]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: fix 446 coding style warnings in f2fs.h
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_EVICT_INODE,
49 FAULT_IO,
50 FAULT_CHECKPOINT,
51 FAULT_MAX,
52 };
53
54 struct f2fs_fault_info {
55 atomic_t inject_ops;
56 unsigned int inject_rate;
57 unsigned int inject_type;
58 };
59
60 extern char *fault_name[FAULT_MAX];
61 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type)))
62 #endif
63
64 /*
65 * For mount options
66 */
67 #define F2FS_MOUNT_BG_GC 0x00000001
68 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
69 #define F2FS_MOUNT_DISCARD 0x00000004
70 #define F2FS_MOUNT_NOHEAP 0x00000008
71 #define F2FS_MOUNT_XATTR_USER 0x00000010
72 #define F2FS_MOUNT_POSIX_ACL 0x00000020
73 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
74 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
75 #define F2FS_MOUNT_INLINE_DATA 0x00000100
76 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
77 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
78 #define F2FS_MOUNT_NOBARRIER 0x00000800
79 #define F2FS_MOUNT_FASTBOOT 0x00001000
80 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
81 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
82 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
83 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
84 #define F2FS_MOUNT_ADAPTIVE 0x00020000
85 #define F2FS_MOUNT_LFS 0x00040000
86
87 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
88 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
89 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
90
91 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
92 typecheck(unsigned long long, b) && \
93 ((long long)((a) - (b)) > 0))
94
95 typedef u32 block_t; /*
96 * should not change u32, since it is the on-disk block
97 * address format, __le32.
98 */
99 typedef u32 nid_t;
100
101 struct f2fs_mount_info {
102 unsigned int opt;
103 };
104
105 #define F2FS_FEATURE_ENCRYPT 0x0001
106 #define F2FS_FEATURE_BLKZONED 0x0002
107
108 #define F2FS_HAS_FEATURE(sb, mask) \
109 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
110 #define F2FS_SET_FEATURE(sb, mask) \
111 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
112 #define F2FS_CLEAR_FEATURE(sb, mask) \
113 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
114
115 /*
116 * For checkpoint manager
117 */
118 enum {
119 NAT_BITMAP,
120 SIT_BITMAP
121 };
122
123 enum {
124 CP_UMOUNT,
125 CP_FASTBOOT,
126 CP_SYNC,
127 CP_RECOVERY,
128 CP_DISCARD,
129 };
130
131 #define DEF_BATCHED_TRIM_SECTIONS 2
132 #define BATCHED_TRIM_SEGMENTS(sbi) \
133 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
134 #define BATCHED_TRIM_BLOCKS(sbi) \
135 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
136
137 #define DISCARD_ISSUE_RATE 8
138 #define DEF_CP_INTERVAL 60 /* 60 secs */
139 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
140
141 struct cp_control {
142 int reason;
143 __u64 trim_start;
144 __u64 trim_end;
145 __u64 trim_minlen;
146 __u64 trimmed;
147 };
148
149 /*
150 * For CP/NAT/SIT/SSA readahead
151 */
152 enum {
153 META_CP,
154 META_NAT,
155 META_SIT,
156 META_SSA,
157 META_POR,
158 };
159
160 /* for the list of ino */
161 enum {
162 ORPHAN_INO, /* for orphan ino list */
163 APPEND_INO, /* for append ino list */
164 UPDATE_INO, /* for update ino list */
165 MAX_INO_ENTRY, /* max. list */
166 };
167
168 struct ino_entry {
169 struct list_head list; /* list head */
170 nid_t ino; /* inode number */
171 };
172
173 /* for the list of inodes to be GCed */
174 struct inode_entry {
175 struct list_head list; /* list head */
176 struct inode *inode; /* vfs inode pointer */
177 };
178
179 /* for the list of blockaddresses to be discarded */
180 struct discard_entry {
181 struct list_head list; /* list head */
182 block_t blkaddr; /* block address to be discarded */
183 int len; /* # of consecutive blocks of the discard */
184 };
185
186 enum {
187 D_PREP,
188 D_SUBMIT,
189 D_DONE,
190 };
191
192 struct discard_cmd {
193 struct list_head list; /* command list */
194 struct completion wait; /* compleation */
195 block_t lstart; /* logical start address */
196 block_t len; /* length */
197 struct bio *bio; /* bio */
198 int state; /* state */
199 };
200
201 struct discard_cmd_control {
202 struct task_struct *f2fs_issue_discard; /* discard thread */
203 struct list_head discard_entry_list; /* 4KB discard entry list */
204 int nr_discards; /* # of discards in the list */
205 struct list_head discard_cmd_list; /* discard cmd list */
206 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
207 struct mutex cmd_lock;
208 int max_discards; /* max. discards to be issued */
209 atomic_t submit_discard; /* # of issued discard */
210 };
211
212 /* for the list of fsync inodes, used only during recovery */
213 struct fsync_inode_entry {
214 struct list_head list; /* list head */
215 struct inode *inode; /* vfs inode pointer */
216 block_t blkaddr; /* block address locating the last fsync */
217 block_t last_dentry; /* block address locating the last dentry */
218 };
219
220 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
221 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
222
223 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
224 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
225 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
226 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
227
228 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
229 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
230
231 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
232 {
233 int before = nats_in_cursum(journal);
234
235 journal->n_nats = cpu_to_le16(before + i);
236 return before;
237 }
238
239 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
240 {
241 int before = sits_in_cursum(journal);
242
243 journal->n_sits = cpu_to_le16(before + i);
244 return before;
245 }
246
247 static inline bool __has_cursum_space(struct f2fs_journal *journal,
248 int size, int type)
249 {
250 if (type == NAT_JOURNAL)
251 return size <= MAX_NAT_JENTRIES(journal);
252 return size <= MAX_SIT_JENTRIES(journal);
253 }
254
255 /*
256 * ioctl commands
257 */
258 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
259 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
260 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
261
262 #define F2FS_IOCTL_MAGIC 0xf5
263 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
264 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
265 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
266 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
267 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
268 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
269 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
270 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
271 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
272 struct f2fs_move_range)
273
274 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
275 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
276 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
277
278 /*
279 * should be same as XFS_IOC_GOINGDOWN.
280 * Flags for going down operation used by FS_IOC_GOINGDOWN
281 */
282 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
283 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
284 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
285 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
286 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
287
288 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
289 /*
290 * ioctl commands in 32 bit emulation
291 */
292 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
293 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
294 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
295 #endif
296
297 struct f2fs_defragment {
298 u64 start;
299 u64 len;
300 };
301
302 struct f2fs_move_range {
303 u32 dst_fd; /* destination fd */
304 u64 pos_in; /* start position in src_fd */
305 u64 pos_out; /* start position in dst_fd */
306 u64 len; /* size to move */
307 };
308
309 /*
310 * For INODE and NODE manager
311 */
312 /* for directory operations */
313 struct f2fs_dentry_ptr {
314 struct inode *inode;
315 const void *bitmap;
316 struct f2fs_dir_entry *dentry;
317 __u8 (*filename)[F2FS_SLOT_LEN];
318 int max;
319 };
320
321 static inline void make_dentry_ptr(struct inode *inode,
322 struct f2fs_dentry_ptr *d, void *src, int type)
323 {
324 d->inode = inode;
325
326 if (type == 1) {
327 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
328
329 d->max = NR_DENTRY_IN_BLOCK;
330 d->bitmap = &t->dentry_bitmap;
331 d->dentry = t->dentry;
332 d->filename = t->filename;
333 } else {
334 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
335
336 d->max = NR_INLINE_DENTRY;
337 d->bitmap = &t->dentry_bitmap;
338 d->dentry = t->dentry;
339 d->filename = t->filename;
340 }
341 }
342
343 /*
344 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
345 * as its node offset to distinguish from index node blocks.
346 * But some bits are used to mark the node block.
347 */
348 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
349 >> OFFSET_BIT_SHIFT)
350 enum {
351 ALLOC_NODE, /* allocate a new node page if needed */
352 LOOKUP_NODE, /* look up a node without readahead */
353 LOOKUP_NODE_RA, /*
354 * look up a node with readahead called
355 * by get_data_block.
356 */
357 };
358
359 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
360
361 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
362
363 /* vector size for gang look-up from extent cache that consists of radix tree */
364 #define EXT_TREE_VEC_SIZE 64
365
366 /* for in-memory extent cache entry */
367 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
368
369 /* number of extent info in extent cache we try to shrink */
370 #define EXTENT_CACHE_SHRINK_NUMBER 128
371
372 struct extent_info {
373 unsigned int fofs; /* start offset in a file */
374 u32 blk; /* start block address of the extent */
375 unsigned int len; /* length of the extent */
376 };
377
378 struct extent_node {
379 struct rb_node rb_node; /* rb node located in rb-tree */
380 struct list_head list; /* node in global extent list of sbi */
381 struct extent_info ei; /* extent info */
382 struct extent_tree *et; /* extent tree pointer */
383 };
384
385 struct extent_tree {
386 nid_t ino; /* inode number */
387 struct rb_root root; /* root of extent info rb-tree */
388 struct extent_node *cached_en; /* recently accessed extent node */
389 struct extent_info largest; /* largested extent info */
390 struct list_head list; /* to be used by sbi->zombie_list */
391 rwlock_t lock; /* protect extent info rb-tree */
392 atomic_t node_cnt; /* # of extent node in rb-tree*/
393 };
394
395 /*
396 * This structure is taken from ext4_map_blocks.
