]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/f2fs.h
mm: fix kerneldoc on mem_cgroup_replace_page
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24
25 #ifdef CONFIG_F2FS_CHECK_FS
26 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
27 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
28 #else
29 #define f2fs_bug_on(sbi, condition) \
30 do { \
31 if (unlikely(condition)) { \
32 WARN_ON(1); \
33 set_sbi_flag(sbi, SBI_NEED_FSCK); \
34 } \
35 } while (0)
36 #define f2fs_down_write(x, y) down_write(x)
37 #endif
38
39 /*
40 * For mount options
41 */
42 #define F2FS_MOUNT_BG_GC 0x00000001
43 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
44 #define F2FS_MOUNT_DISCARD 0x00000004
45 #define F2FS_MOUNT_NOHEAP 0x00000008
46 #define F2FS_MOUNT_XATTR_USER 0x00000010
47 #define F2FS_MOUNT_POSIX_ACL 0x00000020
48 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
49 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
50 #define F2FS_MOUNT_INLINE_DATA 0x00000100
51 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
52 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
53 #define F2FS_MOUNT_NOBARRIER 0x00000800
54 #define F2FS_MOUNT_FASTBOOT 0x00001000
55 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
56 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
57
58 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
59 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
60 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
61
62 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
63 typecheck(unsigned long long, b) && \
64 ((long long)((a) - (b)) > 0))
65
66 typedef u32 block_t; /*
67 * should not change u32, since it is the on-disk block
68 * address format, __le32.
69 */
70 typedef u32 nid_t;
71
72 struct f2fs_mount_info {
73 unsigned int opt;
74 };
75
76 #define F2FS_FEATURE_ENCRYPT 0x0001
77
78 #define F2FS_HAS_FEATURE(sb, mask) \
79 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
80 #define F2FS_SET_FEATURE(sb, mask) \
81 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
82 #define F2FS_CLEAR_FEATURE(sb, mask) \
83 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
84
85 #define CRCPOLY_LE 0xedb88320
86
87 static inline __u32 f2fs_crc32(void *buf, size_t len)
88 {
89 unsigned char *p = (unsigned char *)buf;
90 __u32 crc = F2FS_SUPER_MAGIC;
91 int i;
92
93 while (len--) {
94 crc ^= *p++;
95 for (i = 0; i < 8; i++)
96 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
97 }
98 return crc;
99 }
100
101 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
102 {
103 return f2fs_crc32(buf, buf_size) == blk_crc;
104 }
105
106 /*
107 * For checkpoint manager
108 */
109 enum {
110 NAT_BITMAP,
111 SIT_BITMAP
112 };
113
114 enum {
115 CP_UMOUNT,
116 CP_FASTBOOT,
117 CP_SYNC,
118 CP_RECOVERY,
119 CP_DISCARD,
120 };
121
122 #define DEF_BATCHED_TRIM_SECTIONS 32
123 #define BATCHED_TRIM_SEGMENTS(sbi) \
124 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
125 #define BATCHED_TRIM_BLOCKS(sbi) \
126 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
127 #define DEF_CP_INTERVAL 60 /* 60 secs */
128
129 struct cp_control {
130 int reason;
131 __u64 trim_start;
132 __u64 trim_end;
133 __u64 trim_minlen;
134 __u64 trimmed;
135 };
136
137 /*
138 * For CP/NAT/SIT/SSA readahead
139 */
140 enum {
141 META_CP,
142 META_NAT,
143 META_SIT,
144 META_SSA,
145 META_POR,
146 };
147
148 /* for the list of ino */
149 enum {
150 ORPHAN_INO, /* for orphan ino list */
151 APPEND_INO, /* for append ino list */
152 UPDATE_INO, /* for update ino list */
153 MAX_INO_ENTRY, /* max. list */
154 };
155
156 struct ino_entry {
157 struct list_head list; /* list head */
158 nid_t ino; /* inode number */
159 };
160
161 /*
162 * for the list of directory inodes or gc inodes.
163 * NOTE: there are two slab users for this structure, if we add/modify/delete
164 * fields in structure for one of slab users, it may affect fields or size of
165 * other one, in this condition, it's better to split both of slab and related
166 * data structure.
167 */
168 struct inode_entry {
169 struct list_head list; /* list head */
170 struct inode *inode; /* vfs inode pointer */
171 };
172
173 /* for the list of blockaddresses to be discarded */
174 struct discard_entry {
175 struct list_head list; /* list head */
176 block_t blkaddr; /* block address to be discarded */
177 int len; /* # of consecutive blocks of the discard */
178 };
179
180 /* for the list of fsync inodes, used only during recovery */
181 struct fsync_inode_entry {
182 struct list_head list; /* list head */
183 struct inode *inode; /* vfs inode pointer */
184 block_t blkaddr; /* block address locating the last fsync */
185 block_t last_dentry; /* block address locating the last dentry */
186 block_t last_inode; /* block address locating the last inode */
187 };
188
189 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
190 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
191
192 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
193 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
194 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
195 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
196
197 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
198 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
199
200 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
201 {
202 int before = nats_in_cursum(rs);
203 rs->n_nats = cpu_to_le16(before + i);
204 return before;
205 }
206
207 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
208 {
209 int before = sits_in_cursum(rs);
210 rs->n_sits = cpu_to_le16(before + i);
211 return before;
212 }
213
214 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
215 int type)
216 {
217 if (type == NAT_JOURNAL)
218 return size <= MAX_NAT_JENTRIES(sum);
219 return size <= MAX_SIT_JENTRIES(sum);
220 }
221
222 /*
223 * ioctl commands
224 */
225 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
226 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
227 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
228
229 #define F2FS_IOCTL_MAGIC 0xf5
230 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
231 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
232 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
233 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
234 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
235 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
236 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
237
238 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
239 _IOR('f', 19, struct f2fs_encryption_policy)
240 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
241 _IOW('f', 20, __u8[16])
242 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
243 _IOW('f', 21, struct f2fs_encryption_policy)
244
245 /*
246 * should be same as XFS_IOC_GOINGDOWN.
247 * Flags for going down operation used by FS_IOC_GOINGDOWN
248 */
249 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
250 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
251 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
252 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
253 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
254
255 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
256 /*
257 * ioctl commands in 32 bit emulation
258 */
259 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
260 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
261 #endif
262
263 /*
264 * For INODE and NODE manager
265 */
266 /* for directory operations */
267 struct f2fs_str {
268 unsigned char *name;
269 u32 len;
270 };
271
272 struct f2fs_filename {
273 const struct qstr *usr_fname;
274 struct f2fs_str disk_name;
275 f2fs_hash_t hash;
276 #ifdef CONFIG_F2FS_FS_ENCRYPTION
277 struct f2fs_str crypto_buf;
278 #endif
279 };
280
281 #define FSTR_INIT(n, l) { .name = n, .len = l }
282 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
283 #define fname_name(p) ((p)->disk_name.name)
284 #define fname_len(p) ((p)->disk_name.len)
285
286 struct f2fs_dentry_ptr {
287 struct inode *inode;
288 const void *bitmap;
289 struct f2fs_dir_entry *dentry;
290 __u8 (*filename)[F2FS_SLOT_LEN];
291 int max;
292 };
293
294 static inline void make_dentry_ptr(struct inode *inode,
295 struct f2fs_dentry_ptr *d, void *src, int type)
296 {
297 d->inode = inode;
298
299 if (type == 1) {
300 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
301 d->max = NR_DENTRY_IN_BLOCK;
302 d->bitmap = &t->dentry_bitmap;
303 d->dentry = t->dentry;
304 d->filename = t->filename;
305 } else {
306 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
307 d->max = NR_INLINE_DENTRY;
308 d->bitmap = &t->dentry_bitmap;
309 d->dentry = t->dentry;
310 d->filename = t->filename;
311 }
312 }
313
314 /*
315 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
316 * as its node offset to distinguish from index node blocks.
317 * But some bits are used to mark the node block.
