]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: use vmalloc to handle -ENOMEM error
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24
25 #ifdef CONFIG_F2FS_CHECK_FS
26 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
27 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
28 #else
29 #define f2fs_bug_on(sbi, condition) \
30 do { \
31 if (unlikely(condition)) { \
32 WARN_ON(1); \
33 set_sbi_flag(sbi, SBI_NEED_FSCK); \
34 } \
35 } while (0)
36 #define f2fs_down_write(x, y) down_write(x)
37 #endif
38
39 /*
40 * For mount options
41 */
42 #define F2FS_MOUNT_BG_GC 0x00000001
43 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
44 #define F2FS_MOUNT_DISCARD 0x00000004
45 #define F2FS_MOUNT_NOHEAP 0x00000008
46 #define F2FS_MOUNT_XATTR_USER 0x00000010
47 #define F2FS_MOUNT_POSIX_ACL 0x00000020
48 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
49 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
50 #define F2FS_MOUNT_INLINE_DATA 0x00000100
51 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
52 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
53 #define F2FS_MOUNT_NOBARRIER 0x00000800
54 #define F2FS_MOUNT_FASTBOOT 0x00001000
55 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
56
57 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
58 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
59 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
60
61 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
62 typecheck(unsigned long long, b) && \
63 ((long long)((a) - (b)) > 0))
64
65 typedef u32 block_t; /*
66 * should not change u32, since it is the on-disk block
67 * address format, __le32.
68 */
69 typedef u32 nid_t;
70
71 struct f2fs_mount_info {
72 unsigned int opt;
73 };
74
75 #define F2FS_FEATURE_ENCRYPT 0x0001
76
77 #define F2FS_HAS_FEATURE(sb, mask) \
78 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
79 #define F2FS_SET_FEATURE(sb, mask) \
80 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
81 #define F2FS_CLEAR_FEATURE(sb, mask) \
82 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
83
84 #define CRCPOLY_LE 0xedb88320
85
86 static inline __u32 f2fs_crc32(void *buf, size_t len)
87 {
88 unsigned char *p = (unsigned char *)buf;
89 __u32 crc = F2FS_SUPER_MAGIC;
90 int i;
91
92 while (len--) {
93 crc ^= *p++;
94 for (i = 0; i < 8; i++)
95 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
96 }
97 return crc;
98 }
99
100 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
101 {
102 return f2fs_crc32(buf, buf_size) == blk_crc;
103 }
104
105 /*
106 * For checkpoint manager
107 */
108 enum {
109 NAT_BITMAP,
110 SIT_BITMAP
111 };
112
113 enum {
114 CP_UMOUNT,
115 CP_FASTBOOT,
116 CP_SYNC,
117 CP_RECOVERY,
118 CP_DISCARD,
119 };
120
121 #define DEF_BATCHED_TRIM_SECTIONS 32
122 #define BATCHED_TRIM_SEGMENTS(sbi) \
123 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
124 #define BATCHED_TRIM_BLOCKS(sbi) \
125 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
126
127 struct cp_control {
128 int reason;
129 __u64 trim_start;
130 __u64 trim_end;
131 __u64 trim_minlen;
132 __u64 trimmed;
133 };
134
135 /*
136 * For CP/NAT/SIT/SSA readahead
137 */
138 enum {
139 META_CP,
140 META_NAT,
141 META_SIT,
142 META_SSA,
143 META_POR,
144 };
145
146 /* for the list of ino */
147 enum {
148 ORPHAN_INO, /* for orphan ino list */
149 APPEND_INO, /* for append ino list */
150 UPDATE_INO, /* for update ino list */
151 MAX_INO_ENTRY, /* max. list */
152 };
153
154 struct ino_entry {
155 struct list_head list; /* list head */
156 nid_t ino; /* inode number */
157 };
158
159 /*
160 * for the list of directory inodes or gc inodes.
161 * NOTE: there are two slab users for this structure, if we add/modify/delete
162 * fields in structure for one of slab users, it may affect fields or size of
163 * other one, in this condition, it's better to split both of slab and related
164 * data structure.
165 */
166 struct inode_entry {
167 struct list_head list; /* list head */
168 struct inode *inode; /* vfs inode pointer */
169 };
170
171 /* for the list of blockaddresses to be discarded */
172 struct discard_entry {
173 struct list_head list; /* list head */
174 block_t blkaddr; /* block address to be discarded */
175 int len; /* # of consecutive blocks of the discard */
176 };
177
178 /* for the list of fsync inodes, used only during recovery */
179 struct fsync_inode_entry {
180 struct list_head list; /* list head */
181 struct inode *inode; /* vfs inode pointer */
182 block_t blkaddr; /* block address locating the last fsync */
183 block_t last_dentry; /* block address locating the last dentry */
184 block_t last_inode; /* block address locating the last inode */
185 };
186
187 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
188 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
189
190 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
191 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
192 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
193 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
194
195 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
196 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
197
198 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
199 {
200 int before = nats_in_cursum(rs);
201 rs->n_nats = cpu_to_le16(before + i);
202 return before;
203 }
204
205 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
206 {
207 int before = sits_in_cursum(rs);
208 rs->n_sits = cpu_to_le16(before + i);
209 return before;
210 }
211
212 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
213 int type)
214 {
215 if (type == NAT_JOURNAL)
216 return size <= MAX_NAT_JENTRIES(sum);
217 return size <= MAX_SIT_JENTRIES(sum);
218 }
219
220 /*
221 * ioctl commands
222 */
223 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
224 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
225 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
226
227 #define F2FS_IOCTL_MAGIC 0xf5
228 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
229 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
230 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
231 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
232 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
233 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
234
235 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
236 _IOR('f', 19, struct f2fs_encryption_policy)
237 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
238 _IOW('f', 20, __u8[16])
239 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
240 _IOW('f', 21, struct f2fs_encryption_policy)
241
242 /*
243 * should be same as XFS_IOC_GOINGDOWN.
244 * Flags for going down operation used by FS_IOC_GOINGDOWN
245 */
246 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
247 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
248 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
249 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
250
251 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
252 /*
253 * ioctl commands in 32 bit emulation
254 */
255 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
256 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
257 #endif
258
259 /*
260 * For INODE and NODE manager
261 */
262 /* for directory operations */
263 struct f2fs_str {
264 unsigned char *name;
265 u32 len;
266 };
267
268 struct f2fs_filename {
269 const struct qstr *usr_fname;
270 struct f2fs_str disk_name;
271 f2fs_hash_t hash;
272 #ifdef CONFIG_F2FS_FS_ENCRYPTION
273 struct f2fs_str crypto_buf;
274 #endif
275 };
276
277 #define FSTR_INIT(n, l) { .name = n, .len = l }
278 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
279 #define fname_name(p) ((p)->disk_name.name)
280 #define fname_len(p) ((p)->disk_name.len)
281
282 struct f2fs_dentry_ptr {
283 struct inode *inode;
284 const void *bitmap;
285 struct f2fs_dir_entry *dentry;
286 __u8 (*filename)[F2FS_SLOT_LEN];
287 int max;
288 };
289
290 static inline void make_dentry_ptr(struct inode *inode,
291 struct f2fs_dentry_ptr *d, void *src, int type)
292 {
293 d->inode = inode;
294
295 if (type == 1) {
296 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
297 d->max = NR_DENTRY_IN_BLOCK;
298 d->bitmap = &t->dentry_bitmap;
299 d->dentry = t->dentry;
300 d->filename = t->filename;
301 } else {
302 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
303 d->max = NR_INLINE_DENTRY;
304 d->bitmap = &t->dentry_bitmap;
305 d->dentry = t->dentry;
306 d->filename = t->filename;
307 }
308 }
309
310 /*
311 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
312 * as its node offset to distinguish from index node blocks.
313 * But some bits are used to mark the node block.
314 */
315 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
316 >> OFFSET_BIT_SHIFT)
317 enum {
318 ALLOC_NODE, /* allocate a new node page if needed */
319 LOOKUP_NODE, /* look up a node without readahead */
320 LOOKUP_NODE_RA, /*
321 * look up a node with readahead called
322 * by get_data_block.