397 *
398 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
399 */
400 #define F2FS_MAP_NEW (1 << BH_New)
401 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
402 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
403 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
404 F2FS_MAP_UNWRITTEN)
405
406 struct f2fs_map_blocks {
407 block_t m_pblk;
408 block_t m_lblk;
409 unsigned int m_len;
410 unsigned int m_flags;
411 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
412 };
413
414 /* for flag in get_data_block */
415 #define F2FS_GET_BLOCK_READ 0
416 #define F2FS_GET_BLOCK_DIO 1
417 #define F2FS_GET_BLOCK_FIEMAP 2
418 #define F2FS_GET_BLOCK_BMAP 3
419 #define F2FS_GET_BLOCK_PRE_DIO 4
420 #define F2FS_GET_BLOCK_PRE_AIO 5
421
422 /*
423 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
424 */
425 #define FADVISE_COLD_BIT 0x01
426 #define FADVISE_LOST_PINO_BIT 0x02
427 #define FADVISE_ENCRYPT_BIT 0x04
428 #define FADVISE_ENC_NAME_BIT 0x08
429 #define FADVISE_KEEP_SIZE_BIT 0x10
430
431 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
432 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
433 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
434 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
435 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
436 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
437 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
438 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
439 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
440 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
441 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
442 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
443 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
444
445 #define DEF_DIR_LEVEL 0
446
447 struct f2fs_inode_info {
448 struct inode vfs_inode; /* serve a vfs inode */
449 unsigned long i_flags; /* keep an inode flags for ioctl */
450 unsigned char i_advise; /* use to give file attribute hints */
451 unsigned char i_dir_level; /* use for dentry level for large dir */
452 unsigned int i_current_depth; /* use only in directory structure */
453 unsigned int i_pino; /* parent inode number */
454 umode_t i_acl_mode; /* keep file acl mode temporarily */
455
456 /* Use below internally in f2fs*/
457 unsigned long flags; /* use to pass per-file flags */
458 struct rw_semaphore i_sem; /* protect fi info */
459 atomic_t dirty_pages; /* # of dirty pages */
460 f2fs_hash_t chash; /* hash value of given file name */
461 unsigned int clevel; /* maximum level of given file name */
462 nid_t i_xattr_nid; /* node id that contains xattrs */
463 unsigned long long xattr_ver; /* cp version of xattr modification */
464 loff_t last_disk_size; /* lastly written file size */
465
466 struct list_head dirty_list; /* dirty list for dirs and files */
467 struct list_head gdirty_list; /* linked in global dirty list */
468 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
469 struct mutex inmem_lock; /* lock for inmemory pages */
470 struct extent_tree *extent_tree; /* cached extent_tree entry */
471 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
472 };
473
474 static inline void get_extent_info(struct extent_info *ext,
475 struct f2fs_extent *i_ext)
476 {
477 ext->fofs = le32_to_cpu(i_ext->fofs);
478 ext->blk = le32_to_cpu(i_ext->blk);
479 ext->len = le32_to_cpu(i_ext->len);
480 }
481
482 static inline void set_raw_extent(struct extent_info *ext,
483 struct f2fs_extent *i_ext)
484 {
485 i_ext->fofs = cpu_to_le32(ext->fofs);
486 i_ext->blk = cpu_to_le32(ext->blk);
487 i_ext->len = cpu_to_le32(ext->len);
488 }
489
490 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
491 u32 blk, unsigned int len)
492 {
493 ei->fofs = fofs;
494 ei->blk = blk;
495 ei->len = len;
496 }
497
498 static inline bool __is_extent_same(struct extent_info *ei1,
499 struct extent_info *ei2)
500 {
501 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
502 ei1->len == ei2->len);
503 }
504
505 static inline bool __is_extent_mergeable(struct extent_info *back,
506 struct extent_info *front)
507 {
508 return (back->fofs + back->len == front->fofs &&
509 back->blk + back->len == front->blk);
510 }
511
512 static inline bool __is_back_mergeable(struct extent_info *cur,
513 struct extent_info *back)
514 {
515 return __is_extent_mergeable(back, cur);
516 }
517
518 static inline bool __is_front_mergeable(struct extent_info *cur,
519 struct extent_info *front)
520 {
521 return __is_extent_mergeable(cur, front);
522 }
523
524 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
525 static inline void __try_update_largest_extent(struct inode *inode,
526 struct extent_tree *et, struct extent_node *en)
527 {
528 if (en->ei.len > et->largest.len) {
529 et->largest = en->ei;
530 f2fs_mark_inode_dirty_sync(inode, true);
531 }
532 }
533
534 enum nid_list {
535 FREE_NID_LIST,
536 ALLOC_NID_LIST,
537 MAX_NID_LIST,
538 };
539
540 struct f2fs_nm_info {
541 block_t nat_blkaddr; /* base disk address of NAT */
542 nid_t max_nid; /* maximum possible node ids */
543 nid_t available_nids; /* # of available node ids */
544 nid_t next_scan_nid; /* the next nid to be scanned */
545 unsigned int ram_thresh; /* control the memory footprint */
546 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
547 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
548
549 /* NAT cache management */
550 struct radix_tree_root nat_root;/* root of the nat entry cache */
551 struct radix_tree_root nat_set_root;/* root of the nat set cache */
552 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
553 struct list_head nat_entries; /* cached nat entry list (clean) */
554 unsigned int nat_cnt; /* the # of cached nat entries */
555 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
556
557 /* free node ids management */
558 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
559 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
560 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */
561 spinlock_t nid_list_lock; /* protect nid lists ops */
562 struct mutex build_lock; /* lock for build free nids */
563
564 /* for checkpoint */
565 char *nat_bitmap; /* NAT bitmap pointer */
566 #ifdef CONFIG_F2FS_CHECK_FS
567 char *nat_bitmap_mir; /* NAT bitmap mirror */
568 #endif
569 int bitmap_size; /* bitmap size */
570 };
571
572 /*
573 * this structure is used as one of function parameters.
574 * all the information are dedicated to a given direct node block determined
575 * by the data offset in a file.
576 */
577 struct dnode_of_data {
578 struct inode *inode; /* vfs inode pointer */
579 struct page *inode_page; /* its inode page, NULL is possible */
580 struct page *node_page; /* cached direct node page */
581 nid_t nid; /* node id of the direct node block */
582 unsigned int ofs_in_node; /* data offset in the node page */
583 bool inode_page_locked; /* inode page is locked or not */
584 bool node_changed; /* is node block changed */
585 char cur_level; /* level of hole node page */
586 char max_level; /* level of current page located */
587 block_t data_blkaddr; /* block address of the node block */
588 };
589
590 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
591 struct page *ipage, struct page *npage, nid_t nid)
592 {
593 memset(dn, 0, sizeof(*dn));
594 dn->inode = inode;
595 dn->inode_page = ipage;
596 dn->node_page = npage;
597 dn->nid = nid;
598 }
599
600 /*
601 * For SIT manager
602 *
603 * By default, there are 6 active log areas across the whole main area.
604 * When considering hot and cold data separation to reduce cleaning overhead,
605 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
606 * respectively.
607 * In the current design, you should not change the numbers intentionally.
608 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
609 * logs individually according to the underlying devices. (default: 6)
610 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
611 * data and 8 for node logs.
612 */
613 #define NR_CURSEG_DATA_TYPE (3)
614 #define NR_CURSEG_NODE_TYPE (3)
615 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
616
617 enum {
618 CURSEG_HOT_DATA = 0, /* directory entry blocks */
619 CURSEG_WARM_DATA, /* data blocks */
620 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
621 CURSEG_HOT_NODE, /* direct node blocks of directory files */
622 CURSEG_WARM_NODE, /* direct node blocks of normal files */
623 CURSEG_COLD_NODE, /* indirect node blocks */
624 NO_CHECK_TYPE,
625 };
626
627 struct flush_cmd {
628 struct completion wait;
629 struct llist_node llnode;
630 int ret;
631 };
632
633 struct flush_cmd_control {
634 struct task_struct *f2fs_issue_flush; /* flush thread */
635 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
636 atomic_t submit_flush; /* # of issued flushes */
637 struct llist_head issue_list; /* list for command issue */
638 struct llist_node *dispatch_list; /* list for command dispatch */
639 };
640
641 struct f2fs_sm_info {
642 struct sit_info *sit_info; /* whole segment information */
643 struct free_segmap_info *free_info; /* free segment information */
644 struct dirty_seglist_info *dirty_info; /* dirty segment information */
645 struct curseg_info *curseg_array; /* active segment information */
646
647 block_t seg0_blkaddr; /* block address of 0'th segment */
648 block_t main_blkaddr; /* start block address of main area */
649 block_t ssa_blkaddr; /* start block address of SSA area */
650
651 unsigned int segment_count; /* total # of segments */
652 unsigned int main_segments; /* # of segments in main area */
653 unsigned int reserved_segments; /* # of reserved segments */
654 unsigned int ovp_segments; /* # of overprovision segments */
655
656 /* a threshold to reclaim prefree segments */
657 unsigned int rec_prefree_segments;
658
659 /* for batched trimming */
660 unsigned int trim_sections; /* # of sections to trim */
661
662 struct list_head sit_entry_set; /* sit entry set list */
663
664 unsigned int ipu_policy; /* in-place-update policy */
665 unsigned int min_ipu_util; /* in-place-update threshold */
666 unsigned int min_fsync_blocks; /* threshold for fsync */
667
668 /* for flush command control */
669 struct flush_cmd_control *fcc_info;
670
671 /* for discard command control */
672 struct discard_cmd_control *dcc_info;
673 };
674
675 /*
676 * For superblock
677 */
678 /*
679 * COUNT_TYPE for monitoring
680 *
681 * f2fs monitors the number of several block types such as on-writeback,
682 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
683 */
684 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
685 enum count_type {
686 F2FS_DIRTY_DENTS,
687 F2FS_DIRTY_DATA,
688 F2FS_DIRTY_NODES,
689 F2FS_DIRTY_META,
690 F2FS_INMEM_PAGES,
691 F2FS_DIRTY_IMETA,
692 F2FS_WB_CP_DATA,
693 F2FS_WB_DATA,
694 NR_COUNT_TYPE,
695 };
696
697 /*
698 * The below are the page types of bios used in submit_bio().
