]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/f2fs/f2fs.h
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #ifdef CONFIG_F2FS_FS_ENCRYPTION
27 #include <linux/fscrypt_supp.h>
28 #else
29 #include <linux/fscrypt_notsupp.h>
30 #endif
31 #include <crypto/hash.h>
32
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition) \
37 do { \
38 if (unlikely(condition)) { \
39 WARN_ON(1); \
40 set_sbi_flag(sbi, SBI_NEED_FSCK); \
41 } \
42 } while (0)
43 #endif
44
45 #ifdef CONFIG_F2FS_FAULT_INJECTION
46 enum {
47 FAULT_KMALLOC,
48 FAULT_PAGE_ALLOC,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_IO,
56 FAULT_CHECKPOINT,
57 FAULT_MAX,
58 };
59
60 struct f2fs_fault_info {
61 atomic_t inject_ops;
62 unsigned int inject_rate;
63 unsigned int inject_type;
64 };
65
66 extern char *fault_name[FAULT_MAX];
67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
68 #endif
69
70 /*
71 * For mount options
72 */
73 #define F2FS_MOUNT_BG_GC 0x00000001
74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
75 #define F2FS_MOUNT_DISCARD 0x00000004
76 #define F2FS_MOUNT_NOHEAP 0x00000008
77 #define F2FS_MOUNT_XATTR_USER 0x00000010
78 #define F2FS_MOUNT_POSIX_ACL 0x00000020
79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
80 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
81 #define F2FS_MOUNT_INLINE_DATA 0x00000100
82 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
83 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
84 #define F2FS_MOUNT_NOBARRIER 0x00000800
85 #define F2FS_MOUNT_FASTBOOT 0x00001000
86 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
87 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
88 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
90 #define F2FS_MOUNT_ADAPTIVE 0x00020000
91 #define F2FS_MOUNT_LFS 0x00040000
92 #define F2FS_MOUNT_USRQUOTA 0x00080000
93 #define F2FS_MOUNT_GRPQUOTA 0x00100000
94 #define F2FS_MOUNT_PRJQUOTA 0x00200000
95 #define F2FS_MOUNT_QUOTA 0x00400000
96
97 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
98 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
99 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
100
101 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
102 typecheck(unsigned long long, b) && \
103 ((long long)((a) - (b)) > 0))
104
105 typedef u32 block_t; /*
106 * should not change u32, since it is the on-disk block
107 * address format, __le32.
108 */
109 typedef u32 nid_t;
110
111 struct f2fs_mount_info {
112 unsigned int opt;
113 };
114
115 #define F2FS_FEATURE_ENCRYPT 0x0001
116 #define F2FS_FEATURE_BLKZONED 0x0002
117 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
118 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
119 #define F2FS_FEATURE_PRJQUOTA 0x0010
120 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
121
122 #define F2FS_HAS_FEATURE(sb, mask) \
123 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
124 #define F2FS_SET_FEATURE(sb, mask) \
125 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
126 #define F2FS_CLEAR_FEATURE(sb, mask) \
127 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
128
129 /*
130 * For checkpoint manager
131 */
132 enum {
133 NAT_BITMAP,
134 SIT_BITMAP
135 };
136
137 #define CP_UMOUNT 0x00000001
138 #define CP_FASTBOOT 0x00000002
139 #define CP_SYNC 0x00000004
140 #define CP_RECOVERY 0x00000008
141 #define CP_DISCARD 0x00000010
142 #define CP_TRIMMED 0x00000020
143
144 #define DEF_BATCHED_TRIM_SECTIONS 2048
145 #define BATCHED_TRIM_SEGMENTS(sbi) \
146 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
147 #define BATCHED_TRIM_BLOCKS(sbi) \
148 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
149 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
150 #define DISCARD_ISSUE_RATE 8
151 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
152 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
153 #define DEF_CP_INTERVAL 60 /* 60 secs */
154 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
155
156 struct cp_control {
157 int reason;
158 __u64 trim_start;
159 __u64 trim_end;
160 __u64 trim_minlen;
161 __u64 trimmed;
162 };
163
164 /*
165 * For CP/NAT/SIT/SSA readahead
166 */
167 enum {
168 META_CP,
169 META_NAT,
170 META_SIT,
171 META_SSA,
172 META_POR,
173 };
174
175 /* for the list of ino */
176 enum {
177 ORPHAN_INO, /* for orphan ino list */
178 APPEND_INO, /* for append ino list */
179 UPDATE_INO, /* for update ino list */
180 MAX_INO_ENTRY, /* max. list */
181 };
182
183 struct ino_entry {
184 struct list_head list; /* list head */
185 nid_t ino; /* inode number */
186 };
187
188 /* for the list of inodes to be GCed */
189 struct inode_entry {
190 struct list_head list; /* list head */
191 struct inode *inode; /* vfs inode pointer */
192 };
193
194 /* for the bitmap indicate blocks to be discarded */
195 struct discard_entry {
196 struct list_head list; /* list head */
197 block_t start_blkaddr; /* start blockaddr of current segment */
198 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
199 };
200
201 /* default discard granularity of inner discard thread, unit: block count */
202 #define DEFAULT_DISCARD_GRANULARITY 16
203
204 /* max discard pend list number */
205 #define MAX_PLIST_NUM 512
206 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
207 (MAX_PLIST_NUM - 1) : (blk_num - 1))
208
209 #define P_ACTIVE 0x01
210 #define P_TRIM 0x02
211 #define plist_issue(tag) (((tag) & P_ACTIVE) || ((tag) & P_TRIM))
212
213 enum {
214 D_PREP,
215 D_SUBMIT,
216 D_DONE,
217 };
218
219 struct discard_info {
220 block_t lstart; /* logical start address */
221 block_t len; /* length */
222 block_t start; /* actual start address in dev */
223 };
224
225 struct discard_cmd {
226 struct rb_node rb_node; /* rb node located in rb-tree */
227 union {
228 struct {
229 block_t lstart; /* logical start address */
230 block_t len; /* length */
231 block_t start; /* actual start address in dev */
232 };
233 struct discard_info di; /* discard info */
234
235 };
236 struct list_head list; /* command list */
237 struct completion wait; /* compleation */
238 struct block_device *bdev; /* bdev */
239 unsigned short ref; /* reference count */
240 unsigned char state; /* state */
241 int error; /* bio error */
242 };
243
244 struct discard_cmd_control {
245 struct task_struct *f2fs_issue_discard; /* discard thread */
246 struct list_head entry_list; /* 4KB discard entry list */
247 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
248 unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */
249 struct list_head wait_list; /* store on-flushing entries */
250 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
251 unsigned int discard_wake; /* to wake up discard thread */
252 struct mutex cmd_lock;
253 unsigned int nr_discards; /* # of discards in the list */
254 unsigned int max_discards; /* max. discards to be issued */
255 unsigned int discard_granularity; /* discard granularity */
256 unsigned int undiscard_blks; /* # of undiscard blocks */
257 atomic_t issued_discard; /* # of issued discard */
258 atomic_t issing_discard; /* # of issing discard */
259 atomic_t discard_cmd_cnt; /* # of cached cmd count */
260 struct rb_root root; /* root of discard rb-tree */
261 };
262
263 /* for the list of fsync inodes, used only during recovery */
264 struct fsync_inode_entry {
265 struct list_head list; /* list head */
266 struct inode *inode; /* vfs inode pointer */
267 block_t blkaddr; /* block address locating the last fsync */
268 block_t last_dentry; /* block address locating the last dentry */
269 };
270
271 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
272 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
273
274 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
275 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
276 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
277 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
278
279 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
280 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
281
282 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
283 {
284 int before = nats_in_cursum(journal);
285
286 journal->n_nats = cpu_to_le16(before + i);
287 return before;
288 }
289
290 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
291 {
292 int before = sits_in_cursum(journal);
293
294 journal->n_sits = cpu_to_le16(before + i);
295 return before;
296 }
297
298 static inline bool __has_cursum_space(struct f2fs_journal *journal,
299 int size, int type)
300 {
301 if (type == NAT_JOURNAL)
302 return size <= MAX_NAT_JENTRIES(journal);
303 return size <= MAX_SIT_JENTRIES(journal);
304 }
305
306 /*
307 * ioctl commands
308 */
309 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
310 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
311 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
312
313 #define F2FS_IOCTL_MAGIC 0xf5
314 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
315 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
316 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
317 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
318 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
319 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
320 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
321 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
322 struct f2fs_defragment)
323 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
324 struct f2fs_move_range)
325 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
326 struct f2fs_flush_device)
327 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
328 struct f2fs_gc_range)
329 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
330
331 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
332 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
333 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
334
335 /*
336 * should be same as XFS_IOC_GOINGDOWN.
337 * Flags for going down operation used by FS_IOC_GOINGDOWN
338 */
339 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
340 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
341 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
342 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
343 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
344
345 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
346 /*
347 * ioctl commands in 32 bit emulation
348 */
349 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
350 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
351 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
352 #endif
353
354 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
355 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
356
357 struct f2fs_gc_range {
358 u32 sync;
359 u64 start;
360 u64 len;
361 };
362
363 struct f2fs_defragment {
364 u64 start;
365 u64 len;
366 };
367
368 struct f2fs_move_range {
369 u32 dst_fd; /* destination fd */
370 u64 pos_in; /* start position in src_fd */
371 u64 pos_out; /* start position in dst_fd */
372 u64 len; /* size to move */
373 };
374
375 struct f2fs_flush_device {
376 u32 dev_num; /* device number to flush */
377 u32 segments; /* # of segments to flush */
378 };
379
380 /* for inline stuff */
381 #define DEF_INLINE_RESERVED_SIZE 1
382 static inline int get_extra_isize(struct inode *inode);
383 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
384 (CUR_ADDRS_PER_INODE(inode) - \
385 DEF_INLINE_RESERVED_SIZE - \
386 F2FS_INLINE_XATTR_ADDRS))
387
388 /* for inline dir */
389 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
390 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
391 BITS_PER_BYTE + 1))
392 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
393 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
394 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
395 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
396 NR_INLINE_DENTRY(inode) + \
397 INLINE_DENTRY_BITMAP_SIZE(inode)))
398
399 /*
400 * For INODE and NODE manager
401 */
402 /* for directory operations */
403 struct f2fs_dentry_ptr {
404 struct inode *inode;
405 void *bitmap;
406 struct f2fs_dir_entry *dentry;
407 __u8 (*filename)[F2FS_SLOT_LEN];
408 int max;
409 int nr_bitmap;
410 };
411
412 static inline void make_dentry_ptr_block(struct inode *inode,
413 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
414 {
415 d->inode = inode;
416 d->max = NR_DENTRY_IN_BLOCK;
417 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
418 d->bitmap = &t->dentry_bitmap;
419 d->dentry = t->dentry;
420 d->filename = t->filename;
421 }
422
423 static inline void make_dentry_ptr_inline(struct inode *inode,
424 struct f2fs_dentry_ptr *d, void *t)
425 {
426 int entry_cnt = NR_INLINE_DENTRY(inode);
427 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
428 int reserved_size = INLINE_RESERVED_SIZE(inode);
429
430 d->inode = inode;
431 d->max = entry_cnt;
432 d->nr_bitmap = bitmap_size;
433 d->bitmap = t;
434 d->dentry = t + bitmap_size + reserved_size;
435 d->filename = t + bitmap_size + reserved_size +
436 SIZE_OF_DIR_ENTRY * entry_cnt;
437 }
438
439 /*
440 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
441 * as its node offset to distinguish from index node blocks.
