]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/f2fs.h
libceph: ceph_x_encrypt_buflen() takes in_len
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_EVICT_INODE,
49 FAULT_IO,
50 FAULT_CHECKPOINT,
51 FAULT_MAX,
52 };
53
54 struct f2fs_fault_info {
55 atomic_t inject_ops;
56 unsigned int inject_rate;
57 unsigned int inject_type;
58 };
59
60 extern char *fault_name[FAULT_MAX];
61 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type)))
62 #endif
63
64 /*
65 * For mount options
66 */
67 #define F2FS_MOUNT_BG_GC 0x00000001
68 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
69 #define F2FS_MOUNT_DISCARD 0x00000004
70 #define F2FS_MOUNT_NOHEAP 0x00000008
71 #define F2FS_MOUNT_XATTR_USER 0x00000010
72 #define F2FS_MOUNT_POSIX_ACL 0x00000020
73 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
74 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
75 #define F2FS_MOUNT_INLINE_DATA 0x00000100
76 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
77 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
78 #define F2FS_MOUNT_NOBARRIER 0x00000800
79 #define F2FS_MOUNT_FASTBOOT 0x00001000
80 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
81 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
82 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
83 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
84 #define F2FS_MOUNT_ADAPTIVE 0x00020000
85 #define F2FS_MOUNT_LFS 0x00040000
86
87 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
88 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
89 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
90
91 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
92 typecheck(unsigned long long, b) && \
93 ((long long)((a) - (b)) > 0))
94
95 typedef u32 block_t; /*
96 * should not change u32, since it is the on-disk block
97 * address format, __le32.
98 */
99 typedef u32 nid_t;
100
101 struct f2fs_mount_info {
102 unsigned int opt;
103 };
104
105 #define F2FS_FEATURE_ENCRYPT 0x0001
106 #define F2FS_FEATURE_HMSMR 0x0002
107
108 #define F2FS_HAS_FEATURE(sb, mask) \
109 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
110 #define F2FS_SET_FEATURE(sb, mask) \
111 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
112 #define F2FS_CLEAR_FEATURE(sb, mask) \
113 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
114
115 /*
116 * For checkpoint manager
117 */
118 enum {
119 NAT_BITMAP,
120 SIT_BITMAP
121 };
122
123 enum {
124 CP_UMOUNT,
125 CP_FASTBOOT,
126 CP_SYNC,
127 CP_RECOVERY,
128 CP_DISCARD,
129 };
130
131 #define DEF_BATCHED_TRIM_SECTIONS 2
132 #define BATCHED_TRIM_SEGMENTS(sbi) \
133 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
134 #define BATCHED_TRIM_BLOCKS(sbi) \
135 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
136 #define DEF_CP_INTERVAL 60 /* 60 secs */
137 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
138
139 struct cp_control {
140 int reason;
141 __u64 trim_start;
142 __u64 trim_end;
143 __u64 trim_minlen;
144 __u64 trimmed;
145 };
146
147 /*
148 * For CP/NAT/SIT/SSA readahead
149 */
150 enum {
151 META_CP,
152 META_NAT,
153 META_SIT,
154 META_SSA,
155 META_POR,
156 };
157
158 /* for the list of ino */
159 enum {
160 ORPHAN_INO, /* for orphan ino list */
161 APPEND_INO, /* for append ino list */
162 UPDATE_INO, /* for update ino list */
163 MAX_INO_ENTRY, /* max. list */
164 };
165
166 struct ino_entry {
167 struct list_head list; /* list head */
168 nid_t ino; /* inode number */
169 };
170
171 /* for the list of inodes to be GCed */
172 struct inode_entry {
173 struct list_head list; /* list head */
174 struct inode *inode; /* vfs inode pointer */
175 };
176
177 /* for the list of blockaddresses to be discarded */
178 struct discard_entry {
179 struct list_head list; /* list head */
180 block_t blkaddr; /* block address to be discarded */
181 int len; /* # of consecutive blocks of the discard */
182 };
183
184 struct bio_entry {
185 struct list_head list;
186 struct bio *bio;
187 struct completion event;
188 int error;
189 };
190
191 /* for the list of fsync inodes, used only during recovery */
192 struct fsync_inode_entry {
193 struct list_head list; /* list head */
194 struct inode *inode; /* vfs inode pointer */
195 block_t blkaddr; /* block address locating the last fsync */
196 block_t last_dentry; /* block address locating the last dentry */
197 };
198
199 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
200 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
201
202 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
203 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
204 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
205 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
206
207 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
208 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
209
210 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
211 {
212 int before = nats_in_cursum(journal);
213 journal->n_nats = cpu_to_le16(before + i);
214 return before;
215 }
216
217 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
218 {
219 int before = sits_in_cursum(journal);
220 journal->n_sits = cpu_to_le16(before + i);
221 return before;
222 }
223
224 static inline bool __has_cursum_space(struct f2fs_journal *journal,
225 int size, int type)
226 {
227 if (type == NAT_JOURNAL)
228 return size <= MAX_NAT_JENTRIES(journal);
229 return size <= MAX_SIT_JENTRIES(journal);
230 }
231
232 /*
233 * ioctl commands
234 */
235 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
236 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
237 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
238
239 #define F2FS_IOCTL_MAGIC 0xf5
240 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
241 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
242 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
243 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
244 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
245 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
246 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
247 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
248 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
249 struct f2fs_move_range)
250
251 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
252 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
253 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
254
255 /*
256 * should be same as XFS_IOC_GOINGDOWN.