323 */
324 };
325
326 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
327
328 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
329
330 /* vector size for gang look-up from extent cache that consists of radix tree */
331 #define EXT_TREE_VEC_SIZE 64
332
333 /* for in-memory extent cache entry */
334 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
335
336 /* number of extent info in extent cache we try to shrink */
337 #define EXTENT_CACHE_SHRINK_NUMBER 128
338
339 struct extent_info {
340 unsigned int fofs; /* start offset in a file */
341 u32 blk; /* start block address of the extent */
342 unsigned int len; /* length of the extent */
343 };
344
345 struct extent_node {
346 struct rb_node rb_node; /* rb node located in rb-tree */
347 struct list_head list; /* node in global extent list of sbi */
348 struct extent_info ei; /* extent info */
349 };
350
351 struct extent_tree {
352 nid_t ino; /* inode number */
353 struct rb_root root; /* root of extent info rb-tree */
354 struct extent_node *cached_en; /* recently accessed extent node */
355 struct extent_info largest; /* largested extent info */
356 rwlock_t lock; /* protect extent info rb-tree */
357 atomic_t refcount; /* reference count of rb-tree */
358 unsigned int count; /* # of extent node in rb-tree*/
359 };
360
361 /*
362 * This structure is taken from ext4_map_blocks.
363 *
364 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
365 */
366 #define F2FS_MAP_NEW (1 << BH_New)
367 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
368 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
369 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
370 F2FS_MAP_UNWRITTEN)
371
372 struct f2fs_map_blocks {
373 block_t m_pblk;
374 block_t m_lblk;
375 unsigned int m_len;
376 unsigned int m_flags;
377 };
378
379 /* for flag in get_data_block */
380 #define F2FS_GET_BLOCK_READ 0
381 #define F2FS_GET_BLOCK_DIO 1
382 #define F2FS_GET_BLOCK_FIEMAP 2
383 #define F2FS_GET_BLOCK_BMAP 3
384
385 /*
386 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
387 */
388 #define FADVISE_COLD_BIT 0x01
389 #define FADVISE_LOST_PINO_BIT 0x02
390 #define FADVISE_ENCRYPT_BIT 0x04
391 #define FADVISE_ENC_NAME_BIT 0x08
392
393 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
394 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
395 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
396 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
397 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
398 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
399 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
400 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
401 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
402 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
403 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
404
405 /* Encryption algorithms */
406 #define F2FS_ENCRYPTION_MODE_INVALID 0
407 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
408 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
409 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
410 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
411
412 #include "f2fs_crypto.h"
413
414 #define DEF_DIR_LEVEL 0
415
416 struct f2fs_inode_info {
417 struct inode vfs_inode; /* serve a vfs inode */
418 unsigned long i_flags; /* keep an inode flags for ioctl */
419 unsigned char i_advise; /* use to give file attribute hints */
420 unsigned char i_dir_level; /* use for dentry level for large dir */
421 unsigned int i_current_depth; /* use only in directory structure */
422 unsigned int i_pino; /* parent inode number */
423 umode_t i_acl_mode; /* keep file acl mode temporarily */
424
425 /* Use below internally in f2fs*/
426 unsigned long flags; /* use to pass per-file flags */
427 struct rw_semaphore i_sem; /* protect fi info */
428 atomic_t dirty_pages; /* # of dirty pages */
429 f2fs_hash_t chash; /* hash value of given file name */
430 unsigned int clevel; /* maximum level of given file name */
431 nid_t i_xattr_nid; /* node id that contains xattrs */
432 unsigned long long xattr_ver; /* cp version of xattr modification */
433 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
434
435 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
436 struct mutex inmem_lock; /* lock for inmemory pages */
437
438 struct extent_tree *extent_tree; /* cached extent_tree entry */
439
440 #ifdef CONFIG_F2FS_FS_ENCRYPTION
441 /* Encryption params */
442 struct f2fs_crypt_info *i_crypt_info;
443 #endif
444 };
445
446 static inline void get_extent_info(struct extent_info *ext,
447 struct f2fs_extent i_ext)
448 {
449 ext->fofs = le32_to_cpu(i_ext.fofs);
450 ext->blk = le32_to_cpu(i_ext.blk);
451 ext->len = le32_to_cpu(i_ext.len);
452 }
453
454 static inline void set_raw_extent(struct extent_info *ext,
455 struct f2fs_extent *i_ext)
456 {
457 i_ext->fofs = cpu_to_le32(ext->fofs);
458 i_ext->blk = cpu_to_le32(ext->blk);
459 i_ext->len = cpu_to_le32(ext->len);
460 }
461
462 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
463 u32 blk, unsigned int len)
464 {
465 ei->fofs = fofs;
466 ei->blk = blk;
467 ei->len = len;
468 }
469
470 static inline bool __is_extent_same(struct extent_info *ei1,
471 struct extent_info *ei2)
472 {
473 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
474 ei1->len == ei2->len);
475 }
476
477 static inline bool __is_extent_mergeable(struct extent_info *back,
478 struct extent_info *front)
479 {
480 return (back->fofs + back->len == front->fofs &&
481 back->blk + back->len == front->blk);
482 }
483
484 static inline bool __is_back_mergeable(struct extent_info *cur,
485 struct extent_info *back)
486 {
487 return __is_extent_mergeable(back, cur);
488 }
489
490 static inline bool __is_front_mergeable(struct extent_info *cur,
491 struct extent_info *front)
492 {
493 return __is_extent_mergeable(cur, front);
494 }
495
496 static inline void __try_update_largest_extent(struct extent_tree *et,
497 struct extent_node *en)
498 {
499 if (en->ei.len > et->largest.len)
500 et->largest = en->ei;
501 }
502
503 struct f2fs_nm_info {
504 block_t nat_blkaddr; /* base disk address of NAT */
505 nid_t max_nid; /* maximum possible node ids */
506 nid_t available_nids; /* maximum available node ids */
507 nid_t next_scan_nid; /* the next nid to be scanned */
508 unsigned int ram_thresh; /* control the memory footprint */
509
510 /* NAT cache management */
511 struct radix_tree_root nat_root;/* root of the nat entry cache */
512 struct radix_tree_root nat_set_root;/* root of the nat set cache */
513 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
514 struct list_head nat_entries; /* cached nat entry list (clean) */
515 unsigned int nat_cnt; /* the # of cached nat entries */
516 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
517
518 /* free node ids management */
519 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
520 struct list_head free_nid_list; /* a list for free nids */
521 spinlock_t free_nid_list_lock; /* protect free nid list */
522 unsigned int fcnt; /* the number of free node id */
523 struct mutex build_lock; /* lock for build free nids */
524
525 /* for checkpoint */
526 char *nat_bitmap; /* NAT bitmap pointer */
527 int bitmap_size; /* bitmap size */
528 };
529
530 /*
531 * this structure is used as one of function parameters.
532 * all the information are dedicated to a given direct node block determined
533 * by the data offset in a file.
534 */
535 struct dnode_of_data {
536 struct inode *inode; /* vfs inode pointer */
537 struct page *inode_page; /* its inode page, NULL is possible */
538 struct page *node_page; /* cached direct node page */
539 nid_t nid; /* node id of the direct node block */
540 unsigned int ofs_in_node; /* data offset in the node page */
541 bool inode_page_locked; /* inode page is locked or not */
542 block_t data_blkaddr; /* block address of the node block */
543 };
544
545 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
546 struct page *ipage, struct page *npage, nid_t nid)
547 {
548 memset(dn, 0, sizeof(*dn));
549 dn->inode = inode;
550 dn->inode_page = ipage;
551 dn->node_page = npage;
552 dn->nid = nid;
553 }
554
555 /*
556 * For SIT manager
557 *
558 * By default, there are 6 active log areas across the whole main area.
559 * When considering hot and cold data separation to reduce cleaning overhead,
560 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
561 * respectively.
562 * In the current design, you should not change the numbers intentionally.
563 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
564 * logs individually according to the underlying devices. (default: 6)
565 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
566 * data and 8 for node logs.