442 * But some bits are used to mark the node block.
443 */
444 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
445 >> OFFSET_BIT_SHIFT)
446 enum {
447 ALLOC_NODE, /* allocate a new node page if needed */
448 LOOKUP_NODE, /* look up a node without readahead */
449 LOOKUP_NODE_RA, /*
450 * look up a node with readahead called
451 * by get_data_block.
452 */
453 };
454
455 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
456
457 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
458
459 /* vector size for gang look-up from extent cache that consists of radix tree */
460 #define EXT_TREE_VEC_SIZE 64
461
462 /* for in-memory extent cache entry */
463 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
464
465 /* number of extent info in extent cache we try to shrink */
466 #define EXTENT_CACHE_SHRINK_NUMBER 128
467
468 struct rb_entry {
469 struct rb_node rb_node; /* rb node located in rb-tree */
470 unsigned int ofs; /* start offset of the entry */
471 unsigned int len; /* length of the entry */
472 };
473
474 struct extent_info {
475 unsigned int fofs; /* start offset in a file */
476 unsigned int len; /* length of the extent */
477 u32 blk; /* start block address of the extent */
478 };
479
480 struct extent_node {
481 struct rb_node rb_node;
482 union {
483 struct {
484 unsigned int fofs;
485 unsigned int len;
486 u32 blk;
487 };
488 struct extent_info ei; /* extent info */
489
490 };
491 struct list_head list; /* node in global extent list of sbi */
492 struct extent_tree *et; /* extent tree pointer */
493 };
494
495 struct extent_tree {
496 nid_t ino; /* inode number */
497 struct rb_root root; /* root of extent info rb-tree */
498 struct extent_node *cached_en; /* recently accessed extent node */
499 struct extent_info largest; /* largested extent info */
500 struct list_head list; /* to be used by sbi->zombie_list */
501 rwlock_t lock; /* protect extent info rb-tree */
502 atomic_t node_cnt; /* # of extent node in rb-tree*/
503 };
504
505 /*
506 * This structure is taken from ext4_map_blocks.
507 *
508 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
509 */
510 #define F2FS_MAP_NEW (1 << BH_New)
511 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
512 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
513 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
514 F2FS_MAP_UNWRITTEN)
515
516 struct f2fs_map_blocks {
517 block_t m_pblk;
518 block_t m_lblk;
519 unsigned int m_len;
520 unsigned int m_flags;
521 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
522 };
523
524 /* for flag in get_data_block */
525 enum {
526 F2FS_GET_BLOCK_DEFAULT,
527 F2FS_GET_BLOCK_FIEMAP,
528 F2FS_GET_BLOCK_BMAP,
529 F2FS_GET_BLOCK_PRE_DIO,
530 F2FS_GET_BLOCK_PRE_AIO,
531 };
532
533 /*
534 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
535 */
536 #define FADVISE_COLD_BIT 0x01
537 #define FADVISE_LOST_PINO_BIT 0x02
538 #define FADVISE_ENCRYPT_BIT 0x04
539 #define FADVISE_ENC_NAME_BIT 0x08
540 #define FADVISE_KEEP_SIZE_BIT 0x10
541
542 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
543 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
544 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
545 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
546 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
547 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
548 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
549 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
550 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
551 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
552 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
553 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
554 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
555
556 #define DEF_DIR_LEVEL 0
557
558 struct f2fs_inode_info {
559 struct inode vfs_inode; /* serve a vfs inode */
560 unsigned long i_flags; /* keep an inode flags for ioctl */
561 unsigned char i_advise; /* use to give file attribute hints */
562 unsigned char i_dir_level; /* use for dentry level for large dir */
563 unsigned int i_current_depth; /* use only in directory structure */
564 unsigned int i_pino; /* parent inode number */
565 umode_t i_acl_mode; /* keep file acl mode temporarily */
566
567 /* Use below internally in f2fs*/
568 unsigned long flags; /* use to pass per-file flags */
569 struct rw_semaphore i_sem; /* protect fi info */
570 atomic_t dirty_pages; /* # of dirty pages */
571 f2fs_hash_t chash; /* hash value of given file name */
572 unsigned int clevel; /* maximum level of given file name */
573 struct task_struct *task; /* lookup and create consistency */
574 struct task_struct *cp_task; /* separate cp/wb IO stats*/
575 nid_t i_xattr_nid; /* node id that contains xattrs */
576 loff_t last_disk_size; /* lastly written file size */
577
578 #ifdef CONFIG_QUOTA
579 struct dquot *i_dquot[MAXQUOTAS];
580
581 /* quota space reservation, managed internally by quota code */
582 qsize_t i_reserved_quota;
583 #endif
584 struct list_head dirty_list; /* dirty list for dirs and files */
585 struct list_head gdirty_list; /* linked in global dirty list */
586 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
587 struct task_struct *inmem_task; /* store inmemory task */
588 struct mutex inmem_lock; /* lock for inmemory pages */
589 struct extent_tree *extent_tree; /* cached extent_tree entry */
590 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
591 struct rw_semaphore i_mmap_sem;
592 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
593
594 int i_extra_isize; /* size of extra space located in i_addr */
595 kprojid_t i_projid; /* id for project quota */
596 };
597
598 static inline void get_extent_info(struct extent_info *ext,
599 struct f2fs_extent *i_ext)
600 {
601 ext->fofs = le32_to_cpu(i_ext->fofs);
602 ext->blk = le32_to_cpu(i_ext->blk);
603 ext->len = le32_to_cpu(i_ext->len);
604 }
605
606 static inline void set_raw_extent(struct extent_info *ext,
607 struct f2fs_extent *i_ext)
608 {
609 i_ext->fofs = cpu_to_le32(ext->fofs);
610 i_ext->blk = cpu_to_le32(ext->blk);
611 i_ext->len = cpu_to_le32(ext->len);
612 }
613
614 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
615 u32 blk, unsigned int len)
616 {
617 ei->fofs = fofs;
618 ei->blk = blk;
619 ei->len = len;
620 }
621
622 static inline bool __is_discard_mergeable(struct discard_info *back,
623 struct discard_info *front)
624 {
625 return back->lstart + back->len == front->lstart;
626 }
627
628 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
629 struct discard_info *back)
630 {
631 return __is_discard_mergeable(back, cur);
632 }
633
634 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
635 struct discard_info *front)
636 {
637 return __is_discard_mergeable(cur, front);
638 }
639
640 static inline bool __is_extent_mergeable(struct extent_info *back,
641 struct extent_info *front)
642 {
643 return (back->fofs + back->len == front->fofs &&
644 back->blk + back->len == front->blk);
645 }
646
647 static inline bool __is_back_mergeable(struct extent_info *cur,
648 struct extent_info *back)
649 {
650 return __is_extent_mergeable(back, cur);
651 }
652
653 static inline bool __is_front_mergeable(struct extent_info *cur,
654 struct extent_info *front)
655 {
656 return __is_extent_mergeable(cur, front);
657 }
658
659 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
660 static inline void __try_update_largest_extent(struct inode *inode,
661 struct extent_tree *et, struct extent_node *en)
662 {
663 if (en->ei.len > et->largest.len) {
664 et->largest = en->ei;
665 f2fs_mark_inode_dirty_sync(inode, true);
666 }
667 }
668
669 enum nid_list {
670 FREE_NID_LIST,
671 ALLOC_NID_LIST,
672 MAX_NID_LIST,
673 };
674
675 struct f2fs_nm_info {
676 block_t nat_blkaddr; /* base disk address of NAT */
677 nid_t max_nid; /* maximum possible node ids */
678 nid_t available_nids; /* # of available node ids */
679 nid_t next_scan_nid; /* the next nid to be scanned */
680 unsigned int ram_thresh; /* control the memory footprint */
681 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
682 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
683
684 /* NAT cache management */
685 struct radix_tree_root nat_root;/* root of the nat entry cache */
686 struct radix_tree_root nat_set_root;/* root of the nat set cache */
687 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
688 struct list_head nat_entries; /* cached nat entry list (clean) */
689 unsigned int nat_cnt; /* the # of cached nat entries */
690 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
691 unsigned int nat_blocks; /* # of nat blocks */
692
693 /* free node ids management */
694 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
695 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
696 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */
697 spinlock_t nid_list_lock; /* protect nid lists ops */
698 struct mutex build_lock; /* lock for build free nids */
699 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
700 unsigned char *nat_block_bitmap;
701 unsigned short *free_nid_count; /* free nid count of NAT block */
702
703 /* for checkpoint */
704 char *nat_bitmap; /* NAT bitmap pointer */
705
706 unsigned int nat_bits_blocks; /* # of nat bits blocks */
707 unsigned char *nat_bits; /* NAT bits blocks */
708 unsigned char *full_nat_bits; /* full NAT pages */
709 unsigned char *empty_nat_bits; /* empty NAT pages */
710 #ifdef CONFIG_F2FS_CHECK_FS
711 char *nat_bitmap_mir; /* NAT bitmap mirror */
712 #endif
713 int bitmap_size; /* bitmap size */
714 };
715
716 /*
717 * this structure is used as one of function parameters.
718 * all the information are dedicated to a given direct node block determined
719 * by the data offset in a file.
720 */
721 struct dnode_of_data {
722 struct inode *inode; /* vfs inode pointer */
723 struct page *inode_page; /* its inode page, NULL is possible */
724 struct page *node_page; /* cached direct node page */
725 nid_t nid; /* node id of the direct node block */
726 unsigned int ofs_in_node; /* data offset in the node page */
727 bool inode_page_locked; /* inode page is locked or not */
728 bool node_changed; /* is node block changed */
729 char cur_level; /* level of hole node page */
730 char max_level; /* level of current page located */
731 block_t data_blkaddr; /* block address of the node block */
732 };
733
734 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
735 struct page *ipage, struct page *npage, nid_t nid)
736 {
737 memset(dn, 0, sizeof(*dn));
738 dn->inode = inode;
739 dn->inode_page = ipage;
740 dn->node_page = npage;
741 dn->nid = nid;
742 }
743
744 /*
745 * For SIT manager
746 *
747 * By default, there are 6 active log areas across the whole main area.
748 * When considering hot and cold data separation to reduce cleaning overhead,
749 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
750 * respectively.
751 * In the current design, you should not change the numbers intentionally.
752 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
753 * logs individually according to the underlying devices. (default: 6)
754 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
755 * data and 8 for node logs.