257 * Flags for going down operation used by FS_IOC_GOINGDOWN
258 */
259 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
260 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
261 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
262 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
263 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
264
265 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
266 /*
267 * ioctl commands in 32 bit emulation
268 */
269 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
270 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
271 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
272 #endif
273
274 struct f2fs_defragment {
275 u64 start;
276 u64 len;
277 };
278
279 struct f2fs_move_range {
280 u32 dst_fd; /* destination fd */
281 u64 pos_in; /* start position in src_fd */
282 u64 pos_out; /* start position in dst_fd */
283 u64 len; /* size to move */
284 };
285
286 /*
287 * For INODE and NODE manager
288 */
289 /* for directory operations */
290 struct f2fs_dentry_ptr {
291 struct inode *inode;
292 const void *bitmap;
293 struct f2fs_dir_entry *dentry;
294 __u8 (*filename)[F2FS_SLOT_LEN];
295 int max;
296 };
297
298 static inline void make_dentry_ptr(struct inode *inode,
299 struct f2fs_dentry_ptr *d, void *src, int type)
300 {
301 d->inode = inode;
302
303 if (type == 1) {
304 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
305 d->max = NR_DENTRY_IN_BLOCK;
306 d->bitmap = &t->dentry_bitmap;
307 d->dentry = t->dentry;
308 d->filename = t->filename;
309 } else {
310 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
311 d->max = NR_INLINE_DENTRY;
312 d->bitmap = &t->dentry_bitmap;
313 d->dentry = t->dentry;
314 d->filename = t->filename;
315 }
316 }
317
318 /*
319 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
320 * as its node offset to distinguish from index node blocks.
321 * But some bits are used to mark the node block.
322 */
323 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
324 >> OFFSET_BIT_SHIFT)
325 enum {
326 ALLOC_NODE, /* allocate a new node page if needed */
327 LOOKUP_NODE, /* look up a node without readahead */
328 LOOKUP_NODE_RA, /*
329 * look up a node with readahead called
330 * by get_data_block.
331 */
332 };
333
334 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
335
336 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
337
338 /* vector size for gang look-up from extent cache that consists of radix tree */
339 #define EXT_TREE_VEC_SIZE 64
340
341 /* for in-memory extent cache entry */
342 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
343
344 /* number of extent info in extent cache we try to shrink */
345 #define EXTENT_CACHE_SHRINK_NUMBER 128
346
347 struct extent_info {
348 unsigned int fofs; /* start offset in a file */
349 u32 blk; /* start block address of the extent */
350 unsigned int len; /* length of the extent */
351 };
352
353 struct extent_node {
354 struct rb_node rb_node; /* rb node located in rb-tree */
355 struct list_head list; /* node in global extent list of sbi */
356 struct extent_info ei; /* extent info */
357 struct extent_tree *et; /* extent tree pointer */
358 };
359
360 struct extent_tree {
361 nid_t ino; /* inode number */
362 struct rb_root root; /* root of extent info rb-tree */
363 struct extent_node *cached_en; /* recently accessed extent node */
364 struct extent_info largest; /* largested extent info */
365 struct list_head list; /* to be used by sbi->zombie_list */
366 rwlock_t lock; /* protect extent info rb-tree */
367 atomic_t node_cnt; /* # of extent node in rb-tree*/
368 };
369
370 /*
371 * This structure is taken from ext4_map_blocks.
