0xedb88320
87
88 static inline __u32 f2fs_crc32(void *buf, size_t len)
89 {
90 unsigned char *p = (unsigned char *)buf;
91 __u32 crc = F2FS_SUPER_MAGIC;
92 int i;
93
94 while (len--) {
95 crc ^= *p++;
96 for (i = 0; i < 8; i++)
97 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
98 }
99 return crc;
100 }
101
102 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
103 {
104 return f2fs_crc32(buf, buf_size) == blk_crc;
105 }
106
107 /*
108 * For checkpoint manager
109 */
110 enum {
111 NAT_BITMAP,
112 SIT_BITMAP
113 };
114
115 enum {
116 CP_UMOUNT,
117 CP_FASTBOOT,
118 CP_SYNC,
119 CP_RECOVERY,
120 CP_DISCARD,
121 };
122
123 #define DEF_BATCHED_TRIM_SECTIONS 32
124 #define BATCHED_TRIM_SEGMENTS(sbi) \
125 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
126 #define BATCHED_TRIM_BLOCKS(sbi) \
127 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
128 #define DEF_CP_INTERVAL 60 /* 60 secs */
129
130 struct cp_control {
131 int reason;
132 __u64 trim_start;
133 __u64 trim_end;
134 __u64 trim_minlen;
135 __u64 trimmed;
136 };
137
138 /*
139 * For CP/NAT/SIT/SSA readahead
140 */
141 enum {
142 META_CP,
143 META_NAT,
144 META_SIT,
145 META_SSA,
146 META_POR,
147 };
148
149 /* for the list of ino */
150 enum {
151 ORPHAN_INO, /* for orphan ino list */
152 APPEND_INO, /* for append ino list */
153 UPDATE_INO, /* for update ino list */
154 MAX_INO_ENTRY, /* max. list */
155 };
156
157 struct ino_entry {
158 struct list_head list; /* list head */
159 nid_t ino; /* inode number */
160 };
161
162 /* for the list of inodes to be GCed */
163 struct inode_entry {
164 struct list_head list; /* list head */
165 struct inode *inode; /* vfs inode pointer */
166 };
167
168 /* for the list of blockaddresses to be discarded */
169 struct discard_entry {
170 struct list_head list; /* list head */
171 block_t blkaddr; /* block address to be discarded */
172 int len; /* # of consecutive blocks of the discard */
173 };
174
175 /* for the list of fsync inodes, used only during recovery */
176 struct fsync_inode_entry {
177 struct list_head list; /* list head */
178 struct inode *inode; /* vfs inode pointer */
179 block_t blkaddr; /* block address locating the last fsync */
180 block_t last_dentry; /* block address locating the last dentry */
181 block_t last_inode; /* block address locating the last inode */
182 };
183
184 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
185 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
186
187 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
188 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
189 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
190 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
191
192 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
193 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
194
195 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
196 {
197 int before = nats_in_cursum(rs);
198 rs->n_nats = cpu_to_le16(before + i);
199 return before;
200 }
201
202 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
203 {
204 int before = sits_in_cursum(rs);
205 rs->n_sits = cpu_to_le16(before + i);
206 return before;
207 }
208
209 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
210 int type)
211 {
212 if (type == NAT_JOURNAL)
213 return size <= MAX_NAT_JENTRIES(sum);
214 return size <= MAX_SIT_JENTRIES(sum);
215 }
216
217 /*
218 * ioctl commands
219 */
220 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
221 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
222 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
223
224 #define F2FS_IOCTL_MAGIC 0xf5
225 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
226 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
227 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
228 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
229 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
230 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
231 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
232 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
233
234 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
235 _IOR('f', 19, struct f2fs_encryption_policy)
236 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
237 _IOW('f', 20, __u8[16])
238 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
239 _IOW('f', 21, struct f2fs_encryption_policy)
240
241 /*
242 * should be same as XFS_IOC_GOINGDOWN.
243 * Flags for going down operation used by FS_IOC_GOINGDOWN
244 */
245 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
246 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
247 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
248 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
249 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
250
251 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
252 /*
253 * ioctl commands in 32 bit emulation
254 */
255 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
256 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
257 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
258 #endif
259
260 struct f2fs_defragment {
261 u64 start;
262 u64 len;
263 };
264
265 /*
266 * For INODE and NODE manager
267 */
268 /* for directory operations */
269 struct f2fs_str {
270 unsigned char *name;
271 u32 len;
272 };
273
274 struct f2fs_filename {
275 const struct qstr *usr_fname;
276 struct f2fs_str disk_name;
277 f2fs_hash_t hash;
278 #ifdef CONFIG_F2FS_FS_ENCRYPTION
279 struct f2fs_str crypto_buf;
280 #endif
281 };
282
283 #define FSTR_INIT(n, l) { .name = n, .len = l }
284 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
285 #define fname_name(p) ((p)->disk_name.name)
286 #define fname_len(p) ((p)->disk_name.len)
287
288 struct f2fs_dentry_ptr {
289 struct inode *inode;
290 const void *bitmap;
291 struct f2fs_dir_entry *dentry;
292 __u8 (*filename)[F2FS_SLOT_LEN];
293 int max;
294 };
295
296 static inline void make_dentry_ptr(struct inode *inode,
297 struct f2fs_dentry_ptr *d, void *src, int type)
298 {
299 d->inode = inode;
300
301 if (type == 1) {
302 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
303 d->max = NR_DENTRY_IN_BLOCK;
304 d->bitmap = &t->dentry_bitmap;
305 d->dentry = t->dentry;
306 d->filename = t->filename;
307 } else {
308 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
309 d->max = NR_INLINE_DENTRY;
310 d->bitmap = &t->dentry_bitmap;
311 d->dentry = t->dentry;
312 d->filename = t->filename;
313 }
314 }
315
316 /*
317 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
318 * as its node offset to distinguish from index node blocks.
319 * But some bits are used to mark the node block.
320 */
321 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
322 >> OFFSET_BIT_SHIFT)
323 enum {
324 ALLOC_NODE, /* allocate a new node page if needed */
325 LOOKUP_NODE, /* look up a node without readahead */
326 LOOKUP_NODE_RA, /*
327 * look up a node with readahead called
328 * by get_data_block.
329 */
330 };
331
332 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
333
334 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
335
336 /* vector size for gang look-up from extent cache that consists of radix tree */
337 #define EXT_TREE_VEC_SIZE 64
338
339 /* for in-memory extent cache entry */
340 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
341
342 /* number of extent info in extent cache we try to shrink */
343 #define EXTENT_CACHE_SHRINK_NUMBER 128
344
345 struct extent_info {
346 unsigned int fofs; /* start offset in a file */
347 u32 blk; /* start block address of the extent */
348 unsigned int len; /* length of the extent */
349 };
350
351 struct extent_node {
352 struct rb_node rb_node; /* rb node located in rb-tree */
353 struct list_head list; /* node in global extent list of sbi */
354 struct extent_info ei; /* extent info */
355 };
356
357 struct extent_tree {
358 nid_t ino; /* inode number */
359 struct rb_root root; /* root of extent info rb-tree */
360 struct extent_node *cached_en; /* recently accessed extent node */
361 struct extent_info largest; /* largested extent info */
362 struct list_head list; /* to be used by sbi->zombie_list */
363 rwlock_t lock; /* protect extent info rb-tree */
364 atomic_t node_cnt; /* # of extent node in rb-tree*/
365 };
366
367 /*
368 * This structure is taken from ext4_map_blocks.
