]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/f2fs/f2fs.h
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / fs / f2fs / f2fs.h
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26
27 #include <linux/fscrypt.h>
28
29 #ifdef CONFIG_F2FS_CHECK_FS
30 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
31 #else
32 #define f2fs_bug_on(sbi, condition) \
33 do { \
34 if (unlikely(condition)) { \
35 WARN_ON(1); \
36 set_sbi_flag(sbi, SBI_NEED_FSCK); \
37 } \
38 } while (0)
39 #endif
40
41 enum {
42 FAULT_KMALLOC,
43 FAULT_KVMALLOC,
44 FAULT_PAGE_ALLOC,
45 FAULT_PAGE_GET,
46 FAULT_ALLOC_BIO,
47 FAULT_ALLOC_NID,
48 FAULT_ORPHAN,
49 FAULT_BLOCK,
50 FAULT_DIR_DEPTH,
51 FAULT_EVICT_INODE,
52 FAULT_TRUNCATE,
53 FAULT_READ_IO,
54 FAULT_CHECKPOINT,
55 FAULT_DISCARD,
56 FAULT_WRITE_IO,
57 FAULT_MAX,
58 };
59
60 #ifdef CONFIG_F2FS_FAULT_INJECTION
61 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
62
63 struct f2fs_fault_info {
64 atomic_t inject_ops;
65 unsigned int inject_rate;
66 unsigned int inject_type;
67 };
68
69 extern const char *f2fs_fault_name[FAULT_MAX];
70 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
71 #endif
72
73 /*
74 * For mount options
75 */
76 #define F2FS_MOUNT_BG_GC 0x00000001
77 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
78 #define F2FS_MOUNT_DISCARD 0x00000004
79 #define F2FS_MOUNT_NOHEAP 0x00000008
80 #define F2FS_MOUNT_XATTR_USER 0x00000010
81 #define F2FS_MOUNT_POSIX_ACL 0x00000020
82 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
83 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
84 #define F2FS_MOUNT_INLINE_DATA 0x00000100
85 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
86 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
87 #define F2FS_MOUNT_NOBARRIER 0x00000800
88 #define F2FS_MOUNT_FASTBOOT 0x00001000
89 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
90 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
91 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
93 #define F2FS_MOUNT_ADAPTIVE 0x00020000
94 #define F2FS_MOUNT_LFS 0x00040000
95 #define F2FS_MOUNT_USRQUOTA 0x00080000
96 #define F2FS_MOUNT_GRPQUOTA 0x00100000
97 #define F2FS_MOUNT_PRJQUOTA 0x00200000
98 #define F2FS_MOUNT_QUOTA 0x00400000
99 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
100 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
101 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
102
103 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
104 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107
108 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
109 typecheck(unsigned long long, b) && \
110 ((long long)((a) - (b)) > 0))
111
112 typedef u32 block_t; /*
113 * should not change u32, since it is the on-disk block
114 * address format, __le32.
115 */
116 typedef u32 nid_t;
117
118 struct f2fs_mount_info {
119 unsigned int opt;
120 int write_io_size_bits; /* Write IO size bits */
121 block_t root_reserved_blocks; /* root reserved blocks */
122 kuid_t s_resuid; /* reserved blocks for uid */
123 kgid_t s_resgid; /* reserved blocks for gid */
124 int active_logs; /* # of active logs */
125 int inline_xattr_size; /* inline xattr size */
126 #ifdef CONFIG_F2FS_FAULT_INJECTION
127 struct f2fs_fault_info fault_info; /* For fault injection */
128 #endif
129 #ifdef CONFIG_QUOTA
130 /* Names of quota files with journalled quota */
131 char *s_qf_names[MAXQUOTAS];
132 int s_jquota_fmt; /* Format of quota to use */
133 #endif
134 /* For which write hints are passed down to block layer */
135 int whint_mode;
136 int alloc_mode; /* segment allocation policy */
137 int fsync_mode; /* fsync policy */
138 bool test_dummy_encryption; /* test dummy encryption */
139 };
140
141 #define F2FS_FEATURE_ENCRYPT 0x0001
142 #define F2FS_FEATURE_BLKZONED 0x0002
143 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
144 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
145 #define F2FS_FEATURE_PRJQUOTA 0x0010
146 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
147 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
148 #define F2FS_FEATURE_QUOTA_INO 0x0080
149 #define F2FS_FEATURE_INODE_CRTIME 0x0100
150 #define F2FS_FEATURE_LOST_FOUND 0x0200
151 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */
152 #define F2FS_FEATURE_SB_CHKSUM 0x0800
153
154 #define __F2FS_HAS_FEATURE(raw_super, mask) \
155 ((raw_super->feature & cpu_to_le32(mask)) != 0)
156 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
157 #define F2FS_SET_FEATURE(sbi, mask) \
158 (sbi->raw_super->feature |= cpu_to_le32(mask))
159 #define F2FS_CLEAR_FEATURE(sbi, mask) \
160 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
161
162 /*
163 * Default values for user and/or group using reserved blocks
164 */
165 #define F2FS_DEF_RESUID 0
166 #define F2FS_DEF_RESGID 0
167
168 /*
169 * For checkpoint manager
170 */
171 enum {
172 NAT_BITMAP,
173 SIT_BITMAP
174 };
175
176 #define CP_UMOUNT 0x00000001
177 #define CP_FASTBOOT 0x00000002
178 #define CP_SYNC 0x00000004
179 #define CP_RECOVERY 0x00000008
180 #define CP_DISCARD 0x00000010
181 #define CP_TRIMMED 0x00000020
182 #define CP_PAUSE 0x00000040
183
184 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
185 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
186 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
187 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
188 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
189 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
190 #define DEF_CP_INTERVAL 60 /* 60 secs */
191 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
192 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
193 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
194 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
195
196 struct cp_control {
197 int reason;
198 __u64 trim_start;
199 __u64 trim_end;
200 __u64 trim_minlen;
201 };
202
203 /*
204 * indicate meta/data type
205 */
206 enum {
207 META_CP,
208 META_NAT,
209 META_SIT,
210 META_SSA,
211 META_MAX,
212 META_POR,
213 DATA_GENERIC,
214 META_GENERIC,
215 };
216
217 /* for the list of ino */
218 enum {
219 ORPHAN_INO, /* for orphan ino list */
220 APPEND_INO, /* for append ino list */
221 UPDATE_INO, /* for update ino list */
222 TRANS_DIR_INO, /* for trasactions dir ino list */
223 FLUSH_INO, /* for multiple device flushing */
224 MAX_INO_ENTRY, /* max. list */
225 };
226
227 struct ino_entry {
228 struct list_head list; /* list head */
229 nid_t ino; /* inode number */
230 unsigned int dirty_device; /* dirty device bitmap */
231 };
232
233 /* for the list of inodes to be GCed */
234 struct inode_entry {
235 struct list_head list; /* list head */
236 struct inode *inode; /* vfs inode pointer */
237 };
238
239 struct fsync_node_entry {
240 struct list_head list; /* list head */
241 struct page *page; /* warm node page pointer */
242 unsigned int seq_id; /* sequence id */
243 };
244
245 /* for the bitmap indicate blocks to be discarded */
246 struct discard_entry {
247 struct list_head list; /* list head */
248 block_t start_blkaddr; /* start blockaddr of current segment */
249 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
250 };
251
252 /* default discard granularity of inner discard thread, unit: block count */
253 #define DEFAULT_DISCARD_GRANULARITY 16
254
255 /* max discard pend list number */
256 #define MAX_PLIST_NUM 512
257 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
258 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
259
260 enum {
261 D_PREP, /* initial */
262 D_PARTIAL, /* partially submitted */
263 D_SUBMIT, /* all submitted */
264 D_DONE, /* finished */
265 };
266
267 struct discard_info {
268 block_t lstart; /* logical start address */
269 block_t len; /* length */
270 block_t start; /* actual start address in dev */
271 };
272
273 struct discard_cmd {
274 struct rb_node rb_node; /* rb node located in rb-tree */
275 union {
276 struct {
277 block_t lstart; /* logical start address */
278 block_t len; /* length */
279 block_t start; /* actual start address in dev */
280 };
281 struct discard_info di; /* discard info */
282
283 };
284 struct list_head list; /* command list */
285 struct completion wait; /* compleation */
286 struct block_device *bdev; /* bdev */
287 unsigned short ref; /* reference count */
288 unsigned char state; /* state */
289 unsigned char queued; /* queued discard */
290 int error; /* bio error */
291 spinlock_t lock; /* for state/bio_ref updating */
292 unsigned short bio_ref; /* bio reference count */
293 };
294
295 enum {
296 DPOLICY_BG,
297 DPOLICY_FORCE,
298 DPOLICY_FSTRIM,
299 DPOLICY_UMOUNT,
300 MAX_DPOLICY,
301 };
302
303 struct discard_policy {
304 int type; /* type of discard */
305 unsigned int min_interval; /* used for candidates exist */
306 unsigned int mid_interval; /* used for device busy */
307 unsigned int max_interval; /* used for candidates not exist */
308 unsigned int max_requests; /* # of discards issued per round */
309 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
310 bool io_aware; /* issue discard in idle time */
311 bool sync; /* submit discard with REQ_SYNC flag */
312 bool ordered; /* issue discard by lba order */
313 unsigned int granularity; /* discard granularity */
314 int timeout; /* discard timeout for put_super */
315 };
316
317 struct discard_cmd_control {
318 struct task_struct *f2fs_issue_discard; /* discard thread */
319 struct list_head entry_list; /* 4KB discard entry list */
320 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
321 struct list_head wait_list; /* store on-flushing entries */
322 struct list_head fstrim_list; /* in-flight discard from fstrim */
323 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
324 unsigned int discard_wake; /* to wake up discard thread */
325 struct mutex cmd_lock;
326 unsigned int nr_discards; /* # of discards in the list */
327 unsigned int max_discards; /* max. discards to be issued */
328 unsigned int discard_granularity; /* discard granularity */
329 unsigned int undiscard_blks; /* # of undiscard blocks */
330 unsigned int next_pos; /* next discard position */
331 atomic_t issued_discard; /* # of issued discard */
332 atomic_t queued_discard; /* # of queued discard */
333 atomic_t discard_cmd_cnt; /* # of cached cmd count */
334 struct rb_root_cached root; /* root of discard rb-tree */
335 bool rbtree_check; /* config for consistence check */
336 };
337
338 /* for the list of fsync inodes, used only during recovery */
339 struct fsync_inode_entry {
340 struct list_head list; /* list head */
341 struct inode *inode; /* vfs inode pointer */
342 block_t blkaddr; /* block address locating the last fsync */
343 block_t last_dentry; /* block address locating the last dentry */
344 };
345
346 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
347 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
348
349 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
350 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
351 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
352 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
353
354 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
355 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
356
357 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
358 {
359 int before = nats_in_cursum(journal);
360
361 journal->n_nats = cpu_to_le16(before + i);
362 return before;
363 }
364
365 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
366 {
367 int before = sits_in_cursum(journal);
368
369 journal->n_sits = cpu_to_le16(before + i);
370 return before;
371 }
372
373 static inline bool __has_cursum_space(struct f2fs_journal *journal,
374 int size, int type)
375 {
376 if (type == NAT_JOURNAL)
377 return size <= MAX_NAT_JENTRIES(journal);
378 return size <= MAX_SIT_JENTRIES(journal);
379 }
380
381 /*
382 * ioctl commands
383 */
384 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
385 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
386 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
387
388 #define F2FS_IOCTL_MAGIC 0xf5
389 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
390 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
391 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
392 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
393 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
394 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
395 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
396 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
397 struct f2fs_defragment)
398 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
399 struct f2fs_move_range)
400 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
401 struct f2fs_flush_device)
402 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
403 struct f2fs_gc_range)
404 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
405 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
406 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
407 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15)
408
409 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
410 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
411 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
412
413 /*
414 * should be same as XFS_IOC_GOINGDOWN.