372 *
373 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
374 */
375 #define F2FS_MAP_NEW (1 << BH_New)
376 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
377 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
378 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
379 F2FS_MAP_UNWRITTEN)
380
381 struct f2fs_map_blocks {
382 block_t m_pblk;
383 block_t m_lblk;
384 unsigned int m_len;
385 unsigned int m_flags;
386 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
387 };
388
389 /* for flag in get_data_block */
390 #define F2FS_GET_BLOCK_READ 0
391 #define F2FS_GET_BLOCK_DIO 1
392 #define F2FS_GET_BLOCK_FIEMAP 2
393 #define F2FS_GET_BLOCK_BMAP 3
394 #define F2FS_GET_BLOCK_PRE_DIO 4
395 #define F2FS_GET_BLOCK_PRE_AIO 5
396
397 /*
398 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
399 */
400 #define FADVISE_COLD_BIT 0x01
401 #define FADVISE_LOST_PINO_BIT 0x02
402 #define FADVISE_ENCRYPT_BIT 0x04
403 #define FADVISE_ENC_NAME_BIT 0x08
404
405 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
406 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
407 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
408 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
409 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
410 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
411 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
412 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
413 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
414 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
415 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
416
417 #define DEF_DIR_LEVEL 0
418
419 struct f2fs_inode_info {
420 struct inode vfs_inode; /* serve a vfs inode */
421 unsigned long i_flags; /* keep an inode flags for ioctl */
422 unsigned char i_advise; /* use to give file attribute hints */
423 unsigned char i_dir_level; /* use for dentry level for large dir */
424 unsigned int i_current_depth; /* use only in directory structure */
425 unsigned int i_pino; /* parent inode number */
426 umode_t i_acl_mode; /* keep file acl mode temporarily */
427
428 /* Use below internally in f2fs*/
429 unsigned long flags; /* use to pass per-file flags */
430 struct rw_semaphore i_sem; /* protect fi info */
431 struct percpu_counter dirty_pages; /* # of dirty pages */
432 f2fs_hash_t chash; /* hash value of given file name */
433 unsigned int clevel; /* maximum level of given file name */
434 nid_t i_xattr_nid; /* node id that contains xattrs */
435 unsigned long long xattr_ver; /* cp version of xattr modification */
436 loff_t last_disk_size; /* lastly written file size */
437
438 struct list_head dirty_list; /* dirty list for dirs and files */
439 struct list_head gdirty_list; /* linked in global dirty list */
440 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
441 struct mutex inmem_lock; /* lock for inmemory pages */
442 struct extent_tree *extent_tree; /* cached extent_tree entry */
443 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
444 };
445
446 static inline void get_extent_info(struct extent_info *ext,
447 struct f2fs_extent *i_ext)
448 {
449 ext->fofs = le32_to_cpu(i_ext->fofs);
450 ext->blk = le32_to_cpu(i_ext->blk);
451 ext->len = le32_to_cpu(i_ext->len);
452 }
453
454 static inline void set_raw_extent(struct extent_info *ext,
455 struct f2fs_extent *i_ext)
456 {
457 i_ext->fofs = cpu_to_le32(ext->fofs);
458 i_ext->blk = cpu_to_le32(ext->blk);
459 i_ext->len = cpu_to_le32(ext->len);
460 }
461
462 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
463 u32 blk, unsigned int len)
464 {
465 ei->fofs = fofs;
466 ei->blk = blk;
467 ei->len = len;
468 }
469
470 static inline bool __is_extent_same(struct extent_info *ei1,
471 struct extent_info *ei2)
472 {
473 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
474 ei1->len == ei2->len);
475 }
476
477 static inline bool __is_extent_mergeable(struct extent_info *back,
478 struct extent_info *front)
479 {
480 return (back->fofs + back->len == front->fofs &&
481 back->blk + back->len == front->blk);
482 }
483
484 static inline bool __is_back_mergeable(struct extent_info *cur,
485 struct extent_info *back)
486 {
487 return __is_extent_mergeable(back, cur);
488 }
489
490 static inline bool __is_front_mergeable(struct extent_info *cur,
491 struct extent_info *front)
492 {
493 return __is_extent_mergeable(cur, front);
494 }
495
496 extern void f2fs_mark_inode_dirty_sync(struct inode *);
497 static inline void __try_update_largest_extent(struct inode *inode,
498 struct extent_tree *et, struct extent_node *en)
499 {
500 if (en->ei.len > et->largest.len) {
501 et->largest = en->ei;
502 f2fs_mark_inode_dirty_sync(inode);
503 }
504 }
505
506 struct f2fs_nm_info {
507 block_t nat_blkaddr; /* base disk address of NAT */
508 nid_t max_nid; /* maximum possible node ids */
509 nid_t available_nids; /* maximum available node ids */
510 nid_t next_scan_nid; /* the next nid to be scanned */
511 unsigned int ram_thresh; /* control the memory footprint */
512 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
513 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
514
515 /* NAT cache management */
516 struct radix_tree_root nat_root;/* root of the nat entry cache */
517 struct radix_tree_root nat_set_root;/* root of the nat set cache */
518 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
519 struct list_head nat_entries; /* cached nat entry list (clean) */
520 unsigned int nat_cnt; /* the # of cached nat entries */
521 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
522
523 /* free node ids management */
524 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
525 struct list_head free_nid_list; /* a list for free nids */
526 spinlock_t free_nid_list_lock; /* protect free nid list */
527 unsigned int fcnt; /* the number of free node id */
528 struct mutex build_lock; /* lock for build free nids */
529
530 /* for checkpoint */
531 char *nat_bitmap; /* NAT bitmap pointer */
532 int bitmap_size; /* bitmap size */
533 };
534
535 /*
536 * this structure is used as one of function parameters.
537 * all the information are dedicated to a given direct node block determined
538 * by the data offset in a file.
539 */
540 struct dnode_of_data {
541 struct inode *inode; /* vfs inode pointer */
542 struct page *inode_page; /* its inode page, NULL is possible */
543 struct page *node_page; /* cached direct node page */
544 nid_t nid; /* node id of the direct node block */
545 unsigned int ofs_in_node; /* data offset in the node page */
546 bool inode_page_locked; /* inode page is locked or not */
547 bool node_changed; /* is node block changed */
548 char cur_level; /* level of hole node page */
549 char max_level; /* level of current page located */
550 block_t data_blkaddr; /* block address of the node block */
551 };
552
553 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
554 struct page *ipage, struct page *npage, nid_t nid)
555 {
556 memset(dn, 0, sizeof(*dn));
557 dn->inode = inode;
558 dn->inode_page = ipage;
559 dn->node_page = npage;
560 dn->nid = nid;
561 }
562
563 /*
564 * For SIT manager
565 *
566 * By default, there are 6 active log areas across the whole main area.