318 */
319 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
320 >> OFFSET_BIT_SHIFT)
321 enum {
322 ALLOC_NODE, /* allocate a new node page if needed */
323 LOOKUP_NODE, /* look up a node without readahead */
324 LOOKUP_NODE_RA, /*
325 * look up a node with readahead called
326 * by get_data_block.
327 */
328 };
329
330 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
331
332 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
333
334 /* vector size for gang look-up from extent cache that consists of radix tree */
335 #define EXT_TREE_VEC_SIZE 64
336
337 /* for in-memory extent cache entry */
338 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
339
340 /* number of extent info in extent cache we try to shrink */
341 #define EXTENT_CACHE_SHRINK_NUMBER 128
342
343 struct extent_info {
344 unsigned int fofs; /* start offset in a file */
345 u32 blk; /* start block address of the extent */
346 unsigned int len; /* length of the extent */
347 };
348
349 struct extent_node {
350 struct rb_node rb_node; /* rb node located in rb-tree */
351 struct list_head list; /* node in global extent list of sbi */
352 struct extent_info ei; /* extent info */
353 };
354
355 struct extent_tree {
356 nid_t ino; /* inode number */
357 struct rb_root root; /* root of extent info rb-tree */
358 struct extent_node *cached_en; /* recently accessed extent node */
359 struct extent_info largest; /* largested extent info */
360 rwlock_t lock; /* protect extent info rb-tree */
361 atomic_t refcount; /* reference count of rb-tree */
362 unsigned int count; /* # of extent node in rb-tree*/
363 };
364
365 /*
366 * This structure is taken from ext4_map_blocks.
367 *
368 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
369 */
370 #define F2FS_MAP_NEW (1 << BH_New)
371 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
372 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
373 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
374 F2FS_MAP_UNWRITTEN)
375
376 struct f2fs_map_blocks {
377 block_t m_pblk;
378 block_t m_lblk;
379 unsigned int m_len;
380 unsigned int m_flags;
381 };
382
383 /* for flag in get_data_block */
384 #define F2FS_GET_BLOCK_READ 0
385 #define F2FS_GET_BLOCK_DIO 1
386 #define F2FS_GET_BLOCK_FIEMAP 2
387 #define F2FS_GET_BLOCK_BMAP 3
388
389 /*
390 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
391 */
392 #define FADVISE_COLD_BIT 0x01
393 #define FADVISE_LOST_PINO_BIT 0x02
394 #define FADVISE_ENCRYPT_BIT 0x04
395 #define FADVISE_ENC_NAME_BIT 0x08
396
397 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
398 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
399 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
400 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
401 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
402 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
403 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
404 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
405 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
406 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
407 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
408
409 /* Encryption algorithms */
410 #define F2FS_ENCRYPTION_MODE_INVALID 0
411 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
412 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
413 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
414 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
415
416 #include "f2fs_crypto.h"
417
418 #define DEF_DIR_LEVEL 0
419
420 struct f2fs_inode_info {
421 struct inode vfs_inode; /* serve a vfs inode */
422 unsigned long i_flags; /* keep an inode flags for ioctl */
423 unsigned char i_advise; /* use to give file attribute hints */
424 unsigned char i_dir_level; /* use for dentry level for large dir */
425 unsigned int i_current_depth; /* use only in directory structure */
426 unsigned int i_pino; /* parent inode number */
427 umode_t i_acl_mode; /* keep file acl mode temporarily */
428
429 /* Use below internally in f2fs*/
430 unsigned long flags; /* use to pass per-file flags */
431 struct rw_semaphore i_sem; /* protect fi info */
432 atomic_t dirty_pages; /* # of dirty pages */
433 f2fs_hash_t chash; /* hash value of given file name */
434 unsigned int clevel; /* maximum level of given file name */
435 nid_t i_xattr_nid; /* node id that contains xattrs */
436 unsigned long long xattr_ver; /* cp version of xattr modification */
437 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
438
439 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
440 struct mutex inmem_lock; /* lock for inmemory pages */
441
442 struct extent_tree *extent_tree; /* cached extent_tree entry */
443
444 #ifdef CONFIG_F2FS_FS_ENCRYPTION
445 /* Encryption params */
446 struct f2fs_crypt_info *i_crypt_info;
447 #endif
448 };
449
450 static inline void get_extent_info(struct extent_info *ext,
451 struct f2fs_extent i_ext)
452 {
453 ext->fofs = le32_to_cpu(i_ext.fofs);
454 ext->blk = le32_to_cpu(i_ext.blk);
455 ext->len = le32_to_cpu(i_ext.len);
456 }
457
458 static inline void set_raw_extent(struct extent_info *ext,
459 struct f2fs_extent *i_ext)
460 {
461 i_ext->fofs = cpu_to_le32(ext->fofs);
462 i_ext->blk = cpu_to_le32(ext->blk);
463 i_ext->len = cpu_to_le32(ext->len);
464 }
465
466 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
467 u32 blk, unsigned int len)
468 {
469 ei->fofs = fofs;
470 ei->blk = blk;
471 ei->len = len;
472 }
473
474 static inline bool __is_extent_same(struct extent_info *ei1,
475 struct extent_info *ei2)
476 {
477 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
478 ei1->len == ei2->len);
479 }
480
481 static inline bool __is_extent_mergeable(struct extent_info *back,
482 struct extent_info *front)
483 {
484 return (back->fofs + back->len == front->fofs &&
485 back->blk + back->len == front->blk);
486 }
487
488 static inline bool __is_back_mergeable(struct extent_info *cur,
489 struct extent_info *back)
490 {
491 return __is_extent_mergeable(back, cur);
492 }
493
494 static inline bool __is_front_mergeable(struct extent_info *cur,
495 struct extent_info *front)
496 {
497 return __is_extent_mergeable(cur, front);
498 }
499
500 static inline void __try_update_largest_extent(struct extent_tree *et,
501 struct extent_node *en)
502 {
503 if (en->ei.len > et->largest.len)
504 et->largest = en->ei;
505 }
506
507 struct f2fs_nm_info {
508 block_t nat_blkaddr; /* base disk address of NAT */
509 nid_t max_nid; /* maximum possible node ids */
510 nid_t available_nids; /* maximum available node ids */
511 nid_t next_scan_nid; /* the next nid to be scanned */
512 unsigned int ram_thresh; /* control the memory footprint */
513 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
514
515 /* NAT cache management */
516 struct radix_tree_root nat_root;/* root of the nat entry cache */
517 struct radix_tree_root nat_set_root;/* root of the nat set cache */
518 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
519 struct list_head nat_entries; /* cached nat entry list (clean) */
520 unsigned int nat_cnt; /* the # of cached nat entries */
521 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
522
523 /* free node ids management */
524 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
525 struct list_head free_nid_list; /* a list for free nids */
526 spinlock_t free_nid_list_lock; /* protect free nid list */
527 unsigned int fcnt; /* the number of free node id */
528 struct mutex build_lock; /* lock for build free nids */
529
530 /* for checkpoint */
531 char *nat_bitmap; /* NAT bitmap pointer */
532 int bitmap_size; /* bitmap size */
533 };
534
535 /*
536 * this structure is used as one of function parameters.
537 * all the information are dedicated to a given direct node block determined
538 * by the data offset in a file.
539 */
540 struct dnode_of_data {
541 struct inode *inode; /* vfs inode pointer */
542 struct page *inode_page; /* its inode page, NULL is possible */
543 struct page *node_page; /* cached direct node page */
544 nid_t nid; /* node id of the direct node block */
545 unsigned int ofs_in_node; /* data offset in the node page */
546 bool inode_page_locked; /* inode page is locked or not */
547 block_t data_blkaddr; /* block address of the node block */
548 };
549
550 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
551 struct page *ipage, struct page *npage, nid_t nid)
552 {
553 memset(dn, 0, sizeof(*dn));
554 dn->inode = inode;
555 dn->inode_page = ipage;
556 dn->node_page = npage;
557 dn->nid = nid;
558 }
559
560 /*
561 * For SIT manager
562 *
563 * By default, there are 6 active log areas across the whole main area.
564 * When considering hot and cold data separation to reduce cleaning overhead,
565 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
566 * respectively.
567 * In the current design, you should not change the numbers intentionally.