699 * The available types are:
700 * DATA User data pages. It operates as async mode.
701 * NODE Node pages. It operates as async mode.
702 * META FS metadata pages such as SIT, NAT, CP.
703 * NR_PAGE_TYPE The number of page types.
704 * META_FLUSH Make sure the previous pages are written
705 * with waiting the bio's completion
706 * ... Only can be used with META.
707 */
708 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
709 enum page_type {
710 DATA,
711 NODE,
712 META,
713 NR_PAGE_TYPE,
714 META_FLUSH,
715 INMEM, /* the below types are used by tracepoints only. */
716 INMEM_DROP,
717 INMEM_REVOKE,
718 IPU,
719 OPU,
720 };
721
722 struct f2fs_io_info {
723 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
724 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
725 int op; /* contains REQ_OP_ */
726 int op_flags; /* req_flag_bits */
727 block_t new_blkaddr; /* new block address to be written */
728 block_t old_blkaddr; /* old block address before Cow */
729 struct page *page; /* page to be written */
730 struct page *encrypted_page; /* encrypted page */
731 };
732
733 #define is_read_io(rw) (rw == READ)
734 struct f2fs_bio_info {
735 struct f2fs_sb_info *sbi; /* f2fs superblock */
736 struct bio *bio; /* bios to merge */
737 sector_t last_block_in_bio; /* last block number */
738 struct f2fs_io_info fio; /* store buffered io info. */
739 struct rw_semaphore io_rwsem; /* blocking op for bio */
740 };
741
742 #define FDEV(i) (sbi->devs[i])
743 #define RDEV(i) (raw_super->devs[i])
744 struct f2fs_dev_info {
745 struct block_device *bdev;
746 char path[MAX_PATH_LEN];
747 unsigned int total_segments;
748 block_t start_blk;
749 block_t end_blk;
750 #ifdef CONFIG_BLK_DEV_ZONED
751 unsigned int nr_blkz; /* Total number of zones */
752 u8 *blkz_type; /* Array of zones type */
753 #endif
754 };
755
756 enum inode_type {
757 DIR_INODE, /* for dirty dir inode */
758 FILE_INODE, /* for dirty regular/symlink inode */
759 DIRTY_META, /* for all dirtied inode metadata */
760 NR_INODE_TYPE,
761 };
762
763 /* for inner inode cache management */
764 struct inode_management {
765 struct radix_tree_root ino_root; /* ino entry array */
766 spinlock_t ino_lock; /* for ino entry lock */
767 struct list_head ino_list; /* inode list head */
768 unsigned long ino_num; /* number of entries */
769 };
770
771 /* For s_flag in struct f2fs_sb_info */
772 enum {
773 SBI_IS_DIRTY, /* dirty flag for checkpoint */
774 SBI_IS_CLOSE, /* specify unmounting */
775 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
776 SBI_POR_DOING, /* recovery is doing or not */
777 SBI_NEED_SB_WRITE, /* need to recover superblock */
778 SBI_NEED_CP, /* need to checkpoint */
779 };
780
781 enum {
782 CP_TIME,
783 REQ_TIME,
784 MAX_TIME,
785 };
786
787 #ifdef CONFIG_F2FS_FS_ENCRYPTION
788 #define F2FS_KEY_DESC_PREFIX "f2fs:"
789 #define F2FS_KEY_DESC_PREFIX_SIZE 5
790 #endif
791 struct f2fs_sb_info {
792 struct super_block *sb; /* pointer to VFS super block */
793 struct proc_dir_entry *s_proc; /* proc entry */
794 struct f2fs_super_block *raw_super; /* raw super block pointer */
795 int valid_super_block; /* valid super block no */
796 unsigned long s_flag; /* flags for sbi */
797
798 #ifdef CONFIG_F2FS_FS_ENCRYPTION
799 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
800 u8 key_prefix_size;
801 #endif
802
803 #ifdef CONFIG_BLK_DEV_ZONED
804 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
805 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
806 #endif
807
808 /* for node-related operations */
809 struct f2fs_nm_info *nm_info; /* node manager */
810 struct inode *node_inode; /* cache node blocks */
811
812 /* for segment-related operations */
813 struct f2fs_sm_info *sm_info; /* segment manager */
814
815 /* for bio operations */
816 struct f2fs_bio_info read_io; /* for read bios */
817 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
818 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */
819 int write_io_size_bits; /* Write IO size bits */
820 mempool_t *write_io_dummy; /* Dummy pages */
821
822 /* for checkpoint */
823 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
824 int cur_cp_pack; /* remain current cp pack */
825 spinlock_t cp_lock; /* for flag in ckpt */
826 struct inode *meta_inode; /* cache meta blocks */
827 struct mutex cp_mutex; /* checkpoint procedure lock */
828 struct rw_semaphore cp_rwsem; /* blocking FS operations */
829 struct rw_semaphore node_write; /* locking node writes */
830 wait_queue_head_t cp_wait;
831 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
832 long interval_time[MAX_TIME]; /* to store thresholds */
833
834 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
835
836 /* for orphan inode, use 0'th array */
837 unsigned int max_orphans; /* max orphan inodes */
838
839 /* for inode management */
840 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
841 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
842
843 /* for extent tree cache */
844 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
845 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
846 struct list_head extent_list; /* lru list for shrinker */
847 spinlock_t extent_lock; /* locking extent lru list */
848 atomic_t total_ext_tree; /* extent tree count */
849 struct list_head zombie_list; /* extent zombie tree list */
850 atomic_t total_zombie_tree; /* extent zombie tree count */
851 atomic_t total_ext_node; /* extent info count */
852
853 /* basic filesystem units */
854 unsigned int log_sectors_per_block; /* log2 sectors per block */
855 unsigned int log_blocksize; /* log2 block size */
856 unsigned int blocksize; /* block size */
857 unsigned int root_ino_num; /* root inode number*/
858 unsigned int node_ino_num; /* node inode number*/
859 unsigned int meta_ino_num; /* meta inode number*/
860 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
861 unsigned int blocks_per_seg; /* blocks per segment */
862 unsigned int segs_per_sec; /* segments per section */
863 unsigned int secs_per_zone; /* sections per zone */
864 unsigned int total_sections; /* total section count */
865 unsigned int total_node_count; /* total node block count */
866 unsigned int total_valid_node_count; /* valid node block count */
867 loff_t max_file_blocks; /* max block index of file */
868 int active_logs; /* # of active logs */
869 int dir_level; /* directory level */
870
871 block_t user_block_count; /* # of user blocks */
872 block_t total_valid_block_count; /* # of valid blocks */
873 block_t discard_blks; /* discard command candidats */
874 block_t last_valid_block_count; /* for recovery */
875 u32 s_next_generation; /* for NFS support */
876
877 /* # of pages, see count_type */
878 atomic_t nr_pages[NR_COUNT_TYPE];
879 /* # of allocated blocks */
880 struct percpu_counter alloc_valid_block_count;
881
882 /* valid inode count */
883 struct percpu_counter total_valid_inode_count;
884
885 struct f2fs_mount_info mount_opt; /* mount options */
886
887 /* for cleaning operations */
888 struct mutex gc_mutex; /* mutex for GC */
889 struct f2fs_gc_kthread *gc_thread; /* GC thread */
890 unsigned int cur_victim_sec; /* current victim section num */
891
892 /* maximum # of trials to find a victim segment for SSR and GC */
893 unsigned int max_victim_search;
894
895 /*
896 * for stat information.
897 * one is for the LFS mode, and the other is for the SSR mode.