756 */
757 #define NR_CURSEG_DATA_TYPE (3)
758 #define NR_CURSEG_NODE_TYPE (3)
759 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
760
761 enum {
762 CURSEG_HOT_DATA = 0, /* directory entry blocks */
763 CURSEG_WARM_DATA, /* data blocks */
764 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
765 CURSEG_HOT_NODE, /* direct node blocks of directory files */
766 CURSEG_WARM_NODE, /* direct node blocks of normal files */
767 CURSEG_COLD_NODE, /* indirect node blocks */
768 NO_CHECK_TYPE,
769 };
770
771 struct flush_cmd {
772 struct completion wait;
773 struct llist_node llnode;
774 int ret;
775 };
776
777 struct flush_cmd_control {
778 struct task_struct *f2fs_issue_flush; /* flush thread */
779 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
780 atomic_t issued_flush; /* # of issued flushes */
781 atomic_t issing_flush; /* # of issing flushes */
782 struct llist_head issue_list; /* list for command issue */
783 struct llist_node *dispatch_list; /* list for command dispatch */
784 };
785
786 struct f2fs_sm_info {
787 struct sit_info *sit_info; /* whole segment information */
788 struct free_segmap_info *free_info; /* free segment information */
789 struct dirty_seglist_info *dirty_info; /* dirty segment information */
790 struct curseg_info *curseg_array; /* active segment information */
791
792 block_t seg0_blkaddr; /* block address of 0'th segment */
793 block_t main_blkaddr; /* start block address of main area */
794 block_t ssa_blkaddr; /* start block address of SSA area */
795
796 unsigned int segment_count; /* total # of segments */
797 unsigned int main_segments; /* # of segments in main area */
798 unsigned int reserved_segments; /* # of reserved segments */
799 unsigned int ovp_segments; /* # of overprovision segments */
800
801 /* a threshold to reclaim prefree segments */
802 unsigned int rec_prefree_segments;
803
804 /* for batched trimming */
805 unsigned int trim_sections; /* # of sections to trim */
806
807 struct list_head sit_entry_set; /* sit entry set list */
808
809 unsigned int ipu_policy; /* in-place-update policy */
810 unsigned int min_ipu_util; /* in-place-update threshold */
811 unsigned int min_fsync_blocks; /* threshold for fsync */
812 unsigned int min_hot_blocks; /* threshold for hot block allocation */
813
814 /* for flush command control */
815 struct flush_cmd_control *fcc_info;
816
817 /* for discard command control */
818 struct discard_cmd_control *dcc_info;
819 };
820
821 /*
822 * For superblock
823 */
824 /*
825 * COUNT_TYPE for monitoring
826 *
827 * f2fs monitors the number of several block types such as on-writeback,
828 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
829 */
830 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
831 enum count_type {
832 F2FS_DIRTY_DENTS,
833 F2FS_DIRTY_DATA,
834 F2FS_DIRTY_NODES,
835 F2FS_DIRTY_META,
836 F2FS_INMEM_PAGES,
837 F2FS_DIRTY_IMETA,
838 F2FS_WB_CP_DATA,
839 F2FS_WB_DATA,
840 NR_COUNT_TYPE,
841 };
842
843 /*
844 * The below are the page types of bios used in submit_bio().
845 * The available types are:
846 * DATA User data pages. It operates as async mode.
847 * NODE Node pages. It operates as async mode.
848 * META FS metadata pages such as SIT, NAT, CP.
849 * NR_PAGE_TYPE The number of page types.
850 * META_FLUSH Make sure the previous pages are written
851 * with waiting the bio's completion
852 * ... Only can be used with META.
853 */
854 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
855 enum page_type {
856 DATA,
857 NODE,
858 META,
859 NR_PAGE_TYPE,
860 META_FLUSH,
861 INMEM, /* the below types are used by tracepoints only. */
862 INMEM_DROP,
863 INMEM_INVALIDATE,
864 INMEM_REVOKE,
865 IPU,
866 OPU,
867 };
868
869 enum temp_type {
870 HOT = 0, /* must be zero for meta bio */
871 WARM,
872 COLD,
873 NR_TEMP_TYPE,
874 };
875
876 enum need_lock_type {
877 LOCK_REQ = 0,
878 LOCK_DONE,
879 LOCK_RETRY,
880 };
881
882 enum iostat_type {
883 APP_DIRECT_IO, /* app direct IOs */
884 APP_BUFFERED_IO, /* app buffered IOs */
885 APP_WRITE_IO, /* app write IOs */
886 APP_MAPPED_IO, /* app mapped IOs */
887 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
888 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
889 FS_META_IO, /* meta IOs from kworker/reclaimer */
890 FS_GC_DATA_IO, /* data IOs from forground gc */
891 FS_GC_NODE_IO, /* node IOs from forground gc */
892 FS_CP_DATA_IO, /* data IOs from checkpoint */
893 FS_CP_NODE_IO, /* node IOs from checkpoint */
894 FS_CP_META_IO, /* meta IOs from checkpoint */
895 FS_DISCARD, /* discard */
896 NR_IO_TYPE,
897 };
898
899 struct f2fs_io_info {
900 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
901 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
902 enum temp_type temp; /* contains HOT/WARM/COLD */
903 int op; /* contains REQ_OP_ */
904 int op_flags; /* req_flag_bits */
905 block_t new_blkaddr; /* new block address to be written */
906 block_t old_blkaddr; /* old block address before Cow */
907 struct page *page; /* page to be written */
908 struct page *encrypted_page; /* encrypted page */
909 struct list_head list; /* serialize IOs */
910 bool submitted; /* indicate IO submission */
911 int need_lock; /* indicate we need to lock cp_rwsem */
912 bool in_list; /* indicate fio is in io_list */
913 enum iostat_type io_type; /* io type */
914 };
915
916 #define is_read_io(rw) ((rw) == READ)
917 struct f2fs_bio_info {
918 struct f2fs_sb_info *sbi; /* f2fs superblock */
919 struct bio *bio; /* bios to merge */
920 sector_t last_block_in_bio; /* last block number */
921 struct f2fs_io_info fio; /* store buffered io info. */
922 struct rw_semaphore io_rwsem; /* blocking op for bio */
923 spinlock_t io_lock; /* serialize DATA/NODE IOs */
924 struct list_head io_list; /* track fios */
925 };
926
927 #define FDEV(i) (sbi->devs[i])
928 #define RDEV(i) (raw_super->devs[i])
929 struct f2fs_dev_info {
930 struct block_device *bdev;
931 char path[MAX_PATH_LEN];
932 unsigned int total_segments;
933 block_t start_blk;
934 block_t end_blk;
935 #ifdef CONFIG_BLK_DEV_ZONED
936 unsigned int nr_blkz; /* Total number of zones */
937 u8 *blkz_type; /* Array of zones type */
938 #endif
939 };
940
941 enum inode_type {
942 DIR_INODE, /* for dirty dir inode */
943 FILE_INODE, /* for dirty regular/symlink inode */
944 DIRTY_META, /* for all dirtied inode metadata */
945 NR_INODE_TYPE,
946 };
947
948 /* for inner inode cache management */
949 struct inode_management {
950 struct radix_tree_root ino_root; /* ino entry array */
951 spinlock_t ino_lock; /* for ino entry lock */
952 struct list_head ino_list; /* inode list head */
953 unsigned long ino_num; /* number of entries */
954 };
955
956 /* For s_flag in struct f2fs_sb_info */
957 enum {
958 SBI_IS_DIRTY, /* dirty flag for checkpoint */
959 SBI_IS_CLOSE, /* specify unmounting */
960 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
961 SBI_POR_DOING, /* recovery is doing or not */
962 SBI_NEED_SB_WRITE, /* need to recover superblock */
963 SBI_NEED_CP, /* need to checkpoint */
964 };
965
966 enum {
967 CP_TIME,
968 REQ_TIME,
969 MAX_TIME,
970 };
971
972 struct f2fs_sb_info {
973 struct super_block *sb; /* pointer to VFS super block */
974 struct proc_dir_entry *s_proc; /* proc entry */
975 struct f2fs_super_block *raw_super; /* raw super block pointer */
976 int valid_super_block; /* valid super block no */
977 unsigned long s_flag; /* flags for sbi */
978
979 #ifdef CONFIG_BLK_DEV_ZONED
980 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
981 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
982 #endif
983
984 /* for node-related operations */
985 struct f2fs_nm_info *nm_info; /* node manager */
986 struct inode *node_inode; /* cache node blocks */
987
988 /* for segment-related operations */
989 struct f2fs_sm_info *sm_info; /* segment manager */
990
991 /* for bio operations */
992 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
993 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
994 /* bio ordering for NODE/DATA */
995 int write_io_size_bits; /* Write IO size bits */
996 mempool_t *write_io_dummy; /* Dummy pages */
997
998 /* for checkpoint */
999 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1000 int cur_cp_pack; /* remain current cp pack */
1001 spinlock_t cp_lock; /* for flag in ckpt */
1002 struct inode *meta_inode; /* cache meta blocks */
1003 struct mutex cp_mutex; /* checkpoint procedure lock */
1004 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1005 struct rw_semaphore node_write; /* locking node writes */
1006 struct rw_semaphore node_change; /* locking node change */
1007 wait_queue_head_t cp_wait;
1008 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1009 long interval_time[MAX_TIME]; /* to store thresholds */
1010
1011 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1012
1013 /* for orphan inode, use 0'th array */
1014 unsigned int max_orphans; /* max orphan inodes */
1015
1016 /* for inode management */
1017 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1018 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1019
1020 /* for extent tree cache */
1021 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1022 struct mutex extent_tree_lock; /* locking extent radix tree */
1023 struct list_head extent_list; /* lru list for shrinker */
1024 spinlock_t extent_lock; /* locking extent lru list */
1025 atomic_t total_ext_tree; /* extent tree count */
1026 struct list_head zombie_list; /* extent zombie tree list */
1027 atomic_t total_zombie_tree; /* extent zombie tree count */
1028 atomic_t total_ext_node; /* extent info count */
1029
1030 /* basic filesystem units */
1031 unsigned int log_sectors_per_block; /* log2 sectors per block */
1032 unsigned int log_blocksize; /* log2 block size */
1033 unsigned int blocksize; /* block size */
1034 unsigned int root_ino_num; /* root inode number*/
1035 unsigned int node_ino_num; /* node inode number*/
1036 unsigned int meta_ino_num; /* meta inode number*/
1037 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1038 unsigned int blocks_per_seg; /* blocks per segment */
1039 unsigned int segs_per_sec; /* segments per section */
1040 unsigned int secs_per_zone; /* sections per zone */
1041 unsigned int total_sections; /* total section count */
1042 unsigned int total_node_count; /* total node block count */
1043 unsigned int total_valid_node_count; /* valid node block count */
1044 loff_t max_file_blocks; /* max block index of file */
1045 int active_logs; /* # of active logs */
1046 int dir_level; /* directory level */
1047
1048 block_t user_block_count; /* # of user blocks */
1049 block_t total_valid_block_count; /* # of valid blocks */
1050 block_t discard_blks; /* discard command candidats */
1051 block_t last_valid_block_count; /* for recovery */
1052 block_t reserved_blocks; /* configurable reserved blocks */
1053
1054 u32 s_next_generation; /* for NFS support */
1055
1056 /* # of pages, see count_type */
1057 atomic_t nr_pages[NR_COUNT_TYPE];
1058 /* # of allocated blocks */
1059 struct percpu_counter alloc_valid_block_count;
1060
1061 /* writeback control */
1062 atomic_t wb_sync_req; /* count # of WB_SYNC threads */
1063
1064 /* valid inode count */
1065 struct percpu_counter total_valid_inode_count;
1066
1067 struct f2fs_mount_info mount_opt; /* mount options */
1068
1069 /* for cleaning operations */
1070 struct mutex gc_mutex; /* mutex for GC */
1071 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1072 unsigned int cur_victim_sec; /* current victim section num */
1073
1074 /* threshold for converting bg victims for fg */
1075 u64 fggc_threshold;
1076
1077 /* maximum # of trials to find a victim segment for SSR and GC */
1078 unsigned int max_victim_search;
1079
1080 /*
1081 * for stat information.