568 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
569 * logs individually according to the underlying devices. (default: 6)
570 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
571 * data and 8 for node logs.
572 */
573 #define NR_CURSEG_DATA_TYPE (3)
574 #define NR_CURSEG_NODE_TYPE (3)
575 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
576
577 enum {
578 CURSEG_HOT_DATA = 0, /* directory entry blocks */
579 CURSEG_WARM_DATA, /* data blocks */
580 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
581 CURSEG_HOT_NODE, /* direct node blocks of directory files */
582 CURSEG_WARM_NODE, /* direct node blocks of normal files */
583 CURSEG_COLD_NODE, /* indirect node blocks */
584 NO_CHECK_TYPE,
585 CURSEG_DIRECT_IO, /* to use for the direct IO path */
586 };
587
588 struct flush_cmd {
589 struct completion wait;
590 struct llist_node llnode;
591 int ret;
592 };
593
594 struct flush_cmd_control {
595 struct task_struct *f2fs_issue_flush; /* flush thread */
596 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
597 struct llist_head issue_list; /* list for command issue */
598 struct llist_node *dispatch_list; /* list for command dispatch */
599 };
600
601 struct f2fs_sm_info {
602 struct sit_info *sit_info; /* whole segment information */
603 struct free_segmap_info *free_info; /* free segment information */
604 struct dirty_seglist_info *dirty_info; /* dirty segment information */
605 struct curseg_info *curseg_array; /* active segment information */
606
607 block_t seg0_blkaddr; /* block address of 0'th segment */
608 block_t main_blkaddr; /* start block address of main area */
609 block_t ssa_blkaddr; /* start block address of SSA area */
610
611 unsigned int segment_count; /* total # of segments */
612 unsigned int main_segments; /* # of segments in main area */
613 unsigned int reserved_segments; /* # of reserved segments */
614 unsigned int ovp_segments; /* # of overprovision segments */
615
616 /* a threshold to reclaim prefree segments */
617 unsigned int rec_prefree_segments;
618
619 /* for small discard management */
620 struct list_head discard_list; /* 4KB discard list */
621 int nr_discards; /* # of discards in the list */
622 int max_discards; /* max. discards to be issued */
623
624 /* for batched trimming */
625 unsigned int trim_sections; /* # of sections to trim */
626
627 struct list_head sit_entry_set; /* sit entry set list */
628
629 unsigned int ipu_policy; /* in-place-update policy */
630 unsigned int min_ipu_util; /* in-place-update threshold */
631 unsigned int min_fsync_blocks; /* threshold for fsync */
632
633 /* for flush command control */
634 struct flush_cmd_control *cmd_control_info;
635
636 };
637
638 /*
639 * For superblock
640 */
641 /*
642 * COUNT_TYPE for monitoring
643 *
644 * f2fs monitors the number of several block types such as on-writeback,
645 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
646 */
647 enum count_type {
648 F2FS_WRITEBACK,
649 F2FS_DIRTY_DENTS,
650 F2FS_DIRTY_NODES,
651 F2FS_DIRTY_META,
652 F2FS_INMEM_PAGES,
653 NR_COUNT_TYPE,
654 };
655
656 /*
657 * The below are the page types of bios used in submit_bio().
658 * The available types are:
659 * DATA User data pages. It operates as async mode.
660 * NODE Node pages. It operates as async mode.
661 * META FS metadata pages such as SIT, NAT, CP.
662 * NR_PAGE_TYPE The number of page types.
663 * META_FLUSH Make sure the previous pages are written
664 * with waiting the bio's completion
665 * ... Only can be used with META.
666 */
667 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
668 enum page_type {
669 DATA,
670 NODE,
671 META,
672 NR_PAGE_TYPE,
673 META_FLUSH,
674 INMEM, /* the below types are used by tracepoints only. */
675 INMEM_DROP,
676 IPU,
677 OPU,
678 };
679
680 struct f2fs_io_info {
681 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
682 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
683 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
684 block_t blk_addr; /* block address to be written */
685 struct page *page; /* page to be written */
686 struct page *encrypted_page; /* encrypted page */
687 };
688
689 #define is_read_io(rw) (((rw) & 1) == READ)
690 struct f2fs_bio_info {
691 struct f2fs_sb_info *sbi; /* f2fs superblock */
692 struct bio *bio; /* bios to merge */
693 sector_t last_block_in_bio; /* last block number */
694 struct f2fs_io_info fio; /* store buffered io info. */
695 struct rw_semaphore io_rwsem; /* blocking op for bio */
696 };
697
698 /* for inner inode cache management */
699 struct inode_management {
700 struct radix_tree_root ino_root; /* ino entry array */
701 spinlock_t ino_lock; /* for ino entry lock */
702 struct list_head ino_list; /* inode list head */
703 unsigned long ino_num; /* number of entries */
704 };
705
706 /* For s_flag in struct f2fs_sb_info */
707 enum {
708 SBI_IS_DIRTY, /* dirty flag for checkpoint */
709 SBI_IS_CLOSE, /* specify unmounting */
710 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
711 SBI_POR_DOING, /* recovery is doing or not */
712 };
713
714 struct f2fs_sb_info {
715 struct super_block *sb; /* pointer to VFS super block */
716 struct proc_dir_entry *s_proc; /* proc entry */
717 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
718 struct f2fs_super_block *raw_super; /* raw super block pointer */
719 int s_flag; /* flags for sbi */
720
721 /* for node-related operations */
722 struct f2fs_nm_info *nm_info; /* node manager */
723 struct inode *node_inode; /* cache node blocks */
724
725 /* for segment-related operations */
726 struct f2fs_sm_info *sm_info; /* segment manager */
727
728 /* for bio operations */
729 struct f2fs_bio_info read_io; /* for read bios */
730 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
731
732 /* for checkpoint */
733 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
734 struct inode *meta_inode; /* cache meta blocks */
735 struct mutex cp_mutex; /* checkpoint procedure lock */
736 struct rw_semaphore cp_rwsem; /* blocking FS operations */
737 struct rw_semaphore node_write; /* locking node writes */
738 struct mutex writepages; /* mutex for writepages() */
739 wait_queue_head_t cp_wait;
740 long cp_expires, cp_interval; /* next expected periodic cp */
741
742 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
743
744 /* for orphan inode, use 0'th array */
745 unsigned int max_orphans; /* max orphan inodes */
746
747 /* for directory inode management */
748 struct list_head dir_inode_list; /* dir inode list */
749 spinlock_t dir_inode_lock; /* for dir inode list lock */
750
751 /* for extent tree cache */
752 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
753 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
754 struct list_head extent_list; /* lru list for shrinker */
755 spinlock_t extent_lock; /* locking extent lru list */
756 int total_ext_tree; /* extent tree count */
757 atomic_t total_ext_node; /* extent info count */
758
759 /* basic filesystem units */
760 unsigned int log_sectors_per_block; /* log2 sectors per block */
761 unsigned int log_blocksize; /* log2 block size */
762 unsigned int blocksize; /* block size */
763 unsigned int root_ino_num; /* root inode number*/
764 unsigned int node_ino_num; /* node inode number*/
765 unsigned int meta_ino_num; /* meta inode number*/
766 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
767 unsigned int blocks_per_seg; /* blocks per segment */
768 unsigned int segs_per_sec; /* segments per section */
769 unsigned int secs_per_zone; /* sections per zone */
770 unsigned int total_sections; /* total section count */
771 unsigned int total_node_count; /* total node block count */
772 unsigned int total_valid_node_count; /* valid node block count */
773 unsigned int total_valid_inode_count; /* valid inode count */
774 int active_logs; /* # of active logs */
775 int dir_level; /* directory level */
776
777 block_t user_block_count; /* # of user blocks */
778 block_t total_valid_block_count; /* # of valid blocks */
779 block_t alloc_valid_block_count; /* # of allocated blocks */
780 block_t discard_blks; /* discard command candidats */
781 block_t last_valid_block_count; /* for recovery */
782 u32 s_next_generation; /* for NFS support */
783 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
784
785 struct f2fs_mount_info mount_opt; /* mount options */
786
787 /* for cleaning operations */
788 struct mutex gc_mutex; /* mutex for GC */
789 struct f2fs_gc_kthread *gc_thread; /* GC thread */
790 unsigned int cur_victim_sec; /* current victim section num */
791
792 /* maximum # of trials to find a victim segment for SSR and GC */
793 unsigned int max_victim_search;
794
795 /*
796 * for stat information.