567 */
568 #define NR_CURSEG_DATA_TYPE (3)
569 #define NR_CURSEG_NODE_TYPE (3)
570 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
571
572 enum {
573 CURSEG_HOT_DATA = 0, /* directory entry blocks */
574 CURSEG_WARM_DATA, /* data blocks */
575 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
576 CURSEG_HOT_NODE, /* direct node blocks of directory files */
577 CURSEG_WARM_NODE, /* direct node blocks of normal files */
578 CURSEG_COLD_NODE, /* indirect node blocks */
579 NO_CHECK_TYPE,
580 CURSEG_DIRECT_IO, /* to use for the direct IO path */
581 };
582
583 struct flush_cmd {
584 struct completion wait;
585 struct llist_node llnode;
586 int ret;
587 };
588
589 struct flush_cmd_control {
590 struct task_struct *f2fs_issue_flush; /* flush thread */
591 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
592 struct llist_head issue_list; /* list for command issue */
593 struct llist_node *dispatch_list; /* list for command dispatch */
594 };
595
596 struct f2fs_sm_info {
597 struct sit_info *sit_info; /* whole segment information */
598 struct free_segmap_info *free_info; /* free segment information */
599 struct dirty_seglist_info *dirty_info; /* dirty segment information */
600 struct curseg_info *curseg_array; /* active segment information */
601
602 block_t seg0_blkaddr; /* block address of 0'th segment */
603 block_t main_blkaddr; /* start block address of main area */
604 block_t ssa_blkaddr; /* start block address of SSA area */
605
606 unsigned int segment_count; /* total # of segments */
607 unsigned int main_segments; /* # of segments in main area */
608 unsigned int reserved_segments; /* # of reserved segments */
609 unsigned int ovp_segments; /* # of overprovision segments */
610
611 /* a threshold to reclaim prefree segments */
612 unsigned int rec_prefree_segments;
613
614 /* for small discard management */
615 struct list_head discard_list; /* 4KB discard list */
616 int nr_discards; /* # of discards in the list */
617 int max_discards; /* max. discards to be issued */
618
619 /* for batched trimming */
620 unsigned int trim_sections; /* # of sections to trim */
621
622 struct list_head sit_entry_set; /* sit entry set list */
623
624 unsigned int ipu_policy; /* in-place-update policy */
625 unsigned int min_ipu_util; /* in-place-update threshold */
626 unsigned int min_fsync_blocks; /* threshold for fsync */
627
628 /* for flush command control */
629 struct flush_cmd_control *cmd_control_info;
630
631 };
632
633 /*
634 * For superblock
635 */
636 /*
637 * COUNT_TYPE for monitoring
638 *
639 * f2fs monitors the number of several block types such as on-writeback,
640 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
641 */
642 enum count_type {
643 F2FS_WRITEBACK,
644 F2FS_DIRTY_DENTS,
645 F2FS_DIRTY_NODES,
646 F2FS_DIRTY_META,
647 F2FS_INMEM_PAGES,
648 NR_COUNT_TYPE,
649 };
650
651 /*
652 * The below are the page types of bios used in submit_bio().
653 * The available types are:
654 * DATA User data pages. It operates as async mode.
655 * NODE Node pages. It operates as async mode.
656 * META FS metadata pages such as SIT, NAT, CP.
657 * NR_PAGE_TYPE The number of page types.
658 * META_FLUSH Make sure the previous pages are written
659 * with waiting the bio's completion
660 * ... Only can be used with META.
661 */
662 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
663 enum page_type {
664 DATA,
665 NODE,
666 META,
667 NR_PAGE_TYPE,
668 META_FLUSH,
669 INMEM, /* the below types are used by tracepoints only. */
670 INMEM_DROP,
671 IPU,
672 OPU,
673 };
674
675 struct f2fs_io_info {
676 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
677 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
678 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
679 block_t blk_addr; /* block address to be written */
680 struct page *page; /* page to be written */
681 struct page *encrypted_page; /* encrypted page */
682 };
683
684 #define is_read_io(rw) (((rw) & 1) == READ)
685 struct f2fs_bio_info {
686 struct f2fs_sb_info *sbi; /* f2fs superblock */
687 struct bio *bio; /* bios to merge */
688 sector_t last_block_in_bio; /* last block number */
689 struct f2fs_io_info fio; /* store buffered io info. */
690 struct rw_semaphore io_rwsem; /* blocking op for bio */
691 };
692
693 /* for inner inode cache management */
694 struct inode_management {
695 struct radix_tree_root ino_root; /* ino entry array */
696 spinlock_t ino_lock; /* for ino entry lock */
697 struct list_head ino_list; /* inode list head */
698 unsigned long ino_num; /* number of entries */
699 };
700
701 /* For s_flag in struct f2fs_sb_info */
702 enum {
703 SBI_IS_DIRTY, /* dirty flag for checkpoint */
704 SBI_IS_CLOSE, /* specify unmounting */
705 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
706 SBI_POR_DOING, /* recovery is doing or not */
707 };
708
709 struct f2fs_sb_info {
710 struct super_block *sb; /* pointer to VFS super block */
711 struct proc_dir_entry *s_proc; /* proc entry */
712 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
713 struct f2fs_super_block *raw_super; /* raw super block pointer */
714 int s_flag; /* flags for sbi */
715
716 /* for node-related operations */
717 struct f2fs_nm_info *nm_info; /* node manager */
718 struct inode *node_inode; /* cache node blocks */
719
720 /* for segment-related operations */
721 struct f2fs_sm_info *sm_info; /* segment manager */
722
723 /* for bio operations */
724 struct f2fs_bio_info read_io; /* for read bios */
725 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
726
727 /* for checkpoint */
728 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
729 struct inode *meta_inode; /* cache meta blocks */
730 struct mutex cp_mutex; /* checkpoint procedure lock */
731 struct rw_semaphore cp_rwsem; /* blocking FS operations */
732 struct rw_semaphore node_write; /* locking node writes */
733 struct mutex writepages; /* mutex for writepages() */
734 wait_queue_head_t cp_wait;
735
736 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
737
738 /* for orphan inode, use 0'th array */
739 unsigned int max_orphans; /* max orphan inodes */
740
741 /* for directory inode management */
742 struct list_head dir_inode_list; /* dir inode list */
743 spinlock_t dir_inode_lock; /* for dir inode list lock */
744
745 /* for extent tree cache */
746 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
747 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
748 struct list_head extent_list; /* lru list for shrinker */
749 spinlock_t extent_lock; /* locking extent lru list */
750 int total_ext_tree; /* extent tree count */
751 atomic_t total_ext_node; /* extent info count */
752
753 /* basic filesystem units */
754 unsigned int log_sectors_per_block; /* log2 sectors per block */
755 unsigned int log_blocksize; /* log2 block size */
756 unsigned int blocksize; /* block size */
757 unsigned int root_ino_num; /* root inode number*/
758 unsigned int node_ino_num; /* node inode number*/
759 unsigned int meta_ino_num; /* meta inode number*/
760 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
761 unsigned int blocks_per_seg; /* blocks per segment */
762 unsigned int segs_per_sec; /* segments per section */
763 unsigned int secs_per_zone; /* sections per zone */
764 unsigned int total_sections; /* total section count */
765 unsigned int total_node_count; /* total node block count */
766 unsigned int total_valid_node_count; /* valid node block count */
767 unsigned int total_valid_inode_count; /* valid inode count */
768 int active_logs; /* # of active logs */
769 int dir_level; /* directory level */
770
771 block_t user_block_count; /* # of user blocks */
772 block_t total_valid_block_count; /* # of valid blocks */
773 block_t alloc_valid_block_count; /* # of allocated blocks */
774 block_t discard_blks; /* discard command candidats */
775 block_t last_valid_block_count; /* for recovery */
776 u32 s_next_generation; /* for NFS support */
777 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
778
779 struct f2fs_mount_info mount_opt; /* mount options */
780
781 /* for cleaning operations */
782 struct mutex gc_mutex; /* mutex for GC */
783 struct f2fs_gc_kthread *gc_thread; /* GC thread */
784 unsigned int cur_victim_sec; /* current victim section num */
785
786 /* maximum # of trials to find a victim segment for SSR and GC */
787 unsigned int max_victim_search;
788
789 /*
790 * for stat information.