1082 * one is for the LFS mode, and the other is for the SSR mode.
1083 */
1084 #ifdef CONFIG_F2FS_STAT_FS
1085 struct f2fs_stat_info *stat_info; /* FS status information */
1086 unsigned int segment_count[2]; /* # of allocated segments */
1087 unsigned int block_count[2]; /* # of allocated blocks */
1088 atomic_t inplace_count; /* # of inplace update */
1089 atomic64_t total_hit_ext; /* # of lookup extent cache */
1090 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1091 atomic64_t read_hit_largest; /* # of hit largest extent node */
1092 atomic64_t read_hit_cached; /* # of hit cached extent node */
1093 atomic_t inline_xattr; /* # of inline_xattr inodes */
1094 atomic_t inline_inode; /* # of inline_data inodes */
1095 atomic_t inline_dir; /* # of inline_dentry inodes */
1096 atomic_t aw_cnt; /* # of atomic writes */
1097 atomic_t vw_cnt; /* # of volatile writes */
1098 atomic_t max_aw_cnt; /* max # of atomic writes */
1099 atomic_t max_vw_cnt; /* max # of volatile writes */
1100 int bg_gc; /* background gc calls */
1101 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1102 #endif
1103 spinlock_t stat_lock; /* lock for stat operations */
1104
1105 /* For app/fs IO statistics */
1106 spinlock_t iostat_lock;
1107 unsigned long long write_iostat[NR_IO_TYPE];
1108 bool iostat_enable;
1109
1110 /* For sysfs suppport */
1111 struct kobject s_kobj;
1112 struct completion s_kobj_unregister;
1113
1114 /* For shrinker support */
1115 struct list_head s_list;
1116 int s_ndevs; /* number of devices */
1117 struct f2fs_dev_info *devs; /* for device list */
1118 struct mutex umount_mutex;
1119 unsigned int shrinker_run_no;
1120
1121 /* For write statistics */
1122 u64 sectors_written_start;
1123 u64 kbytes_written;
1124
1125 /* Reference to checksum algorithm driver via cryptoapi */
1126 struct crypto_shash *s_chksum_driver;
1127
1128 /* Precomputed FS UUID checksum for seeding other checksums */
1129 __u32 s_chksum_seed;
1130
1131 /* For fault injection */
1132 #ifdef CONFIG_F2FS_FAULT_INJECTION
1133 struct f2fs_fault_info fault_info;
1134 #endif
1135
1136 #ifdef CONFIG_QUOTA
1137 /* Names of quota files with journalled quota */
1138 char *s_qf_names[MAXQUOTAS];
1139 int s_jquota_fmt; /* Format of quota to use */
1140 #endif
1141 };
1142
1143 #ifdef CONFIG_F2FS_FAULT_INJECTION
1144 #define f2fs_show_injection_info(type) \
1145 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1146 KERN_INFO, fault_name[type], \
1147 __func__, __builtin_return_address(0))
1148 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1149 {
1150 struct f2fs_fault_info *ffi = &sbi->fault_info;
1151
1152 if (!ffi->inject_rate)
1153 return false;
1154
1155 if (!IS_FAULT_SET(ffi, type))
1156 return false;
1157
1158 atomic_inc(&ffi->inject_ops);
1159 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1160 atomic_set(&ffi->inject_ops, 0);
1161 return true;
1162 }
1163 return false;
1164 }
1165 #endif
1166
1167 /* For write statistics. Suppose sector size is 512 bytes,
1168 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1169 */
1170 #define BD_PART_WRITTEN(s) \
1171 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1172 (s)->sectors_written_start) >> 1)
1173
1174 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1175 {
1176 sbi->last_time[type] = jiffies;
1177 }
1178
1179 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1180 {
1181 struct timespec ts = {sbi->interval_time[type], 0};
1182 unsigned long interval = timespec_to_jiffies(&ts);
1183
1184 return time_after(jiffies, sbi->last_time[type] + interval);
1185 }
1186
1187 static inline bool is_idle(struct f2fs_sb_info *sbi)
1188 {
1189 struct block_device *bdev = sbi->sb->s_bdev;
1190 struct request_queue *q = bdev_get_queue(bdev);
1191 struct request_list *rl = &q->root_rl;
1192
1193 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1194 return 0;
1195
1196 return f2fs_time_over(sbi, REQ_TIME);
1197 }
1198
1199 /*
1200 * Inline functions
1201 */
1202 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1203 unsigned int length)
1204 {
1205 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1206 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1207 u32 retval;
1208 int err;
1209
1210 shash->tfm = sbi->s_chksum_driver;
1211 shash->flags = 0;
1212 *ctx = F2FS_SUPER_MAGIC;
1213
1214 err = crypto_shash_update(shash, address, length);
1215 BUG_ON(err);
1216
1217 retval = *ctx;
1218 barrier_data(ctx);
1219 return retval;
1220 }
1221
1222 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1223 void *buf, size_t buf_size)
1224 {
1225 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1226 }
1227
1228 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1229 const void *address, unsigned int length)
1230 {
1231 struct {
1232 struct shash_desc shash;
1233 char ctx[4];
1234 } desc;
1235 int err;
1236
1237 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1238
1239 desc.shash.tfm = sbi->s_chksum_driver;
1240 desc.shash.flags = 0;
1241 *(u32 *)desc.ctx = crc;
1242
1243 err = crypto_shash_update(&desc.shash, address, length);
1244 BUG_ON(err);
1245
1246 return *(u32 *)desc.ctx;
1247 }
1248
1249 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1250 {
1251 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1252 }
1253
1254 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1255 {
1256 return sb->s_fs_info;
1257 }
1258
1259 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1260 {
1261 return F2FS_SB(inode->i_sb);
1262 }
1263
1264 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1265 {
1266 return F2FS_I_SB(mapping->host);
1267 }
1268
1269 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1270 {
1271 return F2FS_M_SB(page->mapping);
1272 }
1273
1274 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1275 {
1276 return (struct f2fs_super_block *)(sbi->raw_super);
1277 }
1278
1279 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1280 {
1281 return (struct f2fs_checkpoint *)(sbi->ckpt);
1282 }
1283
1284 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1285 {
1286 return (struct f2fs_node *)page_address(page);
1287 }
1288
1289 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1290 {
1291 return &((struct f2fs_node *)page_address(page))->i;
1292 }
1293
1294 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1295 {
1296 return (struct f2fs_nm_info *)(sbi->nm_info);
1297 }
1298
1299 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1300 {
1301 return (struct f2fs_sm_info *)(sbi->sm_info);
1302 }
1303
1304 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1305 {
1306 return (struct sit_info *)(SM_I(sbi)->sit_info);
1307 }
1308
1309 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1310 {
1311 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1312 }
1313
1314 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1315 {
1316 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1317 }
1318
1319 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1320 {
1321 return sbi->meta_inode->i_mapping;
1322 }
1323
1324 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1325 {
1326 return sbi->node_inode->i_mapping;
1327 }
1328
1329 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1330 {
1331 return test_bit(type, &sbi->s_flag);
1332 }
1333
1334 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1335 {
1336 set_bit(type, &sbi->s_flag);
1337 }
1338
1339 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1340 {
1341 clear_bit(type, &sbi->s_flag);
1342 }
1343
1344 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1345 {
1346 return le64_to_cpu(cp->checkpoint_ver);
1347 }
1348
1349 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1350 {
1351 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1352 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1353 }
1354
1355 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1356 {
1357 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1358
1359 return ckpt_flags & f;
1360 }
1361
1362 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1363 {
1364 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1365 }
1366
1367 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1368 {
1369 unsigned int ckpt_flags;
1370
1371 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1372 ckpt_flags |= f;
1373 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1374 }
1375
1376 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1377 {
1378 unsigned long flags;
1379
1380 spin_lock_irqsave(&sbi->cp_lock, flags);
1381 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1382 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1383 }
1384
1385 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1386 {
1387 unsigned int ckpt_flags;
1388
1389 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1390 ckpt_flags &= (~f);
1391 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1392 }
1393
1394 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1395 {
1396 unsigned long flags;
1397
1398 spin_lock_irqsave(&sbi->cp_lock, flags);
1399 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1400 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1401 }
1402
1403 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1404 {
1405 unsigned long flags;
1406
1407 set_sbi_flag(sbi, SBI_NEED_FSCK);
1408
1409 if (lock)
1410 spin_lock_irqsave(&sbi->cp_lock, flags);
1411 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1412 kfree(NM_I(sbi)->nat_bits);
1413 NM_I(sbi)->nat_bits = NULL;
1414 if (lock)
1415 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1416 }
1417
1418 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1419 struct cp_control *cpc)
1420 {
1421 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1422
1423 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1424 }
1425
1426 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1427 {
1428 down_read(&sbi->cp_rwsem);
1429 }
1430
1431 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1432 {
1433 return down_read_trylock(&sbi->cp_rwsem);
1434 }
1435
1436 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1437 {
1438 up_read(&sbi->cp_rwsem);
1439 }
1440
1441 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1442 {
1443 down_write(&sbi->cp_rwsem);
1444 }
1445
1446 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1447 {
1448 up_write(&sbi->cp_rwsem);
1449 }
1450
1451 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1452 {
1453 int reason = CP_SYNC;
1454
1455 if (test_opt(sbi, FASTBOOT))
1456 reason = CP_FASTBOOT;
1457 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1458 reason = CP_UMOUNT;
1459 return reason;
1460 }
1461
1462 static inline bool __remain_node_summaries(int reason)
1463 {
1464 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1465 }
1466
1467 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1468 {
1469 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1470 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1471 }
1472
1473 /*
1474 * Check whether the given nid is within node id range.