898 */
899 #ifdef CONFIG_F2FS_STAT_FS
900 struct f2fs_stat_info *stat_info; /* FS status information */
901 unsigned int segment_count[2]; /* # of allocated segments */
902 unsigned int block_count[2]; /* # of allocated blocks */
903 atomic_t inplace_count; /* # of inplace update */
904 atomic64_t total_hit_ext; /* # of lookup extent cache */
905 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
906 atomic64_t read_hit_largest; /* # of hit largest extent node */
907 atomic64_t read_hit_cached; /* # of hit cached extent node */
908 atomic_t inline_xattr; /* # of inline_xattr inodes */
909 atomic_t inline_inode; /* # of inline_data inodes */
910 atomic_t inline_dir; /* # of inline_dentry inodes */
911 atomic_t aw_cnt; /* # of atomic writes */
912 atomic_t max_aw_cnt; /* max # of atomic writes */
913 int bg_gc; /* background gc calls */
914 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
915 #endif
916 unsigned int last_victim[2]; /* last victim segment # */
917 spinlock_t stat_lock; /* lock for stat operations */
918
919 /* For sysfs suppport */
920 struct kobject s_kobj;
921 struct completion s_kobj_unregister;
922
923 /* For shrinker support */
924 struct list_head s_list;
925 int s_ndevs; /* number of devices */
926 struct f2fs_dev_info *devs; /* for device list */
927 struct mutex umount_mutex;
928 unsigned int shrinker_run_no;
929
930 /* For write statistics */
931 u64 sectors_written_start;
932 u64 kbytes_written;
933
934 /* Reference to checksum algorithm driver via cryptoapi */
935 struct crypto_shash *s_chksum_driver;
936
937 /* For fault injection */
938 #ifdef CONFIG_F2FS_FAULT_INJECTION
939 struct f2fs_fault_info fault_info;
940 #endif
941 };
942
943 #ifdef CONFIG_F2FS_FAULT_INJECTION
944 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
945 {
946 struct f2fs_fault_info *ffi = &sbi->fault_info;
947
948 if (!ffi->inject_rate)
949 return false;
950
951 if (!IS_FAULT_SET(ffi, type))
952 return false;
953
954 atomic_inc(&ffi->inject_ops);
955 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
956 atomic_set(&ffi->inject_ops, 0);
957 printk("%sF2FS-fs : inject %s in %pF\n",
958 KERN_INFO,
959 fault_name[type],
960 __builtin_return_address(0));
961 return true;
962 }
963 return false;
964 }
965 #endif
966
967 /* For write statistics. Suppose sector size is 512 bytes,
968 * and the return value is in kbytes. s is of struct f2fs_sb_info.
969 */
970 #define BD_PART_WRITTEN(s) \
971 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
972 s->sectors_written_start) >> 1)
973
974 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
975 {
976 sbi->last_time[type] = jiffies;
977 }
978
979 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
980 {
981 struct timespec ts = {sbi->interval_time[type], 0};
982 unsigned long interval = timespec_to_jiffies(&ts);
983
984 return time_after(jiffies, sbi->last_time[type] + interval);
985 }
986
987 static inline bool is_idle(struct f2fs_sb_info *sbi)
988 {
989 struct block_device *bdev = sbi->sb->s_bdev;
990 struct request_queue *q = bdev_get_queue(bdev);
991 struct request_list *rl = &q->root_rl;
992
993 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
994 return 0;
995
996 return f2fs_time_over(sbi, REQ_TIME);
997 }
998
999 /*
1000 * Inline functions
1001 */
1002 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1003 unsigned int length)
1004 {
1005 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1006 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1007 int err;
1008
1009 shash->tfm = sbi->s_chksum_driver;
1010 shash->flags = 0;
1011 *ctx = F2FS_SUPER_MAGIC;
1012
1013 err = crypto_shash_update(shash, address, length);
1014 BUG_ON(err);
1015
1016 return *ctx;
1017 }
1018
1019 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1020 void *buf, size_t buf_size)
1021 {
1022 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1023 }
1024
1025 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1026 {
1027 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1028 }
1029
1030 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1031 {
1032 return sb->s_fs_info;
1033 }
1034
1035 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1036 {
1037 return F2FS_SB(inode->i_sb);
1038 }
1039
1040 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1041 {
1042 return F2FS_I_SB(mapping->host);
1043 }
1044
1045 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1046 {
1047 return F2FS_M_SB(page->mapping);
1048 }
1049
1050 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1051 {
1052 return (struct f2fs_super_block *)(sbi->raw_super);
1053 }
1054
1055 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1056 {
1057 return (struct f2fs_checkpoint *)(sbi->ckpt);
1058 }
1059
1060 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1061 {
1062 return (struct f2fs_node *)page_address(page);
1063 }
1064
1065 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1066 {
1067 return &((struct f2fs_node *)page_address(page))->i;
1068 }
1069
1070 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1071 {
1072 return (struct f2fs_nm_info *)(sbi->nm_info);
1073 }
1074
1075 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1076 {
1077 return (struct f2fs_sm_info *)(sbi->sm_info);
1078 }
1079
1080 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1081 {
1082 return (struct sit_info *)(SM_I(sbi)->sit_info);
1083 }
1084
1085 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1086 {
1087 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1088 }
1089
1090 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1091 {
1092 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1093 }
1094
1095 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1096 {
1097 return sbi->meta_inode->i_mapping;
1098 }
1099
1100 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1101 {
1102 return sbi->node_inode->i_mapping;
1103 }
1104
1105 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1106 {
1107 return test_bit(type, &sbi->s_flag);
1108 }
1109
1110 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1111 {
1112 set_bit(type, &sbi->s_flag);
1113 }
1114
1115 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1116 {
1117 clear_bit(type, &sbi->s_flag);
1118 }
1119
1120 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1121 {
1122 return le64_to_cpu(cp->checkpoint_ver);
1123 }
1124
1125 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1126 {
1127 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1128
1129 return ckpt_flags & f;
1130 }
1131
1132 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1133 {
1134 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1135 }
1136
1137 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1138 {
1139 unsigned int ckpt_flags;
1140
1141 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1142 ckpt_flags |= f;
1143 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1144 }
1145
1146 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1147 {
1148 spin_lock(&sbi->cp_lock);
1149 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1150 spin_unlock(&sbi->cp_lock);
1151 }
1152
1153 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1154 {
1155 unsigned int ckpt_flags;
1156
1157 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1158 ckpt_flags &= (~f);
1159 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1160 }
1161
1162 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1163 {
1164 spin_lock(&sbi->cp_lock);
1165 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1166 spin_unlock(&sbi->cp_lock);
1167 }
1168
1169 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1170 {
1171 down_read(&sbi->cp_rwsem);
1172 }
1173
1174 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1175 {
1176 up_read(&sbi->cp_rwsem);
1177 }
1178
1179 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1180 {
1181 down_write(&sbi->cp_rwsem);
1182 }
1183
1184 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1185 {
1186 up_write(&sbi->cp_rwsem);
1187 }
1188
1189 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1190 {
1191 int reason = CP_SYNC;
1192
1193 if (test_opt(sbi, FASTBOOT))
1194 reason = CP_FASTBOOT;
1195 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1196 reason = CP_UMOUNT;
1197 return reason;
1198 }
1199
1200 static inline bool __remain_node_summaries(int reason)
1201 {
1202 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1203 }
1204
1205 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1206 {
1207 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1208 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1209 }
1210
1211 /*
1212 * Check whether the given nid is within node id range.
1213 */
1214 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1215 {
1216 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1217 return -EINVAL;
1218 if (unlikely(nid >= NM_I(sbi)->max_nid))
1219 return -EINVAL;
1220 return 0;
1221 }
1222
1223 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1224
1225 /*
1226 * Check whether the inode has blocks or not
1227 */
1228 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1229 {
1230 if (F2FS_I(inode)->i_xattr_nid)
1231 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1232 else
1233 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1234 }
1235
1236 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1237 {
1238 return ofs == XATTR_NODE_OFFSET;
1239 }
1240
1241 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1242 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1243 struct inode *inode, blkcnt_t *count)
1244 {
1245 blkcnt_t diff;
1246
1247 #ifdef CONFIG_F2FS_FAULT_INJECTION
1248 if (time_to_inject(sbi, FAULT_BLOCK))
1249 return false;
1250 #endif
1251 /*
1252 * let's increase this in prior to actual block count change in order
1253 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1254 */
1255 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1256
1257 spin_lock(&sbi->stat_lock);
1258 sbi->total_valid_block_count += (block_t)(*count);
1259 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1260 diff = sbi->total_valid_block_count - sbi->user_block_count;
1261 *count -= diff;
1262 sbi->total_valid_block_count = sbi->user_block_count;
1263 if (!*count) {
1264 spin_unlock(&sbi->stat_lock);
1265 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1266 return false;
1267 }
1268 }
1269 spin_unlock(&sbi->stat_lock);
1270
1271 f2fs_i_blocks_write(inode, *count, true);
1272 return true;
1273 }
1274
1275 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1276 struct inode *inode,
1277 blkcnt_t count)
1278 {
1279 spin_lock(&sbi->stat_lock);
1280 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1281 f2fs_bug_on(sbi, inode->i_blocks < count);
1282 sbi->total_valid_block_count -= (block_t)count;
1283 spin_unlock(&sbi->stat_lock);
1284 f2fs_i_blocks_write(inode, count, false);
1285 }
1286
1287 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1288 {
1289 atomic_inc(&sbi->nr_pages[count_type]);
1290
1291 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1292 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1293 return;
1294
1295 set_sbi_flag(sbi, SBI_IS_DIRTY);
1296 }
1297
1298 static inline void inode_inc_dirty_pages(struct inode *inode)
1299 {
1300 atomic_inc(&F2FS_I(inode)->dirty_pages);
1301 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1302 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1303 }
1304
1305 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1306 {
1307 atomic_dec(&sbi->nr_pages[count_type]);
1308 }
1309
1310 static inline void inode_dec_dirty_pages(struct inode *inode)
1311 {
1312 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1313 !S_ISLNK(inode->i_mode))
1314 return;
1315
1316 atomic_dec(&F2FS_I(inode)->dirty_pages);
1317 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1318 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1319 }
1320
1321 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1322 {
1323 return atomic_read(&sbi->nr_pages[count_type]);
1324 }
1325
1326 static inline int get_dirty_pages(struct inode *inode)
1327 {
1328 return atomic_read(&F2FS_I(inode)->dirty_pages);
1329 }
1330
1331 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1332 {
1333 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1334 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1335 sbi->log_blocks_per_seg;
1336
1337 return segs / sbi->segs_per_sec;
1338 }
1339
1340 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1341 {
1342 return sbi->total_valid_block_count;
1343 }
1344
1345 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1346 {
1347 return sbi->discard_blks;
1348 }
1349
1350 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1351 {
1352 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1353
1354 /* return NAT or SIT bitmap */
1355 if (flag == NAT_BITMAP)
1356 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1357 else if (flag == SIT_BITMAP)
1358 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1359
1360 return 0;
1361 }
1362
1363 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1364 {
1365 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1366 }
1367
1368 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1369 {
1370 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1371 int offset;
1372
1373 if (__cp_payload(sbi) > 0) {
1374 if (flag == NAT_BITMAP)
1375 return &ckpt->sit_nat_version_bitmap;
1376 else
1377 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1378 } else {
1379 offset = (flag == NAT_BITMAP) ?