791 * one is for the LFS mode, and the other is for the SSR mode.
792 */
793 #ifdef CONFIG_F2FS_STAT_FS
794 struct f2fs_stat_info *stat_info; /* FS status information */
795 unsigned int segment_count[2]; /* # of allocated segments */
796 unsigned int block_count[2]; /* # of allocated blocks */
797 atomic_t inplace_count; /* # of inplace update */
798 atomic_t total_hit_ext; /* # of lookup extent cache */
799 atomic_t read_hit_rbtree; /* # of hit rbtree extent node */
800 atomic_t read_hit_largest; /* # of hit largest extent node */
801 atomic_t read_hit_cached; /* # of hit cached extent node */
802 atomic_t inline_xattr; /* # of inline_xattr inodes */
803 atomic_t inline_inode; /* # of inline_data inodes */
804 atomic_t inline_dir; /* # of inline_dentry inodes */
805 int bg_gc; /* background gc calls */
806 unsigned int n_dirty_dirs; /* # of dir inodes */
807 #endif
808 unsigned int last_victim[2]; /* last victim segment # */
809 spinlock_t stat_lock; /* lock for stat operations */
810
811 /* For sysfs suppport */
812 struct kobject s_kobj;
813 struct completion s_kobj_unregister;
814
815 /* For shrinker support */
816 struct list_head s_list;
817 struct mutex umount_mutex;
818 unsigned int shrinker_run_no;
819 };
820
821 /*
822 * Inline functions
823 */
824 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
825 {
826 return container_of(inode, struct f2fs_inode_info, vfs_inode);
827 }
828
829 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
830 {
831 return sb->s_fs_info;
832 }
833
834 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
835 {
836 return F2FS_SB(inode->i_sb);
837 }
838
839 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
840 {
841 return F2FS_I_SB(mapping->host);
842 }
843
844 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
845 {
846 return F2FS_M_SB(page->mapping);
847 }
848
849 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
850 {
851 return (struct f2fs_super_block *)(sbi->raw_super);
852 }
853
854 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
855 {
856 return (struct f2fs_checkpoint *)(sbi->ckpt);
857 }
858
859 static inline struct f2fs_node *F2FS_NODE(struct page *page)
860 {
861 return (struct f2fs_node *)page_address(page);
862 }
863
864 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
865 {
866 return &((struct f2fs_node *)page_address(page))->i;
867 }
868
869 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
870 {
871 return (struct f2fs_nm_info *)(sbi->nm_info);
872 }
873
874 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
875 {
876 return (struct f2fs_sm_info *)(sbi->sm_info);
877 }
878
879 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
880 {
881 return (struct sit_info *)(SM_I(sbi)->sit_info);
882 }
883
884 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
885 {
886 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
887 }
888
889 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
890 {
891 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
892 }
893
894 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
895 {
896 return sbi->meta_inode->i_mapping;
897 }
898
899 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
900 {
901 return sbi->node_inode->i_mapping;
902 }
903
904 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
905 {
906 return sbi->s_flag & (0x01 << type);
907 }
908
909 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
910 {
911 sbi->s_flag |= (0x01 << type);
912 }
913
914 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
915 {
916 sbi->s_flag &= ~(0x01 << type);
917 }
918
919 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
920 {
921 return le64_to_cpu(cp->checkpoint_ver);
922 }
923
924 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
925 {
926 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
927 return ckpt_flags & f;
928 }
929
930 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
931 {
932 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
933 ckpt_flags |= f;
934 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
935 }
936
937 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
938 {
939 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
940 ckpt_flags &= (~f);
941 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
942 }
943
944 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
945 {
946 down_read(&sbi->cp_rwsem);
947 }
948
949 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
950 {
951 up_read(&sbi->cp_rwsem);
952 }
953
954 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
955 {
956 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
957 }
958
959 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
960 {
961 up_write(&sbi->cp_rwsem);
962 }
963
964 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
965 {
966 int reason = CP_SYNC;
967
968 if (test_opt(sbi, FASTBOOT))
969 reason = CP_FASTBOOT;
970 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
971 reason = CP_UMOUNT;
972 return reason;
973 }
974
975 static inline bool __remain_node_summaries(int reason)
976 {
977 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
978 }
979
980 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
981 {
982 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
983 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
984 }
985
986 /*
987 * Check whether the given nid is within node id range.
988 */
989 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
990 {
991 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
992 return -EINVAL;
993 if (unlikely(nid >= NM_I(sbi)->max_nid))
994 return -EINVAL;
995 return 0;
996 }
997
998 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
999
1000 /*
1001 * Check whether the inode has blocks or not
1002 */
1003 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1004 {
1005 if (F2FS_I(inode)->i_xattr_nid)
1006 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1007 else
1008 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1009 }
1010
1011 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1012 {
1013 return ofs == XATTR_NODE_OFFSET;
1014 }
1015
1016 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1017 struct inode *inode, blkcnt_t count)
1018 {
1019 block_t valid_block_count;
1020
1021 spin_lock(&sbi->stat_lock);
1022 valid_block_count =
1023 sbi->total_valid_block_count + (block_t)count;
1024 if (unlikely(valid_block_count > sbi->user_block_count)) {
1025 spin_unlock(&sbi->stat_lock);
1026 return false;
1027 }
1028 inode->i_blocks += count;
1029 sbi->total_valid_block_count = valid_block_count;
1030 sbi->alloc_valid_block_count += (block_t)count;
1031 spin_unlock(&sbi->stat_lock);
1032 return true;
1033 }
1034
1035 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1036 struct inode *inode,
1037 blkcnt_t count)
1038 {
1039 spin_lock(&sbi->stat_lock);
1040 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1041 f2fs_bug_on(sbi, inode->i_blocks < count);
1042 inode->i_blocks -= count;
1043 sbi->total_valid_block_count -= (block_t)count;
1044 spin_unlock(&sbi->stat_lock);
1045 }
1046
1047 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1048 {
1049 atomic_inc(&sbi->nr_pages[count_type]);
1050 set_sbi_flag(sbi, SBI_IS_DIRTY);
1051 }
1052
1053 static inline void inode_inc_dirty_pages(struct inode *inode)
1054 {
1055 atomic_inc(&F2FS_I(inode)->dirty_pages);
1056 if (S_ISDIR(inode->i_mode))
1057 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1058 }
1059
1060 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1061 {
1062 atomic_dec(&sbi->nr_pages[count_type]);
1063 }
1064
1065 static inline void inode_dec_dirty_pages(struct inode *inode)
1066 {
1067 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1068 !S_ISLNK(inode->i_mode))
1069 return;
1070
1071 atomic_dec(&F2FS_I(inode)->dirty_pages);
1072
1073 if (S_ISDIR(inode->i_mode))
1074 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1075 }
1076
1077 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1078 {
1079 return atomic_read(&sbi->nr_pages[count_type]);
1080 }
1081
1082 static inline int get_dirty_pages(struct inode *inode)
1083 {
1084 return atomic_read(&F2FS_I(inode)->dirty_pages);
1085 }
1086
1087 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1088 {
1089 unsigned int pages_per_sec = sbi->segs_per_sec *
1090 (1 << sbi->log_blocks_per_seg);
1091 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1092 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1093 }
1094
1095 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1096 {
1097 return sbi->total_valid_block_count;
1098 }
1099
1100 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1101 {
1102 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1103
1104 /* return NAT or SIT bitmap */
1105 if (flag == NAT_BITMAP)
1106 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1107 else if (flag == SIT_BITMAP)
1108 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1109
1110 return 0;
1111 }
1112
1113 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1114 {
1115 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1116 }
1117
1118 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1119 {
1120 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1121 int offset;
1122
1123 if (__cp_payload(sbi) > 0) {
1124 if (flag == NAT_BITMAP)
1125 return &ckpt->sit_nat_version_bitmap;
1126 else
1127 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1128 } else {
1129 offset = (flag == NAT_BITMAP) ?
