]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/f2fs.h
Merge tag 'sound-4.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #ifdef CONFIG_F2FS_FS_ENCRYPTION
27 #include <linux/fscrypt_supp.h>
28 #else
29 #include <linux/fscrypt_notsupp.h>
30 #endif
31 #include <crypto/hash.h>
32
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition) \
37 do { \
38 if (unlikely(condition)) { \
39 WARN_ON(1); \
40 set_sbi_flag(sbi, SBI_NEED_FSCK); \
41 } \
42 } while (0)
43 #endif
44
45 #ifdef CONFIG_F2FS_FAULT_INJECTION
46 enum {
47 FAULT_KMALLOC,
48 FAULT_PAGE_ALLOC,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_IO,
56 FAULT_CHECKPOINT,
57 FAULT_MAX,
58 };
59
60 struct f2fs_fault_info {
61 atomic_t inject_ops;
62 unsigned int inject_rate;
63 unsigned int inject_type;
64 };
65
66 extern char *fault_name[FAULT_MAX];
67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
68 #endif
69
70 /*
71 * For mount options
72 */
73 #define F2FS_MOUNT_BG_GC 0x00000001
74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
75 #define F2FS_MOUNT_DISCARD 0x00000004
76 #define F2FS_MOUNT_NOHEAP 0x00000008
77 #define F2FS_MOUNT_XATTR_USER 0x00000010
78 #define F2FS_MOUNT_POSIX_ACL 0x00000020
79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
80 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
81 #define F2FS_MOUNT_INLINE_DATA 0x00000100
82 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
83 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
84 #define F2FS_MOUNT_NOBARRIER 0x00000800
85 #define F2FS_MOUNT_FASTBOOT 0x00001000
86 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
87 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
88 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
90 #define F2FS_MOUNT_ADAPTIVE 0x00020000
91 #define F2FS_MOUNT_LFS 0x00040000
92 #define F2FS_MOUNT_USRQUOTA 0x00080000
93 #define F2FS_MOUNT_GRPQUOTA 0x00100000
94
95 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
96 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
97 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
98
99 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
100 typecheck(unsigned long long, b) && \
101 ((long long)((a) - (b)) > 0))
102
103 typedef u32 block_t; /*
104 * should not change u32, since it is the on-disk block
105 * address format, __le32.
106 */
107 typedef u32 nid_t;
108
109 struct f2fs_mount_info {
110 unsigned int opt;
111 };
112
113 #define F2FS_FEATURE_ENCRYPT 0x0001
114 #define F2FS_FEATURE_BLKZONED 0x0002
115
116 #define F2FS_HAS_FEATURE(sb, mask) \
117 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
118 #define F2FS_SET_FEATURE(sb, mask) \
119 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
120 #define F2FS_CLEAR_FEATURE(sb, mask) \
121 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
122
123 /*
124 * For checkpoint manager
125 */
126 enum {
127 NAT_BITMAP,
128 SIT_BITMAP
129 };
130
131 #define CP_UMOUNT 0x00000001
132 #define CP_FASTBOOT 0x00000002
133 #define CP_SYNC 0x00000004
134 #define CP_RECOVERY 0x00000008
135 #define CP_DISCARD 0x00000010
136 #define CP_TRIMMED 0x00000020
137
138 #define DEF_BATCHED_TRIM_SECTIONS 2048
139 #define BATCHED_TRIM_SEGMENTS(sbi) \
140 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
141 #define BATCHED_TRIM_BLOCKS(sbi) \
142 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
143 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
144 #define DISCARD_ISSUE_RATE 8
145 #define DEF_CP_INTERVAL 60 /* 60 secs */
146 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
147
148 struct cp_control {
149 int reason;
150 __u64 trim_start;
151 __u64 trim_end;
152 __u64 trim_minlen;
153 __u64 trimmed;
154 };
155
156 /*
157 * For CP/NAT/SIT/SSA readahead
158 */
159 enum {
160 META_CP,
161 META_NAT,
162 META_SIT,
163 META_SSA,
164 META_POR,
165 };
166
167 /* for the list of ino */
168 enum {
169 ORPHAN_INO, /* for orphan ino list */
170 APPEND_INO, /* for append ino list */
171 UPDATE_INO, /* for update ino list */
172 MAX_INO_ENTRY, /* max. list */
173 };
174
175 struct ino_entry {
176 struct list_head list; /* list head */
177 nid_t ino; /* inode number */
178 };
179
180 /* for the list of inodes to be GCed */
181 struct inode_entry {
182 struct list_head list; /* list head */
183 struct inode *inode; /* vfs inode pointer */
184 };
185
186 /* for the bitmap indicate blocks to be discarded */
187 struct discard_entry {
188 struct list_head list; /* list head */
189 block_t start_blkaddr; /* start blockaddr of current segment */
190 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
191 };
192
193 /* max discard pend list number */
194 #define MAX_PLIST_NUM 512
195 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
196 (MAX_PLIST_NUM - 1) : (blk_num - 1))
197
198 enum {
199 D_PREP,
200 D_SUBMIT,
201 D_DONE,
202 };
203
204 struct discard_info {
205 block_t lstart; /* logical start address */
206 block_t len; /* length */
207 block_t start; /* actual start address in dev */
208 };
209
210 struct discard_cmd {
211 struct rb_node rb_node; /* rb node located in rb-tree */
212 union {
213 struct {
214 block_t lstart; /* logical start address */
215 block_t len; /* length */
216 block_t start; /* actual start address in dev */
217 };
218 struct discard_info di; /* discard info */
219
220 };
221 struct list_head list; /* command list */
222 struct completion wait; /* compleation */
223 struct block_device *bdev; /* bdev */
224 unsigned short ref; /* reference count */
225 unsigned char state; /* state */
226 int error; /* bio error */
227 };
228
229 struct discard_cmd_control {
230 struct task_struct *f2fs_issue_discard; /* discard thread */
231 struct list_head entry_list; /* 4KB discard entry list */
232 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
233 struct list_head wait_list; /* store on-flushing entries */
234 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
235 struct mutex cmd_lock;
236 unsigned int nr_discards; /* # of discards in the list */
237 unsigned int max_discards; /* max. discards to be issued */
238 unsigned int undiscard_blks; /* # of undiscard blocks */
239 atomic_t issued_discard; /* # of issued discard */
240 atomic_t issing_discard; /* # of issing discard */
241 atomic_t discard_cmd_cnt; /* # of cached cmd count */
242 struct rb_root root; /* root of discard rb-tree */
243 };
244
245 /* for the list of fsync inodes, used only during recovery */
246 struct fsync_inode_entry {
247 struct list_head list; /* list head */
248 struct inode *inode; /* vfs inode pointer */
249 block_t blkaddr; /* block address locating the last fsync */
250 block_t last_dentry; /* block address locating the last dentry */
251 };
252
253 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
254 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
255
256 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
257 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
258 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
259 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
260
261 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
262 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
263
264 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
265 {
266 int before = nats_in_cursum(journal);
267
268 journal->n_nats = cpu_to_le16(before + i);
269 return before;
270 }
271
272 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
273 {
274 int before = sits_in_cursum(journal);
275
276 journal->n_sits = cpu_to_le16(before + i);
277 return before;
278 }
279
280 static inline bool __has_cursum_space(struct f2fs_journal *journal,
281 int size, int type)
282 {
283 if (type == NAT_JOURNAL)
284 return size <= MAX_NAT_JENTRIES(journal);
285 return size <= MAX_SIT_JENTRIES(journal);
286 }
287
288 /*
289 * ioctl commands
290 */
291 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
292 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
293 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
294
295 #define F2FS_IOCTL_MAGIC 0xf5
296 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
297 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
298 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
299 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
300 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
301 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
302 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
303 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
304 struct f2fs_defragment)
305 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
306 struct f2fs_move_range)
307 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
308 struct f2fs_flush_device)
309 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
310 struct f2fs_gc_range)
311
312 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
313 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
314 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
315
316 /*
317 * should be same as XFS_IOC_GOINGDOWN.
318 * Flags for going down operation used by FS_IOC_GOINGDOWN
319 */
320 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
321 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
322 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
323 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
324 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
325
326 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
327 /*
328 * ioctl commands in 32 bit emulation
329 */
330 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
331 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
332 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
333 #endif
334
335 struct f2fs_gc_range {
336 u32 sync;
337 u64 start;
338 u64 len;
339 };
340
341 struct f2fs_defragment {
342 u64 start;
343 u64 len;
344 };
345
346 struct f2fs_move_range {
347 u32 dst_fd; /* destination fd */
348 u64 pos_in; /* start position in src_fd */
349 u64 pos_out; /* start position in dst_fd */
350 u64 len; /* size to move */
351 };
352
353 struct f2fs_flush_device {
354 u32 dev_num; /* device number to flush */
355 u32 segments; /* # of segments to flush */
356 };
357
358 /*
359 * For INODE and NODE manager
360 */
361 /* for directory operations */
362 struct f2fs_dentry_ptr {
363 struct inode *inode;
364 const void *bitmap;
365 struct f2fs_dir_entry *dentry;
366 __u8 (*filename)[F2FS_SLOT_LEN];
367 int max;
368 };
369
370 static inline void make_dentry_ptr_block(struct inode *inode,
371 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
372 {
373 d->inode = inode;
374 d->max = NR_DENTRY_IN_BLOCK;
375 d->bitmap = &t->dentry_bitmap;
376 d->dentry = t->dentry;
377 d->filename = t->filename;
378 }
379
380 static inline void make_dentry_ptr_inline(struct inode *inode,
381 struct f2fs_dentry_ptr *d, struct f2fs_inline_dentry *t)
382 {
383 d->inode = inode;
384 d->max = NR_INLINE_DENTRY;
385 d->bitmap = &t->dentry_bitmap;
386 d->dentry = t->dentry;
387 d->filename = t->filename;
388 }
389
390 /*
391 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
392 * as its node offset to distinguish from index node blocks.
393 * But some bits are used to mark the node block.
394 */
395 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
396 >> OFFSET_BIT_SHIFT)
397 enum {
398 ALLOC_NODE, /* allocate a new node page if needed */
399 LOOKUP_NODE, /* look up a node without readahead */
400 LOOKUP_NODE_RA, /*
401 * look up a node with readahead called
402 * by get_data_block.