369 *
370 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
371 */
372 #define F2FS_MAP_NEW (1 << BH_New)
373 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
374 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
375 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
376 F2FS_MAP_UNWRITTEN)
377
378 struct f2fs_map_blocks {
379 block_t m_pblk;
380 block_t m_lblk;
381 unsigned int m_len;
382 unsigned int m_flags;
383 };
384
385 /* for flag in get_data_block */
386 #define F2FS_GET_BLOCK_READ 0
387 #define F2FS_GET_BLOCK_DIO 1
388 #define F2FS_GET_BLOCK_FIEMAP 2
389 #define F2FS_GET_BLOCK_BMAP 3
390
391 /*
392 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
393 */
394 #define FADVISE_COLD_BIT 0x01
395 #define FADVISE_LOST_PINO_BIT 0x02
396 #define FADVISE_ENCRYPT_BIT 0x04
397 #define FADVISE_ENC_NAME_BIT 0x08
398
399 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
400 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
401 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
402 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
403 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
404 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
405 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
406 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
407 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
408 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
409 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
410
411 /* Encryption algorithms */
412 #define F2FS_ENCRYPTION_MODE_INVALID 0
413 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
414 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
415 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
416 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
417
418 #include "f2fs_crypto.h"
419
420 #define DEF_DIR_LEVEL 0
421
422 struct f2fs_inode_info {
423 struct inode vfs_inode; /* serve a vfs inode */
424 unsigned long i_flags; /* keep an inode flags for ioctl */
425 unsigned char i_advise; /* use to give file attribute hints */
426 unsigned char i_dir_level; /* use for dentry level for large dir */
427 unsigned int i_current_depth; /* use only in directory structure */
428 unsigned int i_pino; /* parent inode number */
429 umode_t i_acl_mode; /* keep file acl mode temporarily */
430
431 /* Use below internally in f2fs*/
432 unsigned long flags; /* use to pass per-file flags */
433 struct rw_semaphore i_sem; /* protect fi info */
434 atomic_t dirty_pages; /* # of dirty pages */
435 f2fs_hash_t chash; /* hash value of given file name */
436 unsigned int clevel; /* maximum level of given file name */
437 nid_t i_xattr_nid; /* node id that contains xattrs */
438 unsigned long long xattr_ver; /* cp version of xattr modification */
439
440 struct list_head dirty_list; /* linked in global dirty list */
441 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
442 struct mutex inmem_lock; /* lock for inmemory pages */
443
444 struct extent_tree *extent_tree; /* cached extent_tree entry */
445
446 #ifdef CONFIG_F2FS_FS_ENCRYPTION
447 /* Encryption params */
448 struct f2fs_crypt_info *i_crypt_info;
449 #endif
450 };
451
452 static inline void get_extent_info(struct extent_info *ext,
453 struct f2fs_extent i_ext)
454 {
455 ext->fofs = le32_to_cpu(i_ext.fofs);
456 ext->blk = le32_to_cpu(i_ext.blk);
457 ext->len = le32_to_cpu(i_ext.len);
458 }
459
460 static inline void set_raw_extent(struct extent_info *ext,
461 struct f2fs_extent *i_ext)
462 {
463 i_ext->fofs = cpu_to_le32(ext->fofs);
464 i_ext->blk = cpu_to_le32(ext->blk);
465 i_ext->len = cpu_to_le32(ext->len);
466 }
467
468 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
469 u32 blk, unsigned int len)
470 {
471 ei->fofs = fofs;
472 ei->blk = blk;
473 ei->len = len;
474 }
475
476 static inline bool __is_extent_same(struct extent_info *ei1,
477 struct extent_info *ei2)
478 {
479 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
480 ei1->len == ei2->len);
481 }
482
483 static inline bool __is_extent_mergeable(struct extent_info *back,
484 struct extent_info *front)
485 {
486 return (back->fofs + back->len == front->fofs &&
487 back->blk + back->len == front->blk);
488 }
489
490 static inline bool __is_back_mergeable(struct extent_info *cur,
491 struct extent_info *back)
492 {
493 return __is_extent_mergeable(back, cur);
494 }
495
496 static inline bool __is_front_mergeable(struct extent_info *cur,
497 struct extent_info *front)
498 {
499 return __is_extent_mergeable(cur, front);
500 }
501
502 static inline void __try_update_largest_extent(struct extent_tree *et,
503 struct extent_node *en)
504 {
505 if (en->ei.len > et->largest.len)
506 et->largest = en->ei;
507 }
508
509 struct f2fs_nm_info {
510 block_t nat_blkaddr; /* base disk address of NAT */
511 nid_t max_nid; /* maximum possible node ids */
512 nid_t available_nids; /* maximum available node ids */
513 nid_t next_scan_nid; /* the next nid to be scanned */
514 unsigned int ram_thresh; /* control the memory footprint */
515 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
516
517 /* NAT cache management */
518 struct radix_tree_root nat_root;/* root of the nat entry cache */
519 struct radix_tree_root nat_set_root;/* root of the nat set cache */
520 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
521 struct list_head nat_entries; /* cached nat entry list (clean) */
522 unsigned int nat_cnt; /* the # of cached nat entries */
523 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
524
525 /* free node ids management */
526 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
527 struct list_head free_nid_list; /* a list for free nids */
528 spinlock_t free_nid_list_lock; /* protect free nid list */
529 unsigned int fcnt; /* the number of free node id */
530 struct mutex build_lock; /* lock for build free nids */
531
532 /* for checkpoint */
533 char *nat_bitmap; /* NAT bitmap pointer */
534 int bitmap_size; /* bitmap size */
535 };
536
537 /*
538 * this structure is used as one of function parameters.
539 * all the information are dedicated to a given direct node block determined
540 * by the data offset in a file.
541 */
542 struct dnode_of_data {
543 struct inode *inode; /* vfs inode pointer */
544 struct page *inode_page; /* its inode page, NULL is possible */
545 struct page *node_page; /* cached direct node page */
546 nid_t nid; /* node id of the direct node block */
547 unsigned int ofs_in_node; /* data offset in the node page */
548 bool inode_page_locked; /* inode page is locked or not */
549 bool node_changed; /* is node block changed */
550 block_t data_blkaddr; /* block address of the node block */
551 };
552
553 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
554 struct page *ipage, struct page *npage, nid_t nid)
555 {
556 memset(dn, 0, sizeof(*dn));
557 dn->inode = inode;
558 dn->inode_page = ipage;
559 dn->node_page = npage;
560 dn->nid = nid;
561 }
562
563 /*
564 * For SIT manager
565 *
566 * By default, there are 6 active log areas across the whole main area.
567 * When considering hot and cold data separation to reduce cleaning overhead,
568 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
569 * respectively.
570 * In the current design, you should not change the numbers intentionally.
571 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
572 * logs individually according to the underlying devices. (default: 6)
573 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
574 * data and 8 for node logs.