415 * Flags for going down operation used by FS_IOC_GOINGDOWN
416 */
417 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
418 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
419 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
420 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
421 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
422 #define F2FS_GOING_DOWN_NEED_FSCK 0x4 /* going down to trigger fsck */
423
424 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
425 /*
426 * ioctl commands in 32 bit emulation
427 */
428 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
429 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
430 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
431 #endif
432
433 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
434 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
435
436 struct f2fs_gc_range {
437 u32 sync;
438 u64 start;
439 u64 len;
440 };
441
442 struct f2fs_defragment {
443 u64 start;
444 u64 len;
445 };
446
447 struct f2fs_move_range {
448 u32 dst_fd; /* destination fd */
449 u64 pos_in; /* start position in src_fd */
450 u64 pos_out; /* start position in dst_fd */
451 u64 len; /* size to move */
452 };
453
454 struct f2fs_flush_device {
455 u32 dev_num; /* device number to flush */
456 u32 segments; /* # of segments to flush */
457 };
458
459 /* for inline stuff */
460 #define DEF_INLINE_RESERVED_SIZE 1
461 static inline int get_extra_isize(struct inode *inode);
462 static inline int get_inline_xattr_addrs(struct inode *inode);
463 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
464 (CUR_ADDRS_PER_INODE(inode) - \
465 get_inline_xattr_addrs(inode) - \
466 DEF_INLINE_RESERVED_SIZE))
467
468 /* for inline dir */
469 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
470 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
471 BITS_PER_BYTE + 1))
472 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
473 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
474 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
475 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
476 NR_INLINE_DENTRY(inode) + \
477 INLINE_DENTRY_BITMAP_SIZE(inode)))
478
479 /*
480 * For INODE and NODE manager
481 */
482 /* for directory operations */
483 struct f2fs_dentry_ptr {
484 struct inode *inode;
485 void *bitmap;
486 struct f2fs_dir_entry *dentry;
487 __u8 (*filename)[F2FS_SLOT_LEN];
488 int max;
489 int nr_bitmap;
490 };
491
492 static inline void make_dentry_ptr_block(struct inode *inode,
493 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
494 {
495 d->inode = inode;
496 d->max = NR_DENTRY_IN_BLOCK;
497 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
498 d->bitmap = t->dentry_bitmap;
499 d->dentry = t->dentry;
500 d->filename = t->filename;
501 }
502
503 static inline void make_dentry_ptr_inline(struct inode *inode,
504 struct f2fs_dentry_ptr *d, void *t)
505 {
506 int entry_cnt = NR_INLINE_DENTRY(inode);
507 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
508 int reserved_size = INLINE_RESERVED_SIZE(inode);
509
510 d->inode = inode;
511 d->max = entry_cnt;
512 d->nr_bitmap = bitmap_size;
513 d->bitmap = t;
514 d->dentry = t + bitmap_size + reserved_size;
515 d->filename = t + bitmap_size + reserved_size +
516 SIZE_OF_DIR_ENTRY * entry_cnt;
517 }
518
519 /*
520 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
521 * as its node offset to distinguish from index node blocks.
522 * But some bits are used to mark the node block.
523 */
524 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
525 >> OFFSET_BIT_SHIFT)
526 enum {
527 ALLOC_NODE, /* allocate a new node page if needed */
528 LOOKUP_NODE, /* look up a node without readahead */
529 LOOKUP_NODE_RA, /*
530 * look up a node with readahead called
531 * by get_data_block.
532 */
533 };
534
535 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
536
537 /* maximum retry quota flush count */
538 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
539
540 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
541
542 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
543
544 /* for in-memory extent cache entry */
545 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
546
547 /* number of extent info in extent cache we try to shrink */
548 #define EXTENT_CACHE_SHRINK_NUMBER 128
549
550 struct rb_entry {
551 struct rb_node rb_node; /* rb node located in rb-tree */
552 unsigned int ofs; /* start offset of the entry */
553 unsigned int len; /* length of the entry */
554 };
555
556 struct extent_info {
557 unsigned int fofs; /* start offset in a file */
558 unsigned int len; /* length of the extent */
559 u32 blk; /* start block address of the extent */
560 };
561
562 struct extent_node {
563 struct rb_node rb_node; /* rb node located in rb-tree */
564 struct extent_info ei; /* extent info */
565 struct list_head list; /* node in global extent list of sbi */
566 struct extent_tree *et; /* extent tree pointer */
567 };
568
569 struct extent_tree {
570 nid_t ino; /* inode number */
571 struct rb_root_cached root; /* root of extent info rb-tree */
572 struct extent_node *cached_en; /* recently accessed extent node */
573 struct extent_info largest; /* largested extent info */
574 struct list_head list; /* to be used by sbi->zombie_list */
575 rwlock_t lock; /* protect extent info rb-tree */
576 atomic_t node_cnt; /* # of extent node in rb-tree*/
577 bool largest_updated; /* largest extent updated */
578 };
579
580 /*
581 * This structure is taken from ext4_map_blocks.
582 *
583 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
584 */
585 #define F2FS_MAP_NEW (1 << BH_New)
586 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
587 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
588 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
589 F2FS_MAP_UNWRITTEN)
590
591 struct f2fs_map_blocks {
592 block_t m_pblk;
593 block_t m_lblk;
594 unsigned int m_len;
595 unsigned int m_flags;
596 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
597 pgoff_t *m_next_extent; /* point to next possible extent */
598 int m_seg_type;
599 bool m_may_create; /* indicate it is from write path */
600 };
601
602 /* for flag in get_data_block */
603 enum {
604 F2FS_GET_BLOCK_DEFAULT,
605 F2FS_GET_BLOCK_FIEMAP,
606 F2FS_GET_BLOCK_BMAP,
607 F2FS_GET_BLOCK_DIO,
608 F2FS_GET_BLOCK_PRE_DIO,
609 F2FS_GET_BLOCK_PRE_AIO,
610 F2FS_GET_BLOCK_PRECACHE,
611 };
612
613 /*
614 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
615 */
616 #define FADVISE_COLD_BIT 0x01
617 #define FADVISE_LOST_PINO_BIT 0x02
618 #define FADVISE_ENCRYPT_BIT 0x04
619 #define FADVISE_ENC_NAME_BIT 0x08
620 #define FADVISE_KEEP_SIZE_BIT 0x10
621 #define FADVISE_HOT_BIT 0x20
622 #define FADVISE_VERITY_BIT 0x40 /* reserved */
623
624 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
625
626 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
627 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
628 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
629 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
630 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
631 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
632 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
633 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
634 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
635 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
636 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
637 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
638 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
639 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
640 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
641 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
642
643 #define DEF_DIR_LEVEL 0
644
645 enum {
646 GC_FAILURE_PIN,
647 GC_FAILURE_ATOMIC,
648 MAX_GC_FAILURE
649 };
650
651 struct f2fs_inode_info {
652 struct inode vfs_inode; /* serve a vfs inode */
653 unsigned long i_flags; /* keep an inode flags for ioctl */
654 unsigned char i_advise; /* use to give file attribute hints */
655 unsigned char i_dir_level; /* use for dentry level for large dir */
656 unsigned int i_current_depth; /* only for directory depth */
657 /* for gc failure statistic */
658 unsigned int i_gc_failures[MAX_GC_FAILURE];
659 unsigned int i_pino; /* parent inode number */
660 umode_t i_acl_mode; /* keep file acl mode temporarily */
661
662 /* Use below internally in f2fs*/
663 unsigned long flags; /* use to pass per-file flags */
664 struct rw_semaphore i_sem; /* protect fi info */
665 atomic_t dirty_pages; /* # of dirty pages */
666 f2fs_hash_t chash; /* hash value of given file name */
667 unsigned int clevel; /* maximum level of given file name */
668 struct task_struct *task; /* lookup and create consistency */
669 struct task_struct *cp_task; /* separate cp/wb IO stats*/
670 nid_t i_xattr_nid; /* node id that contains xattrs */
671 loff_t last_disk_size; /* lastly written file size */
672
673 #ifdef CONFIG_QUOTA
674 struct dquot *i_dquot[MAXQUOTAS];
675
676 /* quota space reservation, managed internally by quota code */
677 qsize_t i_reserved_quota;
678 #endif
679 struct list_head dirty_list; /* dirty list for dirs and files */
680 struct list_head gdirty_list; /* linked in global dirty list */
681 struct list_head inmem_ilist; /* list for inmem inodes */
682 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
683 struct task_struct *inmem_task; /* store inmemory task */
684 struct mutex inmem_lock; /* lock for inmemory pages */
685 struct extent_tree *extent_tree; /* cached extent_tree entry */
686
687 /* avoid racing between foreground op and gc */
688 struct rw_semaphore i_gc_rwsem[2];
689 struct rw_semaphore i_mmap_sem;
690 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
691
692 int i_extra_isize; /* size of extra space located in i_addr */
693 kprojid_t i_projid; /* id for project quota */
694 int i_inline_xattr_size; /* inline xattr size */
695 struct timespec64 i_crtime; /* inode creation time */
696 struct timespec64 i_disk_time[4];/* inode disk times */
697 };
698
699 static inline void get_extent_info(struct extent_info *ext,
700 struct f2fs_extent *i_ext)
701 {
702 ext->fofs = le32_to_cpu(i_ext->fofs);
703 ext->blk = le32_to_cpu(i_ext->blk);
704 ext->len = le32_to_cpu(i_ext->len);
705 }
706
707 static inline void set_raw_extent(struct extent_info *ext,
708 struct f2fs_extent *i_ext)
709 {
710 i_ext->fofs = cpu_to_le32(ext->fofs);
711 i_ext->blk = cpu_to_le32(ext->blk);
712 i_ext->len = cpu_to_le32(ext->len);
713 }
714
715 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
716 u32 blk, unsigned int len)
717 {
718 ei->fofs = fofs;
719 ei->blk = blk;
720 ei->len = len;
721 }
722
723 static inline bool __is_discard_mergeable(struct discard_info *back,
724 struct discard_info *front, unsigned int max_len)
725 {
726 return (back->lstart + back->len == front->lstart) &&
727 (back->len + front->len <= max_len);
728 }
729
730 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
731 struct discard_info *back, unsigned int max_len)
732 {
733 return __is_discard_mergeable(back, cur, max_len);
734 }
735
736 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
737 struct discard_info *front, unsigned int max_len)
738 {
739 return __is_discard_mergeable(cur, front, max_len);
740 }
741
742 static inline bool __is_extent_mergeable(struct extent_info *back,
743 struct extent_info *front)
744 {
745 return (back->fofs + back->len == front->fofs &&
746 back->blk + back->len == front->blk);
747 }
748
749 static inline bool __is_back_mergeable(struct extent_info *cur,
750 struct extent_info *back)
751 {
752 return __is_extent_mergeable(back, cur);
753 }
754
755 static inline bool __is_front_mergeable(struct extent_info *cur,
756 struct extent_info *front)
757 {
758 return __is_extent_mergeable(cur, front);
759 }
760
761 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
762 static inline void __try_update_largest_extent(struct extent_tree *et,
763 struct extent_node *en)
764 {
765 if (en->ei.len > et->largest.len) {
766 et->largest = en->ei;
767 et->largest_updated = true;
768 }
769 }
770
771 /*
772 * For free nid management
773 */
774 enum nid_state {
775 FREE_NID, /* newly added to free nid list */
776 PREALLOC_NID, /* it is preallocated */
777 MAX_NID_STATE,
778 };
779
780 struct f2fs_nm_info {
781 block_t nat_blkaddr; /* base disk address of NAT */
782 nid_t max_nid; /* maximum possible node ids */
783 nid_t available_nids; /* # of available node ids */
784 nid_t next_scan_nid; /* the next nid to be scanned */
785 unsigned int ram_thresh; /* control the memory footprint */
786 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
787 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
788
789 /* NAT cache management */
790 struct radix_tree_root nat_root;/* root of the nat entry cache */
791 struct radix_tree_root nat_set_root;/* root of the nat set cache */
792 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
793 struct list_head nat_entries; /* cached nat entry list (clean) */
794 spinlock_t nat_list_lock; /* protect clean nat entry list */
795 unsigned int nat_cnt; /* the # of cached nat entries */
796 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
797 unsigned int nat_blocks; /* # of nat blocks */
798
799 /* free node ids management */
800 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
801 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
802 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
803 spinlock_t nid_list_lock; /* protect nid lists ops */
804 struct mutex build_lock; /* lock for build free nids */
805 unsigned char **free_nid_bitmap;
806 unsigned char *nat_block_bitmap;
807 unsigned short *free_nid_count; /* free nid count of NAT block */
808
809 /* for checkpoint */
810 char *nat_bitmap; /* NAT bitmap pointer */
811
812 unsigned int nat_bits_blocks; /* # of nat bits blocks */
813 unsigned char *nat_bits; /* NAT bits blocks */
814 unsigned char *full_nat_bits; /* full NAT pages */
815 unsigned char *empty_nat_bits; /* empty NAT pages */
816 #ifdef CONFIG_F2FS_CHECK_FS
817 char *nat_bitmap_mir; /* NAT bitmap mirror */
818 #endif
819 int bitmap_size; /* bitmap size */
820 };
821
822 /*
823 * this structure is used as one of function parameters.
824 * all the information are dedicated to a given direct node block determined
825 * by the data offset in a file.
826 */
827 struct dnode_of_data {
828 struct inode *inode; /* vfs inode pointer */
829 struct page *inode_page; /* its inode page, NULL is possible */
830 struct page *node_page; /* cached direct node page */
831 nid_t nid; /* node id of the direct node block */
832 unsigned int ofs_in_node; /* data offset in the node page */
833 bool inode_page_locked; /* inode page is locked or not */
834 bool node_changed; /* is node block changed */
835 char cur_level; /* level of hole node page */
836 char max_level; /* level of current page located */
837 block_t data_blkaddr; /* block address of the node block */
838 };
839
840 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
841 struct page *ipage, struct page *npage, nid_t nid)
842 {
843 memset(dn, 0, sizeof(*dn));
844 dn->inode = inode;
845 dn->inode_page = ipage;
846 dn->node_page = npage;
847 dn->nid = nid;
848 }
849
850 /*
851 * For SIT manager
852 *
853 * By default, there are 6 active log areas across the whole main area.
854 * When considering hot and cold data separation to reduce cleaning overhead,
855 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
856 * respectively.
857 * In the current design, you should not change the numbers intentionally.
858 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
859 * logs individually according to the underlying devices. (default: 6)
860 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
861 * data and 8 for node logs.