403 */
404 };
405
406 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
407
408 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
409
410 /* vector size for gang look-up from extent cache that consists of radix tree */
411 #define EXT_TREE_VEC_SIZE 64
412
413 /* for in-memory extent cache entry */
414 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
415
416 /* number of extent info in extent cache we try to shrink */
417 #define EXTENT_CACHE_SHRINK_NUMBER 128
418
419 struct rb_entry {
420 struct rb_node rb_node; /* rb node located in rb-tree */
421 unsigned int ofs; /* start offset of the entry */
422 unsigned int len; /* length of the entry */
423 };
424
425 struct extent_info {
426 unsigned int fofs; /* start offset in a file */
427 unsigned int len; /* length of the extent */
428 u32 blk; /* start block address of the extent */
429 };
430
431 struct extent_node {
432 struct rb_node rb_node;
433 union {
434 struct {
435 unsigned int fofs;
436 unsigned int len;
437 u32 blk;
438 };
439 struct extent_info ei; /* extent info */
440
441 };
442 struct list_head list; /* node in global extent list of sbi */
443 struct extent_tree *et; /* extent tree pointer */
444 };
445
446 struct extent_tree {
447 nid_t ino; /* inode number */
448 struct rb_root root; /* root of extent info rb-tree */
449 struct extent_node *cached_en; /* recently accessed extent node */
450 struct extent_info largest; /* largested extent info */
451 struct list_head list; /* to be used by sbi->zombie_list */
452 rwlock_t lock; /* protect extent info rb-tree */
453 atomic_t node_cnt; /* # of extent node in rb-tree*/
454 };
455
456 /*
457 * This structure is taken from ext4_map_blocks.
458 *
459 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
460 */
461 #define F2FS_MAP_NEW (1 << BH_New)
462 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
463 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
464 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
465 F2FS_MAP_UNWRITTEN)
466
467 struct f2fs_map_blocks {
468 block_t m_pblk;
469 block_t m_lblk;
470 unsigned int m_len;
471 unsigned int m_flags;
472 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
473 };
474
475 /* for flag in get_data_block */
476 #define F2FS_GET_BLOCK_READ 0
477 #define F2FS_GET_BLOCK_DIO 1
478 #define F2FS_GET_BLOCK_FIEMAP 2
479 #define F2FS_GET_BLOCK_BMAP 3
480 #define F2FS_GET_BLOCK_PRE_DIO 4
481 #define F2FS_GET_BLOCK_PRE_AIO 5
482
483 /*
484 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
485 */
486 #define FADVISE_COLD_BIT 0x01
487 #define FADVISE_LOST_PINO_BIT 0x02
488 #define FADVISE_ENCRYPT_BIT 0x04
489 #define FADVISE_ENC_NAME_BIT 0x08
490 #define FADVISE_KEEP_SIZE_BIT 0x10
491
492 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
493 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
494 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
495 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
496 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
497 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
498 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
499 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
500 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
501 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
502 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
503 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
504 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
505
506 #define DEF_DIR_LEVEL 0
507
508 struct f2fs_inode_info {
509 struct inode vfs_inode; /* serve a vfs inode */
510 unsigned long i_flags; /* keep an inode flags for ioctl */
511 unsigned char i_advise; /* use to give file attribute hints */
512 unsigned char i_dir_level; /* use for dentry level for large dir */
513 unsigned int i_current_depth; /* use only in directory structure */
514 unsigned int i_pino; /* parent inode number */
515 umode_t i_acl_mode; /* keep file acl mode temporarily */
516
517 /* Use below internally in f2fs*/
518 unsigned long flags; /* use to pass per-file flags */
519 struct rw_semaphore i_sem; /* protect fi info */
520 atomic_t dirty_pages; /* # of dirty pages */
521 f2fs_hash_t chash; /* hash value of given file name */
522 unsigned int clevel; /* maximum level of given file name */
523 struct task_struct *task; /* lookup and create consistency */
524 nid_t i_xattr_nid; /* node id that contains xattrs */
525 loff_t last_disk_size; /* lastly written file size */
526
527 #ifdef CONFIG_QUOTA
528 struct dquot *i_dquot[MAXQUOTAS];
529
530 /* quota space reservation, managed internally by quota code */
531 qsize_t i_reserved_quota;
532 #endif
533 struct list_head dirty_list; /* dirty list for dirs and files */
534 struct list_head gdirty_list; /* linked in global dirty list */
535 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
536 struct mutex inmem_lock; /* lock for inmemory pages */
537 struct extent_tree *extent_tree; /* cached extent_tree entry */
538 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
539 struct rw_semaphore i_mmap_sem;
540 };
541
542 static inline void get_extent_info(struct extent_info *ext,
543 struct f2fs_extent *i_ext)
544 {
545 ext->fofs = le32_to_cpu(i_ext->fofs);
546 ext->blk = le32_to_cpu(i_ext->blk);
547 ext->len = le32_to_cpu(i_ext->len);
548 }
549
550 static inline void set_raw_extent(struct extent_info *ext,
551 struct f2fs_extent *i_ext)
552 {
553 i_ext->fofs = cpu_to_le32(ext->fofs);
554 i_ext->blk = cpu_to_le32(ext->blk);
555 i_ext->len = cpu_to_le32(ext->len);
556 }
557
558 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
559 u32 blk, unsigned int len)
560 {
561 ei->fofs = fofs;
562 ei->blk = blk;
563 ei->len = len;
564 }
565
566 static inline bool __is_discard_mergeable(struct discard_info *back,
567 struct discard_info *front)
568 {
569 return back->lstart + back->len == front->lstart;
570 }
571
572 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
573 struct discard_info *back)
574 {
575 return __is_discard_mergeable(back, cur);
576 }
577
578 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
579 struct discard_info *front)
580 {
581 return __is_discard_mergeable(cur, front);
582 }
583
584 static inline bool __is_extent_mergeable(struct extent_info *back,
585 struct extent_info *front)
586 {
587 return (back->fofs + back->len == front->fofs &&
588 back->blk + back->len == front->blk);
589 }
590
591 static inline bool __is_back_mergeable(struct extent_info *cur,
592 struct extent_info *back)
593 {
594 return __is_extent_mergeable(back, cur);
595 }
596
597 static inline bool __is_front_mergeable(struct extent_info *cur,
598 struct extent_info *front)
599 {
600 return __is_extent_mergeable(cur, front);
601 }
602
603 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
604 static inline void __try_update_largest_extent(struct inode *inode,
605 struct extent_tree *et, struct extent_node *en)
606 {
607 if (en->ei.len > et->largest.len) {
608 et->largest = en->ei;
609 f2fs_mark_inode_dirty_sync(inode, true);
610 }
611 }
612
613 enum nid_list {
614 FREE_NID_LIST,
615 ALLOC_NID_LIST,
616 MAX_NID_LIST,
617 };
618
619 struct f2fs_nm_info {
620 block_t nat_blkaddr; /* base disk address of NAT */
621 nid_t max_nid; /* maximum possible node ids */
622 nid_t available_nids; /* # of available node ids */
623 nid_t next_scan_nid; /* the next nid to be scanned */
624 unsigned int ram_thresh; /* control the memory footprint */
625 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
626 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
627
628 /* NAT cache management */
629 struct radix_tree_root nat_root;/* root of the nat entry cache */
630 struct radix_tree_root nat_set_root;/* root of the nat set cache */
631 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
632 struct list_head nat_entries; /* cached nat entry list (clean) */
633 unsigned int nat_cnt; /* the # of cached nat entries */
634 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
635 unsigned int nat_blocks; /* # of nat blocks */
636
637 /* free node ids management */
638 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
639 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
640 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */
641 spinlock_t nid_list_lock; /* protect nid lists ops */
642 struct mutex build_lock; /* lock for build free nids */
643 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
644 unsigned char *nat_block_bitmap;
645 unsigned short *free_nid_count; /* free nid count of NAT block */
646
647 /* for checkpoint */
648 char *nat_bitmap; /* NAT bitmap pointer */
649
650 unsigned int nat_bits_blocks; /* # of nat bits blocks */
651 unsigned char *nat_bits; /* NAT bits blocks */
652 unsigned char *full_nat_bits; /* full NAT pages */
653 unsigned char *empty_nat_bits; /* empty NAT pages */
654 #ifdef CONFIG_F2FS_CHECK_FS
655 char *nat_bitmap_mir; /* NAT bitmap mirror */
656 #endif
657 int bitmap_size; /* bitmap size */
658 };
659
660 /*
661 * this structure is used as one of function parameters.
662 * all the information are dedicated to a given direct node block determined
663 * by the data offset in a file.
664 */
665 struct dnode_of_data {
666 struct inode *inode; /* vfs inode pointer */
667 struct page *inode_page; /* its inode page, NULL is possible */
668 struct page *node_page; /* cached direct node page */
669 nid_t nid; /* node id of the direct node block */
670 unsigned int ofs_in_node; /* data offset in the node page */
671 bool inode_page_locked; /* inode page is locked or not */
672 bool node_changed; /* is node block changed */
673 char cur_level; /* level of hole node page */
674 char max_level; /* level of current page located */
675 block_t data_blkaddr; /* block address of the node block */
676 };
677
678 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
679 struct page *ipage, struct page *npage, nid_t nid)
680 {
681 memset(dn, 0, sizeof(*dn));
682 dn->inode = inode;
683 dn->inode_page = ipage;
684 dn->node_page = npage;
685 dn->nid = nid;
686 }
687
688 /*
689 * For SIT manager
690 *
691 * By default, there are 6 active log areas across the whole main area.
692 * When considering hot and cold data separation to reduce cleaning overhead,
693 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
694 * respectively.
695 * In the current design, you should not change the numbers intentionally.
696 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
697 * logs individually according to the underlying devices. (default: 6)
698 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
699 * data and 8 for node logs.