1380 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1381 return &ckpt->sit_nat_version_bitmap + offset;
1382 }
1383 }
1384
1385 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1386 {
1387 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1388
1389 if (sbi->cur_cp_pack == 2)
1390 start_addr += sbi->blocks_per_seg;
1391 return start_addr;
1392 }
1393
1394 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1395 {
1396 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1397
1398 if (sbi->cur_cp_pack == 1)
1399 start_addr += sbi->blocks_per_seg;
1400 return start_addr;
1401 }
1402
1403 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1404 {
1405 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1406 }
1407
1408 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1409 {
1410 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1411 }
1412
1413 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1414 struct inode *inode)
1415 {
1416 block_t valid_block_count;
1417 unsigned int valid_node_count;
1418
1419 spin_lock(&sbi->stat_lock);
1420
1421 valid_block_count = sbi->total_valid_block_count + 1;
1422 if (unlikely(valid_block_count > sbi->user_block_count)) {
1423 spin_unlock(&sbi->stat_lock);
1424 return false;
1425 }
1426
1427 valid_node_count = sbi->total_valid_node_count + 1;
1428 if (unlikely(valid_node_count > sbi->total_node_count)) {
1429 spin_unlock(&sbi->stat_lock);
1430 return false;
1431 }
1432
1433 if (inode)
1434 f2fs_i_blocks_write(inode, 1, true);
1435
1436 sbi->total_valid_node_count++;
1437 sbi->total_valid_block_count++;
1438 spin_unlock(&sbi->stat_lock);
1439
1440 percpu_counter_inc(&sbi->alloc_valid_block_count);
1441 return true;
1442 }
1443
1444 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1445 struct inode *inode)
1446 {
1447 spin_lock(&sbi->stat_lock);
1448
1449 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1450 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1451 f2fs_bug_on(sbi, !inode->i_blocks);
1452
1453 f2fs_i_blocks_write(inode, 1, false);
1454 sbi->total_valid_node_count--;
1455 sbi->total_valid_block_count--;
1456
1457 spin_unlock(&sbi->stat_lock);
1458 }
1459
1460 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1461 {
1462 return sbi->total_valid_node_count;
1463 }
1464
1465 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1466 {
1467 percpu_counter_inc(&sbi->total_valid_inode_count);
1468 }
1469
1470 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1471 {
1472 percpu_counter_dec(&sbi->total_valid_inode_count);
1473 }
1474
1475 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1476 {
1477 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1478 }
1479
1480 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1481 pgoff_t index, bool for_write)
1482 {
1483 #ifdef CONFIG_F2FS_FAULT_INJECTION
1484 struct page *page = find_lock_page(mapping, index);
1485
1486 if (page)
1487 return page;
1488
1489 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
1490 return NULL;
1491 #endif
1492 if (!for_write)
1493 return grab_cache_page(mapping, index);
1494 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1495 }
1496
1497 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1498 {
1499 char *src_kaddr = kmap(src);
1500 char *dst_kaddr = kmap(dst);
1501
1502 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1503 kunmap(dst);
1504 kunmap(src);
1505 }
1506
1507 static inline void f2fs_put_page(struct page *page, int unlock)
1508 {
1509 if (!page)
1510 return;
1511
1512 if (unlock) {
1513 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1514 unlock_page(page);
1515 }
1516 put_page(page);
1517 }
1518
1519 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1520 {
1521 if (dn->node_page)
1522 f2fs_put_page(dn->node_page, 1);
1523 if (dn->inode_page && dn->node_page != dn->inode_page)
1524 f2fs_put_page(dn->inode_page, 0);
1525 dn->node_page = NULL;
1526 dn->inode_page = NULL;
1527 }
1528
1529 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1530 size_t size)
1531 {
1532 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1533 }
1534
1535 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1536 gfp_t flags)
1537 {
1538 void *entry;
1539
1540 entry = kmem_cache_alloc(cachep, flags);
1541 if (!entry)
1542 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1543 return entry;
1544 }
1545
1546 static inline struct bio *f2fs_bio_alloc(int npages)
1547 {
1548 struct bio *bio;
1549
1550 /* No failure on bio allocation */
1551 bio = bio_alloc(GFP_NOIO, npages);
1552 if (!bio)
1553 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1554 return bio;
1555 }
1556
1557 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1558 unsigned long index, void *item)
1559 {
1560 while (radix_tree_insert(root, index, item))
1561 cond_resched();
1562 }
1563
1564 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1565
1566 static inline bool IS_INODE(struct page *page)
1567 {
1568 struct f2fs_node *p = F2FS_NODE(page);
1569
1570 return RAW_IS_INODE(p);
1571 }
1572
1573 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1574 {
1575 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1576 }
1577
1578 static inline block_t datablock_addr(struct page *node_page,
1579 unsigned int offset)
1580 {
1581 struct f2fs_node *raw_node;
1582 __le32 *addr_array;
1583
1584 raw_node = F2FS_NODE(node_page);
1585 addr_array = blkaddr_in_node(raw_node);
1586 return le32_to_cpu(addr_array[offset]);
1587 }
1588
1589 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1590 {
1591 int mask;
1592
1593 addr += (nr >> 3);
1594 mask = 1 << (7 - (nr & 0x07));
1595 return mask & *addr;
1596 }
1597
1598 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1599 {
1600 int mask;
1601
1602 addr += (nr >> 3);
1603 mask = 1 << (7 - (nr & 0x07));
1604 *addr |= mask;
1605 }
1606
1607 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1608 {
1609 int mask;
1610
1611 addr += (nr >> 3);
1612 mask = 1 << (7 - (nr & 0x07));
1613 *addr &= ~mask;
1614 }
1615
1616 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1617 {
1618 int mask;
1619 int ret;
1620
1621 addr += (nr >> 3);
1622 mask = 1 << (7 - (nr & 0x07));
1623 ret = mask & *addr;
1624 *addr |= mask;
1625 return ret;
1626 }
1627
1628 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1629 {
1630 int mask;
1631 int ret;
1632
1633 addr += (nr >> 3);
1634 mask = 1 << (7 - (nr & 0x07));
1635 ret = mask & *addr;
1636 *addr &= ~mask;
1637 return ret;
1638 }
1639
1640 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1641 {
1642 int mask;
1643
1644 addr += (nr >> 3);
1645 mask = 1 << (7 - (nr & 0x07));
1646 *addr ^= mask;
1647 }
1648
1649 /* used for f2fs_inode_info->flags */
1650 enum {
1651 FI_NEW_INODE, /* indicate newly allocated inode */
1652 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1653 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1654 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1655 FI_INC_LINK, /* need to increment i_nlink */
1656 FI_ACL_MODE, /* indicate acl mode */
1657 FI_NO_ALLOC, /* should not allocate any blocks */
1658 FI_FREE_NID, /* free allocated nide */
1659 FI_NO_EXTENT, /* not to use the extent cache */
1660 FI_INLINE_XATTR, /* used for inline xattr */
1661 FI_INLINE_DATA, /* used for inline data*/
1662 FI_INLINE_DENTRY, /* used for inline dentry */
1663 FI_APPEND_WRITE, /* inode has appended data */
1664 FI_UPDATE_WRITE, /* inode has in-place-update data */
1665 FI_NEED_IPU, /* used for ipu per file */
1666 FI_ATOMIC_FILE, /* indicate atomic file */
1667 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
1668 FI_VOLATILE_FILE, /* indicate volatile file */
1669 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1670 FI_DROP_CACHE, /* drop dirty page cache */
1671 FI_DATA_EXIST, /* indicate data exists */
1672 FI_INLINE_DOTS, /* indicate inline dot dentries */
1673 FI_DO_DEFRAG, /* indicate defragment is running */