862 */
863 #define NR_CURSEG_DATA_TYPE (3)
864 #define NR_CURSEG_NODE_TYPE (3)
865 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
866
867 enum {
868 CURSEG_HOT_DATA = 0, /* directory entry blocks */
869 CURSEG_WARM_DATA, /* data blocks */
870 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
871 CURSEG_HOT_NODE, /* direct node blocks of directory files */
872 CURSEG_WARM_NODE, /* direct node blocks of normal files */
873 CURSEG_COLD_NODE, /* indirect node blocks */
874 NO_CHECK_TYPE,
875 };
876
877 struct flush_cmd {
878 struct completion wait;
879 struct llist_node llnode;
880 nid_t ino;
881 int ret;
882 };
883
884 struct flush_cmd_control {
885 struct task_struct *f2fs_issue_flush; /* flush thread */
886 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
887 atomic_t issued_flush; /* # of issued flushes */
888 atomic_t queued_flush; /* # of queued flushes */
889 struct llist_head issue_list; /* list for command issue */
890 struct llist_node *dispatch_list; /* list for command dispatch */
891 };
892
893 struct f2fs_sm_info {
894 struct sit_info *sit_info; /* whole segment information */
895 struct free_segmap_info *free_info; /* free segment information */
896 struct dirty_seglist_info *dirty_info; /* dirty segment information */
897 struct curseg_info *curseg_array; /* active segment information */
898
899 struct rw_semaphore curseg_lock; /* for preventing curseg change */
900
901 block_t seg0_blkaddr; /* block address of 0'th segment */
902 block_t main_blkaddr; /* start block address of main area */
903 block_t ssa_blkaddr; /* start block address of SSA area */
904
905 unsigned int segment_count; /* total # of segments */
906 unsigned int main_segments; /* # of segments in main area */
907 unsigned int reserved_segments; /* # of reserved segments */
908 unsigned int ovp_segments; /* # of overprovision segments */
909
910 /* a threshold to reclaim prefree segments */
911 unsigned int rec_prefree_segments;
912
913 /* for batched trimming */
914 unsigned int trim_sections; /* # of sections to trim */
915
916 struct list_head sit_entry_set; /* sit entry set list */
917
918 unsigned int ipu_policy; /* in-place-update policy */
919 unsigned int min_ipu_util; /* in-place-update threshold */
920 unsigned int min_fsync_blocks; /* threshold for fsync */
921 unsigned int min_seq_blocks; /* threshold for sequential blocks */
922 unsigned int min_hot_blocks; /* threshold for hot block allocation */
923 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
924
925 /* for flush command control */
926 struct flush_cmd_control *fcc_info;
927
928 /* for discard command control */
929 struct discard_cmd_control *dcc_info;
930 };
931
932 /*
933 * For superblock
934 */
935 /*
936 * COUNT_TYPE for monitoring
937 *
938 * f2fs monitors the number of several block types such as on-writeback,
939 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
940 */
941 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
942 enum count_type {
943 F2FS_DIRTY_DENTS,
944 F2FS_DIRTY_DATA,
945 F2FS_DIRTY_QDATA,
946 F2FS_DIRTY_NODES,
947 F2FS_DIRTY_META,
948 F2FS_INMEM_PAGES,
949 F2FS_DIRTY_IMETA,
950 F2FS_WB_CP_DATA,
951 F2FS_WB_DATA,
952 F2FS_RD_DATA,
953 F2FS_RD_NODE,
954 F2FS_RD_META,
955 F2FS_DIO_WRITE,
956 F2FS_DIO_READ,
957 NR_COUNT_TYPE,
958 };
959
960 /*
961 * The below are the page types of bios used in submit_bio().
962 * The available types are:
963 * DATA User data pages. It operates as async mode.
964 * NODE Node pages. It operates as async mode.
965 * META FS metadata pages such as SIT, NAT, CP.
966 * NR_PAGE_TYPE The number of page types.
967 * META_FLUSH Make sure the previous pages are written
968 * with waiting the bio's completion
969 * ... Only can be used with META.
970 */
971 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
972 enum page_type {
973 DATA,
974 NODE,
975 META,
976 NR_PAGE_TYPE,
977 META_FLUSH,
978 INMEM, /* the below types are used by tracepoints only. */
979 INMEM_DROP,
980 INMEM_INVALIDATE,
981 INMEM_REVOKE,
982 IPU,
983 OPU,
984 };
985
986 enum temp_type {
987 HOT = 0, /* must be zero for meta bio */
988 WARM,
989 COLD,
990 NR_TEMP_TYPE,
991 };
992
993 enum need_lock_type {
994 LOCK_REQ = 0,
995 LOCK_DONE,
996 LOCK_RETRY,
997 };
998
999 enum cp_reason_type {
1000 CP_NO_NEEDED,
1001 CP_NON_REGULAR,
1002 CP_HARDLINK,
1003 CP_SB_NEED_CP,
1004 CP_WRONG_PINO,
1005 CP_NO_SPC_ROLL,
1006 CP_NODE_NEED_CP,
1007 CP_FASTBOOT_MODE,
1008 CP_SPEC_LOG_NUM,
1009 CP_RECOVER_DIR,
1010 };
1011
1012 enum iostat_type {
1013 APP_DIRECT_IO, /* app direct IOs */
1014 APP_BUFFERED_IO, /* app buffered IOs */
1015 APP_WRITE_IO, /* app write IOs */
1016 APP_MAPPED_IO, /* app mapped IOs */
1017 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1018 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1019 FS_META_IO, /* meta IOs from kworker/reclaimer */
1020 FS_GC_DATA_IO, /* data IOs from forground gc */
1021 FS_GC_NODE_IO, /* node IOs from forground gc */
1022 FS_CP_DATA_IO, /* data IOs from checkpoint */
1023 FS_CP_NODE_IO, /* node IOs from checkpoint */
1024 FS_CP_META_IO, /* meta IOs from checkpoint */
1025 FS_DISCARD, /* discard */
1026 NR_IO_TYPE,
1027 };
1028
1029 struct f2fs_io_info {
1030 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1031 nid_t ino; /* inode number */
1032 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1033 enum temp_type temp; /* contains HOT/WARM/COLD */
1034 int op; /* contains REQ_OP_ */
1035 int op_flags; /* req_flag_bits */
1036 block_t new_blkaddr; /* new block address to be written */
1037 block_t old_blkaddr; /* old block address before Cow */
1038 struct page *page; /* page to be written */
1039 struct page *encrypted_page; /* encrypted page */
1040 struct list_head list; /* serialize IOs */
1041 bool submitted; /* indicate IO submission */
1042 int need_lock; /* indicate we need to lock cp_rwsem */
1043 bool in_list; /* indicate fio is in io_list */
1044 bool is_meta; /* indicate borrow meta inode mapping or not */
1045 bool retry; /* need to reallocate block address */
1046 enum iostat_type io_type; /* io type */
1047 struct writeback_control *io_wbc; /* writeback control */
1048 unsigned char version; /* version of the node */
1049 };
1050
1051 #define is_read_io(rw) ((rw) == READ)
1052 struct f2fs_bio_info {
1053 struct f2fs_sb_info *sbi; /* f2fs superblock */
1054 struct bio *bio; /* bios to merge */
1055 sector_t last_block_in_bio; /* last block number */
1056 struct f2fs_io_info fio; /* store buffered io info. */
1057 struct rw_semaphore io_rwsem; /* blocking op for bio */
1058 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1059 struct list_head io_list; /* track fios */
1060 };
1061
1062 #define FDEV(i) (sbi->devs[i])
1063 #define RDEV(i) (raw_super->devs[i])
1064 struct f2fs_dev_info {
1065 struct block_device *bdev;
1066 char path[MAX_PATH_LEN];
1067 unsigned int total_segments;
1068 block_t start_blk;
1069 block_t end_blk;
1070 #ifdef CONFIG_BLK_DEV_ZONED
1071 unsigned int nr_blkz; /* Total number of zones */
1072 u8 *blkz_type; /* Array of zones type */
1073 #endif
1074 };
1075
1076 enum inode_type {
1077 DIR_INODE, /* for dirty dir inode */
1078 FILE_INODE, /* for dirty regular/symlink inode */
1079 DIRTY_META, /* for all dirtied inode metadata */
1080 ATOMIC_FILE, /* for all atomic files */
1081 NR_INODE_TYPE,
1082 };
1083
1084 /* for inner inode cache management */
1085 struct inode_management {
1086 struct radix_tree_root ino_root; /* ino entry array */
1087 spinlock_t ino_lock; /* for ino entry lock */
1088 struct list_head ino_list; /* inode list head */
1089 unsigned long ino_num; /* number of entries */
1090 };
1091
1092 /* For s_flag in struct f2fs_sb_info */
1093 enum {
1094 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1095 SBI_IS_CLOSE, /* specify unmounting */
1096 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1097 SBI_POR_DOING, /* recovery is doing or not */
1098 SBI_NEED_SB_WRITE, /* need to recover superblock */
1099 SBI_NEED_CP, /* need to checkpoint */
1100 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1101 SBI_IS_RECOVERED, /* recovered orphan/data */
1102 SBI_CP_DISABLED, /* CP was disabled last mount */
1103 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1104 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1105 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1106 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1107 };
1108
1109 enum {
1110 CP_TIME,
1111 REQ_TIME,
1112 DISCARD_TIME,
1113 GC_TIME,
1114 DISABLE_TIME,
1115 UMOUNT_DISCARD_TIMEOUT,
1116 MAX_TIME,
1117 };
1118
1119 enum {
1120 GC_NORMAL,
1121 GC_IDLE_CB,
1122 GC_IDLE_GREEDY,
1123 GC_URGENT,
1124 };
1125
1126 enum {
1127 WHINT_MODE_OFF, /* not pass down write hints */
1128 WHINT_MODE_USER, /* try to pass down hints given by users */
1129 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1130 };
1131
1132 enum {
1133 ALLOC_MODE_DEFAULT, /* stay default */
1134 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1135 };
1136
1137 enum fsync_mode {
1138 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1139 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1140 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1141 };
1142
1143 #ifdef CONFIG_FS_ENCRYPTION
1144 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1145 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1146 #else
1147 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1148 #endif
1149
1150 struct f2fs_sb_info {
1151 struct super_block *sb; /* pointer to VFS super block */
1152 struct proc_dir_entry *s_proc; /* proc entry */
1153 struct f2fs_super_block *raw_super; /* raw super block pointer */
1154 struct rw_semaphore sb_lock; /* lock for raw super block */
1155 int valid_super_block; /* valid super block no */
1156 unsigned long s_flag; /* flags for sbi */
1157 struct mutex writepages; /* mutex for writepages() */
1158
1159 #ifdef CONFIG_BLK_DEV_ZONED
1160 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1161 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1162 #endif
1163
1164 /* for node-related operations */
1165 struct f2fs_nm_info *nm_info; /* node manager */
1166 struct inode *node_inode; /* cache node blocks */
1167
1168 /* for segment-related operations */
1169 struct f2fs_sm_info *sm_info; /* segment manager */
1170
1171 /* for bio operations */
1172 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1173 /* keep migration IO order for LFS mode */
1174 struct rw_semaphore io_order_lock;
1175 mempool_t *write_io_dummy; /* Dummy pages */
1176
1177 /* for checkpoint */
1178 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1179 int cur_cp_pack; /* remain current cp pack */
1180 spinlock_t cp_lock; /* for flag in ckpt */
1181 struct inode *meta_inode; /* cache meta blocks */
1182 struct mutex cp_mutex; /* checkpoint procedure lock */
1183 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1184 struct rw_semaphore node_write; /* locking node writes */
1185 struct rw_semaphore node_change; /* locking node change */
1186 wait_queue_head_t cp_wait;
1187 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1188 long interval_time[MAX_TIME]; /* to store thresholds */
1189
1190 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1191
1192 spinlock_t fsync_node_lock; /* for node entry lock */
1193 struct list_head fsync_node_list; /* node list head */
1194 unsigned int fsync_seg_id; /* sequence id */
1195 unsigned int fsync_node_num; /* number of node entries */
1196
1197 /* for orphan inode, use 0'th array */
1198 unsigned int max_orphans; /* max orphan inodes */
1199
1200 /* for inode management */
1201 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1202 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1203
1204 /* for extent tree cache */
1205 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1206 struct mutex extent_tree_lock; /* locking extent radix tree */
1207 struct list_head extent_list; /* lru list for shrinker */
1208 spinlock_t extent_lock; /* locking extent lru list */
1209 atomic_t total_ext_tree; /* extent tree count */
1210 struct list_head zombie_list; /* extent zombie tree list */
1211 atomic_t total_zombie_tree; /* extent zombie tree count */
1212 atomic_t total_ext_node; /* extent info count */
1213
1214 /* basic filesystem units */
1215 unsigned int log_sectors_per_block; /* log2 sectors per block */
1216 unsigned int log_blocksize; /* log2 block size */
1217 unsigned int blocksize; /* block size */
1218 unsigned int root_ino_num; /* root inode number*/
1219 unsigned int node_ino_num; /* node inode number*/
1220 unsigned int meta_ino_num; /* meta inode number*/
1221 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1222 unsigned int blocks_per_seg; /* blocks per segment */
1223 unsigned int segs_per_sec; /* segments per section */
1224 unsigned int secs_per_zone; /* sections per zone */
1225 unsigned int total_sections; /* total section count */
1226 unsigned int total_node_count; /* total node block count */
1227 unsigned int total_valid_node_count; /* valid node block count */
1228 loff_t max_file_blocks; /* max block index of file */
1229 int dir_level; /* directory level */
1230 int readdir_ra; /* readahead inode in readdir */
1231
1232 block_t user_block_count; /* # of user blocks */
1233 block_t total_valid_block_count; /* # of valid blocks */
1234 block_t discard_blks; /* discard command candidats */
1235 block_t last_valid_block_count; /* for recovery */
1236 block_t reserved_blocks; /* configurable reserved blocks */
1237 block_t current_reserved_blocks; /* current reserved blocks */
1238
1239 /* Additional tracking for no checkpoint mode */
1240 block_t unusable_block_count; /* # of blocks saved by last cp */
1241
1242 unsigned int nquota_files; /* # of quota sysfile */
1243
1244 /* # of pages, see count_type */
1245 atomic_t nr_pages[NR_COUNT_TYPE];
1246 /* # of allocated blocks */
1247 struct percpu_counter alloc_valid_block_count;
1248
1249 /* writeback control */
1250 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1251
1252 /* valid inode count */
1253 struct percpu_counter total_valid_inode_count;
1254
1255 struct f2fs_mount_info mount_opt; /* mount options */
1256
1257 /* for cleaning operations */
1258 struct mutex gc_mutex; /* mutex for GC */
1259 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1260 unsigned int cur_victim_sec; /* current victim section num */
1261 unsigned int gc_mode; /* current GC state */
1262 unsigned int next_victim_seg[2]; /* next segment in victim section */
1263 /* for skip statistic */
1264 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1265 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1266
1267 /* threshold for gc trials on pinned files */
1268 u64 gc_pin_file_threshold;
1269
1270 /* maximum # of trials to find a victim segment for SSR and GC */
1271 unsigned int max_victim_search;
1272 /* migration granularity of garbage collection, unit: segment */
1273 unsigned int migration_granularity;
1274
1275 /*
1276 * for stat information.