797 * one is for the LFS mode, and the other is for the SSR mode.
798 */
799 #ifdef CONFIG_F2FS_STAT_FS
800 struct f2fs_stat_info *stat_info; /* FS status information */
801 unsigned int segment_count[2]; /* # of allocated segments */
802 unsigned int block_count[2]; /* # of allocated blocks */
803 atomic_t inplace_count; /* # of inplace update */
804 atomic64_t total_hit_ext; /* # of lookup extent cache */
805 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
806 atomic64_t read_hit_largest; /* # of hit largest extent node */
807 atomic64_t read_hit_cached; /* # of hit cached extent node */
808 atomic_t inline_xattr; /* # of inline_xattr inodes */
809 atomic_t inline_inode; /* # of inline_data inodes */
810 atomic_t inline_dir; /* # of inline_dentry inodes */
811 int bg_gc; /* background gc calls */
812 unsigned int n_dirty_dirs; /* # of dir inodes */
813 #endif
814 unsigned int last_victim[2]; /* last victim segment # */
815 spinlock_t stat_lock; /* lock for stat operations */
816
817 /* For sysfs suppport */
818 struct kobject s_kobj;
819 struct completion s_kobj_unregister;
820
821 /* For shrinker support */
822 struct list_head s_list;
823 struct mutex umount_mutex;
824 unsigned int shrinker_run_no;
825 };
826
827 /*
828 * Inline functions
829 */
830 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
831 {
832 return container_of(inode, struct f2fs_inode_info, vfs_inode);
833 }
834
835 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
836 {
837 return sb->s_fs_info;
838 }
839
840 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
841 {
842 return F2FS_SB(inode->i_sb);
843 }
844
845 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
846 {
847 return F2FS_I_SB(mapping->host);
848 }
849
850 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
851 {
852 return F2FS_M_SB(page->mapping);
853 }
854
855 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
856 {
857 return (struct f2fs_super_block *)(sbi->raw_super);
858 }
859
860 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
861 {
862 return (struct f2fs_checkpoint *)(sbi->ckpt);
863 }
864
865 static inline struct f2fs_node *F2FS_NODE(struct page *page)
866 {
867 return (struct f2fs_node *)page_address(page);
868 }
869
870 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
871 {
872 return &((struct f2fs_node *)page_address(page))->i;
873 }
874
875 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
876 {
877 return (struct f2fs_nm_info *)(sbi->nm_info);
878 }
879
880 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
881 {
882 return (struct f2fs_sm_info *)(sbi->sm_info);
883 }
884
885 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
886 {
887 return (struct sit_info *)(SM_I(sbi)->sit_info);
888 }
889
890 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
891 {
892 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
893 }
894
895 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
896 {
897 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
898 }
899
900 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
901 {
902 return sbi->meta_inode->i_mapping;
903 }
904
905 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
906 {
907 return sbi->node_inode->i_mapping;
908 }
909
910 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
911 {
912 return sbi->s_flag & (0x01 << type);
913 }
914
915 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
916 {
917 sbi->s_flag |= (0x01 << type);
918 }
919
920 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
921 {
922 sbi->s_flag &= ~(0x01 << type);
923 }
924
925 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
926 {
927 return le64_to_cpu(cp->checkpoint_ver);
928 }
929
930 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
931 {
932 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
933 return ckpt_flags & f;
934 }
935
936 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
937 {
938 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
939 ckpt_flags |= f;
940 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
941 }
942
943 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
944 {
945 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
946 ckpt_flags &= (~f);
947 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
948 }
949
950 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
951 {
952 down_read(&sbi->cp_rwsem);
953 }
954
955 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
956 {
957 up_read(&sbi->cp_rwsem);
958 }
959
960 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
961 {
962 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
963 }
964
965 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
966 {
967 up_write(&sbi->cp_rwsem);
968 }
969
970 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
971 {
972 int reason = CP_SYNC;
973
974 if (test_opt(sbi, FASTBOOT))
975 reason = CP_FASTBOOT;
976 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
977 reason = CP_UMOUNT;
978 return reason;
979 }
980
981 static inline bool __remain_node_summaries(int reason)
982 {
983 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
984 }
985
986 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
987 {
988 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
989 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
990 }
991
992 /*
993 * Check whether the given nid is within node id range.
994 */
995 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
996 {
997 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
998 return -EINVAL;
999 if (unlikely(nid >= NM_I(sbi)->max_nid))
1000 return -EINVAL;
1001 return 0;
1002 }
1003
1004 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1005
1006 /*
1007 * Check whether the inode has blocks or not
1008 */
1009 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1010 {
1011 if (F2FS_I(inode)->i_xattr_nid)
1012 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1013 else
1014 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1015 }
1016
1017 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1018 {
1019 return ofs == XATTR_NODE_OFFSET;
1020 }
1021
1022 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1023 struct inode *inode, blkcnt_t count)
1024 {
1025 block_t valid_block_count;
1026
1027 spin_lock(&sbi->stat_lock);
1028 valid_block_count =
1029 sbi->total_valid_block_count + (block_t)count;
1030 if (unlikely(valid_block_count > sbi->user_block_count)) {
1031 spin_unlock(&sbi->stat_lock);
1032 return false;
1033 }
1034 inode->i_blocks += count;
1035 sbi->total_valid_block_count = valid_block_count;
1036 sbi->alloc_valid_block_count += (block_t)count;
1037 spin_unlock(&sbi->stat_lock);
1038 return true;
1039 }
1040
1041 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1042 struct inode *inode,
1043 blkcnt_t count)
1044 {
1045 spin_lock(&sbi->stat_lock);
1046 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1047 f2fs_bug_on(sbi, inode->i_blocks < count);
1048 inode->i_blocks -= count;
1049 sbi->total_valid_block_count -= (block_t)count;
1050 spin_unlock(&sbi->stat_lock);
1051 }
1052
1053 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1054 {
1055 atomic_inc(&sbi->nr_pages[count_type]);
1056 set_sbi_flag(sbi, SBI_IS_DIRTY);
1057 }
1058
1059 static inline void inode_inc_dirty_pages(struct inode *inode)
1060 {
1061 atomic_inc(&F2FS_I(inode)->dirty_pages);
1062 if (S_ISDIR(inode->i_mode))
1063 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1064 }
1065
1066 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1067 {
1068 atomic_dec(&sbi->nr_pages[count_type]);
1069 }
1070
1071 static inline void inode_dec_dirty_pages(struct inode *inode)
1072 {
1073 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1074 !S_ISLNK(inode->i_mode))
1075 return;
1076
1077 atomic_dec(&F2FS_I(inode)->dirty_pages);
1078
1079 if (S_ISDIR(inode->i_mode))
1080 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1081 }
1082
1083 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1084 {
1085 return atomic_read(&sbi->nr_pages[count_type]);
1086 }
1087
1088 static inline int get_dirty_pages(struct inode *inode)
1089 {
1090 return atomic_read(&F2FS_I(inode)->dirty_pages);
1091 }
1092
1093 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1094 {
1095 unsigned int pages_per_sec = sbi->segs_per_sec *
1096 (1 << sbi->log_blocks_per_seg);
1097 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1098 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1099 }
1100
1101 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1102 {
1103 return sbi->total_valid_block_count;
1104 }
1105
1106 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1107 {
1108 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1109
1110 /* return NAT or SIT bitmap */
1111 if (flag == NAT_BITMAP)
1112 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1113 else if (flag == SIT_BITMAP)
1114 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1115
1116 return 0;
1117 }
1118
1119 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1120 {
1121 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1122 }
1123
1124 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1125 {
1126 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1127 int offset;
1128
1129 if (__cp_payload(sbi) > 0) {
1130 if (flag == NAT_BITMAP)
1131 return &ckpt->sit_nat_version_bitmap;
1132 else
1133 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1134 } else {
1135 offset = (flag == NAT_BITMAP) ?