567 * When considering hot and cold data separation to reduce cleaning overhead,
568 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
569 * respectively.
570 * In the current design, you should not change the numbers intentionally.
571 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
572 * logs individually according to the underlying devices. (default: 6)
573 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
574 * data and 8 for node logs.
575 */
576 #define NR_CURSEG_DATA_TYPE (3)
577 #define NR_CURSEG_NODE_TYPE (3)
578 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
579
580 enum {
581 CURSEG_HOT_DATA = 0, /* directory entry blocks */
582 CURSEG_WARM_DATA, /* data blocks */
583 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
584 CURSEG_HOT_NODE, /* direct node blocks of directory files */
585 CURSEG_WARM_NODE, /* direct node blocks of normal files */
586 CURSEG_COLD_NODE, /* indirect node blocks */
587 NO_CHECK_TYPE,
588 CURSEG_DIRECT_IO, /* to use for the direct IO path */
589 };
590
591 struct flush_cmd {
592 struct completion wait;
593 struct llist_node llnode;
594 int ret;
595 };
596
597 struct flush_cmd_control {
598 struct task_struct *f2fs_issue_flush; /* flush thread */
599 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
600 atomic_t submit_flush; /* # of issued flushes */
601 struct llist_head issue_list; /* list for command issue */
602 struct llist_node *dispatch_list; /* list for command dispatch */
603 };
604
605 struct f2fs_sm_info {
606 struct sit_info *sit_info; /* whole segment information */
607 struct free_segmap_info *free_info; /* free segment information */
608 struct dirty_seglist_info *dirty_info; /* dirty segment information */
609 struct curseg_info *curseg_array; /* active segment information */
610
611 block_t seg0_blkaddr; /* block address of 0'th segment */
612 block_t main_blkaddr; /* start block address of main area */
613 block_t ssa_blkaddr; /* start block address of SSA area */
614
615 unsigned int segment_count; /* total # of segments */
616 unsigned int main_segments; /* # of segments in main area */
617 unsigned int reserved_segments; /* # of reserved segments */
618 unsigned int ovp_segments; /* # of overprovision segments */
619
620 /* a threshold to reclaim prefree segments */
621 unsigned int rec_prefree_segments;
622
623 /* for small discard management */
624 struct list_head discard_list; /* 4KB discard list */
625 struct list_head wait_list; /* linked with issued discard bio */
626 int nr_discards; /* # of discards in the list */
627 int max_discards; /* max. discards to be issued */
628
629 /* for batched trimming */
630 unsigned int trim_sections; /* # of sections to trim */
631
632 struct list_head sit_entry_set; /* sit entry set list */
633
634 unsigned int ipu_policy; /* in-place-update policy */
635 unsigned int min_ipu_util; /* in-place-update threshold */
636 unsigned int min_fsync_blocks; /* threshold for fsync */
637
638 /* for flush command control */
639 struct flush_cmd_control *cmd_control_info;
640
641 };
642
643 /*
644 * For superblock
645 */
646 /*
647 * COUNT_TYPE for monitoring
648 *
649 * f2fs monitors the number of several block types such as on-writeback,
650 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
651 */
652 enum count_type {
653 F2FS_DIRTY_DENTS,
654 F2FS_DIRTY_DATA,
655 F2FS_DIRTY_NODES,
656 F2FS_DIRTY_META,
657 F2FS_INMEM_PAGES,
658 F2FS_DIRTY_IMETA,
659 NR_COUNT_TYPE,
660 };
661
662 /*
663 * The below are the page types of bios used in submit_bio().
664 * The available types are:
665 * DATA User data pages. It operates as async mode.
666 * NODE Node pages. It operates as async mode.
667 * META FS metadata pages such as SIT, NAT, CP.
668 * NR_PAGE_TYPE The number of page types.
669 * META_FLUSH Make sure the previous pages are written
670 * with waiting the bio's completion
671 * ... Only can be used with META.