575 */
576 #define NR_CURSEG_DATA_TYPE (3)
577 #define NR_CURSEG_NODE_TYPE (3)
578 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
579
580 enum {
581 CURSEG_HOT_DATA = 0, /* directory entry blocks */
582 CURSEG_WARM_DATA, /* data blocks */
583 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
584 CURSEG_HOT_NODE, /* direct node blocks of directory files */
585 CURSEG_WARM_NODE, /* direct node blocks of normal files */
586 CURSEG_COLD_NODE, /* indirect node blocks */
587 NO_CHECK_TYPE,
588 CURSEG_DIRECT_IO, /* to use for the direct IO path */
589 };
590
591 struct flush_cmd {
592 struct completion wait;
593 struct llist_node llnode;
594 int ret;
595 };
596
597 struct flush_cmd_control {
598 struct task_struct *f2fs_issue_flush; /* flush thread */
599 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
600 struct llist_head issue_list; /* list for command issue */
601 struct llist_node *dispatch_list; /* list for command dispatch */
602 };
603
604 struct f2fs_sm_info {
605 struct sit_info *sit_info; /* whole segment information */
606 struct free_segmap_info *free_info; /* free segment information */
607 struct dirty_seglist_info *dirty_info; /* dirty segment information */
608 struct curseg_info *curseg_array; /* active segment information */
609
610 block_t seg0_blkaddr; /* block address of 0'th segment */
611 block_t main_blkaddr; /* start block address of main area */
612 block_t ssa_blkaddr; /* start block address of SSA area */
613
614 unsigned int segment_count; /* total # of segments */
615 unsigned int main_segments; /* # of segments in main area */
616 unsigned int reserved_segments; /* # of reserved segments */
617 unsigned int ovp_segments; /* # of overprovision segments */
618
619 /* a threshold to reclaim prefree segments */
620 unsigned int rec_prefree_segments;
621
622 /* for small discard management */
623 struct list_head discard_list; /* 4KB discard list */
624 int nr_discards; /* # of discards in the list */
625 int max_discards; /* max. discards to be issued */
626
627 /* for batched trimming */
628 unsigned int trim_sections; /* # of sections to trim */
629
630 struct list_head sit_entry_set; /* sit entry set list */
631
632 unsigned int ipu_policy; /* in-place-update policy */
633 unsigned int min_ipu_util; /* in-place-update threshold */
634 unsigned int min_fsync_blocks; /* threshold for fsync */
635
636 /* for flush command control */
637 struct flush_cmd_control *cmd_control_info;
638
639 };
640
641 /*
642 * For superblock
643 */
644 /*
645 * COUNT_TYPE for monitoring
646 *
647 * f2fs monitors the number of several block types such as on-writeback,
648 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
649 */
650 enum count_type {
651 F2FS_WRITEBACK,
652 F2FS_DIRTY_DENTS,
653 F2FS_DIRTY_DATA,
654 F2FS_DIRTY_NODES,
655 F2FS_DIRTY_META,
656 F2FS_INMEM_PAGES,
657 NR_COUNT_TYPE,
658 };
659
660 /*
661 * The below are the page types of bios used in submit_bio().
662 * The available types are:
663 * DATA User data pages. It operates as async mode.
664 * NODE Node pages. It operates as async mode.
665 * META FS metadata pages such as SIT, NAT, CP.
666 * NR_PAGE_TYPE The number of page types.
667 * META_FLUSH Make sure the previous pages are written
668 * with waiting the bio's completion
669 * ... Only can be used with META.
670 */
671 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
672 enum page_type {
673 DATA,
674 NODE,
675 META,
676 NR_PAGE_TYPE,
677 META_FLUSH,
678 INMEM, /* the below types are used by tracepoints only. */
679 INMEM_DROP,
680 IPU,
681 OPU,
682 };
683
684 struct f2fs_io_info {
685 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
686 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
687 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
688 block_t blk_addr; /* block address to be written */
689 struct page *page; /* page to be written */
690 struct page *encrypted_page; /* encrypted page */
691 };
692
693 #define is_read_io(rw) (((rw) & 1) == READ)
694 struct f2fs_bio_info {
695 struct f2fs_sb_info *sbi; /* f2fs superblock */
696 struct bio *bio; /* bios to merge */
697 sector_t last_block_in_bio; /* last block number */
698 struct f2fs_io_info fio; /* store buffered io info. */
699 struct rw_semaphore io_rwsem; /* blocking op for bio */
700 };
701
702 enum inode_type {
703 DIR_INODE, /* for dirty dir inode */
704 FILE_INODE, /* for dirty regular/symlink inode */
705 NR_INODE_TYPE,
706 };
707
708 /* for inner inode cache management */
709 struct inode_management {
710 struct radix_tree_root ino_root; /* ino entry array */
711 spinlock_t ino_lock; /* for ino entry lock */
712 struct list_head ino_list; /* inode list head */
713 unsigned long ino_num; /* number of entries */
714 };
715
716 /* For s_flag in struct f2fs_sb_info */
717 enum {
718 SBI_IS_DIRTY, /* dirty flag for checkpoint */
719 SBI_IS_CLOSE, /* specify unmounting */
720 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
721 SBI_POR_DOING, /* recovery is doing or not */
722 };
723
724 enum {
725 CP_TIME,
726 MAX_TIME,
727 };
728
729 struct f2fs_sb_info {
730 struct super_block *sb; /* pointer to VFS super block */
731 struct proc_dir_entry *s_proc; /* proc entry */
732 struct f2fs_super_block *raw_super; /* raw super block pointer */
733 int valid_super_block; /* valid super block no */
734 int s_flag; /* flags for sbi */
735
736 /* for node-related operations */
737 struct f2fs_nm_info *nm_info; /* node manager */
738 struct inode *node_inode; /* cache node blocks */
739
740 /* for segment-related operations */
741 struct f2fs_sm_info *sm_info; /* segment manager */
742
743 /* for bio operations */
744 struct f2fs_bio_info read_io; /* for read bios */
745 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
746
747 /* for checkpoint */
748 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
749 struct inode *meta_inode; /* cache meta blocks */
750 struct mutex cp_mutex; /* checkpoint procedure lock */
751 struct rw_semaphore cp_rwsem; /* blocking FS operations */
752 struct rw_semaphore node_write; /* locking node writes */
753 struct mutex writepages; /* mutex for writepages() */
754 wait_queue_head_t cp_wait;
755 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
756 long interval_time[MAX_TIME]; /* to store thresholds */
757
758 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
759
760 /* for orphan inode, use 0'th array */
761 unsigned int max_orphans; /* max orphan inodes */
762
763 /* for inode management */
764 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
765 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
766
767 /* for extent tree cache */
768 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
769 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
770 struct list_head extent_list; /* lru list for shrinker */
771 spinlock_t extent_lock; /* locking extent lru list */
772 atomic_t total_ext_tree; /* extent tree count */
773 struct list_head zombie_list; /* extent zombie tree list */
774 atomic_t total_zombie_tree; /* extent zombie tree count */
775 atomic_t total_ext_node; /* extent info count */
776
777 /* basic filesystem units */
778 unsigned int log_sectors_per_block; /* log2 sectors per block */
779 unsigned int log_blocksize; /* log2 block size */
780 unsigned int blocksize; /* block size */
781 unsigned int root_ino_num; /* root inode number*/
782 unsigned int node_ino_num; /* node inode number*/
783 unsigned int meta_ino_num; /* meta inode number*/
784 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
785 unsigned int blocks_per_seg; /* blocks per segment */
786 unsigned int segs_per_sec; /* segments per section */
787 unsigned int secs_per_zone; /* sections per zone */
788 unsigned int total_sections; /* total section count */
789 unsigned int total_node_count; /* total node block count */
790 unsigned int total_valid_node_count; /* valid node block count */
791 unsigned int total_valid_inode_count; /* valid inode count */
792 loff_t max_file_blocks; /* max block index of file */
793 int active_logs; /* # of active logs */
794 int dir_level; /* directory level */
795
796 block_t user_block_count; /* # of user blocks */
797 block_t total_valid_block_count; /* # of valid blocks */
798 block_t alloc_valid_block_count; /* # of allocated blocks */
799 block_t discard_blks; /* discard command candidats */
800 block_t last_valid_block_count; /* for recovery */
801 u32 s_next_generation; /* for NFS support */
802 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
803
804 struct f2fs_mount_info mount_opt; /* mount options */
805
806 /* for cleaning operations */
807 struct mutex gc_mutex; /* mutex for GC */
808 struct f2fs_gc_kthread *gc_thread; /* GC thread */
809 unsigned int cur_victim_sec; /* current victim section num */
810
811 /* maximum # of trials to find a victim segment for SSR and GC */
812 unsigned int max_victim_search;
813
814 /*
815 * for stat information.
816 * one is for the LFS mode, and the other is for the SSR mode.