1475 */
1476 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1477 {
1478 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1479 return -EINVAL;
1480 if (unlikely(nid >= NM_I(sbi)->max_nid))
1481 return -EINVAL;
1482 return 0;
1483 }
1484
1485 /*
1486 * Check whether the inode has blocks or not
1487 */
1488 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1489 {
1490 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1491
1492 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1493 }
1494
1495 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1496 {
1497 return ofs == XATTR_NODE_OFFSET;
1498 }
1499
1500 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1501 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1502 struct inode *inode, blkcnt_t *count)
1503 {
1504 blkcnt_t diff = 0, release = 0;
1505 block_t avail_user_block_count;
1506 int ret;
1507
1508 ret = dquot_reserve_block(inode, *count);
1509 if (ret)
1510 return ret;
1511
1512 #ifdef CONFIG_F2FS_FAULT_INJECTION
1513 if (time_to_inject(sbi, FAULT_BLOCK)) {
1514 f2fs_show_injection_info(FAULT_BLOCK);
1515 release = *count;
1516 goto enospc;
1517 }
1518 #endif
1519 /*
1520 * let's increase this in prior to actual block count change in order
1521 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1522 */
1523 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1524
1525 spin_lock(&sbi->stat_lock);
1526 sbi->total_valid_block_count += (block_t)(*count);
1527 avail_user_block_count = sbi->user_block_count - sbi->reserved_blocks;
1528 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1529 diff = sbi->total_valid_block_count - avail_user_block_count;
1530 *count -= diff;
1531 release = diff;
1532 sbi->total_valid_block_count = avail_user_block_count;
1533 if (!*count) {
1534 spin_unlock(&sbi->stat_lock);
1535 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1536 goto enospc;
1537 }
1538 }
1539 spin_unlock(&sbi->stat_lock);
1540
1541 if (release)
1542 dquot_release_reservation_block(inode, release);
1543 f2fs_i_blocks_write(inode, *count, true, true);
1544 return 0;
1545
1546 enospc:
1547 dquot_release_reservation_block(inode, release);
1548 return -ENOSPC;
1549 }
1550
1551 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1552 struct inode *inode,
1553 block_t count)
1554 {
1555 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1556
1557 spin_lock(&sbi->stat_lock);
1558 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1559 f2fs_bug_on(sbi, inode->i_blocks < sectors);
1560 sbi->total_valid_block_count -= (block_t)count;
1561 spin_unlock(&sbi->stat_lock);
1562 f2fs_i_blocks_write(inode, count, false, true);
1563 }
1564
1565 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1566 {
1567 atomic_inc(&sbi->nr_pages[count_type]);
1568
1569 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1570 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1571 return;
1572
1573 set_sbi_flag(sbi, SBI_IS_DIRTY);
1574 }
1575
1576 static inline void inode_inc_dirty_pages(struct inode *inode)
1577 {
1578 atomic_inc(&F2FS_I(inode)->dirty_pages);
1579 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1580 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1581 }
1582
1583 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1584 {
1585 atomic_dec(&sbi->nr_pages[count_type]);
1586 }
1587
1588 static inline void inode_dec_dirty_pages(struct inode *inode)
1589 {
1590 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1591 !S_ISLNK(inode->i_mode))
1592 return;
1593
1594 atomic_dec(&F2FS_I(inode)->dirty_pages);
1595 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1596 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1597 }
1598
1599 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1600 {
1601 return atomic_read(&sbi->nr_pages[count_type]);
1602 }
1603
1604 static inline int get_dirty_pages(struct inode *inode)
1605 {
1606 return atomic_read(&F2FS_I(inode)->dirty_pages);
1607 }
1608
1609 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1610 {
1611 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1612 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1613 sbi->log_blocks_per_seg;
1614
1615 return segs / sbi->segs_per_sec;
1616 }
1617
1618 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1619 {
1620 return sbi->total_valid_block_count;
1621 }
1622
1623 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1624 {
1625 return sbi->discard_blks;
1626 }
1627
1628 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1629 {
1630 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1631
1632 /* return NAT or SIT bitmap */
1633 if (flag == NAT_BITMAP)
1634 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1635 else if (flag == SIT_BITMAP)
1636 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1637
1638 return 0;
1639 }
1640
1641 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1642 {
1643 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1644 }
1645
1646 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1647 {
1648 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1649 int offset;
1650
1651 if (__cp_payload(sbi) > 0) {
1652 if (flag == NAT_BITMAP)
1653 return &ckpt->sit_nat_version_bitmap;
1654 else
1655 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1656 } else {
1657 offset = (flag == NAT_BITMAP) ?
1658 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1659 return &ckpt->sit_nat_version_bitmap + offset;
1660 }
1661 }
1662
1663 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1664 {
1665 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1666
1667 if (sbi->cur_cp_pack == 2)
1668 start_addr += sbi->blocks_per_seg;
1669 return start_addr;
1670 }
1671
1672 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1673 {
1674 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1675
1676 if (sbi->cur_cp_pack == 1)
1677 start_addr += sbi->blocks_per_seg;
1678 return start_addr;
1679 }
1680
1681 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1682 {
1683 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1684 }
1685
1686 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1687 {
1688 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1689 }
1690
1691 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1692 struct inode *inode, bool is_inode)
1693 {
1694 block_t valid_block_count;
1695 unsigned int valid_node_count;
1696 bool quota = inode && !is_inode;
1697
1698 if (quota) {
1699 int ret = dquot_reserve_block(inode, 1);
1700 if (ret)
1701 return ret;
1702 }
1703
1704 spin_lock(&sbi->stat_lock);
1705
1706 valid_block_count = sbi->total_valid_block_count + 1;
1707 if (unlikely(valid_block_count + sbi->reserved_blocks >
1708 sbi->user_block_count)) {
1709 spin_unlock(&sbi->stat_lock);
1710 goto enospc;
1711 }
1712
1713 valid_node_count = sbi->total_valid_node_count + 1;
1714 if (unlikely(valid_node_count > sbi->total_node_count)) {
1715 spin_unlock(&sbi->stat_lock);
1716 goto enospc;
1717 }
1718
1719 sbi->total_valid_node_count++;
1720 sbi->total_valid_block_count++;
1721 spin_unlock(&sbi->stat_lock);
1722
1723 if (inode) {
1724 if (is_inode)
1725 f2fs_mark_inode_dirty_sync(inode, true);
1726 else
1727 f2fs_i_blocks_write(inode, 1, true, true);
1728 }
1729
1730 percpu_counter_inc(&sbi->alloc_valid_block_count);
1731 return 0;
1732
1733 enospc:
1734 if (quota)
1735 dquot_release_reservation_block(inode, 1);
1736 return -ENOSPC;
1737 }
1738
1739 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1740 struct inode *inode, bool is_inode)
1741 {
1742 spin_lock(&sbi->stat_lock);
1743
1744 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1745 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1746 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1747
1748 sbi->total_valid_node_count--;
1749 sbi->total_valid_block_count--;
1750
1751 spin_unlock(&sbi->stat_lock);
1752
1753 if (!is_inode)
1754 f2fs_i_blocks_write(inode, 1, false, true);
1755 }
1756
1757 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1758 {
1759 return sbi->total_valid_node_count;
1760 }
1761
1762 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1763 {
1764 percpu_counter_inc(&sbi->total_valid_inode_count);
1765 }
1766
1767 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1768 {
1769 percpu_counter_dec(&sbi->total_valid_inode_count);
1770 }
1771
1772 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1773 {
1774 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1775 }
1776
1777 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1778 pgoff_t index, bool for_write)
1779 {
1780 #ifdef CONFIG_F2FS_FAULT_INJECTION
1781 struct page *page = find_lock_page(mapping, index);
1782
1783 if (page)
1784 return page;
1785
1786 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1787 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1788 return NULL;
1789 }
1790 #endif
1791 if (!for_write)
1792 return grab_cache_page(mapping, index);
1793 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1794 }
1795
1796 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1797 {
1798 char *src_kaddr = kmap(src);
1799 char *dst_kaddr = kmap(dst);
1800
1801 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1802 kunmap(dst);
1803 kunmap(src);
1804 }
1805
1806 static inline void f2fs_put_page(struct page *page, int unlock)
1807 {
1808 if (!page)
1809 return;
1810
1811 if (unlock) {
1812 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1813 unlock_page(page);
1814 }
1815 put_page(page);
1816 }
1817
1818 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1819 {
1820 if (dn->node_page)
1821 f2fs_put_page(dn->node_page, 1);
1822 if (dn->inode_page && dn->node_page != dn->inode_page)
1823 f2fs_put_page(dn->inode_page, 0);
1824 dn->node_page = NULL;
1825 dn->inode_page = NULL;
1826 }
1827
1828 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1829 size_t size)
1830 {
1831 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1832 }
1833
1834 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1835 gfp_t flags)
1836 {
1837 void *entry;
1838
1839 entry = kmem_cache_alloc(cachep, flags);
1840 if (!entry)
1841 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1842 return entry;
1843 }
1844
1845 static inline struct bio *f2fs_bio_alloc(int npages)
1846 {
1847 struct bio *bio;
1848
1849 /* No failure on bio allocation */
1850 bio = bio_alloc(GFP_NOIO, npages);
1851 if (!bio)
1852 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1853 return bio;
1854 }
1855
1856 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1857 unsigned long index, void *item)
1858 {
1859 while (radix_tree_insert(root, index, item))
1860 cond_resched();
1861 }
1862
1863 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1864
1865 static inline bool IS_INODE(struct page *page)
1866 {
1867 struct f2fs_node *p = F2FS_NODE(page);
1868
1869 return RAW_IS_INODE(p);
1870 }
1871
1872 static inline int offset_in_addr(struct f2fs_inode *i)
1873 {
1874 return (i->i_inline & F2FS_EXTRA_ATTR) ?