1130 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1131 return &ckpt->sit_nat_version_bitmap + offset;
1132 }
1133 }
1134
1135 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1136 {
1137 block_t start_addr;
1138 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1139 unsigned long long ckpt_version = cur_cp_version(ckpt);
1140
1141 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1142
1143 /*
1144 * odd numbered checkpoint should at cp segment 0
1145 * and even segment must be at cp segment 1
1146 */
1147 if (!(ckpt_version & 1))
1148 start_addr += sbi->blocks_per_seg;
1149
1150 return start_addr;
1151 }
1152
1153 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1154 {
1155 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1156 }
1157
1158 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1159 struct inode *inode)
1160 {
1161 block_t valid_block_count;
1162 unsigned int valid_node_count;
1163
1164 spin_lock(&sbi->stat_lock);
1165
1166 valid_block_count = sbi->total_valid_block_count + 1;
1167 if (unlikely(valid_block_count > sbi->user_block_count)) {
1168 spin_unlock(&sbi->stat_lock);
1169 return false;
1170 }
1171
1172 valid_node_count = sbi->total_valid_node_count + 1;
1173 if (unlikely(valid_node_count > sbi->total_node_count)) {
1174 spin_unlock(&sbi->stat_lock);
1175 return false;
1176 }
1177
1178 if (inode)
1179 inode->i_blocks++;
1180
1181 sbi->alloc_valid_block_count++;
1182 sbi->total_valid_node_count++;
1183 sbi->total_valid_block_count++;
1184 spin_unlock(&sbi->stat_lock);
1185
1186 return true;
1187 }
1188
1189 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1190 struct inode *inode)
1191 {
1192 spin_lock(&sbi->stat_lock);
1193
1194 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1195 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1196 f2fs_bug_on(sbi, !inode->i_blocks);
1197
1198 inode->i_blocks--;
1199 sbi->total_valid_node_count--;
1200 sbi->total_valid_block_count--;
1201
1202 spin_unlock(&sbi->stat_lock);
1203 }
1204
1205 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1206 {
1207 return sbi->total_valid_node_count;
1208 }
1209
1210 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1211 {
1212 spin_lock(&sbi->stat_lock);
1213 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1214 sbi->total_valid_inode_count++;
1215 spin_unlock(&sbi->stat_lock);
1216 }
1217
1218 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1219 {
1220 spin_lock(&sbi->stat_lock);
1221 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1222 sbi->total_valid_inode_count--;
1223 spin_unlock(&sbi->stat_lock);
1224 }
1225
1226 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1227 {
1228 return sbi->total_valid_inode_count;
1229 }
1230
1231 static inline void f2fs_put_page(struct page *page, int unlock)
1232 {
1233 if (!page)
1234 return;
1235
1236 if (unlock) {
1237 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1238 unlock_page(page);
1239 }
1240 page_cache_release(page);
1241 }
1242
1243 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1244 {
1245 if (dn->node_page)
1246 f2fs_put_page(dn->node_page, 1);
1247 if (dn->inode_page && dn->node_page != dn->inode_page)
1248 f2fs_put_page(dn->inode_page, 0);
1249 dn->node_page = NULL;
1250 dn->inode_page = NULL;
1251 }
1252
1253 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1254 size_t size)
1255 {
1256 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1257 }
1258
1259 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1260 gfp_t flags)
1261 {
1262 void *entry;
1263
1264 entry = kmem_cache_alloc(cachep, flags);
1265 if (!entry)
1266 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1267 return entry;
1268 }
1269
1270 static inline struct bio *f2fs_bio_alloc(int npages)
1271 {
1272 struct bio *bio;
1273
1274 /* No failure on bio allocation */
1275 bio = bio_alloc(GFP_NOIO, npages);
1276 if (!bio)
1277 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1278 return bio;
1279 }
1280
1281 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1282 unsigned long index, void *item)
1283 {
1284 while (radix_tree_insert(root, index, item))
1285 cond_resched();
1286 }
1287
1288 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1289
1290 static inline bool IS_INODE(struct page *page)
1291 {
1292 struct f2fs_node *p = F2FS_NODE(page);
1293 return RAW_IS_INODE(p);
1294 }
1295
1296 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1297 {
1298 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1299 }
1300
1301 static inline block_t datablock_addr(struct page *node_page,
1302 unsigned int offset)
1303 {
1304 struct f2fs_node *raw_node;
1305 __le32 *addr_array;
1306 raw_node = F2FS_NODE(node_page);
1307 addr_array = blkaddr_in_node(raw_node);
1308 return le32_to_cpu(addr_array[offset]);
1309 }
1310
1311 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1312 {
1313 int mask;
1314
1315 addr += (nr >> 3);
1316 mask = 1 << (7 - (nr & 0x07));
1317 return mask & *addr;
1318 }
1319
1320 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1321 {
1322 int mask;
1323
1324 addr += (nr >> 3);
1325 mask = 1 << (7 - (nr & 0x07));
1326 *addr |= mask;
1327 }
1328
1329 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1330 {
1331 int mask;
1332
1333 addr += (nr >> 3);
1334 mask = 1 << (7 - (nr & 0x07));
1335 *addr &= ~mask;
1336 }
1337
1338 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1339 {
1340 int mask;
1341 int ret;
1342
1343 addr += (nr >> 3);
1344 mask = 1 << (7 - (nr & 0x07));
1345 ret = mask & *addr;
1346 *addr |= mask;
1347 return ret;
1348 }
1349
1350 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1351 {
1352 int mask;
1353 int ret;
1354
1355 addr += (nr >> 3);
1356 mask = 1 << (7 - (nr & 0x07));
1357 ret = mask & *addr;
1358 *addr &= ~mask;
1359 return ret;
1360 }
1361
1362 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1363 {
1364 int mask;
1365
1366 addr += (nr >> 3);
1367 mask = 1 << (7 - (nr & 0x07));
1368 *addr ^= mask;
1369 }
1370
1371 /* used for f2fs_inode_info->flags */
1372 enum {
1373 FI_NEW_INODE, /* indicate newly allocated inode */
1374 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1375 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1376 FI_INC_LINK, /* need to increment i_nlink */
1377 FI_ACL_MODE, /* indicate acl mode */
1378 FI_NO_ALLOC, /* should not allocate any blocks */
1379 FI_FREE_NID, /* free allocated nide */
1380 FI_UPDATE_DIR, /* should update inode block for consistency */
1381 FI_DELAY_IPUT, /* used for the recovery */
1382 FI_NO_EXTENT, /* not to use the extent cache */
1383 FI_INLINE_XATTR, /* used for inline xattr */
1384 FI_INLINE_DATA, /* used for inline data*/
1385 FI_INLINE_DENTRY, /* used for inline dentry */
1386 FI_APPEND_WRITE, /* inode has appended data */
1387 FI_UPDATE_WRITE, /* inode has in-place-update data */
1388 FI_NEED_IPU, /* used for ipu per file */
1389 FI_ATOMIC_FILE, /* indicate atomic file */
1390 FI_VOLATILE_FILE, /* indicate volatile file */
1391 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1392 FI_DROP_CACHE, /* drop dirty page cache */
1393 FI_DATA_EXIST, /* indicate data exists */
1394 FI_INLINE_DOTS, /* indicate inline dot dentries */
1395 };
1396
1397 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1398 {
1399 if (!test_bit(flag, &fi->flags))
1400 set_bit(flag, &fi->flags);
1401 }
1402
1403 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1404 {
1405 return test_bit(flag, &fi->flags);
1406 }
1407
1408 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1409 {
1410 if (test_bit(flag, &fi->flags))
1411 clear_bit(flag, &fi->flags);
1412 }
1413
1414 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1415 {
1416 fi->i_acl_mode = mode;
1417 set_inode_flag(fi, FI_ACL_MODE);
1418 }
1419
1420 static inline void get_inline_info(struct f2fs_inode_info *fi,
1421 struct f2fs_inode *ri)
1422 {
1423 if (ri->i_inline & F2FS_INLINE_XATTR)
1424 set_inode_flag(fi, FI_INLINE_XATTR);
1425 if (ri->i_inline & F2FS_INLINE_DATA)
1426 set_inode_flag(fi, FI_INLINE_DATA);
1427 if (ri->i_inline & F2FS_INLINE_DENTRY)
1428 set_inode_flag(fi, FI_INLINE_DENTRY);
1429 if (ri->i_inline & F2FS_DATA_EXIST)
1430 set_inode_flag(fi, FI_DATA_EXIST);
1431 if (ri->i_inline & F2FS_INLINE_DOTS)
1432 set_inode_flag(fi, FI_INLINE_DOTS);
1433 }
1434
1435 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1436 struct f2fs_inode *ri)
1437 {
1438 ri->i_inline = 0;
1439
1440 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1441 ri->i_inline |= F2FS_INLINE_XATTR;
1442 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1443 ri->i_inline |= F2FS_INLINE_DATA;
1444 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1445 ri->i_inline |= F2FS_INLINE_DENTRY;
1446 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1447 ri->i_inline |= F2FS_DATA_EXIST;
1448 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1449 ri->i_inline |= F2FS_INLINE_DOTS;
1450 }
1451
1452 static inline int f2fs_has_inline_xattr(struct inode *inode)
1453 {
1454 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1455 }