1136 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1137 return &ckpt->sit_nat_version_bitmap + offset;
1138 }
1139 }
1140
1141 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1142 {
1143 block_t start_addr;
1144 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1145 unsigned long long ckpt_version = cur_cp_version(ckpt);
1146
1147 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1148
1149 /*
1150 * odd numbered checkpoint should at cp segment 0
1151 * and even segment must be at cp segment 1
1152 */
1153 if (!(ckpt_version & 1))
1154 start_addr += sbi->blocks_per_seg;
1155
1156 return start_addr;
1157 }
1158
1159 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1160 {
1161 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1162 }
1163
1164 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1165 struct inode *inode)
1166 {
1167 block_t valid_block_count;
1168 unsigned int valid_node_count;
1169
1170 spin_lock(&sbi->stat_lock);
1171
1172 valid_block_count = sbi->total_valid_block_count + 1;
1173 if (unlikely(valid_block_count > sbi->user_block_count)) {
1174 spin_unlock(&sbi->stat_lock);
1175 return false;
1176 }
1177
1178 valid_node_count = sbi->total_valid_node_count + 1;
1179 if (unlikely(valid_node_count > sbi->total_node_count)) {
1180 spin_unlock(&sbi->stat_lock);
1181 return false;
1182 }
1183
1184 if (inode)
1185 inode->i_blocks++;
1186
1187 sbi->alloc_valid_block_count++;
1188 sbi->total_valid_node_count++;
1189 sbi->total_valid_block_count++;
1190 spin_unlock(&sbi->stat_lock);
1191
1192 return true;
1193 }
1194
1195 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1196 struct inode *inode)
1197 {
1198 spin_lock(&sbi->stat_lock);
1199
1200 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1201 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1202 f2fs_bug_on(sbi, !inode->i_blocks);
1203
1204 inode->i_blocks--;
1205 sbi->total_valid_node_count--;
1206 sbi->total_valid_block_count--;
1207
1208 spin_unlock(&sbi->stat_lock);
1209 }
1210
1211 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1212 {
1213 return sbi->total_valid_node_count;
1214 }
1215
1216 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1217 {
1218 spin_lock(&sbi->stat_lock);
1219 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1220 sbi->total_valid_inode_count++;
1221 spin_unlock(&sbi->stat_lock);
1222 }
1223
1224 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1225 {
1226 spin_lock(&sbi->stat_lock);
1227 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1228 sbi->total_valid_inode_count--;
1229 spin_unlock(&sbi->stat_lock);
1230 }
1231
1232 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1233 {
1234 return sbi->total_valid_inode_count;
1235 }
1236
1237 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1238 pgoff_t index, bool for_write)
1239 {
1240 if (!for_write)
1241 return grab_cache_page(mapping, index);
1242 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1243 }
1244
1245 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1246 {
1247 char *src_kaddr = kmap(src);
1248 char *dst_kaddr = kmap(dst);
1249
1250 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1251 kunmap(dst);
1252 kunmap(src);
1253 }
1254
1255 static inline void f2fs_put_page(struct page *page, int unlock)
1256 {
1257 if (!page)
1258 return;
1259
1260 if (unlock) {
1261 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1262 unlock_page(page);
1263 }
1264 page_cache_release(page);
1265 }
1266
1267 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1268 {
1269 if (dn->node_page)
1270 f2fs_put_page(dn->node_page, 1);
1271 if (dn->inode_page && dn->node_page != dn->inode_page)
1272 f2fs_put_page(dn->inode_page, 0);
1273 dn->node_page = NULL;
1274 dn->inode_page = NULL;
1275 }
1276
1277 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1278 size_t size)
1279 {
1280 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1281 }
1282
1283 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1284 gfp_t flags)
1285 {
1286 void *entry;
1287
1288 entry = kmem_cache_alloc(cachep, flags);
1289 if (!entry)
1290 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1291 return entry;
1292 }
1293
1294 static inline struct bio *f2fs_bio_alloc(int npages)
1295 {
1296 struct bio *bio;
1297
1298 /* No failure on bio allocation */
1299 bio = bio_alloc(GFP_NOIO, npages);
1300 if (!bio)
1301 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1302 return bio;
1303 }
1304
1305 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1306 unsigned long index, void *item)
1307 {
1308 while (radix_tree_insert(root, index, item))
1309 cond_resched();
1310 }
1311
1312 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1313
1314 static inline bool IS_INODE(struct page *page)
1315 {
1316 struct f2fs_node *p = F2FS_NODE(page);
1317 return RAW_IS_INODE(p);
1318 }
1319
1320 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1321 {
1322 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1323 }
1324
1325 static inline block_t datablock_addr(struct page *node_page,
1326 unsigned int offset)
1327 {
1328 struct f2fs_node *raw_node;
1329 __le32 *addr_array;
1330 raw_node = F2FS_NODE(node_page);
1331 addr_array = blkaddr_in_node(raw_node);
1332 return le32_to_cpu(addr_array[offset]);
1333 }
1334
1335 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1336 {
1337 int mask;
1338
1339 addr += (nr >> 3);
1340 mask = 1 << (7 - (nr & 0x07));
1341 return mask & *addr;
1342 }
1343
1344 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1345 {
1346 int mask;
1347
1348 addr += (nr >> 3);
1349 mask = 1 << (7 - (nr & 0x07));
1350 *addr |= mask;
1351 }
1352
1353 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1354 {
1355 int mask;
1356
1357 addr += (nr >> 3);
1358 mask = 1 << (7 - (nr & 0x07));
1359 *addr &= ~mask;
1360 }
1361
1362 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1363 {
1364 int mask;
1365 int ret;
1366
1367 addr += (nr >> 3);
1368 mask = 1 << (7 - (nr & 0x07));
1369 ret = mask & *addr;
1370 *addr |= mask;
1371 return ret;
1372 }
1373
1374 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1375 {
1376 int mask;
1377 int ret;
1378
1379 addr += (nr >> 3);
1380 mask = 1 << (7 - (nr & 0x07));
1381 ret = mask & *addr;
1382 *addr &= ~mask;
1383 return ret;
1384 }
1385
1386 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1387 {
1388 int mask;
1389
1390 addr += (nr >> 3);
1391 mask = 1 << (7 - (nr & 0x07));
1392 *addr ^= mask;
1393 }
1394
1395 /* used for f2fs_inode_info->flags */
1396 enum {
1397 FI_NEW_INODE, /* indicate newly allocated inode */
1398 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1399 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1400 FI_INC_LINK, /* need to increment i_nlink */
1401 FI_ACL_MODE, /* indicate acl mode */
1402 FI_NO_ALLOC, /* should not allocate any blocks */
1403 FI_FREE_NID, /* free allocated nide */
1404 FI_UPDATE_DIR, /* should update inode block for consistency */
1405 FI_DELAY_IPUT, /* used for the recovery */
1406 FI_NO_EXTENT, /* not to use the extent cache */
1407 FI_INLINE_XATTR, /* used for inline xattr */
1408 FI_INLINE_DATA, /* used for inline data*/
1409 FI_INLINE_DENTRY, /* used for inline dentry */
1410 FI_APPEND_WRITE, /* inode has appended data */
1411 FI_UPDATE_WRITE, /* inode has in-place-update data */
1412 FI_NEED_IPU, /* used for ipu per file */
1413 FI_ATOMIC_FILE, /* indicate atomic file */
1414 FI_VOLATILE_FILE, /* indicate volatile file */
1415 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1416 FI_DROP_CACHE, /* drop dirty page cache */
1417 FI_DATA_EXIST, /* indicate data exists */
1418 FI_INLINE_DOTS, /* indicate inline dot dentries */
1419 };
1420
1421 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1422 {
1423 if (!test_bit(flag, &fi->flags))
1424 set_bit(flag, &fi->flags);
1425 }
1426
1427 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1428 {
1429 return test_bit(flag, &fi->flags);
1430 }
1431
1432 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1433 {
1434 if (test_bit(flag, &fi->flags))
1435 clear_bit(flag, &fi->flags);
1436 }
1437
1438 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1439 {
1440 fi->i_acl_mode = mode;
1441 set_inode_flag(fi, FI_ACL_MODE);
1442 }
1443
1444 static inline void get_inline_info(struct f2fs_inode_info *fi,
1445 struct f2fs_inode *ri)
1446 {
1447 if (ri->i_inline & F2FS_INLINE_XATTR)
1448 set_inode_flag(fi, FI_INLINE_XATTR);
1449 if (ri->i_inline & F2FS_INLINE_DATA)
1450 set_inode_flag(fi, FI_INLINE_DATA);
1451 if (ri->i_inline & F2FS_INLINE_DENTRY)
1452 set_inode_flag(fi, FI_INLINE_DENTRY);
1453 if (ri->i_inline & F2FS_DATA_EXIST)
1454 set_inode_flag(fi, FI_DATA_EXIST);
1455 if (ri->i_inline & F2FS_INLINE_DOTS)
1456 set_inode_flag(fi, FI_INLINE_DOTS);
1457 }
1458
1459 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1460 struct f2fs_inode *ri)
1461 {
1462 ri->i_inline = 0;
1463
1464 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1465 ri->i_inline |= F2FS_INLINE_XATTR;
1466 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1467 ri->i_inline |= F2FS_INLINE_DATA;
1468 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1469 ri->i_inline |= F2FS_INLINE_DENTRY;