1674 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1675 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
1676 };
1677
1678 static inline void __mark_inode_dirty_flag(struct inode *inode,
1679 int flag, bool set)
1680 {
1681 switch (flag) {
1682 case FI_INLINE_XATTR:
1683 case FI_INLINE_DATA:
1684 case FI_INLINE_DENTRY:
1685 if (set)
1686 return;
1687 case FI_DATA_EXIST:
1688 case FI_INLINE_DOTS:
1689 f2fs_mark_inode_dirty_sync(inode, true);
1690 }
1691 }
1692
1693 static inline void set_inode_flag(struct inode *inode, int flag)
1694 {
1695 if (!test_bit(flag, &F2FS_I(inode)->flags))
1696 set_bit(flag, &F2FS_I(inode)->flags);
1697 __mark_inode_dirty_flag(inode, flag, true);
1698 }
1699
1700 static inline int is_inode_flag_set(struct inode *inode, int flag)
1701 {
1702 return test_bit(flag, &F2FS_I(inode)->flags);
1703 }
1704
1705 static inline void clear_inode_flag(struct inode *inode, int flag)
1706 {
1707 if (test_bit(flag, &F2FS_I(inode)->flags))
1708 clear_bit(flag, &F2FS_I(inode)->flags);
1709 __mark_inode_dirty_flag(inode, flag, false);
1710 }
1711
1712 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1713 {
1714 F2FS_I(inode)->i_acl_mode = mode;
1715 set_inode_flag(inode, FI_ACL_MODE);
1716 f2fs_mark_inode_dirty_sync(inode, false);
1717 }
1718
1719 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1720 {
1721 if (inc)
1722 inc_nlink(inode);
1723 else
1724 drop_nlink(inode);
1725 f2fs_mark_inode_dirty_sync(inode, true);
1726 }
1727
1728 static inline void f2fs_i_blocks_write(struct inode *inode,
1729 blkcnt_t diff, bool add)
1730 {
1731 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1732 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1733
1734 inode->i_blocks = add ? inode->i_blocks + diff :
1735 inode->i_blocks - diff;
1736 f2fs_mark_inode_dirty_sync(inode, true);
1737 if (clean || recover)
1738 set_inode_flag(inode, FI_AUTO_RECOVER);
1739 }
1740
1741 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1742 {
1743 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1744 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1745
1746 if (i_size_read(inode) == i_size)
1747 return;
1748
1749 i_size_write(inode, i_size);
1750 f2fs_mark_inode_dirty_sync(inode, true);
1751 if (clean || recover)
1752 set_inode_flag(inode, FI_AUTO_RECOVER);
1753 }
1754
1755 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1756 {
1757 F2FS_I(inode)->i_current_depth = depth;
1758 f2fs_mark_inode_dirty_sync(inode, true);
1759 }
1760
1761 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1762 {
1763 F2FS_I(inode)->i_xattr_nid = xnid;
1764 f2fs_mark_inode_dirty_sync(inode, true);
1765 }
1766
1767 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1768 {
1769 F2FS_I(inode)->i_pino = pino;
1770 f2fs_mark_inode_dirty_sync(inode, true);
1771 }
1772
1773 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1774 {
1775 struct f2fs_inode_info *fi = F2FS_I(inode);
1776
1777 if (ri->i_inline & F2FS_INLINE_XATTR)
1778 set_bit(FI_INLINE_XATTR, &fi->flags);
1779 if (ri->i_inline & F2FS_INLINE_DATA)
1780 set_bit(FI_INLINE_DATA, &fi->flags);
1781 if (ri->i_inline & F2FS_INLINE_DENTRY)
1782 set_bit(FI_INLINE_DENTRY, &fi->flags);
1783 if (ri->i_inline & F2FS_DATA_EXIST)
1784 set_bit(FI_DATA_EXIST, &fi->flags);
1785 if (ri->i_inline & F2FS_INLINE_DOTS)
1786 set_bit(FI_INLINE_DOTS, &fi->flags);
1787 }
1788
1789 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1790 {
1791 ri->i_inline = 0;
1792
1793 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1794 ri->i_inline |= F2FS_INLINE_XATTR;
1795 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1796 ri->i_inline |= F2FS_INLINE_DATA;
1797 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1798 ri->i_inline |= F2FS_INLINE_DENTRY;
1799 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1800 ri->i_inline |= F2FS_DATA_EXIST;
1801 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1802 ri->i_inline |= F2FS_INLINE_DOTS;
1803 }
1804
1805 static inline int f2fs_has_inline_xattr(struct inode *inode)
1806 {
1807 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1808 }
1809
1810 static inline unsigned int addrs_per_inode(struct inode *inode)
1811 {
1812 if (f2fs_has_inline_xattr(inode))
1813 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1814 return DEF_ADDRS_PER_INODE;
1815 }
1816
1817 static inline void *inline_xattr_addr(struct page *page)
1818 {
1819 struct f2fs_inode *ri = F2FS_INODE(page);
1820
1821 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1822 F2FS_INLINE_XATTR_ADDRS]);
1823 }
1824
1825 static inline int inline_xattr_size(struct inode *inode)
1826 {
1827 if (f2fs_has_inline_xattr(inode))
1828 return F2FS_INLINE_XATTR_ADDRS << 2;
1829 else
1830 return 0;
1831 }
1832
1833 static inline int f2fs_has_inline_data(struct inode *inode)
1834 {
1835 return is_inode_flag_set(inode, FI_INLINE_DATA);
1836 }
1837
1838 static inline void f2fs_clear_inline_inode(struct inode *inode)
1839 {
1840 clear_inode_flag(inode, FI_INLINE_DATA);
1841 clear_inode_flag(inode, FI_DATA_EXIST);
1842 }
1843
1844 static inline int f2fs_exist_data(struct inode *inode)
1845 {
1846 return is_inode_flag_set(inode, FI_DATA_EXIST);
1847 }
1848
1849 static inline int f2fs_has_inline_dots(struct inode *inode)
1850 {
1851 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1852 }
1853
1854 static inline bool f2fs_is_atomic_file(struct inode *inode)
1855 {
1856 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1857 }
1858
1859 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
1860 {
1861 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
1862 }
1863
1864 static inline bool f2fs_is_volatile_file(struct inode *inode)
1865 {
1866 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1867 }
1868
1869 static inline bool f2fs_is_first_block_written(struct inode *inode)
1870 {
1871 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1872 }
1873
1874 static inline bool f2fs_is_drop_cache(struct inode *inode)
1875 {
1876 return is_inode_flag_set(inode, FI_DROP_CACHE);
1877 }
1878
1879 static inline void *inline_data_addr(struct page *page)
1880 {
1881 struct f2fs_inode *ri = F2FS_INODE(page);
1882
1883 return (void *)&(ri->i_addr[1]);
1884 }
1885
1886 static inline int f2fs_has_inline_dentry(struct inode *inode)
1887 {
1888 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1889 }
1890
1891 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1892 {
1893 if (!f2fs_has_inline_dentry(dir))
1894 kunmap(page);
1895 }
1896
1897 static inline int is_file(struct inode *inode, int type)
1898 {
1899 return F2FS_I(inode)->i_advise & type;
1900 }
1901
1902 static inline void set_file(struct inode *inode, int type)
1903 {
1904 F2FS_I(inode)->i_advise |= type;
1905 f2fs_mark_inode_dirty_sync(inode, true);
1906 }
1907
1908 static inline void clear_file(struct inode *inode, int type)
1909 {
1910 F2FS_I(inode)->i_advise &= ~type;
1911 f2fs_mark_inode_dirty_sync(inode, true);
1912 }
1913
1914 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
1915 {
1916 if (dsync) {
1917 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1918 bool ret;
1919
1920 spin_lock(&sbi->inode_lock[DIRTY_META]);
1921 ret = list_empty(&F2FS_I(inode)->gdirty_list);
1922 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1923 return ret;
1924 }
1925 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
1926 file_keep_isize(inode) ||
1927 i_size_read(inode) & PAGE_MASK)
1928 return false;
1929 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1930 }
1931
1932 static inline int f2fs_readonly(struct super_block *sb)
1933 {
1934 return sb->s_flags & MS_RDONLY;
1935 }
1936
1937 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1938 {
1939 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
1940 }
1941
1942 static inline bool is_dot_dotdot(const struct qstr *str)
1943 {
1944 if (str->len == 1 && str->name[0] == '.')