817 */
818 #ifdef CONFIG_F2FS_STAT_FS
819 struct f2fs_stat_info *stat_info; /* FS status information */
820 unsigned int segment_count[2]; /* # of allocated segments */
821 unsigned int block_count[2]; /* # of allocated blocks */
822 atomic_t inplace_count; /* # of inplace update */
823 atomic64_t total_hit_ext; /* # of lookup extent cache */
824 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
825 atomic64_t read_hit_largest; /* # of hit largest extent node */
826 atomic64_t read_hit_cached; /* # of hit cached extent node */
827 atomic_t inline_xattr; /* # of inline_xattr inodes */
828 atomic_t inline_inode; /* # of inline_data inodes */
829 atomic_t inline_dir; /* # of inline_dentry inodes */
830 int bg_gc; /* background gc calls */
831 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
832 #endif
833 unsigned int last_victim[2]; /* last victim segment # */
834 spinlock_t stat_lock; /* lock for stat operations */
835
836 /* For sysfs suppport */
837 struct kobject s_kobj;
838 struct completion s_kobj_unregister;
839
840 /* For shrinker support */
841 struct list_head s_list;
842 struct mutex umount_mutex;
843 unsigned int shrinker_run_no;
844 };
845
846 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
847 {
848 sbi->last_time[type] = jiffies;
849 }
850
851 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
852 {
853 struct timespec ts = {sbi->interval_time[type], 0};
854 unsigned long interval = timespec_to_jiffies(&ts);
855
856 return time_after(jiffies, sbi->last_time[type] + interval);
857 }
858
859 /*
860 * Inline functions
861 */
862 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
863 {
864 return container_of(inode, struct f2fs_inode_info, vfs_inode);
865 }
866
867 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
868 {
869 return sb->s_fs_info;
870 }
871
872 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
873 {
874 return F2FS_SB(inode->i_sb);
875 }
876
877 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
878 {
879 return F2FS_I_SB(mapping->host);
880 }
881
882 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
883 {
884 return F2FS_M_SB(page->mapping);
885 }
886
887 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
888 {
889 return (struct f2fs_super_block *)(sbi->raw_super);
890 }
891
892 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
893 {
894 return (struct f2fs_checkpoint *)(sbi->ckpt);
895 }
896
897 static inline struct f2fs_node *F2FS_NODE(struct page *page)
898 {
899 return (struct f2fs_node *)page_address(page);
900 }
901
902 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
903 {
904 return &((struct f2fs_node *)page_address(page))->i;
905 }
906
907 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
908 {
909 return (struct f2fs_nm_info *)(sbi->nm_info);
910 }
911
912 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
913 {
914 return (struct f2fs_sm_info *)(sbi->sm_info);
915 }
916
917 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
918 {
919 return (struct sit_info *)(SM_I(sbi)->sit_info);
920 }
921
922 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
923 {
924 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
925 }
926
927 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
928 {
929 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
930 }
931
932 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
933 {
934 return sbi->meta_inode->i_mapping;
935 }
936
937 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
938 {
939 return sbi->node_inode->i_mapping;
940 }
941
942 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
943 {
944 return sbi->s_flag & (0x01 << type);
945 }
946
947 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
948 {
949 sbi->s_flag |= (0x01 << type);
950 }
951
952 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
953 {
954 sbi->s_flag &= ~(0x01 << type);
955 }
956
957 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
958 {
959 return le64_to_cpu(cp->checkpoint_ver);
960 }
961
962 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
963 {
964 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
965 return ckpt_flags & f;
966 }
967
968 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
969 {
970 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
971 ckpt_flags |= f;
972 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
973 }
974
975 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
976 {
977 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
978 ckpt_flags &= (~f);
979 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
980 }
981
982 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
983 {
984 down_read(&sbi->cp_rwsem);
985 }
986
987 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
988 {
989 up_read(&sbi->cp_rwsem);
990 }
991
992 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
993 {
994 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
995 }
996
997 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
998 {
999 up_write(&sbi->cp_rwsem);
1000 }
1001
1002 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1003 {
1004 int reason = CP_SYNC;
1005
1006 if (test_opt(sbi, FASTBOOT))
1007 reason = CP_FASTBOOT;
1008 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1009 reason = CP_UMOUNT;
1010 return reason;
1011 }
1012
1013 static inline bool __remain_node_summaries(int reason)
1014 {
1015 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1016 }
1017
1018 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1019 {
1020 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1021 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1022 }
1023
1024 /*
1025 * Check whether the given nid is within node id range.
1026 */
1027 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1028 {
1029 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1030 return -EINVAL;
1031 if (unlikely(nid >= NM_I(sbi)->max_nid))
1032 return -EINVAL;
1033 return 0;
1034 }
1035
1036 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1037
1038 /*
1039 * Check whether the inode has blocks or not
1040 */
1041 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1042 {
1043 if (F2FS_I(inode)->i_xattr_nid)
1044 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1045 else
1046 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1047 }
1048
1049 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1050 {
1051 return ofs == XATTR_NODE_OFFSET;
1052 }
1053
1054 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1055 struct inode *inode, blkcnt_t count)
1056 {
1057 block_t valid_block_count;
1058
1059 spin_lock(&sbi->stat_lock);
1060 valid_block_count =
1061 sbi->total_valid_block_count + (block_t)count;
1062 if (unlikely(valid_block_count > sbi->user_block_count)) {
1063 spin_unlock(&sbi->stat_lock);
1064 return false;
1065 }
1066 inode->i_blocks += count;
1067 sbi->total_valid_block_count = valid_block_count;
1068 sbi->alloc_valid_block_count += (block_t)count;
1069 spin_unlock(&sbi->stat_lock);
1070 return true;
1071 }
1072
1073 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1074 struct inode *inode,
1075 blkcnt_t count)
1076 {
1077 spin_lock(&sbi->stat_lock);
1078 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1079 f2fs_bug_on(sbi, inode->i_blocks < count);
1080 inode->i_blocks -= count;
1081 sbi->total_valid_block_count -= (block_t)count;
1082 spin_unlock(&sbi->stat_lock);
1083 }
1084
1085 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1086 {
1087 atomic_inc(&sbi->nr_pages[count_type]);
1088 set_sbi_flag(sbi, SBI_IS_DIRTY);
1089 }
1090
1091 static inline void inode_inc_dirty_pages(struct inode *inode)
1092 {
1093 atomic_inc(&F2FS_I(inode)->dirty_pages);
1094 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1095 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1096 }
1097
1098 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1099 {
1100 atomic_dec(&sbi->nr_pages[count_type]);
1101 }
1102
1103 static inline void inode_dec_dirty_pages(struct inode *inode)
1104 {
1105 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1106 !S_ISLNK(inode->i_mode))
1107 return;
1108
1109 atomic_dec(&F2FS_I(inode)->dirty_pages);
1110 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1111 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1112 }
1113
1114 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1115 {
1116 return atomic_read(&sbi->nr_pages[count_type]);
1117 }
1118
1119 static inline int get_dirty_pages(struct inode *inode)
1120 {
1121 return atomic_read(&F2FS_I(inode)->dirty_pages);
1122 }
1123
1124 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1125 {
1126 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1127 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1128 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1129 }
1130
1131 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1132 {
1133 return sbi->total_valid_block_count;
1134 }
1135
1136 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1137 {
1138 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1139
1140 /* return NAT or SIT bitmap */
1141 if (flag == NAT_BITMAP)
1142 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1143 else if (flag == SIT_BITMAP)
1144 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1145
1146 return 0;
1147 }
1148
1149 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1150 {
1151 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1152 }
1153
1154 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1155 {
1156 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1157 int offset;
1158
1159 if (__cp_payload(sbi) > 0) {
1160 if (flag == NAT_BITMAP)
1161 return &ckpt->sit_nat_version_bitmap;
1162 else
1163 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1164 } else {
1165 offset = (flag == NAT_BITMAP) ?