1456
1457 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1458 {
1459 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1460 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1461 return DEF_ADDRS_PER_INODE;
1462 }
1463
1464 static inline void *inline_xattr_addr(struct page *page)
1465 {
1466 struct f2fs_inode *ri = F2FS_INODE(page);
1467 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1468 F2FS_INLINE_XATTR_ADDRS]);
1469 }
1470
1471 static inline int inline_xattr_size(struct inode *inode)
1472 {
1473 if (f2fs_has_inline_xattr(inode))
1474 return F2FS_INLINE_XATTR_ADDRS << 2;
1475 else
1476 return 0;
1477 }
1478
1479 static inline int f2fs_has_inline_data(struct inode *inode)
1480 {
1481 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1482 }
1483
1484 static inline void f2fs_clear_inline_inode(struct inode *inode)
1485 {
1486 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1487 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1488 }
1489
1490 static inline int f2fs_exist_data(struct inode *inode)
1491 {
1492 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1493 }
1494
1495 static inline int f2fs_has_inline_dots(struct inode *inode)
1496 {
1497 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1498 }
1499
1500 static inline bool f2fs_is_atomic_file(struct inode *inode)
1501 {
1502 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1503 }
1504
1505 static inline bool f2fs_is_volatile_file(struct inode *inode)
1506 {
1507 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1508 }
1509
1510 static inline bool f2fs_is_first_block_written(struct inode *inode)
1511 {
1512 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1513 }
1514
1515 static inline bool f2fs_is_drop_cache(struct inode *inode)
1516 {
1517 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1518 }
1519
1520 static inline void *inline_data_addr(struct page *page)
1521 {
1522 struct f2fs_inode *ri = F2FS_INODE(page);
1523 return (void *)&(ri->i_addr[1]);
1524 }
1525
1526 static inline int f2fs_has_inline_dentry(struct inode *inode)
1527 {
1528 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1529 }
1530
1531 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1532 {
1533 if (!f2fs_has_inline_dentry(dir))
1534 kunmap(page);
1535 }
1536
1537 static inline int is_file(struct inode *inode, int type)
1538 {
1539 return F2FS_I(inode)->i_advise & type;
1540 }
1541
1542 static inline void set_file(struct inode *inode, int type)
1543 {
1544 F2FS_I(inode)->i_advise |= type;
1545 }
1546
1547 static inline void clear_file(struct inode *inode, int type)
1548 {
1549 F2FS_I(inode)->i_advise &= ~type;
1550 }
1551
1552 static inline int f2fs_readonly(struct super_block *sb)
1553 {
1554 return sb->s_flags & MS_RDONLY;
1555 }
1556
1557 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1558 {
1559 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1560 }
1561
1562 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1563 {
1564 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1565 sbi->sb->s_flags |= MS_RDONLY;
1566 }
1567
1568 static inline bool is_dot_dotdot(const struct qstr *str)
1569 {
1570 if (str->len == 1 && str->name[0] == '.')
1571 return true;
1572
1573 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1574 return true;
1575
1576 return false;
1577 }
1578
1579 static inline bool f2fs_may_extent_tree(struct inode *inode)
1580 {
1581 mode_t mode = inode->i_mode;
1582
1583 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1584 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1585 return false;
1586
1587 return S_ISREG(mode);
1588 }
1589
1590 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1591 {
1592 void *ret;
1593
1594 ret = kmalloc(size, flags | __GFP_NOWARN);
1595 if (!ret)
1596 ret = __vmalloc(size, flags, PAGE_KERNEL);
1597 return ret;
1598 }
1599
1600 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1601 {
1602 void *ret;
1603
1604 ret = kzalloc(size, flags | __GFP_NOWARN);
1605 if (!ret)
1606 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1607 return ret;
1608 }
1609
1610 #define get_inode_mode(i) \
1611 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1612 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1613
1614 /* get offset of first page in next direct node */
1615 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1616 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1617 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1618 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1619
1620 /*
1621 * file.c
1622 */
1623 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1624 void truncate_data_blocks(struct dnode_of_data *);
1625 int truncate_blocks(struct inode *, u64, bool);
1626 int f2fs_truncate(struct inode *, bool);
1627 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1628 int f2fs_setattr(struct dentry *, struct iattr *);
1629 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1630 int truncate_data_blocks_range(struct dnode_of_data *, int);
1631 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1632 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1633
1634 /*
1635 * inode.c
1636 */
1637 void f2fs_set_inode_flags(struct inode *);
1638 struct inode *f2fs_iget(struct super_block *, unsigned long);
1639 int try_to_free_nats(struct f2fs_sb_info *, int);
1640 void update_inode(struct inode *, struct page *);
1641 void update_inode_page(struct inode *);
1642 int f2fs_write_inode(struct inode *, struct writeback_control *);
1643 void f2fs_evict_inode(struct inode *);
1644 void handle_failed_inode(struct inode *);
1645
1646 /*
1647 * namei.c
1648 */
1649 struct dentry *f2fs_get_parent(struct dentry *child);
1650
1651 /*
1652 * dir.c
1653 */
1654 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1655 void set_de_type(struct f2fs_dir_entry *, umode_t);
1656
1657 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1658 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1659 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1660 unsigned int, struct f2fs_str *);
1661 void do_make_empty_dir(struct inode *, struct inode *,
1662 struct f2fs_dentry_ptr *);
1663 struct page *init_inode_metadata(struct inode *, struct inode *,
1664 const struct qstr *, struct page *);
1665 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1666 int room_for_filename(const void *, int, int);
1667 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1668 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1669 struct page **);
1670 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1671 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1672 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1673 struct page *, struct inode *);
1674 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1675 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1676 const struct qstr *, f2fs_hash_t , unsigned int);
1677 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1678 umode_t);
1679 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1680 struct inode *);
1681 int f2fs_do_tmpfile(struct inode *, struct inode *);
1682 bool f2fs_empty_dir(struct inode *);
1683
1684 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1685 {
1686 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1687 inode, inode->i_ino, inode->i_mode);
1688 }
1689
1690 /*
1691 * super.c
1692 */
1693 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1694 int f2fs_sync_fs(struct super_block *, int);
1695 extern __printf(3, 4)
1696 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1697
1698 /*
1699 * hash.c
1700 */
1701 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1702
1703 /*
1704 * node.c
1705 */
1706 struct dnode_of_data;
1707 struct node_info;
1708
1709 bool available_free_memory(struct f2fs_sb_info *, int);
1710 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1711 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1712 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1713 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1714 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1715 int truncate_inode_blocks(struct inode *, pgoff_t);
1716 int truncate_xattr_node(struct inode *, struct page *);
1717 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1718 int remove_inode_page(struct inode *);
1719 struct page *new_inode_page(struct inode *);
1720 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1721 void ra_node_page(struct f2fs_sb_info *, nid_t);
1722 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1723 struct page *get_node_page_ra(struct page *, int);
1724 void sync_inode_page(struct dnode_of_data *);
1725 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1726 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1727 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1728 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1729 int try_to_free_nids(struct f2fs_sb_info *, int);
1730 void recover_inline_xattr(struct inode *, struct page *);
1731 void recover_xattr_data(struct inode *, struct page *, block_t);