1277 * one is for the LFS mode, and the other is for the SSR mode.
1278 */
1279 #ifdef CONFIG_F2FS_STAT_FS
1280 struct f2fs_stat_info *stat_info; /* FS status information */
1281 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1282 unsigned int segment_count[2]; /* # of allocated segments */
1283 unsigned int block_count[2]; /* # of allocated blocks */
1284 atomic_t inplace_count; /* # of inplace update */
1285 atomic64_t total_hit_ext; /* # of lookup extent cache */
1286 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1287 atomic64_t read_hit_largest; /* # of hit largest extent node */
1288 atomic64_t read_hit_cached; /* # of hit cached extent node */
1289 atomic_t inline_xattr; /* # of inline_xattr inodes */
1290 atomic_t inline_inode; /* # of inline_data inodes */
1291 atomic_t inline_dir; /* # of inline_dentry inodes */
1292 atomic_t aw_cnt; /* # of atomic writes */
1293 atomic_t vw_cnt; /* # of volatile writes */
1294 atomic_t max_aw_cnt; /* max # of atomic writes */
1295 atomic_t max_vw_cnt; /* max # of volatile writes */
1296 int bg_gc; /* background gc calls */
1297 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1298 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1299 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1300 #endif
1301 spinlock_t stat_lock; /* lock for stat operations */
1302
1303 /* For app/fs IO statistics */
1304 spinlock_t iostat_lock;
1305 unsigned long long write_iostat[NR_IO_TYPE];
1306 bool iostat_enable;
1307
1308 /* For sysfs suppport */
1309 struct kobject s_kobj;
1310 struct completion s_kobj_unregister;
1311
1312 /* For shrinker support */
1313 struct list_head s_list;
1314 int s_ndevs; /* number of devices */
1315 struct f2fs_dev_info *devs; /* for device list */
1316 unsigned int dirty_device; /* for checkpoint data flush */
1317 spinlock_t dev_lock; /* protect dirty_device */
1318 struct mutex umount_mutex;
1319 unsigned int shrinker_run_no;
1320
1321 /* For write statistics */
1322 u64 sectors_written_start;
1323 u64 kbytes_written;
1324
1325 /* Reference to checksum algorithm driver via cryptoapi */
1326 struct crypto_shash *s_chksum_driver;
1327
1328 /* Precomputed FS UUID checksum for seeding other checksums */
1329 __u32 s_chksum_seed;
1330 };
1331
1332 struct f2fs_private_dio {
1333 struct inode *inode;
1334 void *orig_private;
1335 bio_end_io_t *orig_end_io;
1336 bool write;
1337 };
1338
1339 #ifdef CONFIG_F2FS_FAULT_INJECTION
1340 #define f2fs_show_injection_info(type) \
1341 printk_ratelimited("%sF2FS-fs : inject %s in %s of %pF\n", \
1342 KERN_INFO, f2fs_fault_name[type], \
1343 __func__, __builtin_return_address(0))
1344 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1345 {
1346 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1347
1348 if (!ffi->inject_rate)
1349 return false;
1350
1351 if (!IS_FAULT_SET(ffi, type))
1352 return false;
1353
1354 atomic_inc(&ffi->inject_ops);
1355 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1356 atomic_set(&ffi->inject_ops, 0);
1357 return true;
1358 }
1359 return false;
1360 }
1361 #else
1362 #define f2fs_show_injection_info(type) do { } while (0)
1363 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1364 {
1365 return false;
1366 }
1367 #endif
1368
1369 /* For write statistics. Suppose sector size is 512 bytes,
1370 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1371 */
1372 #define BD_PART_WRITTEN(s) \
1373 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \
1374 (s)->sectors_written_start) >> 1)
1375
1376 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1377 {
1378 unsigned long now = jiffies;
1379
1380 sbi->last_time[type] = now;
1381
1382 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1383 if (type == REQ_TIME) {
1384 sbi->last_time[DISCARD_TIME] = now;
1385 sbi->last_time[GC_TIME] = now;
1386 }
1387 }
1388
1389 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1390 {
1391 unsigned long interval = sbi->interval_time[type] * HZ;
1392
1393 return time_after(jiffies, sbi->last_time[type] + interval);
1394 }
1395
1396 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1397 int type)
1398 {
1399 unsigned long interval = sbi->interval_time[type] * HZ;
1400 unsigned int wait_ms = 0;
1401 long delta;
1402
1403 delta = (sbi->last_time[type] + interval) - jiffies;
1404 if (delta > 0)
1405 wait_ms = jiffies_to_msecs(delta);
1406
1407 return wait_ms;
1408 }
1409
1410 /*
1411 * Inline functions
1412 */
1413 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1414 const void *address, unsigned int length)
1415 {
1416 struct {
1417 struct shash_desc shash;
1418 char ctx[4];
1419 } desc;
1420 int err;
1421
1422 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1423
1424 desc.shash.tfm = sbi->s_chksum_driver;
1425 desc.shash.flags = 0;
1426 *(u32 *)desc.ctx = crc;
1427
1428 err = crypto_shash_update(&desc.shash, address, length);
1429 BUG_ON(err);
1430
1431 return *(u32 *)desc.ctx;
1432 }
1433
1434 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1435 unsigned int length)
1436 {
1437 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1438 }
1439
1440 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1441 void *buf, size_t buf_size)
1442 {
1443 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1444 }
1445
1446 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1447 const void *address, unsigned int length)
1448 {
1449 return __f2fs_crc32(sbi, crc, address, length);
1450 }
1451
1452 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1453 {
1454 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1455 }
1456
1457 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1458 {
1459 return sb->s_fs_info;
1460 }
1461
1462 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1463 {
1464 return F2FS_SB(inode->i_sb);
1465 }
1466
1467 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1468 {
1469 return F2FS_I_SB(mapping->host);
1470 }
1471
1472 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1473 {
1474 return F2FS_M_SB(page->mapping);
1475 }
1476
1477 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1478 {
1479 return (struct f2fs_super_block *)(sbi->raw_super);
1480 }
1481
1482 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1483 {
1484 return (struct f2fs_checkpoint *)(sbi->ckpt);
1485 }
1486
1487 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1488 {
1489 return (struct f2fs_node *)page_address(page);
1490 }
1491
1492 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1493 {
1494 return &((struct f2fs_node *)page_address(page))->i;
1495 }
1496
1497 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1498 {
1499 return (struct f2fs_nm_info *)(sbi->nm_info);
1500 }
1501
1502 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1503 {
1504 return (struct f2fs_sm_info *)(sbi->sm_info);
1505 }
1506
1507 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1508 {
1509 return (struct sit_info *)(SM_I(sbi)->sit_info);
1510 }
1511
1512 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1513 {
1514 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1515 }
1516
1517 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1518 {
1519 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1520 }
1521
1522 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1523 {
1524 return sbi->meta_inode->i_mapping;
1525 }
1526
1527 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1528 {
1529 return sbi->node_inode->i_mapping;
1530 }
1531
1532 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1533 {
1534 return test_bit(type, &sbi->s_flag);
1535 }
1536
1537 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1538 {
1539 set_bit(type, &sbi->s_flag);
1540 }
1541
1542 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1543 {
1544 clear_bit(type, &sbi->s_flag);
1545 }
1546
1547 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1548 {
1549 return le64_to_cpu(cp->checkpoint_ver);
1550 }
1551
1552 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1553 {
1554 if (type < F2FS_MAX_QUOTAS)
1555 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1556 return 0;
1557 }
1558
1559 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1560 {
1561 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1562 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1563 }
1564
1565 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1566 {
1567 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1568
1569 return ckpt_flags & f;
1570 }
1571
1572 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1573 {
1574 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1575 }
1576
1577 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1578 {
1579 unsigned int ckpt_flags;
1580
1581 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1582 ckpt_flags |= f;
1583 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1584 }
1585
1586 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1587 {
1588 unsigned long flags;
1589
1590 spin_lock_irqsave(&sbi->cp_lock, flags);
1591 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1592 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1593 }
1594
1595 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1596 {
1597 unsigned int ckpt_flags;
1598
1599 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1600 ckpt_flags &= (~f);
1601 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1602 }
1603
1604 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1605 {
1606 unsigned long flags;
1607
1608 spin_lock_irqsave(&sbi->cp_lock, flags);
1609 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1610 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1611 }
1612
1613 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1614 {
1615 unsigned long flags;
1616
1617 /*
1618 * In order to re-enable nat_bits we need to call fsck.f2fs by
1619 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1620 * so let's rely on regular fsck or unclean shutdown.