1166 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1167 return &ckpt->sit_nat_version_bitmap + offset;
1168 }
1169 }
1170
1171 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1172 {
1173 block_t start_addr;
1174 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1175 unsigned long long ckpt_version = cur_cp_version(ckpt);
1176
1177 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1178
1179 /*
1180 * odd numbered checkpoint should at cp segment 0
1181 * and even segment must be at cp segment 1
1182 */
1183 if (!(ckpt_version & 1))
1184 start_addr += sbi->blocks_per_seg;
1185
1186 return start_addr;
1187 }
1188
1189 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1190 {
1191 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1192 }
1193
1194 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1195 struct inode *inode)
1196 {
1197 block_t valid_block_count;
1198 unsigned int valid_node_count;
1199
1200 spin_lock(&sbi->stat_lock);
1201
1202 valid_block_count = sbi->total_valid_block_count + 1;
1203 if (unlikely(valid_block_count > sbi->user_block_count)) {
1204 spin_unlock(&sbi->stat_lock);
1205 return false;
1206 }
1207
1208 valid_node_count = sbi->total_valid_node_count + 1;
1209 if (unlikely(valid_node_count > sbi->total_node_count)) {
1210 spin_unlock(&sbi->stat_lock);
1211 return false;
1212 }
1213
1214 if (inode)
1215 inode->i_blocks++;
1216
1217 sbi->alloc_valid_block_count++;
1218 sbi->total_valid_node_count++;
1219 sbi->total_valid_block_count++;
1220 spin_unlock(&sbi->stat_lock);
1221
1222 return true;
1223 }
1224
1225 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1226 struct inode *inode)
1227 {
1228 spin_lock(&sbi->stat_lock);
1229
1230 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1231 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1232 f2fs_bug_on(sbi, !inode->i_blocks);
1233
1234 inode->i_blocks--;
1235 sbi->total_valid_node_count--;
1236 sbi->total_valid_block_count--;
1237
1238 spin_unlock(&sbi->stat_lock);
1239 }
1240
1241 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1242 {
1243 return sbi->total_valid_node_count;
1244 }
1245
1246 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1247 {
1248 spin_lock(&sbi->stat_lock);
1249 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1250 sbi->total_valid_inode_count++;
1251 spin_unlock(&sbi->stat_lock);
1252 }
1253
1254 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1255 {
1256 spin_lock(&sbi->stat_lock);
1257 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1258 sbi->total_valid_inode_count--;
1259 spin_unlock(&sbi->stat_lock);
1260 }
1261
1262 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1263 {
1264 return sbi->total_valid_inode_count;
1265 }
1266
1267 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1268 pgoff_t index, bool for_write)
1269 {
1270 if (!for_write)
1271 return grab_cache_page(mapping, index);
1272 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1273 }
1274
1275 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1276 {
1277 char *src_kaddr = kmap(src);
1278 char *dst_kaddr = kmap(dst);
1279
1280 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1281 kunmap(dst);
1282 kunmap(src);
1283 }
1284
1285 static inline void f2fs_put_page(struct page *page, int unlock)
1286 {
1287 if (!page)
1288 return;
1289
1290 if (unlock) {
1291 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1292 unlock_page(page);
1293 }
1294 page_cache_release(page);
1295 }
1296
1297 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1298 {
1299 if (dn->node_page)
1300 f2fs_put_page(dn->node_page, 1);
1301 if (dn->inode_page && dn->node_page != dn->inode_page)
1302 f2fs_put_page(dn->inode_page, 0);
1303 dn->node_page = NULL;
1304 dn->inode_page = NULL;
1305 }
1306
1307 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1308 size_t size)
1309 {
1310 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1311 }
1312
1313 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1314 gfp_t flags)
1315 {
1316 void *entry;
1317
1318 entry = kmem_cache_alloc(cachep, flags);
1319 if (!entry)
1320 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1321 return entry;
1322 }
1323
1324 static inline struct bio *f2fs_bio_alloc(int npages)
1325 {
1326 struct bio *bio;
1327
1328 /* No failure on bio allocation */
1329 bio = bio_alloc(GFP_NOIO, npages);
1330 if (!bio)
1331 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1332 return bio;
1333 }
1334
1335 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1336 unsigned long index, void *item)
1337 {
1338 while (radix_tree_insert(root, index, item))
1339 cond_resched();
1340 }
1341
1342 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1343
1344 static inline bool IS_INODE(struct page *page)
1345 {
1346 struct f2fs_node *p = F2FS_NODE(page);
1347 return RAW_IS_INODE(p);
1348 }
1349
1350 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1351 {
1352 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1353 }
1354
1355 static inline block_t datablock_addr(struct page *node_page,
1356 unsigned int offset)
1357 {
1358 struct f2fs_node *raw_node;
1359 __le32 *addr_array;
1360 raw_node = F2FS_NODE(node_page);
1361 addr_array = blkaddr_in_node(raw_node);
1362 return le32_to_cpu(addr_array[offset]);
1363 }
1364
1365 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1366 {
1367 int mask;
1368
1369 addr += (nr >> 3);
1370 mask = 1 << (7 - (nr & 0x07));
1371 return mask & *addr;
1372 }
1373
1374 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1375 {
1376 int mask;
1377
1378 addr += (nr >> 3);
1379 mask = 1 << (7 - (nr & 0x07));
1380 *addr |= mask;
1381 }
1382
1383 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1384 {
1385 int mask;
1386
1387 addr += (nr >> 3);
1388 mask = 1 << (7 - (nr & 0x07));
1389 *addr &= ~mask;
1390 }
1391
1392 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1393 {
1394 int mask;
1395 int ret;
1396
1397 addr += (nr >> 3);
1398 mask = 1 << (7 - (nr & 0x07));
1399 ret = mask & *addr;
1400 *addr |= mask;
1401 return ret;
1402 }
1403
1404 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1405 {
1406 int mask;
1407 int ret;
1408
1409 addr += (nr >> 3);
1410 mask = 1 << (7 - (nr & 0x07));
1411 ret = mask & *addr;
1412 *addr &= ~mask;
1413 return ret;
1414 }
1415
1416 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1417 {
1418 int mask;
1419
1420 addr += (nr >> 3);
1421 mask = 1 << (7 - (nr & 0x07));
1422 *addr ^= mask;
1423 }
1424
1425 /* used for f2fs_inode_info->flags */
1426 enum {
1427 FI_NEW_INODE, /* indicate newly allocated inode */
1428 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1429 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1430 FI_INC_LINK, /* need to increment i_nlink */
1431 FI_ACL_MODE, /* indicate acl mode */
1432 FI_NO_ALLOC, /* should not allocate any blocks */
1433 FI_FREE_NID, /* free allocated nide */
1434 FI_UPDATE_DIR, /* should update inode block for consistency */
1435 FI_DELAY_IPUT, /* used for the recovery */
1436 FI_NO_EXTENT, /* not to use the extent cache */
1437 FI_INLINE_XATTR, /* used for inline xattr */
1438 FI_INLINE_DATA, /* used for inline data*/
1439 FI_INLINE_DENTRY, /* used for inline dentry */
1440 FI_APPEND_WRITE, /* inode has appended data */
1441 FI_UPDATE_WRITE, /* inode has in-place-update data */
1442 FI_NEED_IPU, /* used for ipu per file */
1443 FI_ATOMIC_FILE, /* indicate atomic file */
1444 FI_VOLATILE_FILE, /* indicate volatile file */
1445 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1446 FI_DROP_CACHE, /* drop dirty page cache */
1447 FI_DATA_EXIST, /* indicate data exists */
1448 FI_INLINE_DOTS, /* indicate inline dot dentries */
1449 FI_DO_DEFRAG, /* indicate defragment is running */
1450 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1451 };
1452
1453 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1454 {
1455 if (!test_bit(flag, &fi->flags))
1456 set_bit(flag, &fi->flags);
1457 }
1458
1459 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1460 {
1461 return test_bit(flag, &fi->flags);
1462 }
1463
1464 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1465 {
1466 if (test_bit(flag, &fi->flags))
1467 clear_bit(flag, &fi->flags);
1468 }
1469
1470 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1471 {
1472 fi->i_acl_mode = mode;
1473 set_inode_flag(fi, FI_ACL_MODE);
1474 }
1475
1476 static inline void get_inline_info(struct f2fs_inode_info *fi,
1477 struct f2fs_inode *ri)
1478 {
1479 if (ri->i_inline & F2FS_INLINE_XATTR)
1480 set_inode_flag(fi, FI_INLINE_XATTR);
1481 if (ri->i_inline & F2FS_INLINE_DATA)
1482 set_inode_flag(fi, FI_INLINE_DATA);
1483 if (ri->i_inline & F2FS_INLINE_DENTRY)
1484 set_inode_flag(fi, FI_INLINE_DENTRY);
1485 if (ri->i_inline & F2FS_DATA_EXIST)
1486 set_inode_flag(fi, FI_DATA_EXIST);
1487 if (ri->i_inline & F2FS_INLINE_DOTS)
1488 set_inode_flag(fi, FI_INLINE_DOTS);
1489 }
1490
1491 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1492 struct f2fs_inode *ri)
1493 {
1494 ri->i_inline = 0;
1495
1496 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1497 ri->i_inline |= F2FS_INLINE_XATTR;
1498 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1499 ri->i_inline |= F2FS_INLINE_DATA;
1500 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1501 ri->i_inline |= F2FS_INLINE_DENTRY;