1732 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1733 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1734 struct f2fs_summary_block *);
1735 void flush_nat_entries(struct f2fs_sb_info *);
1736 int build_node_manager(struct f2fs_sb_info *);
1737 void destroy_node_manager(struct f2fs_sb_info *);
1738 int __init create_node_manager_caches(void);
1739 void destroy_node_manager_caches(void);
1740
1741 /*
1742 * segment.c
1743 */
1744 void register_inmem_page(struct inode *, struct page *);
1745 int commit_inmem_pages(struct inode *, bool);
1746 void f2fs_balance_fs(struct f2fs_sb_info *);
1747 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1748 int f2fs_issue_flush(struct f2fs_sb_info *);
1749 int create_flush_cmd_control(struct f2fs_sb_info *);
1750 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1751 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1752 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1753 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1754 void release_discard_addrs(struct f2fs_sb_info *);
1755 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1756 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1757 void allocate_new_segments(struct f2fs_sb_info *);
1758 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1759 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1760 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1761 void write_meta_page(struct f2fs_sb_info *, struct page *);
1762 void write_node_page(unsigned int, struct f2fs_io_info *);
1763 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1764 void rewrite_data_page(struct f2fs_io_info *);
1765 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1766 block_t, block_t, unsigned char, bool);
1767 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1768 block_t, block_t *, struct f2fs_summary *, int);
1769 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1770 void write_data_summaries(struct f2fs_sb_info *, block_t);
1771 void write_node_summaries(struct f2fs_sb_info *, block_t);
1772 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1773 int, unsigned int, int);
1774 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1775 int build_segment_manager(struct f2fs_sb_info *);
1776 void destroy_segment_manager(struct f2fs_sb_info *);
1777 int __init create_segment_manager_caches(void);
1778 void destroy_segment_manager_caches(void);
1779
1780 /*
1781 * checkpoint.c
1782 */
1783 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1784 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1785 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1786 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1787 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1788 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1789 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1790 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1791 void release_dirty_inode(struct f2fs_sb_info *);
1792 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1793 int acquire_orphan_inode(struct f2fs_sb_info *);
1794 void release_orphan_inode(struct f2fs_sb_info *);
1795 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1796 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1797 int recover_orphan_inodes(struct f2fs_sb_info *);
1798 int get_valid_checkpoint(struct f2fs_sb_info *);
1799 void update_dirty_page(struct inode *, struct page *);
1800 void add_dirty_dir_inode(struct inode *);
1801 void remove_dirty_dir_inode(struct inode *);
1802 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1803 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1804 void init_ino_entry_info(struct f2fs_sb_info *);
1805 int __init create_checkpoint_caches(void);
1806 void destroy_checkpoint_caches(void);
1807
1808 /*
1809 * data.c
1810 */
1811 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1812 int f2fs_submit_page_bio(struct f2fs_io_info *);
1813 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1814 void set_data_blkaddr(struct dnode_of_data *);
1815 int reserve_new_block(struct dnode_of_data *);
1816 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1817 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1818 struct page *get_read_data_page(struct inode *, pgoff_t, int);
1819 struct page *find_data_page(struct inode *, pgoff_t);
1820 struct page *get_lock_data_page(struct inode *, pgoff_t);
1821 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1822 int do_write_data_page(struct f2fs_io_info *);
1823 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1824 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1825 int f2fs_release_page(struct page *, gfp_t);
1826
1827 /*
1828 * gc.c
1829 */
1830 int start_gc_thread(struct f2fs_sb_info *);
1831 void stop_gc_thread(struct f2fs_sb_info *);
1832 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1833 int f2fs_gc(struct f2fs_sb_info *);
1834 void build_gc_manager(struct f2fs_sb_info *);
1835
1836 /*
1837 * recovery.c
1838 */
1839 int recover_fsync_data(struct f2fs_sb_info *);
1840 bool space_for_roll_forward(struct f2fs_sb_info *);
1841
1842 /*
1843 * debug.c
1844 */
1845 #ifdef CONFIG_F2FS_STAT_FS
1846 struct f2fs_stat_info {
1847 struct list_head stat_list;
1848 struct f2fs_sb_info *sbi;
1849 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1850 int main_area_segs, main_area_sections, main_area_zones;
1851 int hit_largest, hit_cached, hit_rbtree, hit_total, total_ext;
1852 int ext_tree, ext_node;
1853 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1854 int nats, dirty_nats, sits, dirty_sits, fnids;
1855 int total_count, utilization;
1856 int bg_gc, inmem_pages, wb_pages;
1857 int inline_xattr, inline_inode, inline_dir;
1858 unsigned int valid_count, valid_node_count, valid_inode_count;
1859 unsigned int bimodal, avg_vblocks;
1860 int util_free, util_valid, util_invalid;
1861 int rsvd_segs, overp_segs;
1862 int dirty_count, node_pages, meta_pages;
1863 int prefree_count, call_count, cp_count;
1864 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1865 int bg_node_segs, bg_data_segs;
1866 int tot_blks, data_blks, node_blks;
1867 int bg_data_blks, bg_node_blks;
1868 int curseg[NR_CURSEG_TYPE];
1869 int cursec[NR_CURSEG_TYPE];
1870 int curzone[NR_CURSEG_TYPE];
1871
1872 unsigned int segment_count[2];
1873 unsigned int block_count[2];
1874 unsigned int inplace_count;
1875 unsigned long long base_mem, cache_mem, page_mem;
1876 };
1877
1878 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1879 {
1880 return (struct f2fs_stat_info *)sbi->stat_info;
1881 }
1882
1883 #define stat_inc_cp_count(si) ((si)->cp_count++)
1884 #define stat_inc_call_count(si) ((si)->call_count++)
1885 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1886 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1887 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1888 #define stat_inc_total_hit(sbi) (atomic_inc(&(sbi)->total_hit_ext))
1889 #define stat_inc_rbtree_node_hit(sbi) (atomic_inc(&(sbi)->read_hit_rbtree))
1890 #define stat_inc_largest_node_hit(sbi) (atomic_inc(&(sbi)->read_hit_largest))
1891 #define stat_inc_cached_node_hit(sbi) (atomic_inc(&(sbi)->read_hit_cached))
1892 #define stat_inc_inline_xattr(inode) \
1893 do { \
1894 if (f2fs_has_inline_xattr(inode)) \
1895 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1896 } while (0)
1897 #define stat_dec_inline_xattr(inode) \
1898 do { \
1899 if (f2fs_has_inline_xattr(inode)) \
1900 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1901 } while (0)
1902 #define stat_inc_inline_inode(inode) \
1903 do { \
1904 if (f2fs_has_inline_data(inode)) \
1905 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1906 } while (0)
1907 #define stat_dec_inline_inode(inode) \
1908 do { \
1909 if (f2fs_has_inline_data(inode)) \
1910 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1911 } while (0)
1912 #define stat_inc_inline_dir(inode) \
1913 do { \
1914 if (f2fs_has_inline_dentry(inode)) \
1915 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1916 } while (0)
1917 #define stat_dec_inline_dir(inode) \
1918 do { \
1919 if (f2fs_has_inline_dentry(inode)) \
1920 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1921 } while (0)
1922 #define stat_inc_seg_type(sbi, curseg) \
1923 ((sbi)->segment_count[(curseg)->alloc_type]++)
1924 #define stat_inc_block_count(sbi, curseg) \
1925 ((sbi)->block_count[(curseg)->alloc_type]++)
1926 #define stat_inc_inplace_blocks(sbi) \
1927 (atomic_inc(&(sbi)->inplace_count))
1928 #define stat_inc_seg_count(sbi, type, gc_type) \
1929 do { \
1930 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1931 (si)->tot_segs++; \
1932 if (type == SUM_TYPE_DATA) { \
1933 si->data_segs++; \
1934 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1935 } else { \
1936 si->node_segs++; \
1937 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1938 } \
1939 } while (0)
1940
1941 #define stat_inc_tot_blk_count(si, blks) \
1942 (si->tot_blks += (blks))
1943
1944 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1945 do { \