1621 */
1622
1623 if (lock)
1624 spin_lock_irqsave(&sbi->cp_lock, flags);
1625 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1626 kvfree(NM_I(sbi)->nat_bits);
1627 NM_I(sbi)->nat_bits = NULL;
1628 if (lock)
1629 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1630 }
1631
1632 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1633 struct cp_control *cpc)
1634 {
1635 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1636
1637 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1638 }
1639
1640 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1641 {
1642 down_read(&sbi->cp_rwsem);
1643 }
1644
1645 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1646 {
1647 return down_read_trylock(&sbi->cp_rwsem);
1648 }
1649
1650 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1651 {
1652 up_read(&sbi->cp_rwsem);
1653 }
1654
1655 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1656 {
1657 down_write(&sbi->cp_rwsem);
1658 }
1659
1660 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1661 {
1662 up_write(&sbi->cp_rwsem);
1663 }
1664
1665 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1666 {
1667 int reason = CP_SYNC;
1668
1669 if (test_opt(sbi, FASTBOOT))
1670 reason = CP_FASTBOOT;
1671 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1672 reason = CP_UMOUNT;
1673 return reason;
1674 }
1675
1676 static inline bool __remain_node_summaries(int reason)
1677 {
1678 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1679 }
1680
1681 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1682 {
1683 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1684 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1685 }
1686
1687 /*
1688 * Check whether the inode has blocks or not
1689 */
1690 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1691 {
1692 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1693
1694 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1695 }
1696
1697 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1698 {
1699 return ofs == XATTR_NODE_OFFSET;
1700 }
1701
1702 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1703 struct inode *inode, bool cap)
1704 {
1705 if (!inode)
1706 return true;
1707 if (!test_opt(sbi, RESERVE_ROOT))
1708 return false;
1709 if (IS_NOQUOTA(inode))
1710 return true;
1711 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1712 return true;
1713 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1714 in_group_p(F2FS_OPTION(sbi).s_resgid))
1715 return true;
1716 if (cap && capable(CAP_SYS_RESOURCE))
1717 return true;
1718 return false;
1719 }
1720
1721 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1722 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1723 struct inode *inode, blkcnt_t *count)
1724 {
1725 blkcnt_t diff = 0, release = 0;
1726 block_t avail_user_block_count;
1727 int ret;
1728
1729 ret = dquot_reserve_block(inode, *count);
1730 if (ret)
1731 return ret;
1732
1733 if (time_to_inject(sbi, FAULT_BLOCK)) {
1734 f2fs_show_injection_info(FAULT_BLOCK);
1735 release = *count;
1736 goto enospc;
1737 }
1738
1739 /*
1740 * let's increase this in prior to actual block count change in order
1741 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1742 */
1743 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1744
1745 spin_lock(&sbi->stat_lock);
1746 sbi->total_valid_block_count += (block_t)(*count);
1747 avail_user_block_count = sbi->user_block_count -
1748 sbi->current_reserved_blocks;
1749
1750 if (!__allow_reserved_blocks(sbi, inode, true))
1751 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1752 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1753 avail_user_block_count -= sbi->unusable_block_count;
1754 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1755 diff = sbi->total_valid_block_count - avail_user_block_count;
1756 if (diff > *count)
1757 diff = *count;
1758 *count -= diff;
1759 release = diff;
1760 sbi->total_valid_block_count -= diff;
1761 if (!*count) {
1762 spin_unlock(&sbi->stat_lock);
1763 goto enospc;
1764 }
1765 }
1766 spin_unlock(&sbi->stat_lock);
1767
1768 if (unlikely(release)) {
1769 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1770 dquot_release_reservation_block(inode, release);
1771 }
1772 f2fs_i_blocks_write(inode, *count, true, true);
1773 return 0;
1774
1775 enospc:
1776 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1777 dquot_release_reservation_block(inode, release);
1778 return -ENOSPC;
1779 }
1780
1781 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1782 struct inode *inode,
1783 block_t count)
1784 {
1785 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1786
1787 spin_lock(&sbi->stat_lock);
1788 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1789 f2fs_bug_on(sbi, inode->i_blocks < sectors);
1790 sbi->total_valid_block_count -= (block_t)count;
1791 if (sbi->reserved_blocks &&
1792 sbi->current_reserved_blocks < sbi->reserved_blocks)
1793 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1794 sbi->current_reserved_blocks + count);
1795 spin_unlock(&sbi->stat_lock);
1796 f2fs_i_blocks_write(inode, count, false, true);
1797 }
1798
1799 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1800 {
1801 atomic_inc(&sbi->nr_pages[count_type]);
1802
1803 if (count_type == F2FS_DIRTY_DENTS ||
1804 count_type == F2FS_DIRTY_NODES ||
1805 count_type == F2FS_DIRTY_META ||
1806 count_type == F2FS_DIRTY_QDATA ||
1807 count_type == F2FS_DIRTY_IMETA)
1808 set_sbi_flag(sbi, SBI_IS_DIRTY);
1809 }
1810
1811 static inline void inode_inc_dirty_pages(struct inode *inode)
1812 {
1813 atomic_inc(&F2FS_I(inode)->dirty_pages);
1814 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1815 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1816 if (IS_NOQUOTA(inode))
1817 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1818 }
1819
1820 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1821 {
1822 atomic_dec(&sbi->nr_pages[count_type]);
1823 }
1824
1825 static inline void inode_dec_dirty_pages(struct inode *inode)
1826 {
1827 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1828 !S_ISLNK(inode->i_mode))
1829 return;
1830
1831 atomic_dec(&F2FS_I(inode)->dirty_pages);
1832 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1833 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1834 if (IS_NOQUOTA(inode))
1835 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1836 }
1837
1838 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1839 {
1840 return atomic_read(&sbi->nr_pages[count_type]);
1841 }
1842
1843 static inline int get_dirty_pages(struct inode *inode)
1844 {
1845 return atomic_read(&F2FS_I(inode)->dirty_pages);
1846 }
1847
1848 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1849 {
1850 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1851 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1852 sbi->log_blocks_per_seg;
1853
1854 return segs / sbi->segs_per_sec;
1855 }
1856
1857 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1858 {
1859 return sbi->total_valid_block_count;
1860 }
1861
1862 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1863 {
1864 return sbi->discard_blks;
1865 }
1866
1867 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1868 {
1869 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1870
1871 /* return NAT or SIT bitmap */
1872 if (flag == NAT_BITMAP)
1873 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1874 else if (flag == SIT_BITMAP)
1875 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1876
1877 return 0;
1878 }
1879
1880 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1881 {
1882 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1883 }
1884
1885 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1886 {
1887 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1888 int offset;
1889
1890 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1891 offset = (flag == SIT_BITMAP) ?
1892 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1893 return &ckpt->sit_nat_version_bitmap + offset;
1894 }
1895
1896 if (__cp_payload(sbi) > 0) {
1897 if (flag == NAT_BITMAP)
1898 return &ckpt->sit_nat_version_bitmap;
1899 else
1900 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1901 } else {
1902 offset = (flag == NAT_BITMAP) ?
1903 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1904 return &ckpt->sit_nat_version_bitmap + offset;
1905 }
1906 }
1907
1908 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1909 {
1910 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1911
1912 if (sbi->cur_cp_pack == 2)
1913 start_addr += sbi->blocks_per_seg;
1914 return start_addr;
1915 }
1916
1917 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1918 {
1919 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1920
1921 if (sbi->cur_cp_pack == 1)
1922 start_addr += sbi->blocks_per_seg;
1923 return start_addr;
1924 }
1925
1926 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1927 {
1928 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1929 }
1930
1931 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1932 {
1933 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1934 }
1935
1936 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1937 struct inode *inode, bool is_inode)
1938 {
1939 block_t valid_block_count;
1940 unsigned int valid_node_count;
1941 int err;
1942
1943 if (is_inode) {
1944 if (inode) {
1945 err = dquot_alloc_inode(inode);
1946 if (err)
1947 return err;
1948 }
1949 } else {
1950 err = dquot_reserve_block(inode, 1);
1951 if (err)
1952 return err;
1953 }
1954
1955 if (time_to_inject(sbi, FAULT_BLOCK)) {
1956 f2fs_show_injection_info(FAULT_BLOCK);
1957 goto enospc;
1958 }
1959
1960 spin_lock(&sbi->stat_lock);
1961
1962 valid_block_count = sbi->total_valid_block_count +
1963 sbi->current_reserved_blocks + 1;
1964
1965 if (!__allow_reserved_blocks(sbi, inode, false))
1966 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1967 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1968 valid_block_count += sbi->unusable_block_count;
1969
1970 if (unlikely(valid_block_count > sbi->user_block_count)) {
1971 spin_unlock(&sbi->stat_lock);
1972 goto enospc;
1973 }
1974
1975 valid_node_count = sbi->total_valid_node_count + 1;
1976 if (unlikely(valid_node_count > sbi->total_node_count)) {
1977 spin_unlock(&sbi->stat_lock);
1978 goto enospc;
1979 }
1980
1981 sbi->total_valid_node_count++;
1982 sbi->total_valid_block_count++;
1983 spin_unlock(&sbi->stat_lock);
1984
1985 if (inode) {
1986 if (is_inode)
1987 f2fs_mark_inode_dirty_sync(inode, true);
1988 else
1989 f2fs_i_blocks_write(inode, 1, true, true);
1990 }
1991
1992 percpu_counter_inc(&sbi->alloc_valid_block_count);
1993 return 0;
1994
1995 enospc:
1996 if (is_inode) {
1997 if (inode)
1998 dquot_free_inode(inode);
1999 } else {
2000 dquot_release_reservation_block(inode, 1);
2001 }
2002 return -ENOSPC;
2003 }
2004
2005 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2006 struct inode *inode, bool is_inode)
2007 {
2008 spin_lock(&sbi->stat_lock);
2009
2010 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2011 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2012 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
2013
2014 sbi->total_valid_node_count--;
2015 sbi->total_valid_block_count--;
2016 if (sbi->reserved_blocks &&
2017 sbi->current_reserved_blocks < sbi->reserved_blocks)
2018 sbi->current_reserved_blocks++;
2019
2020 spin_unlock(&sbi->stat_lock);
2021
2022 if (is_inode)
2023 dquot_free_inode(inode);
2024 else
2025 f2fs_i_blocks_write(inode, 1, false, true);
2026 }
2027
2028 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2029 {
2030 return sbi->total_valid_node_count;
2031 }
2032
2033 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2034 {
2035 percpu_counter_inc(&sbi->total_valid_inode_count);
2036 }
2037
2038 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2039 {
2040 percpu_counter_dec(&sbi->total_valid_inode_count);
2041 }
2042
2043 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2044 {
2045 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2046 }
2047
2048 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2049 pgoff_t index, bool for_write)
2050 {
2051 struct page *page;
2052
2053 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2054 if (!for_write)
2055 page = find_get_page_flags(mapping, index,
2056 FGP_LOCK | FGP_ACCESSED);
2057 else
2058 page = find_lock_page(mapping, index);
2059 if (page)
2060 return page;
2061
2062 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2063 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2064 return NULL;
2065 }
2066 }
2067
2068 if (!for_write)
2069 return grab_cache_page(mapping, index);
2070 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2071 }
2072
2073 static inline struct page *f2fs_pagecache_get_page(
2074 struct address_space *mapping, pgoff_t index,
2075 int fgp_flags, gfp_t gfp_mask)
2076 {
2077 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2078 f2fs_show_injection_info(FAULT_PAGE_GET);
2079 return NULL;
2080 }
2081
2082 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2083 }
2084
2085 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2086 {
2087 char *src_kaddr = kmap(src);
2088 char *dst_kaddr = kmap(dst);
2089
2090 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2091 kunmap(dst);
2092 kunmap(src);
2093 }
2094
2095 static inline void f2fs_put_page(struct page *page, int unlock)
2096 {
2097 if (!page)
2098 return;
2099
2100 if (unlock) {
2101 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2102 unlock_page(page);
2103 }
2104 put_page(page);
2105 }
2106
2107 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2108 {
2109 if (dn->node_page)
2110 f2fs_put_page(dn->node_page, 1);
2111 if (dn->inode_page && dn->node_page != dn->inode_page)
2112 f2fs_put_page(dn->inode_page, 0);
2113 dn->node_page = NULL;
2114 dn->inode_page = NULL;
2115 }
2116
2117 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2118 size_t size)
2119 {
2120 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2121 }
2122
2123 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2124 gfp_t flags)
2125 {
2126 void *entry;
2127
2128 entry = kmem_cache_alloc(cachep, flags);
2129 if (!entry)
2130 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2131 return entry;
2132 }
2133
2134 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2135 int npages, bool no_fail)
2136 {
2137 struct bio *bio;
2138
2139 if (no_fail) {
2140 /* No failure on bio allocation */
2141 bio = bio_alloc(GFP_NOIO, npages);
2142 if (!bio)
2143 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2144 return bio;
2145 }
2146 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2147 f2fs_show_injection_info(FAULT_ALLOC_BIO);
2148 return NULL;
2149 }
2150
2151 return bio_alloc(GFP_KERNEL, npages);
2152 }
2153
2154 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2155 {
2156 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2157 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2158 get_pages(sbi, F2FS_WB_CP_DATA) ||
2159 get_pages(sbi, F2FS_DIO_READ) ||
2160 get_pages(sbi, F2FS_DIO_WRITE))
2161 return false;
2162
2163 if (SM_I(sbi) && SM_I(sbi)->dcc_info &&
2164 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2165 return false;
2166
2167 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2168 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2169 return false;
2170
2171 return f2fs_time_over(sbi, type);
2172 }
2173
2174 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2175 unsigned long index, void *item)
2176 {
2177 while (radix_tree_insert(root, index, item))
2178 cond_resched();
2179 }
2180
2181 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2182
2183 static inline bool IS_INODE(struct page *page)
2184 {
2185 struct f2fs_node *p = F2FS_NODE(page);
2186