1502 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1503 ri->i_inline |= F2FS_DATA_EXIST;
1504 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1505 ri->i_inline |= F2FS_INLINE_DOTS;
1506 }
1507
1508 static inline int f2fs_has_inline_xattr(struct inode *inode)
1509 {
1510 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1511 }
1512
1513 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1514 {
1515 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1516 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1517 return DEF_ADDRS_PER_INODE;
1518 }
1519
1520 static inline void *inline_xattr_addr(struct page *page)
1521 {
1522 struct f2fs_inode *ri = F2FS_INODE(page);
1523 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1524 F2FS_INLINE_XATTR_ADDRS]);
1525 }
1526
1527 static inline int inline_xattr_size(struct inode *inode)
1528 {
1529 if (f2fs_has_inline_xattr(inode))
1530 return F2FS_INLINE_XATTR_ADDRS << 2;
1531 else
1532 return 0;
1533 }
1534
1535 static inline int f2fs_has_inline_data(struct inode *inode)
1536 {
1537 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1538 }
1539
1540 static inline void f2fs_clear_inline_inode(struct inode *inode)
1541 {
1542 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1543 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1544 }
1545
1546 static inline int f2fs_exist_data(struct inode *inode)
1547 {
1548 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1549 }
1550
1551 static inline int f2fs_has_inline_dots(struct inode *inode)
1552 {
1553 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1554 }
1555
1556 static inline bool f2fs_is_atomic_file(struct inode *inode)
1557 {
1558 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1559 }
1560
1561 static inline bool f2fs_is_volatile_file(struct inode *inode)
1562 {
1563 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1564 }
1565
1566 static inline bool f2fs_is_first_block_written(struct inode *inode)
1567 {
1568 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1569 }
1570
1571 static inline bool f2fs_is_drop_cache(struct inode *inode)
1572 {
1573 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1574 }
1575
1576 static inline void *inline_data_addr(struct page *page)
1577 {
1578 struct f2fs_inode *ri = F2FS_INODE(page);
1579 return (void *)&(ri->i_addr[1]);
1580 }
1581
1582 static inline int f2fs_has_inline_dentry(struct inode *inode)
1583 {
1584 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1585 }
1586
1587 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1588 {
1589 if (!f2fs_has_inline_dentry(dir))
1590 kunmap(page);
1591 }
1592
1593 static inline int is_file(struct inode *inode, int type)
1594 {
1595 return F2FS_I(inode)->i_advise & type;
1596 }
1597
1598 static inline void set_file(struct inode *inode, int type)
1599 {
1600 F2FS_I(inode)->i_advise |= type;
1601 }
1602
1603 static inline void clear_file(struct inode *inode, int type)
1604 {
1605 F2FS_I(inode)->i_advise &= ~type;
1606 }
1607
1608 static inline int f2fs_readonly(struct super_block *sb)
1609 {
1610 return sb->s_flags & MS_RDONLY;
1611 }
1612
1613 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1614 {
1615 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1616 }
1617
1618 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1619 {
1620 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1621 sbi->sb->s_flags |= MS_RDONLY;
1622 }
1623
1624 static inline bool is_dot_dotdot(const struct qstr *str)
1625 {
1626 if (str->len == 1 && str->name[0] == '.')
1627 return true;
1628
1629 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1630 return true;
1631
1632 return false;
1633 }
1634
1635 static inline bool f2fs_may_extent_tree(struct inode *inode)
1636 {
1637 mode_t mode = inode->i_mode;
1638
1639 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1640 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1641 return false;
1642
1643 return S_ISREG(mode);
1644 }
1645
1646 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1647 {
1648 void *ret;
1649
1650 ret = kmalloc(size, flags | __GFP_NOWARN);
1651 if (!ret)
1652 ret = __vmalloc(size, flags, PAGE_KERNEL);
1653 return ret;
1654 }
1655
1656 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1657 {
1658 void *ret;
1659
1660 ret = kzalloc(size, flags | __GFP_NOWARN);
1661 if (!ret)
1662 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1663 return ret;
1664 }
1665
1666 #define get_inode_mode(i) \
1667 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1668 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1669
1670 /* get offset of first page in next direct node */
1671 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1672 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1673 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1674 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1675
1676 /*
1677 * file.c
1678 */
1679 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1680 void truncate_data_blocks(struct dnode_of_data *);
1681 int truncate_blocks(struct inode *, u64, bool);
1682 int f2fs_truncate(struct inode *, bool);
1683 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1684 int f2fs_setattr(struct dentry *, struct iattr *);
1685 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1686 int truncate_data_blocks_range(struct dnode_of_data *, int);
1687 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1688 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1689
1690 /*
1691 * inode.c
1692 */
1693 void f2fs_set_inode_flags(struct inode *);
1694 struct inode *f2fs_iget(struct super_block *, unsigned long);
1695 int try_to_free_nats(struct f2fs_sb_info *, int);
1696 int update_inode(struct inode *, struct page *);
1697 int update_inode_page(struct inode *);
1698 int f2fs_write_inode(struct inode *, struct writeback_control *);
1699 void f2fs_evict_inode(struct inode *);
1700 void handle_failed_inode(struct inode *);
1701
1702 /*
1703 * namei.c
1704 */
1705 struct dentry *f2fs_get_parent(struct dentry *child);
1706
1707 /*
1708 * dir.c
1709 */
1710 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1711 void set_de_type(struct f2fs_dir_entry *, umode_t);
1712
1713 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1714 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1715 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1716 unsigned int, struct f2fs_str *);
1717 void do_make_empty_dir(struct inode *, struct inode *,
1718 struct f2fs_dentry_ptr *);
1719 struct page *init_inode_metadata(struct inode *, struct inode *,
1720 const struct qstr *, struct page *);
1721 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1722 int room_for_filename(const void *, int, int);
1723 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1724 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1725 struct page **);
1726 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1727 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1728 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1729 struct page *, struct inode *);
1730 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1731 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1732 const struct qstr *, f2fs_hash_t , unsigned int);
1733 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1734 umode_t);
1735 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1736 struct inode *);
1737 int f2fs_do_tmpfile(struct inode *, struct inode *);
1738 bool f2fs_empty_dir(struct inode *);
1739
1740 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1741 {
1742 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1743 inode, inode->i_ino, inode->i_mode);
1744 }
1745
1746 /*
1747 * super.c
1748 */
1749 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1750 int f2fs_sync_fs(struct super_block *, int);
1751 extern __printf(3, 4)
1752 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1753
1754 /*
1755 * hash.c
1756 */
1757 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1758
1759 /*
1760 * node.c
1761 */
1762 struct dnode_of_data;
1763 struct node_info;
1764
1765 bool available_free_memory(struct f2fs_sb_info *, int);
1766 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1767 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1768 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1769 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1770 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1771 int truncate_inode_blocks(struct inode *, pgoff_t);
1772 int truncate_xattr_node(struct inode *, struct page *);
1773 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1774 int remove_inode_page(struct inode *);
1775 struct page *new_inode_page(struct inode *);
1776 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1777 void ra_node_page(struct f2fs_sb_info *, nid_t);
1778 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1779 struct page *get_node_page_ra(struct page *, int);
1780 void sync_inode_page(struct dnode_of_data *);
1781 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1782 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1783 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1784 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1785 int try_to_free_nids(struct f2fs_sb_info *, int);