700 */
701 #define NR_CURSEG_DATA_TYPE (3)
702 #define NR_CURSEG_NODE_TYPE (3)
703 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
704
705 enum {
706 CURSEG_HOT_DATA = 0, /* directory entry blocks */
707 CURSEG_WARM_DATA, /* data blocks */
708 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
709 CURSEG_HOT_NODE, /* direct node blocks of directory files */
710 CURSEG_WARM_NODE, /* direct node blocks of normal files */
711 CURSEG_COLD_NODE, /* indirect node blocks */
712 NO_CHECK_TYPE,
713 };
714
715 struct flush_cmd {
716 struct completion wait;
717 struct llist_node llnode;
718 int ret;
719 };
720
721 struct flush_cmd_control {
722 struct task_struct *f2fs_issue_flush; /* flush thread */
723 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
724 atomic_t issued_flush; /* # of issued flushes */
725 atomic_t issing_flush; /* # of issing flushes */
726 struct llist_head issue_list; /* list for command issue */
727 struct llist_node *dispatch_list; /* list for command dispatch */
728 };
729
730 struct f2fs_sm_info {
731 struct sit_info *sit_info; /* whole segment information */
732 struct free_segmap_info *free_info; /* free segment information */
733 struct dirty_seglist_info *dirty_info; /* dirty segment information */
734 struct curseg_info *curseg_array; /* active segment information */
735
736 block_t seg0_blkaddr; /* block address of 0'th segment */
737 block_t main_blkaddr; /* start block address of main area */
738 block_t ssa_blkaddr; /* start block address of SSA area */
739
740 unsigned int segment_count; /* total # of segments */
741 unsigned int main_segments; /* # of segments in main area */
742 unsigned int reserved_segments; /* # of reserved segments */
743 unsigned int ovp_segments; /* # of overprovision segments */
744
745 /* a threshold to reclaim prefree segments */
746 unsigned int rec_prefree_segments;
747
748 /* for batched trimming */
749 unsigned int trim_sections; /* # of sections to trim */
750
751 struct list_head sit_entry_set; /* sit entry set list */
752
753 unsigned int ipu_policy; /* in-place-update policy */
754 unsigned int min_ipu_util; /* in-place-update threshold */
755 unsigned int min_fsync_blocks; /* threshold for fsync */
756 unsigned int min_hot_blocks; /* threshold for hot block allocation */
757
758 /* for flush command control */
759 struct flush_cmd_control *fcc_info;
760
761 /* for discard command control */
762 struct discard_cmd_control *dcc_info;
763 };
764
765 /*
766 * For superblock
767 */
768 /*
769 * COUNT_TYPE for monitoring
770 *
771 * f2fs monitors the number of several block types such as on-writeback,
772 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
773 */
774 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
775 enum count_type {
776 F2FS_DIRTY_DENTS,
777 F2FS_DIRTY_DATA,
778 F2FS_DIRTY_NODES,
779 F2FS_DIRTY_META,
780 F2FS_INMEM_PAGES,
781 F2FS_DIRTY_IMETA,
782 F2FS_WB_CP_DATA,
783 F2FS_WB_DATA,
784 NR_COUNT_TYPE,
785 };
786
787 /*
788 * The below are the page types of bios used in submit_bio().
789 * The available types are:
790 * DATA User data pages. It operates as async mode.
791 * NODE Node pages. It operates as async mode.
792 * META FS metadata pages such as SIT, NAT, CP.
793 * NR_PAGE_TYPE The number of page types.
794 * META_FLUSH Make sure the previous pages are written
795 * with waiting the bio's completion
796 * ... Only can be used with META.
797 */
798 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
799 enum page_type {
800 DATA,
801 NODE,
802 META,
803 NR_PAGE_TYPE,
804 META_FLUSH,
805 INMEM, /* the below types are used by tracepoints only. */
806 INMEM_DROP,
807 INMEM_INVALIDATE,
808 INMEM_REVOKE,
809 IPU,
810 OPU,
811 };
812
813 enum temp_type {
814 HOT = 0, /* must be zero for meta bio */
815 WARM,
816 COLD,
817 NR_TEMP_TYPE,
818 };
819
820 enum need_lock_type {
821 LOCK_REQ = 0,
822 LOCK_DONE,
823 LOCK_RETRY,
824 };
825
826 struct f2fs_io_info {
827 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
828 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
829 enum temp_type temp; /* contains HOT/WARM/COLD */
830 int op; /* contains REQ_OP_ */
831 int op_flags; /* req_flag_bits */
832 block_t new_blkaddr; /* new block address to be written */
833 block_t old_blkaddr; /* old block address before Cow */
834 struct page *page; /* page to be written */
835 struct page *encrypted_page; /* encrypted page */
836 struct list_head list; /* serialize IOs */
837 bool submitted; /* indicate IO submission */
838 int need_lock; /* indicate we need to lock cp_rwsem */
839 bool in_list; /* indicate fio is in io_list */
840 };
841
842 #define is_read_io(rw) ((rw) == READ)
843 struct f2fs_bio_info {
844 struct f2fs_sb_info *sbi; /* f2fs superblock */
845 struct bio *bio; /* bios to merge */
846 sector_t last_block_in_bio; /* last block number */
847 struct f2fs_io_info fio; /* store buffered io info. */
848 struct rw_semaphore io_rwsem; /* blocking op for bio */
849 spinlock_t io_lock; /* serialize DATA/NODE IOs */
850 struct list_head io_list; /* track fios */
851 };
852
853 #define FDEV(i) (sbi->devs[i])
854 #define RDEV(i) (raw_super->devs[i])
855 struct f2fs_dev_info {
856 struct block_device *bdev;
857 char path[MAX_PATH_LEN];
858 unsigned int total_segments;
859 block_t start_blk;
860 block_t end_blk;
861 #ifdef CONFIG_BLK_DEV_ZONED
862 unsigned int nr_blkz; /* Total number of zones */
863 u8 *blkz_type; /* Array of zones type */
864 #endif
865 };
866
867 enum inode_type {
868 DIR_INODE, /* for dirty dir inode */
869 FILE_INODE, /* for dirty regular/symlink inode */
870 DIRTY_META, /* for all dirtied inode metadata */
871 NR_INODE_TYPE,
872 };
873
874 /* for inner inode cache management */
875 struct inode_management {
876 struct radix_tree_root ino_root; /* ino entry array */
877 spinlock_t ino_lock; /* for ino entry lock */
878 struct list_head ino_list; /* inode list head */
879 unsigned long ino_num; /* number of entries */
880 };
881
882 /* For s_flag in struct f2fs_sb_info */
883 enum {
884 SBI_IS_DIRTY, /* dirty flag for checkpoint */
885 SBI_IS_CLOSE, /* specify unmounting */
886 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
887 SBI_POR_DOING, /* recovery is doing or not */
888 SBI_NEED_SB_WRITE, /* need to recover superblock */
889 SBI_NEED_CP, /* need to checkpoint */
890 };
891
892 enum {
893 CP_TIME,
894 REQ_TIME,
895 MAX_TIME,
896 };
897
898 struct f2fs_sb_info {
899 struct super_block *sb; /* pointer to VFS super block */
900 struct proc_dir_entry *s_proc; /* proc entry */
901 struct f2fs_super_block *raw_super; /* raw super block pointer */
902 int valid_super_block; /* valid super block no */
903 unsigned long s_flag; /* flags for sbi */
904
905 #ifdef CONFIG_BLK_DEV_ZONED
906 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
907 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
908 #endif
909
910 /* for node-related operations */
911 struct f2fs_nm_info *nm_info; /* node manager */
912 struct inode *node_inode; /* cache node blocks */
913
914 /* for segment-related operations */
915 struct f2fs_sm_info *sm_info; /* segment manager */
916
917 /* for bio operations */
918 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
919 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
920 /* bio ordering for NODE/DATA */
921 int write_io_size_bits; /* Write IO size bits */
922 mempool_t *write_io_dummy; /* Dummy pages */
923
924 /* for checkpoint */
925 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
926 int cur_cp_pack; /* remain current cp pack */
927 spinlock_t cp_lock; /* for flag in ckpt */
928 struct inode *meta_inode; /* cache meta blocks */
929 struct mutex cp_mutex; /* checkpoint procedure lock */
930 struct rw_semaphore cp_rwsem; /* blocking FS operations */
931 struct rw_semaphore node_write; /* locking node writes */
932 struct rw_semaphore node_change; /* locking node change */
933 wait_queue_head_t cp_wait;
934 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
935 long interval_time[MAX_TIME]; /* to store thresholds */
936
937 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
938
939 /* for orphan inode, use 0'th array */
940 unsigned int max_orphans; /* max orphan inodes */
941
942 /* for inode management */
943 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
944 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
945
946 /* for extent tree cache */
947 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
948 struct mutex extent_tree_lock; /* locking extent radix tree */
949 struct list_head extent_list; /* lru list for shrinker */
950 spinlock_t extent_lock; /* locking extent lru list */
951 atomic_t total_ext_tree; /* extent tree count */
952 struct list_head zombie_list; /* extent zombie tree list */
953 atomic_t total_zombie_tree; /* extent zombie tree count */
954 atomic_t total_ext_node; /* extent info count */
955
956 /* basic filesystem units */
957 unsigned int log_sectors_per_block; /* log2 sectors per block */
958 unsigned int log_blocksize; /* log2 block size */
959 unsigned int blocksize; /* block size */
960 unsigned int root_ino_num; /* root inode number*/
961 unsigned int node_ino_num; /* node inode number*/
962 unsigned int meta_ino_num; /* meta inode number*/
963 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
964 unsigned int blocks_per_seg; /* blocks per segment */
965 unsigned int segs_per_sec; /* segments per section */
966 unsigned int secs_per_zone; /* sections per zone */
967 unsigned int total_sections; /* total section count */
968 unsigned int total_node_count; /* total node block count */
969 unsigned int total_valid_node_count; /* valid node block count */
970 loff_t max_file_blocks; /* max block index of file */
971 int active_logs; /* # of active logs */
972 int dir_level; /* directory level */
973
974 block_t user_block_count; /* # of user blocks */
975 block_t total_valid_block_count; /* # of valid blocks */
976 block_t discard_blks; /* discard command candidats */
977 block_t last_valid_block_count; /* for recovery */
978 block_t reserved_blocks; /* configurable reserved blocks */
979
980 u32 s_next_generation; /* for NFS support */
981
982 /* # of pages, see count_type */
983 atomic_t nr_pages[NR_COUNT_TYPE];
984 /* # of allocated blocks */
985 struct percpu_counter alloc_valid_block_count;
986
987 /* writeback control */
988 atomic_t wb_sync_req; /* count # of WB_SYNC threads */
989
990 /* valid inode count */
991 struct percpu_counter total_valid_inode_count;
992
993 struct f2fs_mount_info mount_opt; /* mount options */
994
995 /* for cleaning operations */
996 struct mutex gc_mutex; /* mutex for GC */
997 struct f2fs_gc_kthread *gc_thread; /* GC thread */
998 unsigned int cur_victim_sec; /* current victim section num */
999
1000 /* threshold for converting bg victims for fg */
1001 u64 fggc_threshold;
1002
1003 /* maximum # of trials to find a victim segment for SSR and GC */
1004 unsigned int max_victim_search;
1005
1006 /*
1007 * for stat information.