1470 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1471 ri->i_inline |= F2FS_DATA_EXIST;
1472 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1473 ri->i_inline |= F2FS_INLINE_DOTS;
1474 }
1475
1476 static inline int f2fs_has_inline_xattr(struct inode *inode)
1477 {
1478 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1479 }
1480
1481 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1482 {
1483 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1484 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1485 return DEF_ADDRS_PER_INODE;
1486 }
1487
1488 static inline void *inline_xattr_addr(struct page *page)
1489 {
1490 struct f2fs_inode *ri = F2FS_INODE(page);
1491 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1492 F2FS_INLINE_XATTR_ADDRS]);
1493 }
1494
1495 static inline int inline_xattr_size(struct inode *inode)
1496 {
1497 if (f2fs_has_inline_xattr(inode))
1498 return F2FS_INLINE_XATTR_ADDRS << 2;
1499 else
1500 return 0;
1501 }
1502
1503 static inline int f2fs_has_inline_data(struct inode *inode)
1504 {
1505 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1506 }
1507
1508 static inline void f2fs_clear_inline_inode(struct inode *inode)
1509 {
1510 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1511 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1512 }
1513
1514 static inline int f2fs_exist_data(struct inode *inode)
1515 {
1516 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1517 }
1518
1519 static inline int f2fs_has_inline_dots(struct inode *inode)
1520 {
1521 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1522 }
1523
1524 static inline bool f2fs_is_atomic_file(struct inode *inode)
1525 {
1526 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1527 }
1528
1529 static inline bool f2fs_is_volatile_file(struct inode *inode)
1530 {
1531 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1532 }
1533
1534 static inline bool f2fs_is_first_block_written(struct inode *inode)
1535 {
1536 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1537 }
1538
1539 static inline bool f2fs_is_drop_cache(struct inode *inode)
1540 {
1541 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1542 }
1543
1544 static inline void *inline_data_addr(struct page *page)
1545 {
1546 struct f2fs_inode *ri = F2FS_INODE(page);
1547 return (void *)&(ri->i_addr[1]);
1548 }
1549
1550 static inline int f2fs_has_inline_dentry(struct inode *inode)
1551 {
1552 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1553 }
1554
1555 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1556 {
1557 if (!f2fs_has_inline_dentry(dir))
1558 kunmap(page);
1559 }
1560
1561 static inline int is_file(struct inode *inode, int type)
1562 {
1563 return F2FS_I(inode)->i_advise & type;
1564 }
1565
1566 static inline void set_file(struct inode *inode, int type)
1567 {
1568 F2FS_I(inode)->i_advise |= type;
1569 }
1570
1571 static inline void clear_file(struct inode *inode, int type)
1572 {
1573 F2FS_I(inode)->i_advise &= ~type;
1574 }
1575
1576 static inline int f2fs_readonly(struct super_block *sb)
1577 {
1578 return sb->s_flags & MS_RDONLY;
1579 }
1580
1581 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1582 {
1583 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1584 }
1585
1586 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1587 {
1588 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1589 sbi->sb->s_flags |= MS_RDONLY;
1590 }
1591
1592 static inline bool is_dot_dotdot(const struct qstr *str)
1593 {
1594 if (str->len == 1 && str->name[0] == '.')
1595 return true;
1596
1597 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1598 return true;
1599
1600 return false;
1601 }
1602
1603 static inline bool f2fs_may_extent_tree(struct inode *inode)
1604 {
1605 mode_t mode = inode->i_mode;
1606
1607 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1608 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1609 return false;
1610
1611 return S_ISREG(mode);
1612 }
1613
1614 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1615 {
1616 void *ret;
1617
1618 ret = kmalloc(size, flags | __GFP_NOWARN);
1619 if (!ret)
1620 ret = __vmalloc(size, flags, PAGE_KERNEL);
1621 return ret;
1622 }
1623
1624 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1625 {
1626 void *ret;
1627
1628 ret = kzalloc(size, flags | __GFP_NOWARN);
1629 if (!ret)
1630 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1631 return ret;
1632 }
1633
1634 #define get_inode_mode(i) \
1635 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1636 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1637
1638 /* get offset of first page in next direct node */
1639 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1640 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1641 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1642 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1643
1644 /*
1645 * file.c
1646 */
1647 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1648 void truncate_data_blocks(struct dnode_of_data *);
1649 int truncate_blocks(struct inode *, u64, bool);
1650 int f2fs_truncate(struct inode *, bool);
1651 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1652 int f2fs_setattr(struct dentry *, struct iattr *);
1653 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1654 int truncate_data_blocks_range(struct dnode_of_data *, int);
1655 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1656 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1657
1658 /*
1659 * inode.c
1660 */
1661 void f2fs_set_inode_flags(struct inode *);
1662 struct inode *f2fs_iget(struct super_block *, unsigned long);
1663 int try_to_free_nats(struct f2fs_sb_info *, int);
1664 void update_inode(struct inode *, struct page *);
1665 void update_inode_page(struct inode *);
1666 int f2fs_write_inode(struct inode *, struct writeback_control *);
1667 void f2fs_evict_inode(struct inode *);
1668 void handle_failed_inode(struct inode *);
1669
1670 /*
1671 * namei.c
1672 */
1673 struct dentry *f2fs_get_parent(struct dentry *child);
1674
1675 /*
1676 * dir.c
1677 */
1678 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1679 void set_de_type(struct f2fs_dir_entry *, umode_t);
1680
1681 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1682 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1683 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1684 unsigned int, struct f2fs_str *);
1685 void do_make_empty_dir(struct inode *, struct inode *,
1686 struct f2fs_dentry_ptr *);
1687 struct page *init_inode_metadata(struct inode *, struct inode *,
1688 const struct qstr *, struct page *);
1689 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1690 int room_for_filename(const void *, int, int);
1691 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1692 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1693 struct page **);
1694 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1695 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1696 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1697 struct page *, struct inode *);
1698 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1699 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1700 const struct qstr *, f2fs_hash_t , unsigned int);
1701 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1702 umode_t);
1703 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1704 struct inode *);
1705 int f2fs_do_tmpfile(struct inode *, struct inode *);
1706 bool f2fs_empty_dir(struct inode *);
1707
1708 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1709 {
1710 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1711 inode, inode->i_ino, inode->i_mode);
1712 }
1713
1714 /*
1715 * super.c
1716 */
1717 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1718 int f2fs_sync_fs(struct super_block *, int);
1719 extern __printf(3, 4)
1720 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1721
1722 /*
1723 * hash.c
1724 */
1725 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1726
1727 /*
1728 * node.c
1729 */
1730 struct dnode_of_data;
1731 struct node_info;
1732
1733 bool available_free_memory(struct f2fs_sb_info *, int);
1734 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1735 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1736 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1737 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1738 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1739 int truncate_inode_blocks(struct inode *, pgoff_t);
1740 int truncate_xattr_node(struct inode *, struct page *);
1741 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1742 int remove_inode_page(struct inode *);
1743 struct page *new_inode_page(struct inode *);
1744 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1745 void ra_node_page(struct f2fs_sb_info *, nid_t);
1746 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1747 struct page *get_node_page_ra(struct page *, int);
1748 void sync_inode_page(struct dnode_of_data *);
1749 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1750 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1751 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1752 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1753 int try_to_free_nids(struct f2fs_sb_info *, int);