1786 void recover_inline_xattr(struct inode *, struct page *);
1787 void recover_xattr_data(struct inode *, struct page *, block_t);
1788 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1789 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1790 struct f2fs_summary_block *);
1791 void flush_nat_entries(struct f2fs_sb_info *);
1792 int build_node_manager(struct f2fs_sb_info *);
1793 void destroy_node_manager(struct f2fs_sb_info *);
1794 int __init create_node_manager_caches(void);
1795 void destroy_node_manager_caches(void);
1796
1797 /*
1798 * segment.c
1799 */
1800 void register_inmem_page(struct inode *, struct page *);
1801 int commit_inmem_pages(struct inode *, bool);
1802 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1803 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1804 int f2fs_issue_flush(struct f2fs_sb_info *);
1805 int create_flush_cmd_control(struct f2fs_sb_info *);
1806 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1807 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1808 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1809 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1810 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1811 void release_discard_addrs(struct f2fs_sb_info *);
1812 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1813 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1814 void allocate_new_segments(struct f2fs_sb_info *);
1815 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1816 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1817 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1818 void write_meta_page(struct f2fs_sb_info *, struct page *);
1819 void write_node_page(unsigned int, struct f2fs_io_info *);
1820 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1821 void rewrite_data_page(struct f2fs_io_info *);
1822 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1823 block_t, block_t, unsigned char, bool);
1824 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1825 block_t, block_t *, struct f2fs_summary *, int);
1826 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1827 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1828 void write_data_summaries(struct f2fs_sb_info *, block_t);
1829 void write_node_summaries(struct f2fs_sb_info *, block_t);
1830 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1831 int, unsigned int, int);
1832 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1833 int build_segment_manager(struct f2fs_sb_info *);
1834 void destroy_segment_manager(struct f2fs_sb_info *);
1835 int __init create_segment_manager_caches(void);
1836 void destroy_segment_manager_caches(void);
1837
1838 /*
1839 * checkpoint.c
1840 */
1841 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1842 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1843 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1844 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1845 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1846 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1847 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1848 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1849 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1850 void release_ino_entry(struct f2fs_sb_info *);
1851 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1852 int acquire_orphan_inode(struct f2fs_sb_info *);
1853 void release_orphan_inode(struct f2fs_sb_info *);
1854 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1855 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1856 int recover_orphan_inodes(struct f2fs_sb_info *);
1857 int get_valid_checkpoint(struct f2fs_sb_info *);
1858 void update_dirty_page(struct inode *, struct page *);
1859 void add_dirty_dir_inode(struct inode *);
1860 void remove_dirty_inode(struct inode *);
1861 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1862 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1863 void init_ino_entry_info(struct f2fs_sb_info *);
1864 int __init create_checkpoint_caches(void);
1865 void destroy_checkpoint_caches(void);
1866
1867 /*
1868 * data.c
1869 */
1870 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1871 int f2fs_submit_page_bio(struct f2fs_io_info *);
1872 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1873 void set_data_blkaddr(struct dnode_of_data *);
1874 int reserve_new_block(struct dnode_of_data *);
1875 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1876 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1877 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1878 struct page *find_data_page(struct inode *, pgoff_t);
1879 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1880 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1881 int do_write_data_page(struct f2fs_io_info *);
1882 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1883 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1884 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1885 int f2fs_release_page(struct page *, gfp_t);
1886
1887 /*
1888 * gc.c
1889 */
1890 int start_gc_thread(struct f2fs_sb_info *);
1891 void stop_gc_thread(struct f2fs_sb_info *);
1892 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1893 int f2fs_gc(struct f2fs_sb_info *, bool);
1894 void build_gc_manager(struct f2fs_sb_info *);
1895
1896 /*
1897 * recovery.c
1898 */
1899 int recover_fsync_data(struct f2fs_sb_info *);
1900 bool space_for_roll_forward(struct f2fs_sb_info *);
1901
1902 /*
1903 * debug.c
1904 */
1905 #ifdef CONFIG_F2FS_STAT_FS
1906 struct f2fs_stat_info {
1907 struct list_head stat_list;
1908 struct f2fs_sb_info *sbi;
1909 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1910 int main_area_segs, main_area_sections, main_area_zones;
1911 unsigned long long hit_largest, hit_cached, hit_rbtree;
1912 unsigned long long hit_total, total_ext;
1913 int ext_tree, zombie_tree, ext_node;
1914 int ndirty_node, ndirty_meta;
1915 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
1916 int nats, dirty_nats, sits, dirty_sits, fnids;
1917 int total_count, utilization;
1918 int bg_gc, inmem_pages, wb_pages;
1919 int inline_xattr, inline_inode, inline_dir;
1920 unsigned int valid_count, valid_node_count, valid_inode_count;
1921 unsigned int bimodal, avg_vblocks;
1922 int util_free, util_valid, util_invalid;
1923 int rsvd_segs, overp_segs;
1924 int dirty_count, node_pages, meta_pages;
1925 int prefree_count, call_count, cp_count;
1926 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1927 int bg_node_segs, bg_data_segs;
1928 int tot_blks, data_blks, node_blks;
1929 int bg_data_blks, bg_node_blks;
1930 int curseg[NR_CURSEG_TYPE];
1931 int cursec[NR_CURSEG_TYPE];
1932 int curzone[NR_CURSEG_TYPE];
1933
1934 unsigned int segment_count[2];
1935 unsigned int block_count[2];
1936 unsigned int inplace_count;
1937 unsigned long long base_mem, cache_mem, page_mem;
1938 };
1939
1940 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1941 {
1942 return (struct f2fs_stat_info *)sbi->stat_info;
1943 }
1944
1945 #define stat_inc_cp_count(si) ((si)->cp_count++)
1946 #define stat_inc_call_count(si) ((si)->call_count++)
1947 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1948 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
1949 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
1950 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
1951 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
1952 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
1953 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
1954 #define stat_inc_inline_xattr(inode) \
1955 do { \
1956 if (f2fs_has_inline_xattr(inode)) \
1957 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1958 } while (0)
1959 #define stat_dec_inline_xattr(inode) \
1960 do { \
1961 if (f2fs_has_inline_xattr(inode)) \
1962 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1963 } while (0)
1964 #define stat_inc_inline_inode(inode) \
1965 do { \
1966 if (f2fs_has_inline_data(inode)) \
1967 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1968 } while (0)
1969 #define stat_dec_inline_inode(inode) \
1970 do { \
1971 if (f2fs_has_inline_data(inode)) \
1972 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1973 } while (0)
1974 #define stat_inc_inline_dir(inode) \
1975 do { \
1976 if (f2fs_has_inline_dentry(inode)) \
1977 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1978 } while (0)
1979 #define stat_dec_inline_dir(inode) \
1980 do { \
1981 if (f2fs_has_inline_dentry(inode)) \
1982 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1983 } while (0)
1984 #define stat_inc_seg_type(sbi, curseg) \
1985 ((sbi)->segment_count[(curseg)->alloc_type]++)
1986 #define stat_inc_block_count(sbi, curseg) \
1987 ((sbi)->block_count[(curseg)->alloc_type]++)
1988 #define stat_inc_inplace_blocks(sbi) \
1989 (atomic_inc(&(sbi)->inplace_count))
1990 #define stat_inc_seg_count(sbi, type, gc_type) \
1991 do { \
1992 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1993 (si)->tot_segs++; \
1994 if (type == SUM_TYPE_DATA) { \
1995 si->data_segs++; \
1996 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1997 } else { \
1998 si->node_segs++; \
1999 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2000 } \