1008 * one is for the LFS mode, and the other is for the SSR mode.
1009 */
1010 #ifdef CONFIG_F2FS_STAT_FS
1011 struct f2fs_stat_info *stat_info; /* FS status information */
1012 unsigned int segment_count[2]; /* # of allocated segments */
1013 unsigned int block_count[2]; /* # of allocated blocks */
1014 atomic_t inplace_count; /* # of inplace update */
1015 atomic64_t total_hit_ext; /* # of lookup extent cache */
1016 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1017 atomic64_t read_hit_largest; /* # of hit largest extent node */
1018 atomic64_t read_hit_cached; /* # of hit cached extent node */
1019 atomic_t inline_xattr; /* # of inline_xattr inodes */
1020 atomic_t inline_inode; /* # of inline_data inodes */
1021 atomic_t inline_dir; /* # of inline_dentry inodes */
1022 atomic_t aw_cnt; /* # of atomic writes */
1023 atomic_t vw_cnt; /* # of volatile writes */
1024 atomic_t max_aw_cnt; /* max # of atomic writes */
1025 atomic_t max_vw_cnt; /* max # of volatile writes */
1026 int bg_gc; /* background gc calls */
1027 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1028 #endif
1029 spinlock_t stat_lock; /* lock for stat operations */
1030
1031 /* For sysfs suppport */
1032 struct kobject s_kobj;
1033 struct completion s_kobj_unregister;
1034
1035 /* For shrinker support */
1036 struct list_head s_list;
1037 int s_ndevs; /* number of devices */
1038 struct f2fs_dev_info *devs; /* for device list */
1039 struct mutex umount_mutex;
1040 unsigned int shrinker_run_no;
1041
1042 /* For write statistics */
1043 u64 sectors_written_start;
1044 u64 kbytes_written;
1045
1046 /* Reference to checksum algorithm driver via cryptoapi */
1047 struct crypto_shash *s_chksum_driver;
1048
1049 /* For fault injection */
1050 #ifdef CONFIG_F2FS_FAULT_INJECTION
1051 struct f2fs_fault_info fault_info;
1052 #endif
1053 };
1054
1055 #ifdef CONFIG_F2FS_FAULT_INJECTION
1056 #define f2fs_show_injection_info(type) \
1057 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1058 KERN_INFO, fault_name[type], \
1059 __func__, __builtin_return_address(0))
1060 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1061 {
1062 struct f2fs_fault_info *ffi = &sbi->fault_info;
1063
1064 if (!ffi->inject_rate)
1065 return false;
1066
1067 if (!IS_FAULT_SET(ffi, type))
1068 return false;
1069
1070 atomic_inc(&ffi->inject_ops);
1071 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1072 atomic_set(&ffi->inject_ops, 0);
1073 return true;
1074 }
1075 return false;
1076 }
1077 #endif
1078
1079 /* For write statistics. Suppose sector size is 512 bytes,
1080 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1081 */
1082 #define BD_PART_WRITTEN(s) \
1083 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1084 (s)->sectors_written_start) >> 1)
1085
1086 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1087 {
1088 sbi->last_time[type] = jiffies;
1089 }
1090
1091 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1092 {
1093 struct timespec ts = {sbi->interval_time[type], 0};
1094 unsigned long interval = timespec_to_jiffies(&ts);
1095
1096 return time_after(jiffies, sbi->last_time[type] + interval);
1097 }
1098
1099 static inline bool is_idle(struct f2fs_sb_info *sbi)
1100 {
1101 struct block_device *bdev = sbi->sb->s_bdev;
1102 struct request_queue *q = bdev_get_queue(bdev);
1103 struct request_list *rl = &q->root_rl;
1104
1105 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1106 return 0;
1107
1108 return f2fs_time_over(sbi, REQ_TIME);
1109 }
1110
1111 /*
1112 * Inline functions
1113 */
1114 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1115 unsigned int length)
1116 {
1117 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1118 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1119 u32 retval;
1120 int err;
1121
1122 shash->tfm = sbi->s_chksum_driver;
1123 shash->flags = 0;
1124 *ctx = F2FS_SUPER_MAGIC;
1125
1126 err = crypto_shash_update(shash, address, length);
1127 BUG_ON(err);
1128
1129 retval = *ctx;
1130 barrier_data(ctx);
1131 return retval;
1132 }
1133
1134 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1135 void *buf, size_t buf_size)
1136 {
1137 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1138 }
1139
1140 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1141 {
1142 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1143 }
1144
1145 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1146 {
1147 return sb->s_fs_info;
1148 }
1149
1150 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1151 {
1152 return F2FS_SB(inode->i_sb);
1153 }
1154
1155 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1156 {
1157 return F2FS_I_SB(mapping->host);
1158 }
1159
1160 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1161 {
1162 return F2FS_M_SB(page->mapping);
1163 }
1164
1165 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1166 {
1167 return (struct f2fs_super_block *)(sbi->raw_super);
1168 }
1169
1170 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1171 {
1172 return (struct f2fs_checkpoint *)(sbi->ckpt);
1173 }
1174
1175 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1176 {
1177 return (struct f2fs_node *)page_address(page);
1178 }
1179
1180 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1181 {
1182 return &((struct f2fs_node *)page_address(page))->i;
1183 }
1184
1185 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1186 {
1187 return (struct f2fs_nm_info *)(sbi->nm_info);
1188 }
1189
1190 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1191 {
1192 return (struct f2fs_sm_info *)(sbi->sm_info);
1193 }
1194
1195 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1196 {
1197 return (struct sit_info *)(SM_I(sbi)->sit_info);
1198 }
1199
1200 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1201 {
1202 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1203 }
1204
1205 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1206 {
1207 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1208 }
1209
1210 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1211 {
1212 return sbi->meta_inode->i_mapping;
1213 }
1214
1215 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1216 {
1217 return sbi->node_inode->i_mapping;
1218 }
1219
1220 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1221 {
1222 return test_bit(type, &sbi->s_flag);
1223 }
1224
1225 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1226 {
1227 set_bit(type, &sbi->s_flag);
1228 }
1229
1230 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1231 {
1232 clear_bit(type, &sbi->s_flag);
1233 }
1234
1235 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1236 {
1237 return le64_to_cpu(cp->checkpoint_ver);
1238 }
1239
1240 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1241 {
1242 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1243 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1244 }
1245
1246 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1247 {
1248 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1249
1250 return ckpt_flags & f;
1251 }
1252
1253 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1254 {
1255 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1256 }
1257
1258 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1259 {
1260 unsigned int ckpt_flags;
1261
1262 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1263 ckpt_flags |= f;
1264 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1265 }
1266
1267 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1268 {
1269 unsigned long flags;
1270
1271 spin_lock_irqsave(&sbi->cp_lock, flags);
1272 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1273 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1274 }
1275
1276 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1277 {
1278 unsigned int ckpt_flags;
1279
1280 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1281 ckpt_flags &= (~f);
1282 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1283 }
1284
1285 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1286 {
1287 unsigned long flags;
1288
1289 spin_lock_irqsave(&sbi->cp_lock, flags);
1290 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1291 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1292 }
1293
1294 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1295 {
1296 unsigned long flags;
1297
1298 set_sbi_flag(sbi, SBI_NEED_FSCK);
1299
1300 if (lock)
1301 spin_lock_irqsave(&sbi->cp_lock, flags);
1302 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1303 kfree(NM_I(sbi)->nat_bits);
1304 NM_I(sbi)->nat_bits = NULL;
1305 if (lock)
1306 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1307 }
1308
1309 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1310 struct cp_control *cpc)
1311 {
1312 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1313
1314 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1315 }
1316
1317 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1318 {
1319 down_read(&sbi->cp_rwsem);
1320 }
1321
1322 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1323 {
1324 return down_read_trylock(&sbi->cp_rwsem);
1325 }
1326
1327 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1328 {
1329 up_read(&sbi->cp_rwsem);
1330 }
1331
1332 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1333 {
1334 down_write(&sbi->cp_rwsem);
1335 }
1336
1337 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1338 {
1339 up_write(&sbi->cp_rwsem);
1340 }
1341
1342 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1343 {
1344 int reason = CP_SYNC;
1345
1346 if (test_opt(sbi, FASTBOOT))
1347 reason = CP_FASTBOOT;
1348 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1349 reason = CP_UMOUNT;
1350 return reason;
1351 }
1352
1353 static inline bool __remain_node_summaries(int reason)
1354 {
1355 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1356 }
1357
1358 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1359 {
1360 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1361 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1362 }
1363
1364 /*
1365 * Check whether the given nid is within node id range.