1754 void recover_inline_xattr(struct inode *, struct page *);
1755 void recover_xattr_data(struct inode *, struct page *, block_t);
1756 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1757 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1758 struct f2fs_summary_block *);
1759 void flush_nat_entries(struct f2fs_sb_info *);
1760 int build_node_manager(struct f2fs_sb_info *);
1761 void destroy_node_manager(struct f2fs_sb_info *);
1762 int __init create_node_manager_caches(void);
1763 void destroy_node_manager_caches(void);
1764
1765 /*
1766 * segment.c
1767 */
1768 void register_inmem_page(struct inode *, struct page *);
1769 int commit_inmem_pages(struct inode *, bool);
1770 void f2fs_balance_fs(struct f2fs_sb_info *);
1771 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1772 int f2fs_issue_flush(struct f2fs_sb_info *);
1773 int create_flush_cmd_control(struct f2fs_sb_info *);
1774 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1775 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1776 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1777 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1778 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1779 void release_discard_addrs(struct f2fs_sb_info *);
1780 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1781 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1782 void allocate_new_segments(struct f2fs_sb_info *);
1783 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1784 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1785 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1786 void write_meta_page(struct f2fs_sb_info *, struct page *);
1787 void write_node_page(unsigned int, struct f2fs_io_info *);
1788 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1789 void rewrite_data_page(struct f2fs_io_info *);
1790 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1791 block_t, block_t, unsigned char, bool);
1792 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1793 block_t, block_t *, struct f2fs_summary *, int);
1794 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1795 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1796 void write_data_summaries(struct f2fs_sb_info *, block_t);
1797 void write_node_summaries(struct f2fs_sb_info *, block_t);
1798 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1799 int, unsigned int, int);
1800 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1801 int build_segment_manager(struct f2fs_sb_info *);
1802 void destroy_segment_manager(struct f2fs_sb_info *);
1803 int __init create_segment_manager_caches(void);
1804 void destroy_segment_manager_caches(void);
1805
1806 /*
1807 * checkpoint.c
1808 */
1809 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1810 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1811 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1812 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1813 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1814 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1815 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1816 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1817 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1818 void release_dirty_inode(struct f2fs_sb_info *);
1819 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1820 int acquire_orphan_inode(struct f2fs_sb_info *);
1821 void release_orphan_inode(struct f2fs_sb_info *);
1822 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1823 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1824 int recover_orphan_inodes(struct f2fs_sb_info *);
1825 int get_valid_checkpoint(struct f2fs_sb_info *);
1826 void update_dirty_page(struct inode *, struct page *);
1827 void add_dirty_dir_inode(struct inode *);
1828 void remove_dirty_dir_inode(struct inode *);
1829 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1830 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1831 void init_ino_entry_info(struct f2fs_sb_info *);
1832 int __init create_checkpoint_caches(void);
1833 void destroy_checkpoint_caches(void);
1834
1835 /*
1836 * data.c
1837 */
1838 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1839 int f2fs_submit_page_bio(struct f2fs_io_info *);
1840 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1841 void set_data_blkaddr(struct dnode_of_data *);
1842 int reserve_new_block(struct dnode_of_data *);
1843 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1844 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1845 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1846 struct page *find_data_page(struct inode *, pgoff_t);
1847 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1848 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1849 int do_write_data_page(struct f2fs_io_info *);
1850 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1851 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1852 int f2fs_release_page(struct page *, gfp_t);
1853
1854 /*
1855 * gc.c
1856 */
1857 int start_gc_thread(struct f2fs_sb_info *);
1858 void stop_gc_thread(struct f2fs_sb_info *);
1859 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1860 int f2fs_gc(struct f2fs_sb_info *, bool);
1861 void build_gc_manager(struct f2fs_sb_info *);
1862
1863 /*
1864 * recovery.c
1865 */
1866 int recover_fsync_data(struct f2fs_sb_info *);
1867 bool space_for_roll_forward(struct f2fs_sb_info *);
1868
1869 /*
1870 * debug.c
1871 */
1872 #ifdef CONFIG_F2FS_STAT_FS
1873 struct f2fs_stat_info {
1874 struct list_head stat_list;
1875 struct f2fs_sb_info *sbi;
1876 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1877 int main_area_segs, main_area_sections, main_area_zones;
1878 unsigned long long hit_largest, hit_cached, hit_rbtree;
1879 unsigned long long hit_total, total_ext;
1880 int ext_tree, ext_node;
1881 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1882 int nats, dirty_nats, sits, dirty_sits, fnids;
1883 int total_count, utilization;
1884 int bg_gc, inmem_pages, wb_pages;
1885 int inline_xattr, inline_inode, inline_dir;
1886 unsigned int valid_count, valid_node_count, valid_inode_count;
1887 unsigned int bimodal, avg_vblocks;
1888 int util_free, util_valid, util_invalid;
1889 int rsvd_segs, overp_segs;
1890 int dirty_count, node_pages, meta_pages;
1891 int prefree_count, call_count, cp_count;
1892 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1893 int bg_node_segs, bg_data_segs;
1894 int tot_blks, data_blks, node_blks;
1895 int bg_data_blks, bg_node_blks;
1896 int curseg[NR_CURSEG_TYPE];
1897 int cursec[NR_CURSEG_TYPE];
1898 int curzone[NR_CURSEG_TYPE];
1899
1900 unsigned int segment_count[2];
1901 unsigned int block_count[2];
1902 unsigned int inplace_count;
1903 unsigned long long base_mem, cache_mem, page_mem;
1904 };
1905
1906 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1907 {
1908 return (struct f2fs_stat_info *)sbi->stat_info;
1909 }
1910
1911 #define stat_inc_cp_count(si) ((si)->cp_count++)
1912 #define stat_inc_call_count(si) ((si)->call_count++)
1913 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1914 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1915 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1916 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
1917 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
1918 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
1919 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
1920 #define stat_inc_inline_xattr(inode) \
1921 do { \
1922 if (f2fs_has_inline_xattr(inode)) \
1923 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1924 } while (0)
1925 #define stat_dec_inline_xattr(inode) \
1926 do { \
1927 if (f2fs_has_inline_xattr(inode)) \
1928 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1929 } while (0)
1930 #define stat_inc_inline_inode(inode) \
1931 do { \
1932 if (f2fs_has_inline_data(inode)) \
1933 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1934 } while (0)
1935 #define stat_dec_inline_inode(inode) \
1936 do { \
1937 if (f2fs_has_inline_data(inode)) \
1938 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1939 } while (0)
1940 #define stat_inc_inline_dir(inode) \
1941 do { \
1942 if (f2fs_has_inline_dentry(inode)) \
1943 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1944 } while (0)
1945 #define stat_dec_inline_dir(inode) \
1946 do { \
1947 if (f2fs_has_inline_dentry(inode)) \
1948 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1949 } while (0)
1950 #define stat_inc_seg_type(sbi, curseg) \
1951 ((sbi)->segment_count[(curseg)->alloc_type]++)
1952 #define stat_inc_block_count(sbi, curseg) \
1953 ((sbi)->block_count[(curseg)->alloc_type]++)
1954 #define stat_inc_inplace_blocks(sbi) \
1955 (atomic_inc(&(sbi)->inplace_count))
1956 #define stat_inc_seg_count(sbi, type, gc_type) \
1957 do { \
1958 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1959 (si)->tot_segs++; \
1960 if (type == SUM_TYPE_DATA) { \
1961 si->data_segs++; \
1962 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1963 } else { \
1964 si->node_segs++; \
1965 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1966 } \
1967 } while (0)
1968
1969 #define stat_inc_tot_blk_count(si, blks) \