2001 } while (0)
2002
2003 #define stat_inc_tot_blk_count(si, blks) \
2004 (si->tot_blks += (blks))
2005
2006 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2007 do { \
2008 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2009 stat_inc_tot_blk_count(si, blks); \
2010 si->data_blks += (blks); \
2011 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2012 } while (0)
2013
2014 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2015 do { \
2016 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2017 stat_inc_tot_blk_count(si, blks); \
2018 si->node_blks += (blks); \
2019 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2020 } while (0)
2021
2022 int f2fs_build_stats(struct f2fs_sb_info *);
2023 void f2fs_destroy_stats(struct f2fs_sb_info *);
2024 int __init f2fs_create_root_stats(void);
2025 void f2fs_destroy_root_stats(void);
2026 #else
2027 #define stat_inc_cp_count(si)
2028 #define stat_inc_call_count(si)
2029 #define stat_inc_bggc_count(si)
2030 #define stat_inc_dirty_inode(sbi, type)
2031 #define stat_dec_dirty_inode(sbi, type)
2032 #define stat_inc_total_hit(sb)
2033 #define stat_inc_rbtree_node_hit(sb)
2034 #define stat_inc_largest_node_hit(sbi)
2035 #define stat_inc_cached_node_hit(sbi)
2036 #define stat_inc_inline_xattr(inode)
2037 #define stat_dec_inline_xattr(inode)
2038 #define stat_inc_inline_inode(inode)
2039 #define stat_dec_inline_inode(inode)
2040 #define stat_inc_inline_dir(inode)
2041 #define stat_dec_inline_dir(inode)
2042 #define stat_inc_seg_type(sbi, curseg)
2043 #define stat_inc_block_count(sbi, curseg)
2044 #define stat_inc_inplace_blocks(sbi)
2045 #define stat_inc_seg_count(sbi, type, gc_type)
2046 #define stat_inc_tot_blk_count(si, blks)
2047 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2048 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2049
2050 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2051 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2052 static inline int __init f2fs_create_root_stats(void) { return 0; }
2053 static inline void f2fs_destroy_root_stats(void) { }
2054 #endif
2055
2056 extern const struct file_operations f2fs_dir_operations;
2057 extern const struct file_operations f2fs_file_operations;
2058 extern const struct inode_operations f2fs_file_inode_operations;
2059 extern const struct address_space_operations f2fs_dblock_aops;
2060 extern const struct address_space_operations f2fs_node_aops;
2061 extern const struct address_space_operations f2fs_meta_aops;
2062 extern const struct inode_operations f2fs_dir_inode_operations;
2063 extern const struct inode_operations f2fs_symlink_inode_operations;
2064 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2065 extern const struct inode_operations f2fs_special_inode_operations;
2066 extern struct kmem_cache *inode_entry_slab;
2067
2068 /*
2069 * inline.c
2070 */
2071 bool f2fs_may_inline_data(struct inode *);
2072 bool f2fs_may_inline_dentry(struct inode *);
2073 void read_inline_data(struct page *, struct page *);
2074 bool truncate_inline_inode(struct page *, u64);
2075 int f2fs_read_inline_data(struct inode *, struct page *);
2076 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2077 int f2fs_convert_inline_inode(struct inode *);
2078 int f2fs_write_inline_data(struct inode *, struct page *);
2079 bool recover_inline_data(struct inode *, struct page *);
2080 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2081 struct f2fs_filename *, struct page **);
2082 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2083 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2084 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2085 nid_t, umode_t);
2086 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2087 struct inode *, struct inode *);
2088 bool f2fs_empty_inline_dir(struct inode *);
2089 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2090 struct f2fs_str *);
2091 int f2fs_inline_data_fiemap(struct inode *,
2092 struct fiemap_extent_info *, __u64, __u64);
2093
2094 /*
2095 * shrinker.c
2096 */
2097 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2098 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2099 void f2fs_join_shrinker(struct f2fs_sb_info *);
2100 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2101
2102 /*
2103 * extent_cache.c
2104 */
2105 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2106 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2107 unsigned int f2fs_destroy_extent_node(struct inode *);
2108 void f2fs_destroy_extent_tree(struct inode *);
2109 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2110 void f2fs_update_extent_cache(struct dnode_of_data *);
2111 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2112 pgoff_t, block_t, unsigned int);
2113 void init_extent_cache_info(struct f2fs_sb_info *);
2114 int __init create_extent_cache(void);
2115 void destroy_extent_cache(void);
2116
2117 /*
2118 * crypto support
2119 */
2120 static inline int f2fs_encrypted_inode(struct inode *inode)
2121 {
2122 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2123 return file_is_encrypt(inode);
2124 #else
2125 return 0;
2126 #endif
2127 }
2128
2129 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2130 {
2131 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2132 file_set_encrypt(inode);
2133 #endif
2134 }
2135
2136 static inline bool f2fs_bio_encrypted(struct bio *bio)
2137 {
2138 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2139 return unlikely(bio->bi_private != NULL);
2140 #else
2141 return false;
2142 #endif
2143 }
2144
2145 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2146 {
2147 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2148 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2149 #else
2150 return 0;
2151 #endif
2152 }
2153
2154 static inline bool f2fs_may_encrypt(struct inode *inode)
2155 {
2156 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2157 mode_t mode = inode->i_mode;
2158
2159 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2160 #else
2161 return 0;
2162 #endif
2163 }
2164
2165 /* crypto_policy.c */
2166 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2167 struct inode *);
2168 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2169 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2170 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2171
2172 /* crypt.c */
2173 extern struct kmem_cache *f2fs_crypt_info_cachep;
2174 bool f2fs_valid_contents_enc_mode(uint32_t);
2175 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2176 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2177 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2178 struct page *f2fs_encrypt(struct inode *, struct page *);
2179 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2180 int f2fs_decrypt_one(struct inode *, struct page *);
2181 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2182
2183 /* crypto_key.c */
2184 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2185 int _f2fs_get_encryption_info(struct inode *inode);
2186
2187 /* crypto_fname.c */
2188 bool f2fs_valid_filenames_enc_mode(uint32_t);
2189 u32 f2fs_fname_crypto_round_up(u32, u32);
2190 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2191 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2192 const struct f2fs_str *, struct f2fs_str *);
2193 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2194 struct f2fs_str *);
2195
2196 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2197 void f2fs_restore_and_release_control_page(struct page **);
2198 void f2fs_restore_control_page(struct page *);
2199
2200 int __init f2fs_init_crypto(void);
2201 int f2fs_crypto_initialize(void);
2202 void f2fs_exit_crypto(void);
2203
2204 int f2fs_has_encryption_key(struct inode *);
2205
2206 static inline int f2fs_get_encryption_info(struct inode *inode)
2207 {
2208 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2209
2210 if (!ci ||
2211 (ci->ci_keyring_key &&
2212 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2213 (1 << KEY_FLAG_REVOKED) |
2214 (1 << KEY_FLAG_DEAD)))))
2215 return _f2fs_get_encryption_info(inode);
2216 return 0;
2217 }
2218
2219 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2220 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2221 int lookup, struct f2fs_filename *);
2222 void f2fs_fname_free_filename(struct f2fs_filename *);
2223 #else
2224 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2225 static inline void f2fs_restore_control_page(struct page *p) { }
2226
2227 static inline int __init f2fs_init_crypto(void) { return 0; }
2228 static inline void f2fs_exit_crypto(void) { }
2229
2230 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2231 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2232 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2233
2234 static inline int f2fs_fname_setup_filename(struct inode *dir,
2235 const struct qstr *iname,
2236 int lookup, struct f2fs_filename *fname)
2237 {
2238 memset(fname, 0, sizeof(struct f2fs_filename));
2239 fname->usr_fname = iname;
2240 fname->disk_name.name = (unsigned char *)iname->name;
2241 fname->disk_name.len = iname->len;
2242 return 0;
2243 }
2244
2245 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2246 #endif
2247 #endif