1945 return true;
1946
1947 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1948 return true;
1949
1950 return false;
1951 }
1952
1953 static inline bool f2fs_may_extent_tree(struct inode *inode)
1954 {
1955 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1956 is_inode_flag_set(inode, FI_NO_EXTENT))
1957 return false;
1958
1959 return S_ISREG(inode->i_mode);
1960 }
1961
1962 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
1963 size_t size, gfp_t flags)
1964 {
1965 #ifdef CONFIG_F2FS_FAULT_INJECTION
1966 if (time_to_inject(sbi, FAULT_KMALLOC))
1967 return NULL;
1968 #endif
1969 return kmalloc(size, flags);
1970 }
1971
1972 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1973 {
1974 void *ret;
1975
1976 ret = kmalloc(size, flags | __GFP_NOWARN);
1977 if (!ret)
1978 ret = __vmalloc(size, flags, PAGE_KERNEL);
1979 return ret;
1980 }
1981
1982 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1983 {
1984 void *ret;
1985
1986 ret = kzalloc(size, flags | __GFP_NOWARN);
1987 if (!ret)
1988 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1989 return ret;
1990 }
1991
1992 #define get_inode_mode(i) \
1993 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1994 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1995
1996 /* get offset of first page in next direct node */
1997 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1998 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1999 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
2000 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
2001
2002 /*
2003 * file.c
2004 */
2005 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2006 void truncate_data_blocks(struct dnode_of_data *dn);
2007 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2008 int f2fs_truncate(struct inode *inode);
2009 int f2fs_getattr(struct vfsmount *mnt, struct dentry *dentry,
2010 struct kstat *stat);
2011 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2012 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2013 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2014 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2015 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2016
2017 /*
2018 * inode.c
2019 */
2020 void f2fs_set_inode_flags(struct inode *inode);
2021 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2022 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2023 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2024 int update_inode(struct inode *inode, struct page *node_page);
2025 int update_inode_page(struct inode *inode);
2026 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2027 void f2fs_evict_inode(struct inode *inode);
2028 void handle_failed_inode(struct inode *inode);
2029
2030 /*
2031 * namei.c
2032 */
2033 struct dentry *f2fs_get_parent(struct dentry *child);
2034
2035 /*
2036 * dir.c
2037 */
2038 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2039 unsigned char get_de_type(struct f2fs_dir_entry *de);
2040 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2041 f2fs_hash_t namehash, int *max_slots,
2042 struct f2fs_dentry_ptr *d);
2043 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2044 unsigned int start_pos, struct fscrypt_str *fstr);
2045 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2046 struct f2fs_dentry_ptr *d);
2047 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2048 const struct qstr *new_name,
2049 const struct qstr *orig_name, struct page *dpage);
2050 void update_parent_metadata(struct inode *dir, struct inode *inode,
2051 unsigned int current_depth);
2052 int room_for_filename(const void *bitmap, int slots, int max_slots);
2053 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2054 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2055 struct fscrypt_name *fname, struct page **res_page);
2056 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2057 const struct qstr *child, struct page **res_page);
2058 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2059 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2060 struct page **page);
2061 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2062 struct page *page, struct inode *inode);
2063 int update_dent_inode(struct inode *inode, struct inode *to,
2064 const struct qstr *name);
2065 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2066 const struct qstr *name, f2fs_hash_t name_hash,
2067 unsigned int bit_pos);
2068 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2069 const struct qstr *orig_name,
2070 struct inode *inode, nid_t ino, umode_t mode);
2071 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2072 struct inode *inode, nid_t ino, umode_t mode);
2073 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2074 struct inode *inode, nid_t ino, umode_t mode);
2075 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2076 struct inode *dir, struct inode *inode);
2077 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2078 bool f2fs_empty_dir(struct inode *dir);
2079
2080 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2081 {
2082 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2083 inode, inode->i_ino, inode->i_mode);
2084 }
2085
2086 /*
2087 * super.c
2088 */
2089 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2090 void f2fs_inode_synced(struct inode *inode);
2091 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2092 int f2fs_sync_fs(struct super_block *sb, int sync);
2093 extern __printf(3, 4)
2094 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2095 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2096
2097 /*
2098 * hash.c
2099 */
2100 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info);
2101
2102 /*
2103 * node.c
2104 */
2105 struct dnode_of_data;
2106 struct node_info;
2107
2108 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2109 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2110 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2111 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2112 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2113 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2114 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2115 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2116 int truncate_xattr_node(struct inode *inode, struct page *page);
2117 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2118 int remove_inode_page(struct inode *inode);
2119 struct page *new_inode_page(struct inode *inode);
2120 struct page *new_node_page(struct dnode_of_data *dn,
2121 unsigned int ofs, struct page *ipage);
2122 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2123 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2124 struct page *get_node_page_ra(struct page *parent, int start);
2125 void move_node_page(struct page *node_page, int gc_type);
2126 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2127 struct writeback_control *wbc, bool atomic);
2128 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2129 void build_free_nids(struct f2fs_sb_info *sbi, bool sync);
2130 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2131 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2132 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2133 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2134 void recover_inline_xattr(struct inode *inode, struct page *page);
2135 void recover_xattr_data(struct inode *inode, struct page *page,
2136 block_t blkaddr);
2137 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2138 int restore_node_summary(struct f2fs_sb_info *sbi,
2139 unsigned int segno, struct f2fs_summary_block *sum);
2140 void flush_nat_entries(struct f2fs_sb_info *sbi);
2141 int build_node_manager(struct f2fs_sb_info *sbi);
2142 void destroy_node_manager(struct f2fs_sb_info *sbi);
2143 int __init create_node_manager_caches(void);
2144 void destroy_node_manager_caches(void);
2145
2146 /*
2147 * segment.c
2148 */
2149 void register_inmem_page(struct inode *inode, struct page *page);
2150 void drop_inmem_pages(struct inode *inode);
2151 int commit_inmem_pages(struct inode *inode);
2152 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2153 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2154 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2155 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2156 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2157 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2158 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2159 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2160 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr);
2161 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2162 void release_discard_addrs(struct f2fs_sb_info *sbi);
2163 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2164 void allocate_new_segments(struct f2fs_sb_info *sbi);
2165 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2166 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2167 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2168 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2169 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2170 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2171 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2172 void rewrite_data_page(struct f2fs_io_info *fio);
2173 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2174 block_t old_blkaddr, block_t new_blkaddr,
2175 bool recover_curseg, bool recover_newaddr);
2176 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2177 block_t old_addr, block_t new_addr,
2178 unsigned char version, bool recover_curseg,
2179 bool recover_newaddr);
2180 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2181 block_t old_blkaddr, block_t *new_blkaddr,
2182 struct f2fs_summary *sum, int type);
2183 void f2fs_wait_on_page_writeback(struct page *page,
2184 enum page_type type, bool ordered);
2185 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2186 block_t blkaddr);
2187 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2188 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2189 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2190 unsigned int val, int alloc);
2191 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2192 int build_segment_manager(struct f2fs_sb_info *sbi);
2193 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2194 int __init create_segment_manager_caches(void);
2195 void destroy_segment_manager_caches(void);
2196
2197 /*
2198 * checkpoint.c
2199 */
2200 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2201 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2202 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2203 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2204 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2205 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2206 int type, bool sync);
2207 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2208 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2209 long nr_to_write);
2210 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2211 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2212 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2213 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2214 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2215 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2216 void release_orphan_inode(struct f2fs_sb_info *sbi);
2217 void add_orphan_inode(struct inode *inode);
2218 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2219 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2220 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2221 void update_dirty_page(struct inode *inode, struct page *page);
2222 void remove_dirty_inode(struct inode *inode);
2223 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2224 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2225 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2226 int __init create_checkpoint_caches(void);
2227 void destroy_checkpoint_caches(void);
2228
2229 /*
2230 * data.c
2231 */
2232 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
2233 int rw);
2234 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
2235 struct inode *inode, struct page *page,
2236 nid_t ino, enum page_type type, int rw);
2237 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi);
2238 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2239 int f2fs_submit_page_mbio(struct f2fs_io_info *fio);
2240 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2241 block_t blk_addr, struct bio *bio);
2242 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2243 void set_data_blkaddr(struct dnode_of_data *dn);
2244 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2245 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2246 int reserve_new_block(struct dnode_of_data *dn);
2247 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2248 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2249 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2250 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2251 int op_flags, bool for_write);
2252 struct page *find_data_page(struct inode *inode, pgoff_t index);
2253 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2254 bool for_write);
2255 struct page *get_new_data_page(struct inode *inode,
2256 struct page *ipage, pgoff_t index, bool new_i_size);
2257 int do_write_data_page(struct f2fs_io_info *fio);
2258 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2259 int create, int flag);
2260 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2261 u64 start, u64 len);
2262 void f2fs_set_page_dirty_nobuffers(struct page *page);
2263 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2264 unsigned int length);