1946 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1947 stat_inc_tot_blk_count(si, blks); \
1948 si->data_blks += (blks); \
1949 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1950 } while (0)
1951
1952 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1953 do { \
1954 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1955 stat_inc_tot_blk_count(si, blks); \
1956 si->node_blks += (blks); \
1957 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
1958 } while (0)
1959
1960 int f2fs_build_stats(struct f2fs_sb_info *);
1961 void f2fs_destroy_stats(struct f2fs_sb_info *);
1962 void __init f2fs_create_root_stats(void);
1963 void f2fs_destroy_root_stats(void);
1964 #else
1965 #define stat_inc_cp_count(si)
1966 #define stat_inc_call_count(si)
1967 #define stat_inc_bggc_count(si)
1968 #define stat_inc_dirty_dir(sbi)
1969 #define stat_dec_dirty_dir(sbi)
1970 #define stat_inc_total_hit(sb)
1971 #define stat_inc_rbtree_node_hit(sb)
1972 #define stat_inc_largest_node_hit(sbi)
1973 #define stat_inc_cached_node_hit(sbi)
1974 #define stat_inc_inline_xattr(inode)
1975 #define stat_dec_inline_xattr(inode)
1976 #define stat_inc_inline_inode(inode)
1977 #define stat_dec_inline_inode(inode)
1978 #define stat_inc_inline_dir(inode)
1979 #define stat_dec_inline_dir(inode)
1980 #define stat_inc_seg_type(sbi, curseg)
1981 #define stat_inc_block_count(sbi, curseg)
1982 #define stat_inc_inplace_blocks(sbi)
1983 #define stat_inc_seg_count(sbi, type, gc_type)
1984 #define stat_inc_tot_blk_count(si, blks)
1985 #define stat_inc_data_blk_count(sbi, blks, gc_type)
1986 #define stat_inc_node_blk_count(sbi, blks, gc_type)
1987
1988 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1989 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1990 static inline void __init f2fs_create_root_stats(void) { }
1991 static inline void f2fs_destroy_root_stats(void) { }
1992 #endif
1993
1994 extern const struct file_operations f2fs_dir_operations;
1995 extern const struct file_operations f2fs_file_operations;
1996 extern const struct inode_operations f2fs_file_inode_operations;
1997 extern const struct address_space_operations f2fs_dblock_aops;
1998 extern const struct address_space_operations f2fs_node_aops;
1999 extern const struct address_space_operations f2fs_meta_aops;
2000 extern const struct inode_operations f2fs_dir_inode_operations;
2001 extern const struct inode_operations f2fs_symlink_inode_operations;
2002 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2003 extern const struct inode_operations f2fs_special_inode_operations;
2004 extern struct kmem_cache *inode_entry_slab;
2005
2006 /*
2007 * inline.c
2008 */
2009 bool f2fs_may_inline_data(struct inode *);
2010 bool f2fs_may_inline_dentry(struct inode *);
2011 void read_inline_data(struct page *, struct page *);
2012 bool truncate_inline_inode(struct page *, u64);
2013 int f2fs_read_inline_data(struct inode *, struct page *);
2014 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2015 int f2fs_convert_inline_inode(struct inode *);
2016 int f2fs_write_inline_data(struct inode *, struct page *);
2017 bool recover_inline_data(struct inode *, struct page *);
2018 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2019 struct f2fs_filename *, struct page **);
2020 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2021 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2022 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2023 nid_t, umode_t);
2024 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2025 struct inode *, struct inode *);
2026 bool f2fs_empty_inline_dir(struct inode *);
2027 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2028 struct f2fs_str *);
2029
2030 /*
2031 * shrinker.c
2032 */
2033 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2034 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2035 void f2fs_join_shrinker(struct f2fs_sb_info *);
2036 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2037
2038 /*
2039 * extent_cache.c
2040 */
2041 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2042 void f2fs_drop_largest_extent(struct inode *, pgoff_t);
2043 void f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2044 unsigned int f2fs_destroy_extent_node(struct inode *);
2045 void f2fs_destroy_extent_tree(struct inode *);
2046 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2047 void f2fs_update_extent_cache(struct dnode_of_data *);
2048 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2049 pgoff_t, block_t, unsigned int);
2050 void init_extent_cache_info(struct f2fs_sb_info *);
2051 int __init create_extent_cache(void);
2052 void destroy_extent_cache(void);
2053
2054 /*
2055 * crypto support
2056 */
2057 static inline int f2fs_encrypted_inode(struct inode *inode)
2058 {
2059 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2060 return file_is_encrypt(inode);
2061 #else
2062 return 0;
2063 #endif
2064 }
2065
2066 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2067 {
2068 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2069 file_set_encrypt(inode);
2070 #endif
2071 }
2072
2073 static inline bool f2fs_bio_encrypted(struct bio *bio)
2074 {
2075 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2076 return unlikely(bio->bi_private != NULL);
2077 #else
2078 return false;
2079 #endif
2080 }
2081
2082 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2083 {
2084 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2085 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2086 #else
2087 return 0;
2088 #endif
2089 }
2090
2091 static inline bool f2fs_may_encrypt(struct inode *inode)
2092 {
2093 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2094 mode_t mode = inode->i_mode;
2095
2096 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2097 #else
2098 return 0;
2099 #endif
2100 }
2101
2102 /* crypto_policy.c */
2103 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2104 struct inode *);
2105 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2106 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2107 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2108
2109 /* crypt.c */
2110 extern struct kmem_cache *f2fs_crypt_info_cachep;
2111 bool f2fs_valid_contents_enc_mode(uint32_t);
2112 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2113 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2114 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2115 struct page *f2fs_encrypt(struct inode *, struct page *);
2116 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2117 int f2fs_decrypt_one(struct inode *, struct page *);
2118 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2119
2120 /* crypto_key.c */
2121 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2122 int _f2fs_get_encryption_info(struct inode *inode);
2123
2124 /* crypto_fname.c */
2125 bool f2fs_valid_filenames_enc_mode(uint32_t);
2126 u32 f2fs_fname_crypto_round_up(u32, u32);
2127 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2128 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2129 const struct f2fs_str *, struct f2fs_str *);
2130 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2131 struct f2fs_str *);
2132
2133 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2134 void f2fs_restore_and_release_control_page(struct page **);
2135 void f2fs_restore_control_page(struct page *);
2136
2137 int __init f2fs_init_crypto(void);
2138 int f2fs_crypto_initialize(void);
2139 void f2fs_exit_crypto(void);
2140
2141 int f2fs_has_encryption_key(struct inode *);
2142
2143 static inline int f2fs_get_encryption_info(struct inode *inode)
2144 {
2145 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2146
2147 if (!ci ||
2148 (ci->ci_keyring_key &&
2149 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2150 (1 << KEY_FLAG_REVOKED) |
2151 (1 << KEY_FLAG_DEAD)))))
2152 return _f2fs_get_encryption_info(inode);
2153 return 0;
2154 }
2155
2156 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2157 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2158 int lookup, struct f2fs_filename *);
2159 void f2fs_fname_free_filename(struct f2fs_filename *);
2160 #else
2161 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2162 static inline void f2fs_restore_control_page(struct page *p) { }
2163
2164 static inline int __init f2fs_init_crypto(void) { return 0; }
2165 static inline void f2fs_exit_crypto(void) { }
2166
2167 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2168 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2169 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2170
2171 static inline int f2fs_fname_setup_filename(struct inode *dir,
2172 const struct qstr *iname,
2173 int lookup, struct f2fs_filename *fname)
2174 {
2175 memset(fname, 0, sizeof(struct f2fs_filename));
2176 fname->usr_fname = iname;
2177 fname->disk_name.name = (unsigned char *)iname->name;
2178 fname->disk_name.len = iname->len;
2179 return 0;
2180 }
2181
2182 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2183 #endif
2184 #endif