672 */
673 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
674 enum page_type {
675 DATA,
676 NODE,
677 META,
678 NR_PAGE_TYPE,
679 META_FLUSH,
680 INMEM, /* the below types are used by tracepoints only. */
681 INMEM_DROP,
682 INMEM_REVOKE,
683 IPU,
684 OPU,
685 };
686
687 struct f2fs_io_info {
688 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
689 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
690 int op; /* contains REQ_OP_ */
691 int op_flags; /* rq_flag_bits */
692 block_t new_blkaddr; /* new block address to be written */
693 block_t old_blkaddr; /* old block address before Cow */
694 struct page *page; /* page to be written */
695 struct page *encrypted_page; /* encrypted page */
696 };
697
698 #define is_read_io(rw) (rw == READ)
699 struct f2fs_bio_info {
700 struct f2fs_sb_info *sbi; /* f2fs superblock */
701 struct bio *bio; /* bios to merge */
702 sector_t last_block_in_bio; /* last block number */
703 struct f2fs_io_info fio; /* store buffered io info. */
704 struct rw_semaphore io_rwsem; /* blocking op for bio */
705 };
706
707 enum inode_type {
708 DIR_INODE, /* for dirty dir inode */
709 FILE_INODE, /* for dirty regular/symlink inode */
710 DIRTY_META, /* for all dirtied inode metadata */
711 NR_INODE_TYPE,
712 };
713
714 /* for inner inode cache management */
715 struct inode_management {
716 struct radix_tree_root ino_root; /* ino entry array */
717 spinlock_t ino_lock; /* for ino entry lock */
718 struct list_head ino_list; /* inode list head */
719 unsigned long ino_num; /* number of entries */
720 };
721
722 /* For s_flag in struct f2fs_sb_info */
723 enum {
724 SBI_IS_DIRTY, /* dirty flag for checkpoint */
725 SBI_IS_CLOSE, /* specify unmounting */
726 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
727 SBI_POR_DOING, /* recovery is doing or not */
728 SBI_NEED_SB_WRITE, /* need to recover superblock */
729 SBI_NEED_CP, /* need to checkpoint */
730 };
731
732 enum {
733 CP_TIME,
734 REQ_TIME,
735 MAX_TIME,
736 };
737
738 #ifdef CONFIG_F2FS_FS_ENCRYPTION
739 #define F2FS_KEY_DESC_PREFIX "f2fs:"
740 #define F2FS_KEY_DESC_PREFIX_SIZE 5
741 #endif
742 struct f2fs_sb_info {
743 struct super_block *sb; /* pointer to VFS super block */
744 struct proc_dir_entry *s_proc; /* proc entry */
745 struct f2fs_super_block *raw_super; /* raw super block pointer */
746 int valid_super_block; /* valid super block no */
747 unsigned long s_flag; /* flags for sbi */
748
749 #ifdef CONFIG_F2FS_FS_ENCRYPTION
750 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
751 u8 key_prefix_size;
752 #endif
753 /* for node-related operations */
754 struct f2fs_nm_info *nm_info; /* node manager */
755 struct inode *node_inode; /* cache node blocks */
756
757 /* for segment-related operations */
758 struct f2fs_sm_info *sm_info; /* segment manager */
759
760 /* for bio operations */
761 struct f2fs_bio_info read_io; /* for read bios */
762 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
763 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */
764
765 /* for checkpoint */
766 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
767 spinlock_t cp_lock; /* for flag in ckpt */
768 struct inode *meta_inode; /* cache meta blocks */
769 struct mutex cp_mutex; /* checkpoint procedure lock */
770 struct rw_semaphore cp_rwsem; /* blocking FS operations */
771 struct rw_semaphore node_write; /* locking node writes */
772 wait_queue_head_t cp_wait;
773 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
774 long interval_time[MAX_TIME]; /* to store thresholds */
775
776 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
777
778 /* for orphan inode, use 0'th array */
779 unsigned int max_orphans; /* max orphan inodes */
780
781 /* for inode management */
782 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
783 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
784
785 /* for extent tree cache */
786 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
787 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
788 struct list_head extent_list; /* lru list for shrinker */
789 spinlock_t extent_lock; /* locking extent lru list */
790 atomic_t total_ext_tree; /* extent tree count */
791 struct list_head zombie_list; /* extent zombie tree list */
792 atomic_t total_zombie_tree; /* extent zombie tree count */
793 atomic_t total_ext_node; /* extent info count */
794
795 /* basic filesystem units */
796 unsigned int log_sectors_per_block; /* log2 sectors per block */
797 unsigned int log_blocksize; /* log2 block size */
798 unsigned int blocksize; /* block size */
799 unsigned int root_ino_num; /* root inode number*/
800 unsigned int node_ino_num; /* node inode number*/
801 unsigned int meta_ino_num; /* meta inode number*/
802 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
803 unsigned int blocks_per_seg; /* blocks per segment */
804 unsigned int segs_per_sec; /* segments per section */
805 unsigned int secs_per_zone; /* sections per zone */
806 unsigned int total_sections; /* total section count */
807 unsigned int total_node_count; /* total node block count */
808 unsigned int total_valid_node_count; /* valid node block count */
809 loff_t max_file_blocks; /* max block index of file */
810 int active_logs; /* # of active logs */
811 int dir_level; /* directory level */
812
813 block_t user_block_count; /* # of user blocks */
814 block_t total_valid_block_count; /* # of valid blocks */
815 block_t discard_blks; /* discard command candidats */
816 block_t last_valid_block_count; /* for recovery */
817 u32 s_next_generation; /* for NFS support */
818 atomic_t nr_wb_bios; /* # of writeback bios */
819
820 /* # of pages, see count_type */
821 struct percpu_counter nr_pages[NR_COUNT_TYPE];
822 /* # of allocated blocks */
823 struct percpu_counter alloc_valid_block_count;
824
825 /* valid inode count */
826 struct percpu_counter total_valid_inode_count;
827
828 struct f2fs_mount_info mount_opt; /* mount options */
829
830 /* for cleaning operations */
831 struct mutex gc_mutex; /* mutex for GC */
832 struct f2fs_gc_kthread *gc_thread; /* GC thread */
833 unsigned int cur_victim_sec; /* current victim section num */
834
835 /* maximum # of trials to find a victim segment for SSR and GC */
836 unsigned int max_victim_search;
837
838 /*
839 * for stat information.