1366 */
1367 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1368 {
1369 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1370 return -EINVAL;
1371 if (unlikely(nid >= NM_I(sbi)->max_nid))
1372 return -EINVAL;
1373 return 0;
1374 }
1375
1376 /*
1377 * Check whether the inode has blocks or not
1378 */
1379 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1380 {
1381 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1382
1383 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1384 }
1385
1386 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1387 {
1388 return ofs == XATTR_NODE_OFFSET;
1389 }
1390
1391 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1392 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1393 struct inode *inode, blkcnt_t *count)
1394 {
1395 blkcnt_t diff = 0, release = 0;
1396 block_t avail_user_block_count;
1397 int ret;
1398
1399 ret = dquot_reserve_block(inode, *count);
1400 if (ret)
1401 return ret;
1402
1403 #ifdef CONFIG_F2FS_FAULT_INJECTION
1404 if (time_to_inject(sbi, FAULT_BLOCK)) {
1405 f2fs_show_injection_info(FAULT_BLOCK);
1406 release = *count;
1407 goto enospc;
1408 }
1409 #endif
1410 /*
1411 * let's increase this in prior to actual block count change in order
1412 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1413 */
1414 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1415
1416 spin_lock(&sbi->stat_lock);
1417 sbi->total_valid_block_count += (block_t)(*count);
1418 avail_user_block_count = sbi->user_block_count - sbi->reserved_blocks;
1419 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1420 diff = sbi->total_valid_block_count - avail_user_block_count;
1421 *count -= diff;
1422 release = diff;
1423 sbi->total_valid_block_count = avail_user_block_count;
1424 if (!*count) {
1425 spin_unlock(&sbi->stat_lock);
1426 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1427 goto enospc;
1428 }
1429 }
1430 spin_unlock(&sbi->stat_lock);
1431
1432 if (release)
1433 dquot_release_reservation_block(inode, release);
1434 f2fs_i_blocks_write(inode, *count, true, true);
1435 return 0;
1436
1437 enospc:
1438 dquot_release_reservation_block(inode, release);
1439 return -ENOSPC;
1440 }
1441
1442 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1443 struct inode *inode,
1444 block_t count)
1445 {
1446 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1447
1448 spin_lock(&sbi->stat_lock);
1449 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1450 f2fs_bug_on(sbi, inode->i_blocks < sectors);
1451 sbi->total_valid_block_count -= (block_t)count;
1452 spin_unlock(&sbi->stat_lock);
1453 f2fs_i_blocks_write(inode, count, false, true);
1454 }
1455
1456 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1457 {
1458 atomic_inc(&sbi->nr_pages[count_type]);
1459
1460 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1461 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1462 return;
1463
1464 set_sbi_flag(sbi, SBI_IS_DIRTY);
1465 }
1466
1467 static inline void inode_inc_dirty_pages(struct inode *inode)
1468 {
1469 atomic_inc(&F2FS_I(inode)->dirty_pages);
1470 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1471 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1472 }
1473
1474 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1475 {
1476 atomic_dec(&sbi->nr_pages[count_type]);
1477 }
1478
1479 static inline void inode_dec_dirty_pages(struct inode *inode)
1480 {
1481 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1482 !S_ISLNK(inode->i_mode))
1483 return;
1484
1485 atomic_dec(&F2FS_I(inode)->dirty_pages);
1486 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1487 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1488 }
1489
1490 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1491 {
1492 return atomic_read(&sbi->nr_pages[count_type]);
1493 }
1494
1495 static inline int get_dirty_pages(struct inode *inode)
1496 {
1497 return atomic_read(&F2FS_I(inode)->dirty_pages);
1498 }
1499
1500 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1501 {
1502 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1503 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1504 sbi->log_blocks_per_seg;
1505
1506 return segs / sbi->segs_per_sec;
1507 }
1508
1509 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1510 {
1511 return sbi->total_valid_block_count;
1512 }
1513
1514 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1515 {
1516 return sbi->discard_blks;
1517 }
1518
1519 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1520 {
1521 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1522
1523 /* return NAT or SIT bitmap */
1524 if (flag == NAT_BITMAP)
1525 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1526 else if (flag == SIT_BITMAP)
1527 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1528
1529 return 0;
1530 }
1531
1532 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1533 {
1534 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1535 }
1536
1537 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1538 {
1539 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1540 int offset;
1541
1542 if (__cp_payload(sbi) > 0) {
1543 if (flag == NAT_BITMAP)
1544 return &ckpt->sit_nat_version_bitmap;
1545 else
1546 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1547 } else {
1548 offset = (flag == NAT_BITMAP) ?
1549 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1550 return &ckpt->sit_nat_version_bitmap + offset;
1551 }
1552 }
1553
1554 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1555 {
1556 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1557
1558 if (sbi->cur_cp_pack == 2)
1559 start_addr += sbi->blocks_per_seg;
1560 return start_addr;
1561 }
1562
1563 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1564 {
1565 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1566
1567 if (sbi->cur_cp_pack == 1)
1568 start_addr += sbi->blocks_per_seg;
1569 return start_addr;
1570 }
1571
1572 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1573 {
1574 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1575 }
1576
1577 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1578 {
1579 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1580 }
1581
1582 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1583 struct inode *inode, bool is_inode)
1584 {
1585 block_t valid_block_count;
1586 unsigned int valid_node_count;
1587 bool quota = inode && !is_inode;
1588
1589 if (quota) {
1590 int ret = dquot_reserve_block(inode, 1);
1591 if (ret)
1592 return ret;
1593 }
1594
1595 spin_lock(&sbi->stat_lock);
1596
1597 valid_block_count = sbi->total_valid_block_count + 1;
1598 if (unlikely(valid_block_count + sbi->reserved_blocks >
1599 sbi->user_block_count)) {
1600 spin_unlock(&sbi->stat_lock);
1601 goto enospc;
1602 }
1603
1604 valid_node_count = sbi->total_valid_node_count + 1;
1605 if (unlikely(valid_node_count > sbi->total_node_count)) {
1606 spin_unlock(&sbi->stat_lock);
1607 goto enospc;
1608 }
1609
1610 sbi->total_valid_node_count++;
1611 sbi->total_valid_block_count++;
1612 spin_unlock(&sbi->stat_lock);
1613
1614 if (inode) {
1615 if (is_inode)
1616 f2fs_mark_inode_dirty_sync(inode, true);
1617 else
1618 f2fs_i_blocks_write(inode, 1, true, true);
1619 }
1620
1621 percpu_counter_inc(&sbi->alloc_valid_block_count);
1622 return 0;
1623
1624 enospc:
1625 if (quota)
1626 dquot_release_reservation_block(inode, 1);
1627 return -ENOSPC;
1628 }
1629
1630 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1631 struct inode *inode, bool is_inode)
1632 {
1633 spin_lock(&sbi->stat_lock);
1634
1635 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1636 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1637 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1638
1639 sbi->total_valid_node_count--;
1640 sbi->total_valid_block_count--;
1641
1642 spin_unlock(&sbi->stat_lock);
1643
1644 if (!is_inode)
1645 f2fs_i_blocks_write(inode, 1, false, true);
1646 }
1647
1648 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1649 {
1650 return sbi->total_valid_node_count;
1651 }
1652
1653 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1654 {
1655 percpu_counter_inc(&sbi->total_valid_inode_count);
1656 }
1657
1658 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1659 {
1660 percpu_counter_dec(&sbi->total_valid_inode_count);
1661 }
1662
1663 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1664 {
1665 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1666 }
1667
1668 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1669 pgoff_t index, bool for_write)
1670 {
1671 #ifdef CONFIG_F2FS_FAULT_INJECTION
1672 struct page *page = find_lock_page(mapping, index);
1673
1674 if (page)
1675 return page;
1676
1677 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1678 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1679 return NULL;
1680 }
1681 #endif
1682 if (!for_write)
1683 return grab_cache_page(mapping, index);
1684 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1685 }
1686
1687 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1688 {
1689 char *src_kaddr = kmap(src);
1690 char *dst_kaddr = kmap(dst);
1691
1692 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1693 kunmap(dst);
1694 kunmap(src);
1695 }
1696
1697 static inline void f2fs_put_page(struct page *page, int unlock)
1698 {
1699 if (!page)
1700 return;
1701
1702 if (unlock) {
1703 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1704 unlock_page(page);
1705 }
1706 put_page(page);
1707 }
1708
1709 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1710 {
1711 if (dn->node_page)
1712 f2fs_put_page(dn->node_page, 1);
1713 if (dn->inode_page && dn->node_page != dn->inode_page)
1714 f2fs_put_page(dn->inode_page, 0);
1715 dn->node_page = NULL;
1716 dn->inode_page = NULL;
1717 }
1718
1719 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1720 size_t size)
1721 {
1722 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1723 }
1724
1725 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1726 gfp_t flags)
1727 {
1728 void *entry;
1729
1730 entry = kmem_cache_alloc(cachep, flags);
1731 if (!entry)
1732 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1733 return entry;
1734 }
1735
1736 static inline struct bio *f2fs_bio_alloc(int npages)
1737 {
1738 struct bio *bio;
1739
1740 /* No failure on bio allocation */
1741 bio = bio_alloc(GFP_NOIO, npages);
1742 if (!bio)
1743 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1744 return bio;
1745 }
1746
1747 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1748 unsigned long index, void *item)
1749 {
1750 while (radix_tree_insert(root, index, item))
1751 cond_resched();
1752 }
1753
1754 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1755
1756 static inline bool IS_INODE(struct page *page)
1757 {
1758 struct f2fs_node *p = F2FS_NODE(page);
1759