2187 return RAW_IS_INODE(p);
2188 }
2189
2190 static inline int offset_in_addr(struct f2fs_inode *i)
2191 {
2192 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2193 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2194 }
2195
2196 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2197 {
2198 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2199 }
2200
2201 static inline int f2fs_has_extra_attr(struct inode *inode);
2202 static inline block_t datablock_addr(struct inode *inode,
2203 struct page *node_page, unsigned int offset)
2204 {
2205 struct f2fs_node *raw_node;
2206 __le32 *addr_array;
2207 int base = 0;
2208 bool is_inode = IS_INODE(node_page);
2209
2210 raw_node = F2FS_NODE(node_page);
2211
2212 /* from GC path only */
2213 if (is_inode) {
2214 if (!inode)
2215 base = offset_in_addr(&raw_node->i);
2216 else if (f2fs_has_extra_attr(inode))
2217 base = get_extra_isize(inode);
2218 }
2219
2220 addr_array = blkaddr_in_node(raw_node);
2221 return le32_to_cpu(addr_array[base + offset]);
2222 }
2223
2224 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2225 {
2226 int mask;
2227
2228 addr += (nr >> 3);
2229 mask = 1 << (7 - (nr & 0x07));
2230 return mask & *addr;
2231 }
2232
2233 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2234 {
2235 int mask;
2236
2237 addr += (nr >> 3);
2238 mask = 1 << (7 - (nr & 0x07));
2239 *addr |= mask;
2240 }
2241
2242 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2243 {
2244 int mask;
2245
2246 addr += (nr >> 3);
2247 mask = 1 << (7 - (nr & 0x07));
2248 *addr &= ~mask;
2249 }
2250
2251 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2252 {
2253 int mask;
2254 int ret;
2255
2256 addr += (nr >> 3);
2257 mask = 1 << (7 - (nr & 0x07));
2258 ret = mask & *addr;
2259 *addr |= mask;
2260 return ret;
2261 }
2262
2263 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2264 {
2265 int mask;
2266 int ret;
2267
2268 addr += (nr >> 3);
2269 mask = 1 << (7 - (nr & 0x07));
2270 ret = mask & *addr;
2271 *addr &= ~mask;
2272 return ret;
2273 }
2274
2275 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2276 {
2277 int mask;
2278
2279 addr += (nr >> 3);
2280 mask = 1 << (7 - (nr & 0x07));
2281 *addr ^= mask;
2282 }
2283
2284 /*
2285 * Inode flags
2286 */
2287 #define F2FS_SECRM_FL 0x00000001 /* Secure deletion */
2288 #define F2FS_UNRM_FL 0x00000002 /* Undelete */
2289 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2290 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2291 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2292 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2293 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2294 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2295 /* Reserved for compression usage... */
2296 #define F2FS_DIRTY_FL 0x00000100
2297 #define F2FS_COMPRBLK_FL 0x00000200 /* One or more compressed clusters */
2298 #define F2FS_NOCOMPR_FL 0x00000400 /* Don't compress */
2299 #define F2FS_ENCRYPT_FL 0x00000800 /* encrypted file */
2300 /* End compression flags --- maybe not all used */
2301 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2302 #define F2FS_IMAGIC_FL 0x00002000 /* AFS directory */
2303 #define F2FS_JOURNAL_DATA_FL 0x00004000 /* file data should be journaled */
2304 #define F2FS_NOTAIL_FL 0x00008000 /* file tail should not be merged */
2305 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2306 #define F2FS_TOPDIR_FL 0x00020000 /* Top of directory hierarchies*/
2307 #define F2FS_HUGE_FILE_FL 0x00040000 /* Set to each huge file */
2308 #define F2FS_EXTENTS_FL 0x00080000 /* Inode uses extents */
2309 #define F2FS_EA_INODE_FL 0x00200000 /* Inode used for large EA */
2310 #define F2FS_EOFBLOCKS_FL 0x00400000 /* Blocks allocated beyond EOF */
2311 #define F2FS_NOCOW_FL 0x00800000 /* Do not cow file */
2312 #define F2FS_INLINE_DATA_FL 0x10000000 /* Inode has inline data. */
2313 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2314 #define F2FS_RESERVED_FL 0x80000000 /* reserved for ext4 lib */
2315
2316 #define F2FS_FL_USER_VISIBLE 0x30CBDFFF /* User visible flags */
2317 #define F2FS_FL_USER_MODIFIABLE 0x204BC0FF /* User modifiable flags */
2318
2319 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2320 #define F2FS_FL_XFLAG_VISIBLE (F2FS_SYNC_FL | \
2321 F2FS_IMMUTABLE_FL | \
2322 F2FS_APPEND_FL | \
2323 F2FS_NODUMP_FL | \
2324 F2FS_NOATIME_FL | \
2325 F2FS_PROJINHERIT_FL)
2326
2327 /* Flags that should be inherited by new inodes from their parent. */
2328 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2329 F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2330 F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2331 F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2332 F2FS_PROJINHERIT_FL)
2333
2334 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2335 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2336
2337 /* Flags that are appropriate for non-directories/regular files. */
2338 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2339
2340 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2341 {
2342 if (S_ISDIR(mode))
2343 return flags;
2344 else if (S_ISREG(mode))
2345 return flags & F2FS_REG_FLMASK;
2346 else
2347 return flags & F2FS_OTHER_FLMASK;
2348 }
2349
2350 /* used for f2fs_inode_info->flags */
2351 enum {
2352 FI_NEW_INODE, /* indicate newly allocated inode */
2353 FI_DIRTY_INODE, /* indicate inode is dirty or not */
2354 FI_AUTO_RECOVER, /* indicate inode is recoverable */
2355 FI_DIRTY_DIR, /* indicate directory has dirty pages */
2356 FI_INC_LINK, /* need to increment i_nlink */
2357 FI_ACL_MODE, /* indicate acl mode */
2358 FI_NO_ALLOC, /* should not allocate any blocks */
2359 FI_FREE_NID, /* free allocated nide */
2360 FI_NO_EXTENT, /* not to use the extent cache */
2361 FI_INLINE_XATTR, /* used for inline xattr */
2362 FI_INLINE_DATA, /* used for inline data*/
2363 FI_INLINE_DENTRY, /* used for inline dentry */
2364 FI_APPEND_WRITE, /* inode has appended data */
2365 FI_UPDATE_WRITE, /* inode has in-place-update data */
2366 FI_NEED_IPU, /* used for ipu per file */
2367 FI_ATOMIC_FILE, /* indicate atomic file */
2368 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2369 FI_VOLATILE_FILE, /* indicate volatile file */
2370 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2371 FI_DROP_CACHE, /* drop dirty page cache */
2372 FI_DATA_EXIST, /* indicate data exists */
2373 FI_INLINE_DOTS, /* indicate inline dot dentries */
2374 FI_DO_DEFRAG, /* indicate defragment is running */
2375 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2376 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2377 FI_HOT_DATA, /* indicate file is hot */
2378 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2379 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2380 FI_PIN_FILE, /* indicate file should not be gced */
2381 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2382 };
2383
2384 static inline void __mark_inode_dirty_flag(struct inode *inode,
2385 int flag, bool set)
2386 {
2387 switch (flag) {
2388 case FI_INLINE_XATTR:
2389 case FI_INLINE_DATA:
2390 case FI_INLINE_DENTRY:
2391 case FI_NEW_INODE:
2392 if (set)
2393 return;
2394 /* fall through */
2395 case FI_DATA_EXIST:
2396 case FI_INLINE_DOTS:
2397 case FI_PIN_FILE:
2398 f2fs_mark_inode_dirty_sync(inode, true);
2399 }
2400 }
2401
2402 static inline void set_inode_flag(struct inode *inode, int flag)
2403 {
2404 if (!test_bit(flag, &F2FS_I(inode)->flags))
2405 set_bit(flag, &F2FS_I(inode)->flags);
2406 __mark_inode_dirty_flag(inode, flag, true);
2407 }
2408
2409 static inline int is_inode_flag_set(struct inode *inode, int flag)
2410 {
2411 return test_bit(flag, &F2FS_I(inode)->flags);
2412 }
2413
2414 static inline void clear_inode_flag(struct inode *inode, int flag)
2415 {
2416 if (test_bit(flag, &F2FS_I(inode)->flags))
2417 clear_bit(flag, &F2FS_I(inode)->flags);
2418 __mark_inode_dirty_flag(inode, flag, false);
2419 }
2420
2421 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2422 {
2423 F2FS_I(inode)->i_acl_mode = mode;
2424 set_inode_flag(inode, FI_ACL_MODE);
2425 f2fs_mark_inode_dirty_sync(inode, false);
2426 }
2427
2428 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2429 {
2430 if (inc)
2431 inc_nlink(inode);
2432 else
2433 drop_nlink(inode);
2434 f2fs_mark_inode_dirty_sync(inode, true);
2435 }
2436
2437 static inline void f2fs_i_blocks_write(struct inode *inode,
2438 block_t diff, bool add, bool claim)
2439 {
2440 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2441 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2442
2443 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2444 if (add) {
2445 if (claim)
2446 dquot_claim_block(inode, diff);
2447 else
2448 dquot_alloc_block_nofail(inode, diff);
2449 } else {
2450 dquot_free_block(inode, diff);
2451 }
2452
2453 f2fs_mark_inode_dirty_sync(inode, true);
2454 if (clean || recover)
2455 set_inode_flag(inode, FI_AUTO_RECOVER);
2456 }
2457
2458 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2459 {
2460 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2461 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2462
2463 if (i_size_read(inode) == i_size)
2464 return;
2465
2466 i_size_write(inode, i_size);
2467 f2fs_mark_inode_dirty_sync(inode, true);
2468 if (clean || recover)
2469 set_inode_flag(inode, FI_AUTO_RECOVER);
2470 }
2471
2472 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2473 {
2474 F2FS_I(inode)->i_current_depth = depth;
2475 f2fs_mark_inode_dirty_sync(inode, true);
2476 }
2477
2478 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2479 unsigned int count)
2480 {
2481 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2482 f2fs_mark_inode_dirty_sync(inode, true);
2483 }
2484
2485 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2486 {
2487 F2FS_I(inode)->i_xattr_nid = xnid;
2488 f2fs_mark_inode_dirty_sync(inode, true);
2489 }
2490
2491 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2492 {
2493 F2FS_I(inode)->i_pino = pino;
2494 f2fs_mark_inode_dirty_sync(inode, true);
2495 }
2496
2497 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2498 {
2499 struct f2fs_inode_info *fi = F2FS_I(inode);
2500
2501 if (ri->i_inline & F2FS_INLINE_XATTR)
2502 set_bit(FI_INLINE_XATTR, &fi->flags);
2503 if (ri->i_inline & F2FS_INLINE_DATA)
2504 set_bit(FI_INLINE_DATA, &fi->flags);
2505 if (ri->i_inline & F2FS_INLINE_DENTRY)
2506 set_bit(FI_INLINE_DENTRY, &fi->flags);
2507 if (ri->i_inline & F2FS_DATA_EXIST)
2508 set_bit(FI_DATA_EXIST, &fi->flags);
2509 if (ri->i_inline & F2FS_INLINE_DOTS)
2510 set_bit(FI_INLINE_DOTS, &fi->flags);
2511 if (ri->i_inline & F2FS_EXTRA_ATTR)
2512 set_bit(FI_EXTRA_ATTR, &fi->flags);
2513 if (ri->i_inline & F2FS_PIN_FILE)
2514 set_bit(FI_PIN_FILE, &fi->flags);
2515 }
2516
2517 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2518 {
2519 ri->i_inline = 0;
2520
2521 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2522 ri->i_inline |= F2FS_INLINE_XATTR;
2523 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2524 ri->i_inline |= F2FS_INLINE_DATA;
2525 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2526 ri->i_inline |= F2FS_INLINE_DENTRY;
2527 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2528 ri->i_inline |= F2FS_DATA_EXIST;
2529 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2530 ri->i_inline |= F2FS_INLINE_DOTS;
2531 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2532 ri->i_inline |= F2FS_EXTRA_ATTR;
2533 if (is_inode_flag_set(inode, FI_PIN_FILE))
2534 ri->i_inline |= F2FS_PIN_FILE;
2535 }
2536
2537 static inline int f2fs_has_extra_attr(struct inode *inode)
2538 {
2539 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2540 }
2541
2542 static inline int f2fs_has_inline_xattr(struct inode *inode)
2543 {
2544 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2545 }
2546
2547 static inline unsigned int addrs_per_inode(struct inode *inode)
2548 {
2549 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2550 }
2551
2552 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2553 {
2554 struct f2fs_inode *ri = F2FS_INODE(page);
2555
2556 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2557 get_inline_xattr_addrs(inode)]);
2558 }
2559
2560 static inline int inline_xattr_size(struct inode *inode)
2561 {
2562 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2563 }
2564
2565 static inline int f2fs_has_inline_data(struct inode *inode)
2566 {
2567 return is_inode_flag_set(inode, FI_INLINE_DATA);
2568 }
2569
2570 static inline int f2fs_exist_data(struct inode *inode)
2571 {
2572 return is_inode_flag_set(inode, FI_DATA_EXIST);
2573 }
2574
2575 static inline int f2fs_has_inline_dots(struct inode *inode)
2576 {
2577 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2578 }
2579
2580 static inline bool f2fs_is_pinned_file(struct inode *inode)
2581 {
2582 return is_inode_flag_set(inode, FI_PIN_FILE);
2583 }
2584
2585 static inline bool f2fs_is_atomic_file(struct inode *inode)
2586 {
2587 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2588 }
2589
2590 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2591 {
2592 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2593 }
2594
2595 static inline bool f2fs_is_volatile_file(struct inode *inode)
2596 {
2597 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2598 }
2599
2600 static inline bool f2fs_is_first_block_written(struct inode *inode)
2601 {
2602 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2603 }
2604
2605 static inline bool f2fs_is_drop_cache(struct inode *inode)
2606 {
2607 return is_inode_flag_set(inode, FI_DROP_CACHE);
2608 }
2609
2610 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2611 {
2612 struct f2fs_inode *ri = F2FS_INODE(page);
2613 int extra_size = get_extra_isize(inode);
2614
2615 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2616 }
2617
2618 static inline int f2fs_has_inline_dentry(struct inode *inode)
2619 {
2620 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2621 }
2622
2623 static inline int is_file(struct inode *inode, int type)
2624 {
2625 return F2FS_I(inode)->i_advise & type;
2626 }
2627
2628 static inline void set_file(struct inode *inode, int type)
2629 {
2630 F2FS_I(inode)->i_advise |= type;
2631 f2fs_mark_inode_dirty_sync(inode, true);
2632 }
2633
2634 static inline void clear_file(struct inode *inode, int type)
2635 {
2636 F2FS_I(inode)->i_advise &= ~type;
2637 f2fs_mark_inode_dirty_sync(inode, true);
2638 }
2639
2640 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2641 {
2642 bool ret;
2643
2644 if (dsync) {
2645 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2646
2647 spin_lock(&sbi->inode_lock[DIRTY_META]);
2648 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2649 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2650 return ret;
2651 }
2652 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2653 file_keep_isize(inode) ||
2654 i_size_read(inode) & ~PAGE_MASK)
2655 return false;
2656
2657 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2658 return false;
2659 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2660 return false;
2661 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2662 return false;
2663 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2664 &F2FS_I(inode)->i_crtime))
2665 return false;
2666
2667 down_read(&F2FS_I(inode)->i_sem);
2668 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2669 up_read(&F2FS_I(inode)->i_sem);
2670
2671 return ret;
2672 }
2673
2674 static inline bool f2fs_readonly(struct super_block *sb)
2675 {
2676 return sb_rdonly(sb);
2677 }
2678
2679 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2680 {
2681 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2682 }
2683
2684 static inline bool is_dot_dotdot(const struct qstr *str)
2685 {
2686 if (str->len == 1 && str->name[0] == '.')