840 * one is for the LFS mode, and the other is for the SSR mode.
841 */
842 #ifdef CONFIG_F2FS_STAT_FS
843 struct f2fs_stat_info *stat_info; /* FS status information */
844 unsigned int segment_count[2]; /* # of allocated segments */
845 unsigned int block_count[2]; /* # of allocated blocks */
846 atomic_t inplace_count; /* # of inplace update */
847 atomic64_t total_hit_ext; /* # of lookup extent cache */
848 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
849 atomic64_t read_hit_largest; /* # of hit largest extent node */
850 atomic64_t read_hit_cached; /* # of hit cached extent node */
851 atomic_t inline_xattr; /* # of inline_xattr inodes */
852 atomic_t inline_inode; /* # of inline_data inodes */
853 atomic_t inline_dir; /* # of inline_dentry inodes */
854 int bg_gc; /* background gc calls */
855 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
856 #endif
857 unsigned int last_victim[2]; /* last victim segment # */
858 spinlock_t stat_lock; /* lock for stat operations */
859
860 /* For sysfs suppport */
861 struct kobject s_kobj;
862 struct completion s_kobj_unregister;
863
864 /* For shrinker support */
865 struct list_head s_list;
866 struct mutex umount_mutex;
867 unsigned int shrinker_run_no;
868
869 /* For write statistics */
870 u64 sectors_written_start;
871 u64 kbytes_written;
872
873 /* Reference to checksum algorithm driver via cryptoapi */
874 struct crypto_shash *s_chksum_driver;
875
876 /* For fault injection */
877 #ifdef CONFIG_F2FS_FAULT_INJECTION
878 struct f2fs_fault_info fault_info;
879 #endif
880 };
881
882 #ifdef CONFIG_F2FS_FAULT_INJECTION
883 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
884 {
885 struct f2fs_fault_info *ffi = &sbi->fault_info;
886
887 if (!ffi->inject_rate)
888 return false;
889
890 if (!IS_FAULT_SET(ffi, type))
891 return false;
892
893 atomic_inc(&ffi->inject_ops);
894 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
895 atomic_set(&ffi->inject_ops, 0);
896 printk("%sF2FS-fs : inject %s in %pF\n",
897 KERN_INFO,
898 fault_name[type],
899 __builtin_return_address(0));
900 return true;
901 }
902 return false;
903 }
904 #endif
905
906 /* For write statistics. Suppose sector size is 512 bytes,
907 * and the return value is in kbytes. s is of struct f2fs_sb_info.
908 */
909 #define BD_PART_WRITTEN(s) \
910 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
911 s->sectors_written_start) >> 1)
912
913 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
914 {
915 sbi->last_time[type] = jiffies;
916 }
917
918 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
919 {
920 struct timespec ts = {sbi->interval_time[type], 0};
921 unsigned long interval = timespec_to_jiffies(&ts);
922
923 return time_after(jiffies, sbi->last_time[type] + interval);
924 }
925
926 static inline bool is_idle(struct f2fs_sb_info *sbi)
927 {
928 struct block_device *bdev = sbi->sb->s_bdev;
929 struct request_queue *q = bdev_get_queue(bdev);
930 struct request_list *rl = &q->root_rl;
931
932 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
933 return 0;
934
935 return f2fs_time_over(sbi, REQ_TIME);
936 }
937
938 /*
939 * Inline functions
940 */
941 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
942 unsigned int length)
943 {
944 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
945 u32 *ctx = (u32 *)shash_desc_ctx(shash);
946 int err;
947
948 shash->tfm = sbi->s_chksum_driver;
949 shash->flags = 0;
950 *ctx = F2FS_SUPER_MAGIC;
951
952 err = crypto_shash_update(shash, address, length);
953 BUG_ON(err);
954
955 return *ctx;
956 }
957
958 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
959 void *buf, size_t buf_size)
960 {
961 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
962 }
963
964 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
965 {
966 return container_of(inode, struct f2fs_inode_info, vfs_inode);
967 }
968
969 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
970 {
971 return sb->s_fs_info;
972 }
973
974 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
975 {
976 return F2FS_SB(inode->i_sb);
977 }
978
979 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
980 {
981 return F2FS_I_SB(mapping->host);
982 }
983
984 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
985 {
986 return F2FS_M_SB(page->mapping);
987 }
988
989 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
990 {
991 return (struct f2fs_super_block *)(sbi->raw_super);
992 }
993
994 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
995 {
996 return (struct f2fs_checkpoint *)(sbi->ckpt);
997 }
998
999 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1000 {
1001 return (struct f2fs_node *)page_address(page);
1002 }
1003
1004 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1005 {
1006 return &((struct f2fs_node *)page_address(page))->i;
1007 }
1008
1009 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1010 {
1011 return (struct f2fs_nm_info *)(sbi->nm_info);
1012 }
1013
1014 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1015 {
1016 return (struct f2fs_sm_info *)(sbi->sm_info);
1017 }
1018
1019 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1020 {
1021 return (struct sit_info *)(SM_I(sbi)->sit_info);
1022 }
1023
1024 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1025 {
1026 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1027 }
1028
1029 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1030 {
1031 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1032 }
1033
1034 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1035 {
1036 return sbi->meta_inode->i_mapping;
1037 }
1038
1039 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1040 {
1041 return sbi->node_inode->i_mapping;
1042 }
1043
1044 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1045 {
1046 return test_bit(type, &sbi->s_flag);
1047 }
1048
1049 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1050 {
1051 set_bit(type, &sbi->s_flag);
1052 }
1053
1054 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1055 {
1056 clear_bit(type, &sbi->s_flag);
1057 }
1058
1059 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1060 {
1061 return le64_to_cpu(cp->checkpoint_ver);
1062 }
1063
1064 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1065 {
1066 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1067
1068 return ckpt_flags & f;
1069 }
1070
1071 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1072 {
1073 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1074 }
1075
1076 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1077 {
1078 unsigned int ckpt_flags;
1079
1080 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1081 ckpt_flags |= f;
1082 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1083 }
1084
1085 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1086 {