1875 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
1876 }
1877
1878 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1879 {
1880 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1881 }
1882
1883 static inline int f2fs_has_extra_attr(struct inode *inode);
1884 static inline block_t datablock_addr(struct inode *inode,
1885 struct page *node_page, unsigned int offset)
1886 {
1887 struct f2fs_node *raw_node;
1888 __le32 *addr_array;
1889 int base = 0;
1890 bool is_inode = IS_INODE(node_page);
1891
1892 raw_node = F2FS_NODE(node_page);
1893
1894 /* from GC path only */
1895 if (!inode) {
1896 if (is_inode)
1897 base = offset_in_addr(&raw_node->i);
1898 } else if (f2fs_has_extra_attr(inode) && is_inode) {
1899 base = get_extra_isize(inode);
1900 }
1901
1902 addr_array = blkaddr_in_node(raw_node);
1903 return le32_to_cpu(addr_array[base + offset]);
1904 }
1905
1906 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1907 {
1908 int mask;
1909
1910 addr += (nr >> 3);
1911 mask = 1 << (7 - (nr & 0x07));
1912 return mask & *addr;
1913 }
1914
1915 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1916 {
1917 int mask;
1918
1919 addr += (nr >> 3);
1920 mask = 1 << (7 - (nr & 0x07));
1921 *addr |= mask;
1922 }
1923
1924 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1925 {
1926 int mask;
1927
1928 addr += (nr >> 3);
1929 mask = 1 << (7 - (nr & 0x07));
1930 *addr &= ~mask;
1931 }
1932
1933 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1934 {
1935 int mask;
1936 int ret;
1937
1938 addr += (nr >> 3);
1939 mask = 1 << (7 - (nr & 0x07));
1940 ret = mask & *addr;
1941 *addr |= mask;
1942 return ret;
1943 }
1944
1945 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1946 {
1947 int mask;
1948 int ret;
1949
1950 addr += (nr >> 3);
1951 mask = 1 << (7 - (nr & 0x07));
1952 ret = mask & *addr;
1953 *addr &= ~mask;
1954 return ret;
1955 }
1956
1957 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1958 {
1959 int mask;
1960
1961 addr += (nr >> 3);
1962 mask = 1 << (7 - (nr & 0x07));
1963 *addr ^= mask;
1964 }
1965
1966 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1967 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1968 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL)
1969
1970 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1971 {
1972 if (S_ISDIR(mode))
1973 return flags;
1974 else if (S_ISREG(mode))
1975 return flags & F2FS_REG_FLMASK;
1976 else
1977 return flags & F2FS_OTHER_FLMASK;
1978 }
1979
1980 /* used for f2fs_inode_info->flags */
1981 enum {
1982 FI_NEW_INODE, /* indicate newly allocated inode */
1983 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1984 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1985 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1986 FI_INC_LINK, /* need to increment i_nlink */
1987 FI_ACL_MODE, /* indicate acl mode */
1988 FI_NO_ALLOC, /* should not allocate any blocks */
1989 FI_FREE_NID, /* free allocated nide */
1990 FI_NO_EXTENT, /* not to use the extent cache */
1991 FI_INLINE_XATTR, /* used for inline xattr */
1992 FI_INLINE_DATA, /* used for inline data*/
1993 FI_INLINE_DENTRY, /* used for inline dentry */
1994 FI_APPEND_WRITE, /* inode has appended data */
1995 FI_UPDATE_WRITE, /* inode has in-place-update data */
1996 FI_NEED_IPU, /* used for ipu per file */
1997 FI_ATOMIC_FILE, /* indicate atomic file */
1998 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
1999 FI_VOLATILE_FILE, /* indicate volatile file */
2000 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2001 FI_DROP_CACHE, /* drop dirty page cache */
2002 FI_DATA_EXIST, /* indicate data exists */
2003 FI_INLINE_DOTS, /* indicate inline dot dentries */
2004 FI_DO_DEFRAG, /* indicate defragment is running */
2005 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2006 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2007 FI_HOT_DATA, /* indicate file is hot */
2008 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2009 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2010 };
2011
2012 static inline void __mark_inode_dirty_flag(struct inode *inode,
2013 int flag, bool set)
2014 {
2015 switch (flag) {
2016 case FI_INLINE_XATTR:
2017 case FI_INLINE_DATA:
2018 case FI_INLINE_DENTRY:
2019 if (set)
2020 return;
2021 case FI_DATA_EXIST:
2022 case FI_INLINE_DOTS:
2023 f2fs_mark_inode_dirty_sync(inode, true);
2024 }
2025 }
2026
2027 static inline void set_inode_flag(struct inode *inode, int flag)
2028 {
2029 if (!test_bit(flag, &F2FS_I(inode)->flags))
2030 set_bit(flag, &F2FS_I(inode)->flags);
2031 __mark_inode_dirty_flag(inode, flag, true);
2032 }
2033
2034 static inline int is_inode_flag_set(struct inode *inode, int flag)
2035 {
2036 return test_bit(flag, &F2FS_I(inode)->flags);
2037 }
2038
2039 static inline void clear_inode_flag(struct inode *inode, int flag)
2040 {
2041 if (test_bit(flag, &F2FS_I(inode)->flags))
2042 clear_bit(flag, &F2FS_I(inode)->flags);
2043 __mark_inode_dirty_flag(inode, flag, false);
2044 }
2045
2046 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2047 {
2048 F2FS_I(inode)->i_acl_mode = mode;
2049 set_inode_flag(inode, FI_ACL_MODE);
2050 f2fs_mark_inode_dirty_sync(inode, false);
2051 }
2052
2053 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2054 {
2055 if (inc)
2056 inc_nlink(inode);
2057 else
2058 drop_nlink(inode);
2059 f2fs_mark_inode_dirty_sync(inode, true);
2060 }
2061
2062 static inline void f2fs_i_blocks_write(struct inode *inode,
2063 block_t diff, bool add, bool claim)
2064 {
2065 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2066 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2067
2068 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2069 if (add) {
2070 if (claim)
2071 dquot_claim_block(inode, diff);
2072 else
2073 dquot_alloc_block_nofail(inode, diff);
2074 } else {
2075 dquot_free_block(inode, diff);
2076 }
2077
2078 f2fs_mark_inode_dirty_sync(inode, true);
2079 if (clean || recover)
2080 set_inode_flag(inode, FI_AUTO_RECOVER);
2081 }
2082
2083 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2084 {
2085 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2086 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2087
2088 if (i_size_read(inode) == i_size)
2089 return;
2090
2091 i_size_write(inode, i_size);
2092 f2fs_mark_inode_dirty_sync(inode, true);
2093 if (clean || recover)
2094 set_inode_flag(inode, FI_AUTO_RECOVER);
2095 }
2096
2097 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2098 {
2099 F2FS_I(inode)->i_current_depth = depth;
2100 f2fs_mark_inode_dirty_sync(inode, true);
2101 }
2102
2103 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2104 {
2105 F2FS_I(inode)->i_xattr_nid = xnid;
2106 f2fs_mark_inode_dirty_sync(inode, true);
2107 }
2108
2109 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2110 {
2111 F2FS_I(inode)->i_pino = pino;
2112 f2fs_mark_inode_dirty_sync(inode, true);
2113 }
2114
2115 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2116 {
2117 struct f2fs_inode_info *fi = F2FS_I(inode);
2118
2119 if (ri->i_inline & F2FS_INLINE_XATTR)
2120 set_bit(FI_INLINE_XATTR, &fi->flags);
2121 if (ri->i_inline & F2FS_INLINE_DATA)
2122 set_bit(FI_INLINE_DATA, &fi->flags);
2123 if (ri->i_inline & F2FS_INLINE_DENTRY)
2124 set_bit(FI_INLINE_DENTRY, &fi->flags);
2125 if (ri->i_inline & F2FS_DATA_EXIST)
2126 set_bit(FI_DATA_EXIST, &fi->flags);
2127 if (ri->i_inline & F2FS_INLINE_DOTS)
2128 set_bit(FI_INLINE_DOTS, &fi->flags);
2129 if (ri->i_inline & F2FS_EXTRA_ATTR)
2130 set_bit(FI_EXTRA_ATTR, &fi->flags);
2131 }
2132
2133 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2134 {
2135 ri->i_inline = 0;
2136
2137 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2138 ri->i_inline |= F2FS_INLINE_XATTR;
2139 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2140 ri->i_inline |= F2FS_INLINE_DATA;
2141 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2142 ri->i_inline |= F2FS_INLINE_DENTRY;
2143 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2144 ri->i_inline |= F2FS_DATA_EXIST;
2145 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2146 ri->i_inline |= F2FS_INLINE_DOTS;
2147 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2148 ri->i_inline |= F2FS_EXTRA_ATTR;
2149 }
2150
2151 static inline int f2fs_has_extra_attr(struct inode *inode)
2152 {
2153 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2154 }
2155
2156 static inline int f2fs_has_inline_xattr(struct inode *inode)
2157 {
2158 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2159 }
2160
2161 static inline unsigned int addrs_per_inode(struct inode *inode)
2162 {
2163 if (f2fs_has_inline_xattr(inode))
2164 return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS;
2165 return CUR_ADDRS_PER_INODE(inode);
2166 }
2167
2168 static inline void *inline_xattr_addr(struct page *page)
2169 {
2170 struct f2fs_inode *ri = F2FS_INODE(page);
2171
2172 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2173 F2FS_INLINE_XATTR_ADDRS]);
2174 }
2175
2176 static inline int inline_xattr_size(struct inode *inode)
2177 {
2178 if (f2fs_has_inline_xattr(inode))
2179 return F2FS_INLINE_XATTR_ADDRS << 2;
2180 else
2181 return 0;
2182 }
2183
2184 static inline int f2fs_has_inline_data(struct inode *inode)
2185 {
2186 return is_inode_flag_set(inode, FI_INLINE_DATA);
2187 }
2188
2189 static inline int f2fs_exist_data(struct inode *inode)
2190 {
2191 return is_inode_flag_set(inode, FI_DATA_EXIST);
2192 }
2193
2194 static inline int f2fs_has_inline_dots(struct inode *inode)
2195 {
2196 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2197 }
2198
2199 static inline bool f2fs_is_atomic_file(struct inode *inode)
2200 {
2201 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2202 }
2203
2204 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2205 {
2206 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2207 }
2208
2209 static inline bool f2fs_is_volatile_file(struct inode *inode)
2210 {
2211 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2212 }
2213
2214 static inline bool f2fs_is_first_block_written(struct inode *inode)
2215 {
2216 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2217 }
2218
2219 static inline bool f2fs_is_drop_cache(struct inode *inode)
2220 {
2221 return is_inode_flag_set(inode, FI_DROP_CACHE);
2222 }
2223
2224 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2225 {
2226 struct f2fs_inode *ri = F2FS_INODE(page);
2227 int extra_size = get_extra_isize(inode);
2228
2229 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2230 }
2231
2232 static inline int f2fs_has_inline_dentry(struct inode *inode)
2233 {
2234 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2235 }
2236
2237 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2238 {
2239 if (!f2fs_has_inline_dentry(dir))
2240 kunmap(page);
2241 }
2242
2243 static inline int is_file(struct inode *inode, int type)
2244 {
2245 return F2FS_I(inode)->i_advise & type;
2246 }
2247
2248 static inline void set_file(struct inode *inode, int type)
2249 {
2250 F2FS_I(inode)->i_advise |= type;
2251 f2fs_mark_inode_dirty_sync(inode, true);
2252 }
2253
2254 static inline void clear_file(struct inode *inode, int type)
2255 {
2256 F2FS_I(inode)->i_advise &= ~type;
2257 f2fs_mark_inode_dirty_sync(inode, true);
2258 }
2259
2260 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2261 {
2262 if (dsync) {
2263 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2264 bool ret;
2265
2266 spin_lock(&sbi->inode_lock[DIRTY_META]);
2267 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2268 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2269 return ret;
2270 }
2271 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2272 file_keep_isize(inode) ||
2273 i_size_read(inode) & PAGE_MASK)
2274 return false;
2275 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
2276 }
2277
2278 static inline int f2fs_readonly(struct super_block *sb)
2279 {
2280 return sb->s_flags & MS_RDONLY;
2281 }
2282
2283 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2284 {
2285 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2286 }
2287
2288 static inline bool is_dot_dotdot(const struct qstr *str)
2289 {
2290 if (str->len == 1 && str->name[0] == '.')