2265 int f2fs_release_page(struct page *page, gfp_t wait);
2266 #ifdef CONFIG_MIGRATION
2267 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2268 struct page *page, enum migrate_mode mode);
2269 #endif
2270
2271 /*
2272 * gc.c
2273 */
2274 int start_gc_thread(struct f2fs_sb_info *sbi);
2275 void stop_gc_thread(struct f2fs_sb_info *sbi);
2276 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2277 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background);
2278 void build_gc_manager(struct f2fs_sb_info *sbi);
2279
2280 /*
2281 * recovery.c
2282 */
2283 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2284 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2285
2286 /*
2287 * debug.c
2288 */
2289 #ifdef CONFIG_F2FS_STAT_FS
2290 struct f2fs_stat_info {
2291 struct list_head stat_list;
2292 struct f2fs_sb_info *sbi;
2293 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2294 int main_area_segs, main_area_sections, main_area_zones;
2295 unsigned long long hit_largest, hit_cached, hit_rbtree;
2296 unsigned long long hit_total, total_ext;
2297 int ext_tree, zombie_tree, ext_node;
2298 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2299 int inmem_pages;
2300 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2301 int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids;
2302 int total_count, utilization;
2303 int bg_gc, nr_wb_cp_data, nr_wb_data, nr_flush, nr_discard;
2304 int inline_xattr, inline_inode, inline_dir, orphans;
2305 int aw_cnt, max_aw_cnt;
2306 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2307 unsigned int bimodal, avg_vblocks;
2308 int util_free, util_valid, util_invalid;
2309 int rsvd_segs, overp_segs;
2310 int dirty_count, node_pages, meta_pages;
2311 int prefree_count, call_count, cp_count, bg_cp_count;
2312 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2313 int bg_node_segs, bg_data_segs;
2314 int tot_blks, data_blks, node_blks;
2315 int bg_data_blks, bg_node_blks;
2316 int curseg[NR_CURSEG_TYPE];
2317 int cursec[NR_CURSEG_TYPE];
2318 int curzone[NR_CURSEG_TYPE];
2319
2320 unsigned int segment_count[2];
2321 unsigned int block_count[2];
2322 unsigned int inplace_count;
2323 unsigned long long base_mem, cache_mem, page_mem;
2324 };
2325
2326 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2327 {
2328 return (struct f2fs_stat_info *)sbi->stat_info;
2329 }
2330
2331 #define stat_inc_cp_count(si) ((si)->cp_count++)
2332 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2333 #define stat_inc_call_count(si) ((si)->call_count++)
2334 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2335 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2336 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2337 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2338 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2339 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2340 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2341 #define stat_inc_inline_xattr(inode) \
2342 do { \
2343 if (f2fs_has_inline_xattr(inode)) \
2344 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2345 } while (0)
2346 #define stat_dec_inline_xattr(inode) \
2347 do { \
2348 if (f2fs_has_inline_xattr(inode)) \
2349 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2350 } while (0)
2351 #define stat_inc_inline_inode(inode) \
2352 do { \
2353 if (f2fs_has_inline_data(inode)) \
2354 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2355 } while (0)
2356 #define stat_dec_inline_inode(inode) \
2357 do { \
2358 if (f2fs_has_inline_data(inode)) \
2359 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2360 } while (0)
2361 #define stat_inc_inline_dir(inode) \
2362 do { \
2363 if (f2fs_has_inline_dentry(inode)) \
2364 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2365 } while (0)
2366 #define stat_dec_inline_dir(inode) \
2367 do { \
2368 if (f2fs_has_inline_dentry(inode)) \
2369 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2370 } while (0)
2371 #define stat_inc_seg_type(sbi, curseg) \
2372 ((sbi)->segment_count[(curseg)->alloc_type]++)
2373 #define stat_inc_block_count(sbi, curseg) \
2374 ((sbi)->block_count[(curseg)->alloc_type]++)
2375 #define stat_inc_inplace_blocks(sbi) \
2376 (atomic_inc(&(sbi)->inplace_count))
2377 #define stat_inc_atomic_write(inode) \
2378 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2379 #define stat_dec_atomic_write(inode) \
2380 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2381 #define stat_update_max_atomic_write(inode) \
2382 do { \
2383 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2384 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2385 if (cur > max) \
2386 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2387 } while (0)
2388 #define stat_inc_seg_count(sbi, type, gc_type) \
2389 do { \
2390 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2391 (si)->tot_segs++; \
2392 if (type == SUM_TYPE_DATA) { \
2393 si->data_segs++; \
2394 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2395 } else { \
2396 si->node_segs++; \
2397 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2398 } \
2399 } while (0)
2400
2401 #define stat_inc_tot_blk_count(si, blks) \
2402 (si->tot_blks += (blks))
2403
2404 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2405 do { \
2406 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2407 stat_inc_tot_blk_count(si, blks); \
2408 si->data_blks += (blks); \
2409 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2410 } while (0)
2411
2412 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2413 do { \
2414 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2415 stat_inc_tot_blk_count(si, blks); \
2416 si->node_blks += (blks); \
2417 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2418 } while (0)
2419
2420 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2421 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2422 int __init f2fs_create_root_stats(void);
2423 void f2fs_destroy_root_stats(void);
2424 #else
2425 #define stat_inc_cp_count(si)
2426 #define stat_inc_bg_cp_count(si)
2427 #define stat_inc_call_count(si)
2428 #define stat_inc_bggc_count(si)
2429 #define stat_inc_dirty_inode(sbi, type)
2430 #define stat_dec_dirty_inode(sbi, type)
2431 #define stat_inc_total_hit(sb)
2432 #define stat_inc_rbtree_node_hit(sb)
2433 #define stat_inc_largest_node_hit(sbi)
2434 #define stat_inc_cached_node_hit(sbi)
2435 #define stat_inc_inline_xattr(inode)
2436 #define stat_dec_inline_xattr(inode)
2437 #define stat_inc_inline_inode(inode)
2438 #define stat_dec_inline_inode(inode)
2439 #define stat_inc_inline_dir(inode)
2440 #define stat_dec_inline_dir(inode)
2441 #define stat_inc_atomic_write(inode)
2442 #define stat_dec_atomic_write(inode)
2443 #define stat_update_max_atomic_write(inode)
2444 #define stat_inc_seg_type(sbi, curseg)
2445 #define stat_inc_block_count(sbi, curseg)
2446 #define stat_inc_inplace_blocks(sbi)
2447 #define stat_inc_seg_count(sbi, type, gc_type)
2448 #define stat_inc_tot_blk_count(si, blks)
2449 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2450 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2451
2452 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2453 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2454 static inline int __init f2fs_create_root_stats(void) { return 0; }
2455 static inline void f2fs_destroy_root_stats(void) { }
2456 #endif
2457
2458 extern const struct file_operations f2fs_dir_operations;
2459 extern const struct file_operations f2fs_file_operations;
2460 extern const struct inode_operations f2fs_file_inode_operations;
2461 extern const struct address_space_operations f2fs_dblock_aops;
2462 extern const struct address_space_operations f2fs_node_aops;
2463 extern const struct address_space_operations f2fs_meta_aops;
2464 extern const struct inode_operations f2fs_dir_inode_operations;
2465 extern const struct inode_operations f2fs_symlink_inode_operations;
2466 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2467 extern const struct inode_operations f2fs_special_inode_operations;
2468 extern struct kmem_cache *inode_entry_slab;
2469
2470 /*
2471 * inline.c
2472 */
2473 bool f2fs_may_inline_data(struct inode *inode);
2474 bool f2fs_may_inline_dentry(struct inode *inode);
2475 void read_inline_data(struct page *page, struct page *ipage);
2476 bool truncate_inline_inode(struct page *ipage, u64 from);
2477 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2478 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2479 int f2fs_convert_inline_inode(struct inode *inode);
2480 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2481 bool recover_inline_data(struct inode *inode, struct page *npage);
2482 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2483 struct fscrypt_name *fname, struct page **res_page);
2484 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2485 struct page *ipage);
2486 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2487 const struct qstr *orig_name,
2488 struct inode *inode, nid_t ino, umode_t mode);
2489 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2490 struct inode *dir, struct inode *inode);
2491 bool f2fs_empty_inline_dir(struct inode *dir);
2492 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2493 struct fscrypt_str *fstr);
2494 int f2fs_inline_data_fiemap(struct inode *inode,
2495 struct fiemap_extent_info *fieinfo,
2496 __u64 start, __u64 len);
2497
2498 /*
2499 * shrinker.c
2500 */
2501 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2502 struct shrink_control *sc);
2503 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2504 struct shrink_control *sc);
2505 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2506 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2507
2508 /*
2509 * extent_cache.c
2510 */
2511 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2512 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2513 void f2fs_drop_extent_tree(struct inode *inode);
2514 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2515 void f2fs_destroy_extent_tree(struct inode *inode);
2516 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2517 struct extent_info *ei);
2518 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2519 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2520 pgoff_t fofs, block_t blkaddr, unsigned int len);
2521 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2522 int __init create_extent_cache(void);
2523 void destroy_extent_cache(void);
2524
2525 /*
2526 * crypto support
2527 */
2528 static inline bool f2fs_encrypted_inode(struct inode *inode)
2529 {
2530 return file_is_encrypt(inode);
2531 }
2532
2533 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2534 {
2535 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2536 file_set_encrypt(inode);
2537 #endif
2538 }
2539
2540 static inline bool f2fs_bio_encrypted(struct bio *bio)
2541 {
2542 return bio->bi_private != NULL;
2543 }
2544
2545 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2546 {
2547 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2548 }
2549
2550 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2551 {
2552 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2553 }
2554
2555 #ifdef CONFIG_BLK_DEV_ZONED
2556 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2557 struct block_device *bdev, block_t blkaddr)
2558 {
2559 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2560 int i;
2561
2562 for (i = 0; i < sbi->s_ndevs; i++)
2563 if (FDEV(i).bdev == bdev)
2564 return FDEV(i).blkz_type[zno];
2565 return -EINVAL;
2566 }
2567 #endif
2568
2569 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2570 {
2571 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2572
2573 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2574 }
2575
2576 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2577 {
2578 clear_opt(sbi, ADAPTIVE);
2579 clear_opt(sbi, LFS);
2580
2581 switch (mt) {
2582 case F2FS_MOUNT_ADAPTIVE:
2583 set_opt(sbi, ADAPTIVE);
2584 break;
2585 case F2FS_MOUNT_LFS:
2586 set_opt(sbi, LFS);
2587 break;
2588 }
2589 }
2590
2591 static inline bool f2fs_may_encrypt(struct inode *inode)
2592 {
2593 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2594 umode_t mode = inode->i_mode;
2595
2596 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2597 #else
2598 return 0;
2599 #endif
2600 }
2601
2602 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2603 #define fscrypt_set_d_op(i)
2604 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2605 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2606 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2607 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2608 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2609 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2610 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2611 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2612 #define fscrypt_ioctl_set_policy fscrypt_notsupp_ioctl_set_policy
2613 #define fscrypt_ioctl_get_policy fscrypt_notsupp_ioctl_get_policy
2614 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2615 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2616 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2617 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2618 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2619 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2620 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2621 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2622 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2623 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2624 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2625 #endif
2626 #endif