2687 return true;
2688
2689 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2690 return true;
2691
2692 return false;
2693 }
2694
2695 static inline bool f2fs_may_extent_tree(struct inode *inode)
2696 {
2697 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2698
2699 if (!test_opt(sbi, EXTENT_CACHE) ||
2700 is_inode_flag_set(inode, FI_NO_EXTENT))
2701 return false;
2702
2703 /*
2704 * for recovered files during mount do not create extents
2705 * if shrinker is not registered.
2706 */
2707 if (list_empty(&sbi->s_list))
2708 return false;
2709
2710 return S_ISREG(inode->i_mode);
2711 }
2712
2713 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2714 size_t size, gfp_t flags)
2715 {
2716 void *ret;
2717
2718 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2719 f2fs_show_injection_info(FAULT_KMALLOC);
2720 return NULL;
2721 }
2722
2723 ret = kmalloc(size, flags);
2724 if (ret)
2725 return ret;
2726
2727 return kvmalloc(size, flags);
2728 }
2729
2730 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2731 size_t size, gfp_t flags)
2732 {
2733 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2734 }
2735
2736 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2737 size_t size, gfp_t flags)
2738 {
2739 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2740 f2fs_show_injection_info(FAULT_KVMALLOC);
2741 return NULL;
2742 }
2743
2744 return kvmalloc(size, flags);
2745 }
2746
2747 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2748 size_t size, gfp_t flags)
2749 {
2750 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2751 }
2752
2753 static inline int get_extra_isize(struct inode *inode)
2754 {
2755 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2756 }
2757
2758 static inline int get_inline_xattr_addrs(struct inode *inode)
2759 {
2760 return F2FS_I(inode)->i_inline_xattr_size;
2761 }
2762
2763 #define f2fs_get_inode_mode(i) \
2764 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2765 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2766
2767 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2768 (offsetof(struct f2fs_inode, i_extra_end) - \
2769 offsetof(struct f2fs_inode, i_extra_isize)) \
2770
2771 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2772 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2773 ((offsetof(typeof(*(f2fs_inode)), field) + \
2774 sizeof((f2fs_inode)->field)) \
2775 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
2776
2777 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2778 {
2779 int i;
2780
2781 spin_lock(&sbi->iostat_lock);
2782 for (i = 0; i < NR_IO_TYPE; i++)
2783 sbi->write_iostat[i] = 0;
2784 spin_unlock(&sbi->iostat_lock);
2785 }
2786
2787 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2788 enum iostat_type type, unsigned long long io_bytes)
2789 {
2790 if (!sbi->iostat_enable)
2791 return;
2792 spin_lock(&sbi->iostat_lock);
2793 sbi->write_iostat[type] += io_bytes;
2794
2795 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2796 sbi->write_iostat[APP_BUFFERED_IO] =
2797 sbi->write_iostat[APP_WRITE_IO] -
2798 sbi->write_iostat[APP_DIRECT_IO];
2799 spin_unlock(&sbi->iostat_lock);
2800 }
2801
2802 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
2803
2804 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META && \
2805 (!is_read_io((fio)->op) || (fio)->is_meta))
2806
2807 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2808 block_t blkaddr, int type);
2809 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2810 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2811 block_t blkaddr, int type)
2812 {
2813 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2814 f2fs_msg(sbi->sb, KERN_ERR,
2815 "invalid blkaddr: %u, type: %d, run fsck to fix.",
2816 blkaddr, type);
2817 f2fs_bug_on(sbi, 1);
2818 }
2819 }
2820
2821 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2822 {
2823 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2824 return false;
2825 return true;
2826 }
2827
2828 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2829 block_t blkaddr)
2830 {
2831 if (!__is_valid_data_blkaddr(blkaddr))
2832 return false;
2833 verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2834 return true;
2835 }
2836
2837 static inline void f2fs_set_page_private(struct page *page,
2838 unsigned long data)
2839 {
2840 if (PagePrivate(page))
2841 return;
2842
2843 get_page(page);
2844 SetPagePrivate(page);
2845 set_page_private(page, data);
2846 }
2847
2848 static inline void f2fs_clear_page_private(struct page *page)
2849 {
2850 if (!PagePrivate(page))
2851 return;
2852
2853 set_page_private(page, 0);
2854 ClearPagePrivate(page);
2855 f2fs_put_page(page, 0);
2856 }
2857
2858 /*
2859 * file.c
2860 */
2861 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2862 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2863 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2864 int f2fs_truncate(struct inode *inode);
2865 int f2fs_getattr(const struct path *path, struct kstat *stat,
2866 u32 request_mask, unsigned int flags);
2867 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2868 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2869 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2870 int f2fs_precache_extents(struct inode *inode);
2871 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2872 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2873 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2874 int f2fs_pin_file_control(struct inode *inode, bool inc);
2875
2876 /*
2877 * inode.c
2878 */
2879 void f2fs_set_inode_flags(struct inode *inode);
2880 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2881 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2882 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2883 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2884 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2885 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2886 void f2fs_update_inode_page(struct inode *inode);
2887 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2888 void f2fs_evict_inode(struct inode *inode);
2889 void f2fs_handle_failed_inode(struct inode *inode);
2890
2891 /*
2892 * namei.c
2893 */
2894 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2895 bool hot, bool set);
2896 struct dentry *f2fs_get_parent(struct dentry *child);
2897
2898 /*
2899 * dir.c
2900 */
2901 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2902 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2903 f2fs_hash_t namehash, int *max_slots,
2904 struct f2fs_dentry_ptr *d);
2905 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2906 unsigned int start_pos, struct fscrypt_str *fstr);
2907 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2908 struct f2fs_dentry_ptr *d);
2909 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2910 const struct qstr *new_name,
2911 const struct qstr *orig_name, struct page *dpage);
2912 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2913 unsigned int current_depth);
2914 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2915 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2916 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2917 struct fscrypt_name *fname, struct page **res_page);
2918 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2919 const struct qstr *child, struct page **res_page);
2920 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2921 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2922 struct page **page);
2923 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2924 struct page *page, struct inode *inode);
2925 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2926 const struct qstr *name, f2fs_hash_t name_hash,
2927 unsigned int bit_pos);
2928 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2929 const struct qstr *orig_name,
2930 struct inode *inode, nid_t ino, umode_t mode);
2931 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2932 struct inode *inode, nid_t ino, umode_t mode);
2933 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2934 struct inode *inode, nid_t ino, umode_t mode);
2935 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2936 struct inode *dir, struct inode *inode);
2937 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2938 bool f2fs_empty_dir(struct inode *dir);
2939
2940 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2941 {
2942 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2943 inode, inode->i_ino, inode->i_mode);
2944 }
2945
2946 /*
2947 * super.c
2948 */
2949 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2950 void f2fs_inode_synced(struct inode *inode);
2951 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2952 int f2fs_quota_sync(struct super_block *sb, int type);
2953 void f2fs_quota_off_umount(struct super_block *sb);
2954 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2955 int f2fs_sync_fs(struct super_block *sb, int sync);
2956 extern __printf(3, 4)
2957 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2958 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2959
2960 /*
2961 * hash.c
2962 */
2963 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2964 struct fscrypt_name *fname);
2965
2966 /*
2967 * node.c
2968 */
2969 struct dnode_of_data;
2970 struct node_info;
2971
2972 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2973 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2974 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2975 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2976 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2977 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2978 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2979 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2980 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2981 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2982 struct node_info *ni);
2983 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2984 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2985 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2986 int f2fs_truncate_xattr_node(struct inode *inode);
2987 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2988 unsigned int seq_id);
2989 int f2fs_remove_inode_page(struct inode *inode);
2990 struct page *f2fs_new_inode_page(struct inode *inode);
2991 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2992 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2993 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2994 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2995 int f2fs_move_node_page(struct page *node_page, int gc_type);
2996 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2997 struct writeback_control *wbc, bool atomic,
2998 unsigned int *seq_id);
2999 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3000 struct writeback_control *wbc,
3001 bool do_balance, enum iostat_type io_type);
3002 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3003 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3004 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3005 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3006 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3007 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3008 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3009 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3010 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3011 unsigned int segno, struct f2fs_summary_block *sum);
3012 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3013 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3014 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3015 int __init f2fs_create_node_manager_caches(void);
3016 void f2fs_destroy_node_manager_caches(void);
3017
3018 /*
3019 * segment.c
3020 */
3021 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3022 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3023 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3024 void f2fs_drop_inmem_pages(struct inode *inode);
3025 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3026 int f2fs_commit_inmem_pages(struct inode *inode);
3027 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3028 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3029 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3030 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3031 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3032 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3033 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3034 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3035 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3036 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3037 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3038 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3039 struct cp_control *cpc);
3040 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3041 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi);
3042 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3043 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3044 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3045 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3046 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3047 struct cp_control *cpc);
3048 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3049 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3050 block_t blk_addr);
3051 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3052 enum iostat_type io_type);
3053 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3054 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3055 struct f2fs_io_info *fio);
3056 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3057 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3058 block_t old_blkaddr, block_t new_blkaddr,
3059 bool recover_curseg, bool recover_newaddr);
3060 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3061 block_t old_addr, block_t new_addr,
3062 unsigned char version, bool recover_curseg,
3063 bool recover_newaddr);
3064 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3065 block_t old_blkaddr, block_t *new_blkaddr,
3066 struct f2fs_summary *sum, int type,
3067 struct f2fs_io_info *fio, bool add_list);
3068 void f2fs_wait_on_page_writeback(struct page *page,
3069 enum page_type type, bool ordered, bool locked);
3070 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3071 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3072 block_t len);
3073 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3074 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3075 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3076 unsigned int val, int alloc);
3077 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3078 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3079 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3080 int __init f2fs_create_segment_manager_caches(void);
3081 void f2fs_destroy_segment_manager_caches(void);
3082 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3083 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3084 enum page_type type, enum temp_type temp);
3085
3086 /*
3087 * checkpoint.c
3088 */
3089 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3090 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3091 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3092 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3093 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3094 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3095 block_t blkaddr, int type);
3096 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3097 int type, bool sync);
3098 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3099 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3100 long nr_to_write, enum iostat_type io_type);
3101 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3102 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3103 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3104 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3105 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3106 unsigned int devidx, int type);
3107 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3108 unsigned int devidx, int type);
3109 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3110 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3111 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3112 void f2fs_add_orphan_inode(struct inode *inode);
3113 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3114 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3115 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3116 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3117 void f2fs_remove_dirty_inode(struct inode *inode);
3118 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3119 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3120 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3121 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3122 int __init f2fs_create_checkpoint_caches(void);
3123 void f2fs_destroy_checkpoint_caches(void);
3124
3125 /*
3126 * data.c
3127 */
3128 int f2fs_init_post_read_processing(void);
3129 void f2fs_destroy_post_read_processing(void);
3130 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3131 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3132 struct inode *inode, struct page *page,
3133 nid_t ino, enum page_type type);
3134 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3135 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3136 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3137 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3138 block_t blk_addr, struct bio *bio);
3139 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3140 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3141 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3142 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3143 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3144 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3145 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3146 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3147 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3148 int op_flags, bool for_write);
3149 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3150 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3151 bool for_write);
3152 struct page *f2fs_get_new_data_page(struct inode *inode,
3153 struct page *ipage, pgoff_t index, bool new_i_size);
3154 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3155 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3156 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3157 int create, int flag);
3158 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3159 u64 start, u64 len);