2291 return true;
2292
2293 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2294 return true;
2295
2296 return false;
2297 }
2298
2299 static inline bool f2fs_may_extent_tree(struct inode *inode)
2300 {
2301 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2302 is_inode_flag_set(inode, FI_NO_EXTENT))
2303 return false;
2304
2305 return S_ISREG(inode->i_mode);
2306 }
2307
2308 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2309 size_t size, gfp_t flags)
2310 {
2311 #ifdef CONFIG_F2FS_FAULT_INJECTION
2312 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2313 f2fs_show_injection_info(FAULT_KMALLOC);
2314 return NULL;
2315 }
2316 #endif
2317 return kmalloc(size, flags);
2318 }
2319
2320 static inline int get_extra_isize(struct inode *inode)
2321 {
2322 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2323 }
2324
2325 #define get_inode_mode(i) \
2326 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2327 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2328
2329 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2330 (offsetof(struct f2fs_inode, i_extra_end) - \
2331 offsetof(struct f2fs_inode, i_extra_isize)) \
2332
2333 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2334 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2335 ((offsetof(typeof(*f2fs_inode), field) + \
2336 sizeof((f2fs_inode)->field)) \
2337 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \
2338
2339 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2340 {
2341 int i;
2342
2343 spin_lock(&sbi->iostat_lock);
2344 for (i = 0; i < NR_IO_TYPE; i++)
2345 sbi->write_iostat[i] = 0;
2346 spin_unlock(&sbi->iostat_lock);
2347 }
2348
2349 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2350 enum iostat_type type, unsigned long long io_bytes)
2351 {
2352 if (!sbi->iostat_enable)
2353 return;
2354 spin_lock(&sbi->iostat_lock);
2355 sbi->write_iostat[type] += io_bytes;
2356
2357 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2358 sbi->write_iostat[APP_BUFFERED_IO] =
2359 sbi->write_iostat[APP_WRITE_IO] -
2360 sbi->write_iostat[APP_DIRECT_IO];
2361 spin_unlock(&sbi->iostat_lock);
2362 }
2363
2364 /*
2365 * file.c
2366 */
2367 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2368 void truncate_data_blocks(struct dnode_of_data *dn);
2369 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2370 int f2fs_truncate(struct inode *inode);
2371 int f2fs_getattr(const struct path *path, struct kstat *stat,
2372 u32 request_mask, unsigned int flags);
2373 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2374 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2375 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2376 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2377 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2378
2379 /*
2380 * inode.c
2381 */
2382 void f2fs_set_inode_flags(struct inode *inode);
2383 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2384 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2385 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2386 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2387 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2388 int update_inode(struct inode *inode, struct page *node_page);
2389 int update_inode_page(struct inode *inode);
2390 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2391 void f2fs_evict_inode(struct inode *inode);
2392 void handle_failed_inode(struct inode *inode);
2393
2394 /*
2395 * namei.c
2396 */
2397 struct dentry *f2fs_get_parent(struct dentry *child);
2398
2399 /*
2400 * dir.c
2401 */
2402 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2403 unsigned char get_de_type(struct f2fs_dir_entry *de);
2404 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2405 f2fs_hash_t namehash, int *max_slots,
2406 struct f2fs_dentry_ptr *d);
2407 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2408 unsigned int start_pos, struct fscrypt_str *fstr);
2409 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2410 struct f2fs_dentry_ptr *d);
2411 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2412 const struct qstr *new_name,
2413 const struct qstr *orig_name, struct page *dpage);
2414 void update_parent_metadata(struct inode *dir, struct inode *inode,
2415 unsigned int current_depth);
2416 int room_for_filename(const void *bitmap, int slots, int max_slots);
2417 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2418 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2419 struct fscrypt_name *fname, struct page **res_page);
2420 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2421 const struct qstr *child, struct page **res_page);
2422 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2423 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2424 struct page **page);
2425 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2426 struct page *page, struct inode *inode);
2427 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2428 const struct qstr *name, f2fs_hash_t name_hash,
2429 unsigned int bit_pos);
2430 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2431 const struct qstr *orig_name,
2432 struct inode *inode, nid_t ino, umode_t mode);
2433 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2434 struct inode *inode, nid_t ino, umode_t mode);
2435 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2436 struct inode *inode, nid_t ino, umode_t mode);
2437 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2438 struct inode *dir, struct inode *inode);
2439 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2440 bool f2fs_empty_dir(struct inode *dir);
2441
2442 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2443 {
2444 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2445 inode, inode->i_ino, inode->i_mode);
2446 }
2447
2448 /*
2449 * super.c
2450 */
2451 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2452 void f2fs_inode_synced(struct inode *inode);
2453 void f2fs_enable_quota_files(struct f2fs_sb_info *sbi);
2454 void f2fs_quota_off_umount(struct super_block *sb);
2455 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2456 int f2fs_sync_fs(struct super_block *sb, int sync);
2457 extern __printf(3, 4)
2458 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2459 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2460
2461 /*
2462 * hash.c
2463 */
2464 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2465 struct fscrypt_name *fname);
2466
2467 /*
2468 * node.c
2469 */
2470 struct dnode_of_data;
2471 struct node_info;
2472
2473 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2474 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2475 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2476 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2477 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2478 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2479 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2480 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2481 int truncate_xattr_node(struct inode *inode, struct page *page);
2482 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2483 int remove_inode_page(struct inode *inode);
2484 struct page *new_inode_page(struct inode *inode);
2485 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2486 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2487 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2488 struct page *get_node_page_ra(struct page *parent, int start);
2489 void move_node_page(struct page *node_page, int gc_type);
2490 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2491 struct writeback_control *wbc, bool atomic);
2492 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2493 bool do_balance, enum iostat_type io_type);
2494 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2495 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2496 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2497 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2498 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2499 void recover_inline_xattr(struct inode *inode, struct page *page);
2500 int recover_xattr_data(struct inode *inode, struct page *page,
2501 block_t blkaddr);
2502 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2503 int restore_node_summary(struct f2fs_sb_info *sbi,
2504 unsigned int segno, struct f2fs_summary_block *sum);
2505 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2506 int build_node_manager(struct f2fs_sb_info *sbi);
2507 void destroy_node_manager(struct f2fs_sb_info *sbi);
2508 int __init create_node_manager_caches(void);
2509 void destroy_node_manager_caches(void);
2510
2511 /*
2512 * segment.c
2513 */
2514 bool need_SSR(struct f2fs_sb_info *sbi);
2515 void register_inmem_page(struct inode *inode, struct page *page);
2516 void drop_inmem_pages(struct inode *inode);
2517 void drop_inmem_page(struct inode *inode, struct page *page);
2518 int commit_inmem_pages(struct inode *inode);
2519 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2520 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2521 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2522 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2523 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2524 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2525 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2526 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2527 void stop_discard_thread(struct f2fs_sb_info *sbi);
2528 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2529 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2530 void release_discard_addrs(struct f2fs_sb_info *sbi);
2531 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2532 void allocate_new_segments(struct f2fs_sb_info *sbi);
2533 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2534 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2535 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2536 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2537 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2538 enum iostat_type io_type);
2539 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2540 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2541 int rewrite_data_page(struct f2fs_io_info *fio);
2542 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2543 block_t old_blkaddr, block_t new_blkaddr,
2544 bool recover_curseg, bool recover_newaddr);
2545 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2546 block_t old_addr, block_t new_addr,
2547 unsigned char version, bool recover_curseg,
2548 bool recover_newaddr);
2549 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2550 block_t old_blkaddr, block_t *new_blkaddr,
2551 struct f2fs_summary *sum, int type,
2552 struct f2fs_io_info *fio, bool add_list);
2553 void f2fs_wait_on_page_writeback(struct page *page,
2554 enum page_type type, bool ordered);
2555 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2556 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2557 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2558 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2559 unsigned int val, int alloc);
2560 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2561 int build_segment_manager(struct f2fs_sb_info *sbi);
2562 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2563 int __init create_segment_manager_caches(void);
2564 void destroy_segment_manager_caches(void);
2565
2566 /*
2567 * checkpoint.c
2568 */
2569 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2570 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2571 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2572 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2573 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2574 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2575 int type, bool sync);
2576 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2577 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2578 long nr_to_write, enum iostat_type io_type);
2579 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2580 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2581 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2582 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2583 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2584 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2585 void release_orphan_inode(struct f2fs_sb_info *sbi);
2586 void add_orphan_inode(struct inode *inode);
2587 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2588 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2589 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2590 void update_dirty_page(struct inode *inode, struct page *page);
2591 void remove_dirty_inode(struct inode *inode);
2592 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2593 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2594 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2595 int __init create_checkpoint_caches(void);
2596 void destroy_checkpoint_caches(void);
2597
2598 /*
2599 * data.c
2600 */
2601 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2602 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2603 struct inode *inode, nid_t ino, pgoff_t idx,
2604 enum page_type type);
2605 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2606 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2607 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2608 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2609 block_t blk_addr, struct bio *bio);
2610 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2611 void set_data_blkaddr(struct dnode_of_data *dn);
2612 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2613 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2614 int reserve_new_block(struct dnode_of_data *dn);
2615 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2616 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2617 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2618 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2619 int op_flags, bool for_write);
2620 struct page *find_data_page(struct inode *inode, pgoff_t index);
2621 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2622 bool for_write);
2623 struct page *get_new_data_page(struct inode *inode,
2624 struct page *ipage, pgoff_t index, bool new_i_size);
2625 int do_write_data_page(struct f2fs_io_info *fio);
2626 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2627 int create, int flag);
2628 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2629 u64 start, u64 len);
2630 void f2fs_set_page_dirty_nobuffers(struct page *page);
2631 int __f2fs_write_data_pages(struct address_space *mapping,
2632 struct writeback_control *wbc,
2633 enum iostat_type io_type);
2634 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2635 unsigned int length);
2636 int f2fs_release_page(struct page *page, gfp_t wait);