1760 return RAW_IS_INODE(p);
1761 }
1762
1763 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1764 {
1765 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1766 }
1767
1768 static inline block_t datablock_addr(struct page *node_page,
1769 unsigned int offset)
1770 {
1771 struct f2fs_node *raw_node;
1772 __le32 *addr_array;
1773
1774 raw_node = F2FS_NODE(node_page);
1775 addr_array = blkaddr_in_node(raw_node);
1776 return le32_to_cpu(addr_array[offset]);
1777 }
1778
1779 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1780 {
1781 int mask;
1782
1783 addr += (nr >> 3);
1784 mask = 1 << (7 - (nr & 0x07));
1785 return mask & *addr;
1786 }
1787
1788 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1789 {
1790 int mask;
1791
1792 addr += (nr >> 3);
1793 mask = 1 << (7 - (nr & 0x07));
1794 *addr |= mask;
1795 }
1796
1797 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1798 {
1799 int mask;
1800
1801 addr += (nr >> 3);
1802 mask = 1 << (7 - (nr & 0x07));
1803 *addr &= ~mask;
1804 }
1805
1806 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1807 {
1808 int mask;
1809 int ret;
1810
1811 addr += (nr >> 3);
1812 mask = 1 << (7 - (nr & 0x07));
1813 ret = mask & *addr;
1814 *addr |= mask;
1815 return ret;
1816 }
1817
1818 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1819 {
1820 int mask;
1821 int ret;
1822
1823 addr += (nr >> 3);
1824 mask = 1 << (7 - (nr & 0x07));
1825 ret = mask & *addr;
1826 *addr &= ~mask;
1827 return ret;
1828 }
1829
1830 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1831 {
1832 int mask;
1833
1834 addr += (nr >> 3);
1835 mask = 1 << (7 - (nr & 0x07));
1836 *addr ^= mask;
1837 }
1838
1839 /* used for f2fs_inode_info->flags */
1840 enum {
1841 FI_NEW_INODE, /* indicate newly allocated inode */
1842 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1843 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1844 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1845 FI_INC_LINK, /* need to increment i_nlink */
1846 FI_ACL_MODE, /* indicate acl mode */
1847 FI_NO_ALLOC, /* should not allocate any blocks */
1848 FI_FREE_NID, /* free allocated nide */
1849 FI_NO_EXTENT, /* not to use the extent cache */
1850 FI_INLINE_XATTR, /* used for inline xattr */
1851 FI_INLINE_DATA, /* used for inline data*/
1852 FI_INLINE_DENTRY, /* used for inline dentry */
1853 FI_APPEND_WRITE, /* inode has appended data */
1854 FI_UPDATE_WRITE, /* inode has in-place-update data */
1855 FI_NEED_IPU, /* used for ipu per file */
1856 FI_ATOMIC_FILE, /* indicate atomic file */
1857 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
1858 FI_VOLATILE_FILE, /* indicate volatile file */
1859 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1860 FI_DROP_CACHE, /* drop dirty page cache */
1861 FI_DATA_EXIST, /* indicate data exists */
1862 FI_INLINE_DOTS, /* indicate inline dot dentries */
1863 FI_DO_DEFRAG, /* indicate defragment is running */
1864 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1865 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
1866 FI_HOT_DATA, /* indicate file is hot */
1867 };
1868
1869 static inline void __mark_inode_dirty_flag(struct inode *inode,
1870 int flag, bool set)
1871 {
1872 switch (flag) {
1873 case FI_INLINE_XATTR:
1874 case FI_INLINE_DATA:
1875 case FI_INLINE_DENTRY:
1876 if (set)
1877 return;
1878 case FI_DATA_EXIST:
1879 case FI_INLINE_DOTS:
1880 f2fs_mark_inode_dirty_sync(inode, true);
1881 }
1882 }
1883
1884 static inline void set_inode_flag(struct inode *inode, int flag)
1885 {
1886 if (!test_bit(flag, &F2FS_I(inode)->flags))
1887 set_bit(flag, &F2FS_I(inode)->flags);
1888 __mark_inode_dirty_flag(inode, flag, true);
1889 }
1890
1891 static inline int is_inode_flag_set(struct inode *inode, int flag)
1892 {
1893 return test_bit(flag, &F2FS_I(inode)->flags);
1894 }
1895
1896 static inline void clear_inode_flag(struct inode *inode, int flag)
1897 {
1898 if (test_bit(flag, &F2FS_I(inode)->flags))
1899 clear_bit(flag, &F2FS_I(inode)->flags);
1900 __mark_inode_dirty_flag(inode, flag, false);
1901 }
1902
1903 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1904 {
1905 F2FS_I(inode)->i_acl_mode = mode;
1906 set_inode_flag(inode, FI_ACL_MODE);
1907 f2fs_mark_inode_dirty_sync(inode, false);
1908 }
1909
1910 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1911 {
1912 if (inc)
1913 inc_nlink(inode);
1914 else
1915 drop_nlink(inode);
1916 f2fs_mark_inode_dirty_sync(inode, true);
1917 }
1918
1919 static inline void f2fs_i_blocks_write(struct inode *inode,
1920 block_t diff, bool add, bool claim)
1921 {
1922 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1923 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1924
1925 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
1926 if (add) {
1927 if (claim)
1928 dquot_claim_block(inode, diff);
1929 else
1930 dquot_alloc_block_nofail(inode, diff);
1931 } else {
1932 dquot_free_block(inode, diff);
1933 }
1934
1935 f2fs_mark_inode_dirty_sync(inode, true);
1936 if (clean || recover)
1937 set_inode_flag(inode, FI_AUTO_RECOVER);
1938 }
1939
1940 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1941 {
1942 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1943 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1944
1945 if (i_size_read(inode) == i_size)
1946 return;
1947
1948 i_size_write(inode, i_size);
1949 f2fs_mark_inode_dirty_sync(inode, true);
1950 if (clean || recover)
1951 set_inode_flag(inode, FI_AUTO_RECOVER);
1952 }
1953
1954 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1955 {
1956 F2FS_I(inode)->i_current_depth = depth;
1957 f2fs_mark_inode_dirty_sync(inode, true);
1958 }
1959
1960 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1961 {
1962 F2FS_I(inode)->i_xattr_nid = xnid;
1963 f2fs_mark_inode_dirty_sync(inode, true);
1964 }
1965
1966 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1967 {
1968 F2FS_I(inode)->i_pino = pino;
1969 f2fs_mark_inode_dirty_sync(inode, true);
1970 }
1971
1972 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1973 {
1974 struct f2fs_inode_info *fi = F2FS_I(inode);
1975
1976 if (ri->i_inline & F2FS_INLINE_XATTR)
1977 set_bit(FI_INLINE_XATTR, &fi->flags);
1978 if (ri->i_inline & F2FS_INLINE_DATA)
1979 set_bit(FI_INLINE_DATA, &fi->flags);
1980 if (ri->i_inline & F2FS_INLINE_DENTRY)
1981 set_bit(FI_INLINE_DENTRY, &fi->flags);
1982 if (ri->i_inline & F2FS_DATA_EXIST)
1983 set_bit(FI_DATA_EXIST, &fi->flags);
1984 if (ri->i_inline & F2FS_INLINE_DOTS)
1985 set_bit(FI_INLINE_DOTS, &fi->flags);
1986 }
1987
1988 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1989 {
1990 ri->i_inline = 0;
1991
1992 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1993 ri->i_inline |= F2FS_INLINE_XATTR;
1994 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1995 ri->i_inline |= F2FS_INLINE_DATA;
1996 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1997 ri->i_inline |= F2FS_INLINE_DENTRY;
1998 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1999 ri->i_inline |= F2FS_DATA_EXIST;
2000 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2001 ri->i_inline |= F2FS_INLINE_DOTS;
2002 }
2003
2004 static inline int f2fs_has_inline_xattr(struct inode *inode)
2005 {
2006 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2007 }
2008
2009 static inline unsigned int addrs_per_inode(struct inode *inode)
2010 {
2011 if (f2fs_has_inline_xattr(inode))
2012 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
2013 return DEF_ADDRS_PER_INODE;
2014 }
2015
2016 static inline void *inline_xattr_addr(struct page *page)
2017 {
2018 struct f2fs_inode *ri = F2FS_INODE(page);
2019
2020 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2021 F2FS_INLINE_XATTR_ADDRS]);
2022 }
2023
2024 static inline int inline_xattr_size(struct inode *inode)
2025 {
2026 if (f2fs_has_inline_xattr(inode))
2027 return F2FS_INLINE_XATTR_ADDRS << 2;
2028 else
2029 return 0;
2030 }
2031
2032 static inline int f2fs_has_inline_data(struct inode *inode)
2033 {
2034 return is_inode_flag_set(inode, FI_INLINE_DATA);
2035 }
2036
2037 static inline int f2fs_exist_data(struct inode *inode)
2038 {
2039 return is_inode_flag_set(inode, FI_DATA_EXIST);
2040 }
2041
2042 static inline int f2fs_has_inline_dots(struct inode *inode)
2043 {
2044 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2045 }
2046
2047 static inline bool f2fs_is_atomic_file(struct inode *inode)
2048 {
2049 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2050 }
2051
2052 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2053 {
2054 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2055 }
2056
2057 static inline bool f2fs_is_volatile_file(struct inode *inode)
2058 {
2059 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2060 }
2061
2062 static inline bool f2fs_is_first_block_written(struct inode *inode)
2063 {
2064 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2065 }
2066
2067 static inline bool f2fs_is_drop_cache(struct inode *inode)
2068 {
2069 return is_inode_flag_set(inode, FI_DROP_CACHE);
2070 }
2071
2072 static inline void *inline_data_addr(struct page *page)
2073 {
2074 struct f2fs_inode *ri = F2FS_INODE(page);
2075
2076 return (void *)&(ri->i_addr[1]);
2077 }
2078
2079 static inline int f2fs_has_inline_dentry(struct inode *inode)
2080 {
2081 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2082 }
2083
2084 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2085 {
2086 if (!f2fs_has_inline_dentry(dir))
2087 kunmap(page);
2088 }
2089
2090 static inline int is_file(struct inode *inode, int type)
2091 {
2092 return F2FS_I(inode)->i_advise & type;
2093 }
2094
2095 static inline void set_file(struct inode *inode, int type)
2096 {
2097 F2FS_I(inode)->i_advise |= type;
2098 f2fs_mark_inode_dirty_sync(inode, true);
2099 }
2100
2101 static inline void clear_file(struct inode *inode, int type)
2102 {
2103 F2FS_I(inode)->i_advise &= ~type;
2104 f2fs_mark_inode_dirty_sync(inode, true);
2105 }
2106
2107 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2108 {
2109 if (dsync) {
2110 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2111 bool ret;
2112
2113 spin_lock(&sbi->inode_lock[DIRTY_META]);
2114 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2115 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2116 return ret;
2117 }
2118 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2119 file_keep_isize(inode) ||
2120 i_size_read(inode) & PAGE_MASK)
2121 return false;
2122 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
2123 }
2124
2125 static inline int f2fs_readonly(struct super_block *sb)
2126 {
2127 return sb->s_flags & MS_RDONLY;
2128 }
2129
2130 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2131 {
2132 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2133 }
2134
2135 static inline bool is_dot_dotdot(const struct qstr *str)
2136 {
2137 if (str->len == 1 && str->name[0] == '.')