1970 (si->tot_blks += (blks))
1971
1972 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1973 do { \
1974 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1975 stat_inc_tot_blk_count(si, blks); \
1976 si->data_blks += (blks); \
1977 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1978 } while (0)
1979
1980 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1981 do { \
1982 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1983 stat_inc_tot_blk_count(si, blks); \
1984 si->node_blks += (blks); \
1985 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
1986 } while (0)
1987
1988 int f2fs_build_stats(struct f2fs_sb_info *);
1989 void f2fs_destroy_stats(struct f2fs_sb_info *);
1990 void __init f2fs_create_root_stats(void);
1991 void f2fs_destroy_root_stats(void);
1992 #else
1993 #define stat_inc_cp_count(si)
1994 #define stat_inc_call_count(si)
1995 #define stat_inc_bggc_count(si)
1996 #define stat_inc_dirty_dir(sbi)
1997 #define stat_dec_dirty_dir(sbi)
1998 #define stat_inc_total_hit(sb)
1999 #define stat_inc_rbtree_node_hit(sb)
2000 #define stat_inc_largest_node_hit(sbi)
2001 #define stat_inc_cached_node_hit(sbi)
2002 #define stat_inc_inline_xattr(inode)
2003 #define stat_dec_inline_xattr(inode)
2004 #define stat_inc_inline_inode(inode)
2005 #define stat_dec_inline_inode(inode)
2006 #define stat_inc_inline_dir(inode)
2007 #define stat_dec_inline_dir(inode)
2008 #define stat_inc_seg_type(sbi, curseg)
2009 #define stat_inc_block_count(sbi, curseg)
2010 #define stat_inc_inplace_blocks(sbi)
2011 #define stat_inc_seg_count(sbi, type, gc_type)
2012 #define stat_inc_tot_blk_count(si, blks)
2013 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2014 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2015
2016 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2017 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2018 static inline void __init f2fs_create_root_stats(void) { }
2019 static inline void f2fs_destroy_root_stats(void) { }
2020 #endif
2021
2022 extern const struct file_operations f2fs_dir_operations;
2023 extern const struct file_operations f2fs_file_operations;
2024 extern const struct inode_operations f2fs_file_inode_operations;
2025 extern const struct address_space_operations f2fs_dblock_aops;
2026 extern const struct address_space_operations f2fs_node_aops;
2027 extern const struct address_space_operations f2fs_meta_aops;
2028 extern const struct inode_operations f2fs_dir_inode_operations;
2029 extern const struct inode_operations f2fs_symlink_inode_operations;
2030 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2031 extern const struct inode_operations f2fs_special_inode_operations;
2032 extern struct kmem_cache *inode_entry_slab;
2033
2034 /*
2035 * inline.c
2036 */
2037 bool f2fs_may_inline_data(struct inode *);
2038 bool f2fs_may_inline_dentry(struct inode *);
2039 void read_inline_data(struct page *, struct page *);
2040 bool truncate_inline_inode(struct page *, u64);
2041 int f2fs_read_inline_data(struct inode *, struct page *);
2042 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2043 int f2fs_convert_inline_inode(struct inode *);
2044 int f2fs_write_inline_data(struct inode *, struct page *);
2045 bool recover_inline_data(struct inode *, struct page *);
2046 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2047 struct f2fs_filename *, struct page **);
2048 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2049 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2050 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2051 nid_t, umode_t);
2052 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2053 struct inode *, struct inode *);
2054 bool f2fs_empty_inline_dir(struct inode *);
2055 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2056 struct f2fs_str *);
2057 int f2fs_inline_data_fiemap(struct inode *,
2058 struct fiemap_extent_info *, __u64, __u64);
2059
2060 /*
2061 * shrinker.c
2062 */
2063 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2064 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2065 void f2fs_join_shrinker(struct f2fs_sb_info *);
2066 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2067
2068 /*
2069 * extent_cache.c
2070 */
2071 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2072 void f2fs_drop_largest_extent(struct inode *, pgoff_t);
2073 void f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2074 unsigned int f2fs_destroy_extent_node(struct inode *);
2075 void f2fs_destroy_extent_tree(struct inode *);
2076 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2077 void f2fs_update_extent_cache(struct dnode_of_data *);
2078 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2079 pgoff_t, block_t, unsigned int);
2080 void init_extent_cache_info(struct f2fs_sb_info *);
2081 int __init create_extent_cache(void);
2082 void destroy_extent_cache(void);
2083
2084 /*
2085 * crypto support
2086 */
2087 static inline int f2fs_encrypted_inode(struct inode *inode)
2088 {
2089 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2090 return file_is_encrypt(inode);
2091 #else
2092 return 0;
2093 #endif
2094 }
2095
2096 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2097 {
2098 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2099 file_set_encrypt(inode);
2100 #endif
2101 }
2102
2103 static inline bool f2fs_bio_encrypted(struct bio *bio)
2104 {
2105 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2106 return unlikely(bio->bi_private != NULL);
2107 #else
2108 return false;
2109 #endif
2110 }
2111
2112 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2113 {
2114 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2115 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2116 #else
2117 return 0;
2118 #endif
2119 }
2120
2121 static inline bool f2fs_may_encrypt(struct inode *inode)
2122 {
2123 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2124 mode_t mode = inode->i_mode;
2125
2126 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2127 #else
2128 return 0;
2129 #endif
2130 }
2131
2132 /* crypto_policy.c */
2133 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2134 struct inode *);
2135 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2136 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2137 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2138
2139 /* crypt.c */
2140 extern struct kmem_cache *f2fs_crypt_info_cachep;
2141 bool f2fs_valid_contents_enc_mode(uint32_t);
2142 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2143 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2144 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2145 struct page *f2fs_encrypt(struct inode *, struct page *);
2146 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2147 int f2fs_decrypt_one(struct inode *, struct page *);
2148 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2149
2150 /* crypto_key.c */
2151 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2152 int _f2fs_get_encryption_info(struct inode *inode);
2153
2154 /* crypto_fname.c */
2155 bool f2fs_valid_filenames_enc_mode(uint32_t);
2156 u32 f2fs_fname_crypto_round_up(u32, u32);
2157 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2158 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2159 const struct f2fs_str *, struct f2fs_str *);
2160 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2161 struct f2fs_str *);
2162
2163 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2164 void f2fs_restore_and_release_control_page(struct page **);
2165 void f2fs_restore_control_page(struct page *);
2166
2167 int __init f2fs_init_crypto(void);
2168 int f2fs_crypto_initialize(void);
2169 void f2fs_exit_crypto(void);
2170
2171 int f2fs_has_encryption_key(struct inode *);
2172
2173 static inline int f2fs_get_encryption_info(struct inode *inode)
2174 {
2175 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2176
2177 if (!ci ||
2178 (ci->ci_keyring_key &&
2179 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2180 (1 << KEY_FLAG_REVOKED) |
2181 (1 << KEY_FLAG_DEAD)))))
2182 return _f2fs_get_encryption_info(inode);
2183 return 0;
2184 }
2185
2186 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2187 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2188 int lookup, struct f2fs_filename *);
2189 void f2fs_fname_free_filename(struct f2fs_filename *);
2190 #else
2191 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2192 static inline void f2fs_restore_control_page(struct page *p) { }
2193
2194 static inline int __init f2fs_init_crypto(void) { return 0; }
2195 static inline void f2fs_exit_crypto(void) { }
2196
2197 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2198 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2199 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2200
2201 static inline int f2fs_fname_setup_filename(struct inode *dir,
2202 const struct qstr *iname,
2203 int lookup, struct f2fs_filename *fname)
2204 {
2205 memset(fname, 0, sizeof(struct f2fs_filename));
2206 fname->usr_fname = iname;
2207 fname->disk_name.name = (unsigned char *)iname->name;
2208 fname->disk_name.len = iname->len;
2209 return 0;
2210 }
2211
2212 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2213 #endif
2214 #endif