1087 spin_lock(&sbi->cp_lock);
1088 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1089 spin_unlock(&sbi->cp_lock);
1090 }
1091
1092 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1093 {
1094 unsigned int ckpt_flags;
1095
1096 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1097 ckpt_flags &= (~f);
1098 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1099 }
1100
1101 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1102 {
1103 spin_lock(&sbi->cp_lock);
1104 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1105 spin_unlock(&sbi->cp_lock);
1106 }
1107
1108 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
1109 {
1110 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
1111
1112 return blk_queue_discard(q);
1113 }
1114
1115 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1116 {
1117 down_read(&sbi->cp_rwsem);
1118 }
1119
1120 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1121 {
1122 up_read(&sbi->cp_rwsem);
1123 }
1124
1125 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1126 {
1127 down_write(&sbi->cp_rwsem);
1128 }
1129
1130 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1131 {
1132 up_write(&sbi->cp_rwsem);
1133 }
1134
1135 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1136 {
1137 int reason = CP_SYNC;
1138
1139 if (test_opt(sbi, FASTBOOT))
1140 reason = CP_FASTBOOT;
1141 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1142 reason = CP_UMOUNT;
1143 return reason;
1144 }
1145
1146 static inline bool __remain_node_summaries(int reason)
1147 {
1148 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1149 }
1150
1151 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1152 {
1153 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1154 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1155 }
1156
1157 /*
1158 * Check whether the given nid is within node id range.
1159 */
1160 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1161 {
1162 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1163 return -EINVAL;
1164 if (unlikely(nid >= NM_I(sbi)->max_nid))
1165 return -EINVAL;
1166 return 0;
1167 }
1168
1169 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1170
1171 /*
1172 * Check whether the inode has blocks or not
1173 */
1174 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1175 {
1176 if (F2FS_I(inode)->i_xattr_nid)
1177 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1178 else
1179 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1180 }
1181
1182 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1183 {
1184 return ofs == XATTR_NODE_OFFSET;
1185 }
1186
1187 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1188 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1189 struct inode *inode, blkcnt_t *count)
1190 {
1191 blkcnt_t diff;
1192
1193 #ifdef CONFIG_F2FS_FAULT_INJECTION
1194 if (time_to_inject(sbi, FAULT_BLOCK))
1195 return false;
1196 #endif
1197 /*
1198 * let's increase this in prior to actual block count change in order
1199 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1200 */
1201 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1202
1203 spin_lock(&sbi->stat_lock);
1204 sbi->total_valid_block_count += (block_t)(*count);
1205 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1206 diff = sbi->total_valid_block_count - sbi->user_block_count;
1207 *count -= diff;
1208 sbi->total_valid_block_count = sbi->user_block_count;
1209 if (!*count) {
1210 spin_unlock(&sbi->stat_lock);
1211 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1212 return false;
1213 }
1214 }
1215 spin_unlock(&sbi->stat_lock);
1216
1217 f2fs_i_blocks_write(inode, *count, true);
1218 return true;
1219 }
1220
1221 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1222 struct inode *inode,
1223 blkcnt_t count)
1224 {
1225 spin_lock(&sbi->stat_lock);
1226 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1227 f2fs_bug_on(sbi, inode->i_blocks < count);
1228 sbi->total_valid_block_count -= (block_t)count;
1229 spin_unlock(&sbi->stat_lock);
1230 f2fs_i_blocks_write(inode, count, false);
1231 }
1232
1233 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1234 {
1235 percpu_counter_inc(&sbi->nr_pages[count_type]);
1236
1237 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES)
1238 return;
1239
1240 set_sbi_flag(sbi, SBI_IS_DIRTY);
1241 }
1242
1243 static inline void inode_inc_dirty_pages(struct inode *inode)
1244 {
1245 percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1246 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1247 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1248 }
1249
1250 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1251 {
1252 percpu_counter_dec(&sbi->nr_pages[count_type]);
1253 }
1254
1255 static inline void inode_dec_dirty_pages(struct inode *inode)
1256 {
1257 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1258 !S_ISLNK(inode->i_mode))
1259 return;
1260
1261 percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1262 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1263 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1264 }
1265
1266 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1267 {
1268 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1269 }
1270
1271 static inline s64 get_dirty_pages(struct inode *inode)
1272 {
1273 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1274 }
1275
1276 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1277 {
1278 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1279 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1280 sbi->log_blocks_per_seg;
1281
1282 return segs / sbi->segs_per_sec;
1283 }
1284
1285 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1286 {
1287 return sbi->total_valid_block_count;
1288 }
1289
1290 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1291 {
1292 return sbi->discard_blks;
1293 }
1294
1295 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1296 {
1297 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1298
1299 /* return NAT or SIT bitmap */
1300 if (flag == NAT_BITMAP)
1301 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1302 else if (flag == SIT_BITMAP)
1303 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1304
1305 return 0;
1306 }
1307
1308 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1309 {
1310 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1311 }
1312
1313 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1314 {
1315 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1316 int offset;
1317
1318 if (__cp_payload(sbi) > 0) {
1319 if (flag == NAT_BITMAP)
1320 return &ckpt->sit_nat_version_bitmap;
1321 else
1322 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1323 } else {
1324 offset = (flag == NAT_BITMAP) ?