2138 return true;
2139
2140 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2141 return true;
2142
2143 return false;
2144 }
2145
2146 static inline bool f2fs_may_extent_tree(struct inode *inode)
2147 {
2148 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2149 is_inode_flag_set(inode, FI_NO_EXTENT))
2150 return false;
2151
2152 return S_ISREG(inode->i_mode);
2153 }
2154
2155 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2156 size_t size, gfp_t flags)
2157 {
2158 #ifdef CONFIG_F2FS_FAULT_INJECTION
2159 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2160 f2fs_show_injection_info(FAULT_KMALLOC);
2161 return NULL;
2162 }
2163 #endif
2164 return kmalloc(size, flags);
2165 }
2166
2167 #define get_inode_mode(i) \
2168 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2169 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2170
2171 /*
2172 * file.c
2173 */
2174 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2175 void truncate_data_blocks(struct dnode_of_data *dn);
2176 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2177 int f2fs_truncate(struct inode *inode);
2178 int f2fs_getattr(const struct path *path, struct kstat *stat,
2179 u32 request_mask, unsigned int flags);
2180 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2181 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2182 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2183 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2184 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2185
2186 /*
2187 * inode.c
2188 */
2189 void f2fs_set_inode_flags(struct inode *inode);
2190 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2191 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2192 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2193 int update_inode(struct inode *inode, struct page *node_page);
2194 int update_inode_page(struct inode *inode);
2195 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2196 void f2fs_evict_inode(struct inode *inode);
2197 void handle_failed_inode(struct inode *inode);
2198
2199 /*
2200 * namei.c
2201 */
2202 struct dentry *f2fs_get_parent(struct dentry *child);
2203
2204 /*
2205 * dir.c
2206 */
2207 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2208 unsigned char get_de_type(struct f2fs_dir_entry *de);
2209 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2210 f2fs_hash_t namehash, int *max_slots,
2211 struct f2fs_dentry_ptr *d);
2212 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2213 unsigned int start_pos, struct fscrypt_str *fstr);
2214 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2215 struct f2fs_dentry_ptr *d);
2216 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2217 const struct qstr *new_name,
2218 const struct qstr *orig_name, struct page *dpage);
2219 void update_parent_metadata(struct inode *dir, struct inode *inode,
2220 unsigned int current_depth);
2221 int room_for_filename(const void *bitmap, int slots, int max_slots);
2222 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2223 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2224 struct fscrypt_name *fname, struct page **res_page);
2225 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2226 const struct qstr *child, struct page **res_page);
2227 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2228 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2229 struct page **page);
2230 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2231 struct page *page, struct inode *inode);
2232 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2233 const struct qstr *name, f2fs_hash_t name_hash,
2234 unsigned int bit_pos);
2235 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2236 const struct qstr *orig_name,
2237 struct inode *inode, nid_t ino, umode_t mode);
2238 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2239 struct inode *inode, nid_t ino, umode_t mode);
2240 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2241 struct inode *inode, nid_t ino, umode_t mode);
2242 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2243 struct inode *dir, struct inode *inode);
2244 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2245 bool f2fs_empty_dir(struct inode *dir);
2246
2247 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2248 {
2249 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2250 inode, inode->i_ino, inode->i_mode);
2251 }
2252
2253 /*
2254 * super.c
2255 */
2256 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2257 void f2fs_inode_synced(struct inode *inode);
2258 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2259 int f2fs_sync_fs(struct super_block *sb, int sync);
2260 extern __printf(3, 4)
2261 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2262 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2263
2264 /*
2265 * hash.c
2266 */
2267 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2268 struct fscrypt_name *fname);
2269
2270 /*
2271 * node.c
2272 */
2273 struct dnode_of_data;
2274 struct node_info;
2275
2276 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2277 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2278 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2279 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2280 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2281 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2282 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2283 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2284 int truncate_xattr_node(struct inode *inode, struct page *page);
2285 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2286 int remove_inode_page(struct inode *inode);
2287 struct page *new_inode_page(struct inode *inode);
2288 struct page *new_node_page(struct dnode_of_data *dn,
2289 unsigned int ofs, struct page *ipage);
2290 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2291 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2292 struct page *get_node_page_ra(struct page *parent, int start);
2293 void move_node_page(struct page *node_page, int gc_type);
2294 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2295 struct writeback_control *wbc, bool atomic);
2296 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2297 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2298 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2299 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2300 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2301 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2302 void recover_inline_xattr(struct inode *inode, struct page *page);
2303 int recover_xattr_data(struct inode *inode, struct page *page,
2304 block_t blkaddr);
2305 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2306 int restore_node_summary(struct f2fs_sb_info *sbi,
2307 unsigned int segno, struct f2fs_summary_block *sum);
2308 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2309 int build_node_manager(struct f2fs_sb_info *sbi);
2310 void destroy_node_manager(struct f2fs_sb_info *sbi);
2311 int __init create_node_manager_caches(void);
2312 void destroy_node_manager_caches(void);
2313
2314 /*
2315 * segment.c
2316 */
2317 void register_inmem_page(struct inode *inode, struct page *page);
2318 void drop_inmem_pages(struct inode *inode);
2319 void drop_inmem_page(struct inode *inode, struct page *page);
2320 int commit_inmem_pages(struct inode *inode);
2321 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2322 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2323 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2324 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2325 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2326 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2327 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2328 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2329 void stop_discard_thread(struct f2fs_sb_info *sbi);
2330 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2331 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2332 void release_discard_addrs(struct f2fs_sb_info *sbi);
2333 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2334 void allocate_new_segments(struct f2fs_sb_info *sbi);
2335 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2336 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2337 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2338 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2339 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2340 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2341 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2342 int rewrite_data_page(struct f2fs_io_info *fio);
2343 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2344 block_t old_blkaddr, block_t new_blkaddr,
2345 bool recover_curseg, bool recover_newaddr);
2346 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2347 block_t old_addr, block_t new_addr,
2348 unsigned char version, bool recover_curseg,
2349 bool recover_newaddr);
2350 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2351 block_t old_blkaddr, block_t *new_blkaddr,
2352 struct f2fs_summary *sum, int type,
2353 struct f2fs_io_info *fio, bool add_list);
2354 void f2fs_wait_on_page_writeback(struct page *page,
2355 enum page_type type, bool ordered);
2356 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2357 block_t blkaddr);
2358 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2359 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2360 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2361 unsigned int val, int alloc);
2362 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2363 int build_segment_manager(struct f2fs_sb_info *sbi);
2364 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2365 int __init create_segment_manager_caches(void);
2366 void destroy_segment_manager_caches(void);
2367
2368 /*
2369 * checkpoint.c
2370 */
2371 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2372 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2373 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2374 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2375 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2376 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2377 int type, bool sync);
2378 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2379 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2380 long nr_to_write);
2381 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2382 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2383 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2384 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2385 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2386 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2387 void release_orphan_inode(struct f2fs_sb_info *sbi);
2388 void add_orphan_inode(struct inode *inode);
2389 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2390 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2391 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2392 void update_dirty_page(struct inode *inode, struct page *page);
2393 void remove_dirty_inode(struct inode *inode);
2394 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2395 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2396 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2397 int __init create_checkpoint_caches(void);
2398 void destroy_checkpoint_caches(void);
2399
2400 /*
2401 * data.c
2402 */
2403 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2404 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2405 struct inode *inode, nid_t ino, pgoff_t idx,
2406 enum page_type type);
2407 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2408 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2409 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2410 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2411 block_t blk_addr, struct bio *bio);
2412 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2413 void set_data_blkaddr(struct dnode_of_data *dn);
2414 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2415 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2416 int reserve_new_block(struct dnode_of_data *dn);
2417 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2418 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2419 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2420 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2421 int op_flags, bool for_write);
2422 struct page *find_data_page(struct inode *inode, pgoff_t index);
2423 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2424 bool for_write);
2425 struct page *get_new_data_page(struct inode *inode,
2426 struct page *ipage, pgoff_t index, bool new_i_size);
2427 int do_write_data_page(struct f2fs_io_info *fio);
2428 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2429 int create, int flag);
2430 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2431 u64 start, u64 len);
2432 void f2fs_set_page_dirty_nobuffers(struct page *page);
2433 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2434 unsigned int length);
2435 int f2fs_release_page(struct page *page, gfp_t wait);
2436 #ifdef CONFIG_MIGRATION
2437 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2438 struct page *page, enum migrate_mode mode);
2439 #endif
2440
2441 /*
2442 * gc.c
2443 */
2444 int start_gc_thread(struct f2fs_sb_info *sbi);
2445 void stop_gc_thread(struct f2fs_sb_info *sbi);
2446 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2447 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2448 unsigned int segno);
2449 void build_gc_manager(struct f2fs_sb_info *sbi);
2450
2451 /*
2452 * recovery.c
2453 */
2454 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2455 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2456