2637 #ifdef CONFIG_MIGRATION
2638 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2639 struct page *page, enum migrate_mode mode);
2640 #endif
2641
2642 /*
2643 * gc.c
2644 */
2645 int start_gc_thread(struct f2fs_sb_info *sbi);
2646 void stop_gc_thread(struct f2fs_sb_info *sbi);
2647 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2648 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2649 unsigned int segno);
2650 void build_gc_manager(struct f2fs_sb_info *sbi);
2651
2652 /*
2653 * recovery.c
2654 */
2655 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2656 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2657
2658 /*
2659 * debug.c
2660 */
2661 #ifdef CONFIG_F2FS_STAT_FS
2662 struct f2fs_stat_info {
2663 struct list_head stat_list;
2664 struct f2fs_sb_info *sbi;
2665 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2666 int main_area_segs, main_area_sections, main_area_zones;
2667 unsigned long long hit_largest, hit_cached, hit_rbtree;
2668 unsigned long long hit_total, total_ext;
2669 int ext_tree, zombie_tree, ext_node;
2670 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2671 int inmem_pages;
2672 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2673 int nats, dirty_nats, sits, dirty_sits;
2674 int free_nids, avail_nids, alloc_nids;
2675 int total_count, utilization;
2676 int bg_gc, nr_wb_cp_data, nr_wb_data;
2677 int nr_flushing, nr_flushed, nr_discarding, nr_discarded;
2678 int nr_discard_cmd;
2679 unsigned int undiscard_blks;
2680 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2681 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2682 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2683 unsigned int bimodal, avg_vblocks;
2684 int util_free, util_valid, util_invalid;
2685 int rsvd_segs, overp_segs;
2686 int dirty_count, node_pages, meta_pages;
2687 int prefree_count, call_count, cp_count, bg_cp_count;
2688 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2689 int bg_node_segs, bg_data_segs;
2690 int tot_blks, data_blks, node_blks;
2691 int bg_data_blks, bg_node_blks;
2692 int curseg[NR_CURSEG_TYPE];
2693 int cursec[NR_CURSEG_TYPE];
2694 int curzone[NR_CURSEG_TYPE];
2695
2696 unsigned int segment_count[2];
2697 unsigned int block_count[2];
2698 unsigned int inplace_count;
2699 unsigned long long base_mem, cache_mem, page_mem;
2700 };
2701
2702 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2703 {
2704 return (struct f2fs_stat_info *)sbi->stat_info;
2705 }
2706
2707 #define stat_inc_cp_count(si) ((si)->cp_count++)
2708 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2709 #define stat_inc_call_count(si) ((si)->call_count++)
2710 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2711 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2712 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2713 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2714 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2715 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2716 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2717 #define stat_inc_inline_xattr(inode) \
2718 do { \
2719 if (f2fs_has_inline_xattr(inode)) \
2720 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2721 } while (0)
2722 #define stat_dec_inline_xattr(inode) \
2723 do { \
2724 if (f2fs_has_inline_xattr(inode)) \
2725 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2726 } while (0)
2727 #define stat_inc_inline_inode(inode) \
2728 do { \
2729 if (f2fs_has_inline_data(inode)) \
2730 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2731 } while (0)
2732 #define stat_dec_inline_inode(inode) \
2733 do { \
2734 if (f2fs_has_inline_data(inode)) \
2735 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2736 } while (0)
2737 #define stat_inc_inline_dir(inode) \
2738 do { \
2739 if (f2fs_has_inline_dentry(inode)) \
2740 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2741 } while (0)
2742 #define stat_dec_inline_dir(inode) \
2743 do { \
2744 if (f2fs_has_inline_dentry(inode)) \
2745 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2746 } while (0)
2747 #define stat_inc_seg_type(sbi, curseg) \
2748 ((sbi)->segment_count[(curseg)->alloc_type]++)
2749 #define stat_inc_block_count(sbi, curseg) \
2750 ((sbi)->block_count[(curseg)->alloc_type]++)
2751 #define stat_inc_inplace_blocks(sbi) \
2752 (atomic_inc(&(sbi)->inplace_count))
2753 #define stat_inc_atomic_write(inode) \
2754 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2755 #define stat_dec_atomic_write(inode) \
2756 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2757 #define stat_update_max_atomic_write(inode) \
2758 do { \
2759 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2760 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2761 if (cur > max) \
2762 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2763 } while (0)
2764 #define stat_inc_volatile_write(inode) \
2765 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2766 #define stat_dec_volatile_write(inode) \
2767 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2768 #define stat_update_max_volatile_write(inode) \
2769 do { \
2770 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
2771 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
2772 if (cur > max) \
2773 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
2774 } while (0)
2775 #define stat_inc_seg_count(sbi, type, gc_type) \
2776 do { \
2777 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2778 si->tot_segs++; \
2779 if ((type) == SUM_TYPE_DATA) { \
2780 si->data_segs++; \
2781 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2782 } else { \
2783 si->node_segs++; \
2784 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2785 } \
2786 } while (0)
2787
2788 #define stat_inc_tot_blk_count(si, blks) \
2789 ((si)->tot_blks += (blks))
2790
2791 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2792 do { \
2793 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2794 stat_inc_tot_blk_count(si, blks); \
2795 si->data_blks += (blks); \
2796 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2797 } while (0)
2798
2799 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2800 do { \
2801 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2802 stat_inc_tot_blk_count(si, blks); \
2803 si->node_blks += (blks); \
2804 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2805 } while (0)
2806
2807 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2808 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2809 int __init f2fs_create_root_stats(void);
2810 void f2fs_destroy_root_stats(void);
2811 #else
2812 #define stat_inc_cp_count(si) do { } while (0)
2813 #define stat_inc_bg_cp_count(si) do { } while (0)
2814 #define stat_inc_call_count(si) do { } while (0)
2815 #define stat_inc_bggc_count(si) do { } while (0)
2816 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
2817 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
2818 #define stat_inc_total_hit(sb) do { } while (0)
2819 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
2820 #define stat_inc_largest_node_hit(sbi) do { } while (0)
2821 #define stat_inc_cached_node_hit(sbi) do { } while (0)
2822 #define stat_inc_inline_xattr(inode) do { } while (0)
2823 #define stat_dec_inline_xattr(inode) do { } while (0)
2824 #define stat_inc_inline_inode(inode) do { } while (0)
2825 #define stat_dec_inline_inode(inode) do { } while (0)
2826 #define stat_inc_inline_dir(inode) do { } while (0)
2827 #define stat_dec_inline_dir(inode) do { } while (0)
2828 #define stat_inc_atomic_write(inode) do { } while (0)
2829 #define stat_dec_atomic_write(inode) do { } while (0)
2830 #define stat_update_max_atomic_write(inode) do { } while (0)
2831 #define stat_inc_volatile_write(inode) do { } while (0)
2832 #define stat_dec_volatile_write(inode) do { } while (0)
2833 #define stat_update_max_volatile_write(inode) do { } while (0)
2834 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
2835 #define stat_inc_block_count(sbi, curseg) do { } while (0)
2836 #define stat_inc_inplace_blocks(sbi) do { } while (0)
2837 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
2838 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
2839 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
2840 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
2841
2842 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2843 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2844 static inline int __init f2fs_create_root_stats(void) { return 0; }
2845 static inline void f2fs_destroy_root_stats(void) { }
2846 #endif
2847
2848 extern const struct file_operations f2fs_dir_operations;
2849 extern const struct file_operations f2fs_file_operations;
2850 extern const struct inode_operations f2fs_file_inode_operations;
2851 extern const struct address_space_operations f2fs_dblock_aops;
2852 extern const struct address_space_operations f2fs_node_aops;
2853 extern const struct address_space_operations f2fs_meta_aops;
2854 extern const struct inode_operations f2fs_dir_inode_operations;
2855 extern const struct inode_operations f2fs_symlink_inode_operations;
2856 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2857 extern const struct inode_operations f2fs_special_inode_operations;
2858 extern struct kmem_cache *inode_entry_slab;
2859
2860 /*
2861 * inline.c
2862 */
2863 bool f2fs_may_inline_data(struct inode *inode);
2864 bool f2fs_may_inline_dentry(struct inode *inode);
2865 void read_inline_data(struct page *page, struct page *ipage);
2866 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2867 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2868 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2869 int f2fs_convert_inline_inode(struct inode *inode);
2870 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2871 bool recover_inline_data(struct inode *inode, struct page *npage);
2872 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2873 struct fscrypt_name *fname, struct page **res_page);
2874 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2875 struct page *ipage);
2876 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2877 const struct qstr *orig_name,
2878 struct inode *inode, nid_t ino, umode_t mode);
2879 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2880 struct inode *dir, struct inode *inode);
2881 bool f2fs_empty_inline_dir(struct inode *dir);
2882 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2883 struct fscrypt_str *fstr);
2884 int f2fs_inline_data_fiemap(struct inode *inode,
2885 struct fiemap_extent_info *fieinfo,
2886 __u64 start, __u64 len);
2887
2888 /*
2889 * shrinker.c
2890 */
2891 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2892 struct shrink_control *sc);
2893 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2894 struct shrink_control *sc);
2895 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2896 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2897
2898 /*
2899 * extent_cache.c
2900 */
2901 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
2902 struct rb_entry *cached_re, unsigned int ofs);
2903 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
2904 struct rb_root *root, struct rb_node **parent,
2905 unsigned int ofs);
2906 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
2907 struct rb_entry *cached_re, unsigned int ofs,
2908 struct rb_entry **prev_entry, struct rb_entry **next_entry,
2909 struct rb_node ***insert_p, struct rb_node **insert_parent,
2910 bool force);
2911 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
2912 struct rb_root *root);
2913 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2914 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2915 void f2fs_drop_extent_tree(struct inode *inode);
2916 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2917 void f2fs_destroy_extent_tree(struct inode *inode);
2918 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2919 struct extent_info *ei);
2920 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2921 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2922 pgoff_t fofs, block_t blkaddr, unsigned int len);
2923 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2924 int __init create_extent_cache(void);
2925 void destroy_extent_cache(void);
2926
2927 /*
2928 * sysfs.c
2929 */
2930 int __init f2fs_init_sysfs(void);
2931 void f2fs_exit_sysfs(void);
2932 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
2933 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
2934
2935 /*
2936 * crypto support
2937 */
2938 static inline bool f2fs_encrypted_inode(struct inode *inode)
2939 {
2940 return file_is_encrypt(inode);
2941 }
2942
2943 static inline bool f2fs_encrypted_file(struct inode *inode)
2944 {
2945 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
2946 }
2947
2948 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2949 {
2950 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2951 file_set_encrypt(inode);
2952 #endif
2953 }
2954
2955 static inline bool f2fs_bio_encrypted(struct bio *bio)
2956 {
2957 return bio->bi_private != NULL;
2958 }
2959
2960 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2961 {
2962 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2963 }
2964
2965 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2966 {
2967 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2968 }
2969
2970 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
2971 {
2972 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
2973 }
2974
2975 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
2976 {
2977 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
2978 }
2979
2980 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb)
2981 {
2982 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM);
2983 }
2984
2985 #ifdef CONFIG_BLK_DEV_ZONED
2986 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2987 struct block_device *bdev, block_t blkaddr)
2988 {
2989 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2990 int i;
2991
2992 for (i = 0; i < sbi->s_ndevs; i++)
2993 if (FDEV(i).bdev == bdev)
2994 return FDEV(i).blkz_type[zno];
2995 return -EINVAL;
2996 }
2997 #endif
2998
2999 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3000 {
3001 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3002
3003 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
3004 }
3005
3006 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3007 {
3008 clear_opt(sbi, ADAPTIVE);
3009 clear_opt(sbi, LFS);
3010
3011 switch (mt) {
3012 case F2FS_MOUNT_ADAPTIVE:
3013 set_opt(sbi, ADAPTIVE);
3014 break;
3015 case F2FS_MOUNT_LFS:
3016 set_opt(sbi, LFS);
3017 break;
3018 }
3019 }
3020
3021 static inline bool f2fs_may_encrypt(struct inode *inode)
3022 {
3023 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3024 umode_t mode = inode->i_mode;
3025
3026 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3027 #else
3028 return 0;
3029 #endif
3030 }
3031
3032 #endif