3160 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3161 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3162 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3163 unsigned int length);
3164 int f2fs_release_page(struct page *page, gfp_t wait);
3165 #ifdef CONFIG_MIGRATION
3166 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3167 struct page *page, enum migrate_mode mode);
3168 #endif
3169 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3170 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3171
3172 /*
3173 * gc.c
3174 */
3175 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3176 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3177 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3178 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3179 unsigned int segno);
3180 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3181
3182 /*
3183 * recovery.c
3184 */
3185 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3186 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3187
3188 /*
3189 * debug.c
3190 */
3191 #ifdef CONFIG_F2FS_STAT_FS
3192 struct f2fs_stat_info {
3193 struct list_head stat_list;
3194 struct f2fs_sb_info *sbi;
3195 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3196 int main_area_segs, main_area_sections, main_area_zones;
3197 unsigned long long hit_largest, hit_cached, hit_rbtree;
3198 unsigned long long hit_total, total_ext;
3199 int ext_tree, zombie_tree, ext_node;
3200 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3201 int ndirty_data, ndirty_qdata;
3202 int inmem_pages;
3203 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3204 int nats, dirty_nats, sits, dirty_sits;
3205 int free_nids, avail_nids, alloc_nids;
3206 int total_count, utilization;
3207 int bg_gc, nr_wb_cp_data, nr_wb_data;
3208 int nr_rd_data, nr_rd_node, nr_rd_meta;
3209 int nr_dio_read, nr_dio_write;
3210 unsigned int io_skip_bggc, other_skip_bggc;
3211 int nr_flushing, nr_flushed, flush_list_empty;
3212 int nr_discarding, nr_discarded;
3213 int nr_discard_cmd;
3214 unsigned int undiscard_blks;
3215 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3216 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3217 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3218 unsigned int bimodal, avg_vblocks;
3219 int util_free, util_valid, util_invalid;
3220 int rsvd_segs, overp_segs;
3221 int dirty_count, node_pages, meta_pages;
3222 int prefree_count, call_count, cp_count, bg_cp_count;
3223 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3224 int bg_node_segs, bg_data_segs;
3225 int tot_blks, data_blks, node_blks;
3226 int bg_data_blks, bg_node_blks;
3227 unsigned long long skipped_atomic_files[2];
3228 int curseg[NR_CURSEG_TYPE];
3229 int cursec[NR_CURSEG_TYPE];
3230 int curzone[NR_CURSEG_TYPE];
3231
3232 unsigned int meta_count[META_MAX];
3233 unsigned int segment_count[2];
3234 unsigned int block_count[2];
3235 unsigned int inplace_count;
3236 unsigned long long base_mem, cache_mem, page_mem;
3237 };
3238
3239 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3240 {
3241 return (struct f2fs_stat_info *)sbi->stat_info;
3242 }
3243
3244 #define stat_inc_cp_count(si) ((si)->cp_count++)
3245 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3246 #define stat_inc_call_count(si) ((si)->call_count++)
3247 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
3248 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3249 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3250 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3251 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3252 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3253 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3254 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3255 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3256 #define stat_inc_inline_xattr(inode) \
3257 do { \
3258 if (f2fs_has_inline_xattr(inode)) \
3259 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3260 } while (0)
3261 #define stat_dec_inline_xattr(inode) \
3262 do { \
3263 if (f2fs_has_inline_xattr(inode)) \
3264 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3265 } while (0)
3266 #define stat_inc_inline_inode(inode) \
3267 do { \
3268 if (f2fs_has_inline_data(inode)) \
3269 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3270 } while (0)
3271 #define stat_dec_inline_inode(inode) \
3272 do { \
3273 if (f2fs_has_inline_data(inode)) \
3274 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3275 } while (0)
3276 #define stat_inc_inline_dir(inode) \
3277 do { \
3278 if (f2fs_has_inline_dentry(inode)) \
3279 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3280 } while (0)
3281 #define stat_dec_inline_dir(inode) \
3282 do { \
3283 if (f2fs_has_inline_dentry(inode)) \
3284 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3285 } while (0)
3286 #define stat_inc_meta_count(sbi, blkaddr) \
3287 do { \
3288 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3289 atomic_inc(&(sbi)->meta_count[META_CP]); \
3290 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3291 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3292 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3293 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3294 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3295 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3296 } while (0)
3297 #define stat_inc_seg_type(sbi, curseg) \
3298 ((sbi)->segment_count[(curseg)->alloc_type]++)
3299 #define stat_inc_block_count(sbi, curseg) \
3300 ((sbi)->block_count[(curseg)->alloc_type]++)
3301 #define stat_inc_inplace_blocks(sbi) \
3302 (atomic_inc(&(sbi)->inplace_count))
3303 #define stat_inc_atomic_write(inode) \
3304 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3305 #define stat_dec_atomic_write(inode) \
3306 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3307 #define stat_update_max_atomic_write(inode) \
3308 do { \
3309 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
3310 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3311 if (cur > max) \
3312 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3313 } while (0)
3314 #define stat_inc_volatile_write(inode) \
3315 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3316 #define stat_dec_volatile_write(inode) \
3317 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3318 #define stat_update_max_volatile_write(inode) \
3319 do { \
3320 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3321 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3322 if (cur > max) \
3323 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3324 } while (0)
3325 #define stat_inc_seg_count(sbi, type, gc_type) \
3326 do { \
3327 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3328 si->tot_segs++; \
3329 if ((type) == SUM_TYPE_DATA) { \
3330 si->data_segs++; \
3331 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3332 } else { \
3333 si->node_segs++; \
3334 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3335 } \
3336 } while (0)
3337
3338 #define stat_inc_tot_blk_count(si, blks) \
3339 ((si)->tot_blks += (blks))
3340
3341 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3342 do { \
3343 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3344 stat_inc_tot_blk_count(si, blks); \
3345 si->data_blks += (blks); \
3346 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3347 } while (0)
3348
3349 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3350 do { \
3351 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3352 stat_inc_tot_blk_count(si, blks); \
3353 si->node_blks += (blks); \
3354 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3355 } while (0)
3356
3357 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3358 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3359 void __init f2fs_create_root_stats(void);
3360 void f2fs_destroy_root_stats(void);
3361 #else
3362 #define stat_inc_cp_count(si) do { } while (0)
3363 #define stat_inc_bg_cp_count(si) do { } while (0)
3364 #define stat_inc_call_count(si) do { } while (0)
3365 #define stat_inc_bggc_count(si) do { } while (0)
3366 #define stat_io_skip_bggc_count(sbi) do { } while (0)
3367 #define stat_other_skip_bggc_count(sbi) do { } while (0)
3368 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3369 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3370 #define stat_inc_total_hit(sb) do { } while (0)
3371 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
3372 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3373 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3374 #define stat_inc_inline_xattr(inode) do { } while (0)
3375 #define stat_dec_inline_xattr(inode) do { } while (0)
3376 #define stat_inc_inline_inode(inode) do { } while (0)
3377 #define stat_dec_inline_inode(inode) do { } while (0)
3378 #define stat_inc_inline_dir(inode) do { } while (0)
3379 #define stat_dec_inline_dir(inode) do { } while (0)
3380 #define stat_inc_atomic_write(inode) do { } while (0)
3381 #define stat_dec_atomic_write(inode) do { } while (0)
3382 #define stat_update_max_atomic_write(inode) do { } while (0)
3383 #define stat_inc_volatile_write(inode) do { } while (0)
3384 #define stat_dec_volatile_write(inode) do { } while (0)
3385 #define stat_update_max_volatile_write(inode) do { } while (0)
3386 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3387 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3388 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3389 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3390 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3391 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3392 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3393 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3394
3395 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3396 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3397 static inline void __init f2fs_create_root_stats(void) { }
3398 static inline void f2fs_destroy_root_stats(void) { }
3399 #endif
3400
3401 extern const struct file_operations f2fs_dir_operations;
3402 extern const struct file_operations f2fs_file_operations;
3403 extern const struct inode_operations f2fs_file_inode_operations;
3404 extern const struct address_space_operations f2fs_dblock_aops;
3405 extern const struct address_space_operations f2fs_node_aops;
3406 extern const struct address_space_operations f2fs_meta_aops;
3407 extern const struct inode_operations f2fs_dir_inode_operations;
3408 extern const struct inode_operations f2fs_symlink_inode_operations;
3409 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3410 extern const struct inode_operations f2fs_special_inode_operations;
3411 extern struct kmem_cache *f2fs_inode_entry_slab;
3412
3413 /*
3414 * inline.c
3415 */
3416 bool f2fs_may_inline_data(struct inode *inode);
3417 bool f2fs_may_inline_dentry(struct inode *inode);
3418 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3419 void f2fs_truncate_inline_inode(struct inode *inode,
3420 struct page *ipage, u64 from);
3421 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3422 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3423 int f2fs_convert_inline_inode(struct inode *inode);
3424 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3425 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3426 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3427 struct fscrypt_name *fname, struct page **res_page);
3428 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3429 struct page *ipage);
3430 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3431 const struct qstr *orig_name,
3432 struct inode *inode, nid_t ino, umode_t mode);
3433 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3434 struct page *page, struct inode *dir,
3435 struct inode *inode);
3436 bool f2fs_empty_inline_dir(struct inode *dir);
3437 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3438 struct fscrypt_str *fstr);
3439 int f2fs_inline_data_fiemap(struct inode *inode,
3440 struct fiemap_extent_info *fieinfo,
3441 __u64 start, __u64 len);
3442
3443 /*
3444 * shrinker.c
3445 */
3446 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3447 struct shrink_control *sc);
3448 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3449 struct shrink_control *sc);
3450 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3451 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3452
3453 /*
3454 * extent_cache.c
3455 */
3456 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3457 struct rb_entry *cached_re, unsigned int ofs);
3458 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3459 struct rb_root_cached *root,
3460 struct rb_node **parent,
3461 unsigned int ofs, bool *leftmost);
3462 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3463 struct rb_entry *cached_re, unsigned int ofs,
3464 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3465 struct rb_node ***insert_p, struct rb_node **insert_parent,
3466 bool force, bool *leftmost);
3467 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3468 struct rb_root_cached *root);
3469 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3470 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3471 void f2fs_drop_extent_tree(struct inode *inode);
3472 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3473 void f2fs_destroy_extent_tree(struct inode *inode);
3474 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3475 struct extent_info *ei);
3476 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3477 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3478 pgoff_t fofs, block_t blkaddr, unsigned int len);
3479 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3480 int __init f2fs_create_extent_cache(void);
3481 void f2fs_destroy_extent_cache(void);
3482
3483 /*
3484 * sysfs.c
3485 */
3486 int __init f2fs_init_sysfs(void);
3487 void f2fs_exit_sysfs(void);
3488 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3489 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3490
3491 /*
3492 * crypto support
3493 */
3494 static inline bool f2fs_encrypted_file(struct inode *inode)
3495 {
3496 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3497 }
3498
3499 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3500 {
3501 #ifdef CONFIG_FS_ENCRYPTION
3502 file_set_encrypt(inode);
3503 f2fs_set_inode_flags(inode);
3504 #endif
3505 }
3506
3507 /*
3508 * Returns true if the reads of the inode's data need to undergo some
3509 * postprocessing step, like decryption or authenticity verification.
3510 */
3511 static inline bool f2fs_post_read_required(struct inode *inode)
3512 {
3513 return f2fs_encrypted_file(inode);
3514 }
3515
3516 #define F2FS_FEATURE_FUNCS(name, flagname) \
3517 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3518 { \
3519 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3520 }
3521
3522 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3523 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3524 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3525 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3526 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3527 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3528 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3529 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3530 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3531 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3532
3533 #ifdef CONFIG_BLK_DEV_ZONED
3534 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3535 struct block_device *bdev, block_t blkaddr)
3536 {
3537 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3538 int i;
3539
3540 for (i = 0; i < sbi->s_ndevs; i++)
3541 if (FDEV(i).bdev == bdev)
3542 return FDEV(i).blkz_type[zno];
3543 return -EINVAL;
3544 }
3545 #endif
3546
3547 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3548 {
3549 return f2fs_sb_has_blkzoned(sbi);
3550 }
3551
3552 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3553 {
3554 return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev));
3555 }
3556
3557 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3558 {
3559 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3560 f2fs_hw_should_discard(sbi);
3561 }
3562
3563 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3564 {
3565 clear_opt(sbi, ADAPTIVE);
3566 clear_opt(sbi, LFS);
3567
3568 switch (mt) {
3569 case F2FS_MOUNT_ADAPTIVE:
3570 set_opt(sbi, ADAPTIVE);
3571 break;
3572 case F2FS_MOUNT_LFS:
3573 set_opt(sbi, LFS);
3574 break;
3575 }
3576 }
3577
3578 static inline bool f2fs_may_encrypt(struct inode *inode)
3579 {
3580 #ifdef CONFIG_FS_ENCRYPTION
3581 umode_t mode = inode->i_mode;
3582
3583 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3584 #else
3585 return false;
3586 #endif
3587 }
3588
3589 static inline int block_unaligned_IO(struct inode *inode,
3590 struct kiocb *iocb, struct iov_iter *iter)
3591 {
3592 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3593 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3594 loff_t offset = iocb->ki_pos;
3595 unsigned long align = offset | iov_iter_alignment(iter);
3596
3597 return align & blocksize_mask;
3598 }
3599
3600 static inline int allow_outplace_dio(struct inode *inode,
3601 struct kiocb *iocb, struct iov_iter *iter)
3602 {
3603 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3604 int rw = iov_iter_rw(iter);
3605
3606 return (test_opt(sbi, LFS) && (rw == WRITE) &&
3607 !block_unaligned_IO(inode, iocb, iter));
3608 }
3609
3610 static inline bool f2fs_force_buffered_io(struct inode *inode,
3611 struct kiocb *iocb, struct iov_iter *iter)
3612 {
3613 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3614 int rw = iov_iter_rw(iter);
3615
3616 if (f2fs_post_read_required(inode))
3617 return true;
3618 if (sbi->s_ndevs)
3619 return true;
3620 /*
3621 * for blkzoned device, fallback direct IO to buffered IO, so
3622 * all IOs can be serialized by log-structured write.
3623 */
3624 if (f2fs_sb_has_blkzoned(sbi))
3625 return true;
3626 if (test_opt(sbi, LFS) && (rw == WRITE) &&
3627 block_unaligned_IO(inode, iocb, iter))
3628 return true;
3629 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3630 return true;
3631
3632 return false;
3633 }
3634
3635 #ifdef CONFIG_F2FS_FAULT_INJECTION
3636 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3637 unsigned int type);
3638 #else
3639 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
3640 #endif
3641
3642 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3643 {
3644 #ifdef CONFIG_QUOTA
3645 if (f2fs_sb_has_quota_ino(sbi))
3646 return true;
3647 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3648 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3649 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3650 return true;
3651 #endif
3652 return false;
3653 }
3654
3655 #endif