2457 /*
2458 * debug.c
2459 */
2460 #ifdef CONFIG_F2FS_STAT_FS
2461 struct f2fs_stat_info {
2462 struct list_head stat_list;
2463 struct f2fs_sb_info *sbi;
2464 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2465 int main_area_segs, main_area_sections, main_area_zones;
2466 unsigned long long hit_largest, hit_cached, hit_rbtree;
2467 unsigned long long hit_total, total_ext;
2468 int ext_tree, zombie_tree, ext_node;
2469 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2470 int inmem_pages;
2471 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2472 int nats, dirty_nats, sits, dirty_sits;
2473 int free_nids, avail_nids, alloc_nids;
2474 int total_count, utilization;
2475 int bg_gc, nr_wb_cp_data, nr_wb_data;
2476 int nr_flushing, nr_flushed, nr_discarding, nr_discarded;
2477 int nr_discard_cmd;
2478 unsigned int undiscard_blks;
2479 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2480 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2481 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2482 unsigned int bimodal, avg_vblocks;
2483 int util_free, util_valid, util_invalid;
2484 int rsvd_segs, overp_segs;
2485 int dirty_count, node_pages, meta_pages;
2486 int prefree_count, call_count, cp_count, bg_cp_count;
2487 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2488 int bg_node_segs, bg_data_segs;
2489 int tot_blks, data_blks, node_blks;
2490 int bg_data_blks, bg_node_blks;
2491 int curseg[NR_CURSEG_TYPE];
2492 int cursec[NR_CURSEG_TYPE];
2493 int curzone[NR_CURSEG_TYPE];
2494
2495 unsigned int segment_count[2];
2496 unsigned int block_count[2];
2497 unsigned int inplace_count;
2498 unsigned long long base_mem, cache_mem, page_mem;
2499 };
2500
2501 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2502 {
2503 return (struct f2fs_stat_info *)sbi->stat_info;
2504 }
2505
2506 #define stat_inc_cp_count(si) ((si)->cp_count++)
2507 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2508 #define stat_inc_call_count(si) ((si)->call_count++)
2509 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2510 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2511 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2512 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2513 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2514 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2515 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2516 #define stat_inc_inline_xattr(inode) \
2517 do { \
2518 if (f2fs_has_inline_xattr(inode)) \
2519 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2520 } while (0)
2521 #define stat_dec_inline_xattr(inode) \
2522 do { \
2523 if (f2fs_has_inline_xattr(inode)) \
2524 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2525 } while (0)
2526 #define stat_inc_inline_inode(inode) \
2527 do { \
2528 if (f2fs_has_inline_data(inode)) \
2529 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2530 } while (0)
2531 #define stat_dec_inline_inode(inode) \
2532 do { \
2533 if (f2fs_has_inline_data(inode)) \
2534 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2535 } while (0)
2536 #define stat_inc_inline_dir(inode) \
2537 do { \
2538 if (f2fs_has_inline_dentry(inode)) \
2539 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2540 } while (0)
2541 #define stat_dec_inline_dir(inode) \
2542 do { \
2543 if (f2fs_has_inline_dentry(inode)) \
2544 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2545 } while (0)
2546 #define stat_inc_seg_type(sbi, curseg) \
2547 ((sbi)->segment_count[(curseg)->alloc_type]++)
2548 #define stat_inc_block_count(sbi, curseg) \
2549 ((sbi)->block_count[(curseg)->alloc_type]++)
2550 #define stat_inc_inplace_blocks(sbi) \
2551 (atomic_inc(&(sbi)->inplace_count))
2552 #define stat_inc_atomic_write(inode) \
2553 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2554 #define stat_dec_atomic_write(inode) \
2555 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2556 #define stat_update_max_atomic_write(inode) \
2557 do { \
2558 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2559 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2560 if (cur > max) \
2561 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2562 } while (0)
2563 #define stat_inc_volatile_write(inode) \
2564 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2565 #define stat_dec_volatile_write(inode) \
2566 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2567 #define stat_update_max_volatile_write(inode) \
2568 do { \
2569 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
2570 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
2571 if (cur > max) \
2572 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
2573 } while (0)
2574 #define stat_inc_seg_count(sbi, type, gc_type) \
2575 do { \
2576 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2577 si->tot_segs++; \
2578 if ((type) == SUM_TYPE_DATA) { \
2579 si->data_segs++; \
2580 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2581 } else { \
2582 si->node_segs++; \
2583 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2584 } \
2585 } while (0)
2586
2587 #define stat_inc_tot_blk_count(si, blks) \
2588 ((si)->tot_blks += (blks))
2589
2590 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2591 do { \
2592 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2593 stat_inc_tot_blk_count(si, blks); \
2594 si->data_blks += (blks); \
2595 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2596 } while (0)
2597
2598 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2599 do { \
2600 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2601 stat_inc_tot_blk_count(si, blks); \
2602 si->node_blks += (blks); \
2603 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2604 } while (0)
2605
2606 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2607 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2608 int __init f2fs_create_root_stats(void);
2609 void f2fs_destroy_root_stats(void);
2610 #else
2611 #define stat_inc_cp_count(si) do { } while (0)
2612 #define stat_inc_bg_cp_count(si) do { } while (0)
2613 #define stat_inc_call_count(si) do { } while (0)
2614 #define stat_inc_bggc_count(si) do { } while (0)
2615 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
2616 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
2617 #define stat_inc_total_hit(sb) do { } while (0)
2618 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
2619 #define stat_inc_largest_node_hit(sbi) do { } while (0)
2620 #define stat_inc_cached_node_hit(sbi) do { } while (0)
2621 #define stat_inc_inline_xattr(inode) do { } while (0)
2622 #define stat_dec_inline_xattr(inode) do { } while (0)
2623 #define stat_inc_inline_inode(inode) do { } while (0)
2624 #define stat_dec_inline_inode(inode) do { } while (0)
2625 #define stat_inc_inline_dir(inode) do { } while (0)
2626 #define stat_dec_inline_dir(inode) do { } while (0)
2627 #define stat_inc_atomic_write(inode) do { } while (0)
2628 #define stat_dec_atomic_write(inode) do { } while (0)
2629 #define stat_update_max_atomic_write(inode) do { } while (0)
2630 #define stat_inc_volatile_write(inode) do { } while (0)
2631 #define stat_dec_volatile_write(inode) do { } while (0)
2632 #define stat_update_max_volatile_write(inode) do { } while (0)
2633 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
2634 #define stat_inc_block_count(sbi, curseg) do { } while (0)
2635 #define stat_inc_inplace_blocks(sbi) do { } while (0)
2636 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
2637 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
2638 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
2639 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
2640
2641 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2642 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2643 static inline int __init f2fs_create_root_stats(void) { return 0; }
2644 static inline void f2fs_destroy_root_stats(void) { }
2645 #endif
2646
2647 extern const struct file_operations f2fs_dir_operations;
2648 extern const struct file_operations f2fs_file_operations;
2649 extern const struct inode_operations f2fs_file_inode_operations;
2650 extern const struct address_space_operations f2fs_dblock_aops;
2651 extern const struct address_space_operations f2fs_node_aops;
2652 extern const struct address_space_operations f2fs_meta_aops;
2653 extern const struct inode_operations f2fs_dir_inode_operations;
2654 extern const struct inode_operations f2fs_symlink_inode_operations;
2655 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2656 extern const struct inode_operations f2fs_special_inode_operations;
2657 extern struct kmem_cache *inode_entry_slab;
2658
2659 /*
2660 * inline.c
2661 */
2662 bool f2fs_may_inline_data(struct inode *inode);
2663 bool f2fs_may_inline_dentry(struct inode *inode);
2664 void read_inline_data(struct page *page, struct page *ipage);
2665 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2666 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2667 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2668 int f2fs_convert_inline_inode(struct inode *inode);
2669 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2670 bool recover_inline_data(struct inode *inode, struct page *npage);
2671 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2672 struct fscrypt_name *fname, struct page **res_page);
2673 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2674 struct page *ipage);
2675 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2676 const struct qstr *orig_name,
2677 struct inode *inode, nid_t ino, umode_t mode);
2678 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2679 struct inode *dir, struct inode *inode);
2680 bool f2fs_empty_inline_dir(struct inode *dir);
2681 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2682 struct fscrypt_str *fstr);
2683 int f2fs_inline_data_fiemap(struct inode *inode,
2684 struct fiemap_extent_info *fieinfo,
2685 __u64 start, __u64 len);
2686
2687 /*
2688 * shrinker.c
2689 */
2690 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2691 struct shrink_control *sc);
2692 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2693 struct shrink_control *sc);
2694 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2695 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2696
2697 /*
2698 * extent_cache.c
2699 */
2700 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
2701 struct rb_entry *cached_re, unsigned int ofs);
2702 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
2703 struct rb_root *root, struct rb_node **parent,
2704 unsigned int ofs);
2705 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
2706 struct rb_entry *cached_re, unsigned int ofs,
2707 struct rb_entry **prev_entry, struct rb_entry **next_entry,
2708 struct rb_node ***insert_p, struct rb_node **insert_parent,
2709 bool force);
2710 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
2711 struct rb_root *root);
2712 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2713 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2714 void f2fs_drop_extent_tree(struct inode *inode);
2715 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2716 void f2fs_destroy_extent_tree(struct inode *inode);
2717 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2718 struct extent_info *ei);
2719 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2720 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2721 pgoff_t fofs, block_t blkaddr, unsigned int len);
2722 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2723 int __init create_extent_cache(void);
2724 void destroy_extent_cache(void);
2725
2726 /*
2727 * sysfs.c
2728 */
2729 int __init f2fs_register_sysfs(void);
2730 void f2fs_unregister_sysfs(void);
2731 int f2fs_init_sysfs(struct f2fs_sb_info *sbi);
2732 void f2fs_exit_sysfs(struct f2fs_sb_info *sbi);
2733
2734 /*
2735 * crypto support
2736 */
2737 static inline bool f2fs_encrypted_inode(struct inode *inode)
2738 {
2739 return file_is_encrypt(inode);
2740 }
2741
2742 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2743 {
2744 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2745 file_set_encrypt(inode);
2746 #endif
2747 }
2748
2749 static inline bool f2fs_bio_encrypted(struct bio *bio)
2750 {
2751 return bio->bi_private != NULL;
2752 }
2753
2754 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2755 {
2756 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2757 }
2758
2759 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2760 {
2761 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2762 }
2763
2764 #ifdef CONFIG_BLK_DEV_ZONED
2765 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2766 struct block_device *bdev, block_t blkaddr)
2767 {
2768 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2769 int i;
2770
2771 for (i = 0; i < sbi->s_ndevs; i++)
2772 if (FDEV(i).bdev == bdev)
2773 return FDEV(i).blkz_type[zno];
2774 return -EINVAL;
2775 }
2776 #endif
2777
2778 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2779 {
2780 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2781
2782 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2783 }
2784
2785 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2786 {
2787 clear_opt(sbi, ADAPTIVE);
2788 clear_opt(sbi, LFS);
2789
2790 switch (mt) {
2791 case F2FS_MOUNT_ADAPTIVE:
2792 set_opt(sbi, ADAPTIVE);
2793 break;
2794 case F2FS_MOUNT_LFS:
2795 set_opt(sbi, LFS);
2796 break;
2797 }
2798 }
2799
2800 static inline bool f2fs_may_encrypt(struct inode *inode)
2801 {
2802 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2803 umode_t mode = inode->i_mode;
2804
2805 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2806 #else
2807 return 0;
2808 #endif
2809 }
2810
2811 #endif