1325 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1326 return &ckpt->sit_nat_version_bitmap + offset;
1327 }
1328 }
1329
1330 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1331 {
1332 block_t start_addr;
1333 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1334 unsigned long long ckpt_version = cur_cp_version(ckpt);
1335
1336 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1337
1338 /*
1339 * odd numbered checkpoint should at cp segment 0
1340 * and even segment must be at cp segment 1
1341 */
1342 if (!(ckpt_version & 1))
1343 start_addr += sbi->blocks_per_seg;
1344
1345 return start_addr;
1346 }
1347
1348 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1349 {
1350 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1351 }
1352
1353 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1354 struct inode *inode)
1355 {
1356 block_t valid_block_count;
1357 unsigned int valid_node_count;
1358
1359 spin_lock(&sbi->stat_lock);
1360
1361 valid_block_count = sbi->total_valid_block_count + 1;
1362 if (unlikely(valid_block_count > sbi->user_block_count)) {
1363 spin_unlock(&sbi->stat_lock);
1364 return false;
1365 }
1366
1367 valid_node_count = sbi->total_valid_node_count + 1;
1368 if (unlikely(valid_node_count > sbi->total_node_count)) {
1369 spin_unlock(&sbi->stat_lock);
1370 return false;
1371 }
1372
1373 if (inode)
1374 f2fs_i_blocks_write(inode, 1, true);
1375
1376 sbi->total_valid_node_count++;
1377 sbi->total_valid_block_count++;
1378 spin_unlock(&sbi->stat_lock);
1379
1380 percpu_counter_inc(&sbi->alloc_valid_block_count);
1381 return true;
1382 }
1383
1384 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1385 struct inode *inode)
1386 {
1387 spin_lock(&sbi->stat_lock);
1388
1389 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1390 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1391 f2fs_bug_on(sbi, !inode->i_blocks);
1392
1393 f2fs_i_blocks_write(inode, 1, false);
1394 sbi->total_valid_node_count--;
1395 sbi->total_valid_block_count--;
1396
1397 spin_unlock(&sbi->stat_lock);
1398 }
1399
1400 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1401 {
1402 return sbi->total_valid_node_count;
1403 }
1404
1405 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1406 {
1407 percpu_counter_inc(&sbi->total_valid_inode_count);
1408 }
1409
1410 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1411 {
1412 percpu_counter_dec(&sbi->total_valid_inode_count);
1413 }
1414
1415 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1416 {
1417 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1418 }
1419
1420 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1421 pgoff_t index, bool for_write)
1422 {
1423 #ifdef CONFIG_F2FS_FAULT_INJECTION
1424 struct page *page = find_lock_page(mapping, index);
1425 if (page)
1426 return page;
1427
1428 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
1429 return NULL;
1430 #endif
1431 if (!for_write)
1432 return grab_cache_page(mapping, index);
1433 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1434 }
1435
1436 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1437 {
1438 char *src_kaddr = kmap(src);
1439 char *dst_kaddr = kmap(dst);
1440
1441 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1442 kunmap(dst);
1443 kunmap(src);
1444 }
1445
1446 static inline void f2fs_put_page(struct page *page, int unlock)
1447 {
1448 if (!page)
1449 return;
1450
1451 if (unlock) {
1452 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1453 unlock_page(page);
1454 }
1455 put_page(page);
1456 }
1457
1458 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1459 {
1460 if (dn->node_page)
1461 f2fs_put_page(dn->node_page, 1);
1462 if (dn->inode_page && dn->node_page != dn->inode_page)
1463 f2fs_put_page(dn->inode_page, 0);
1464 dn->node_page = NULL;
1465 dn->inode_page = NULL;
1466 }
1467
1468 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1469 size_t size)
1470 {
1471 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1472 }
1473
1474 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1475 gfp_t flags)
1476 {
1477 void *entry;
1478
1479 entry = kmem_cache_alloc(cachep, flags);
1480 if (!entry)
1481 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1482 return entry;
1483 }
1484
1485 static inline struct bio *f2fs_bio_alloc(int npages)
1486 {
1487 struct bio *bio;
1488
1489 /* No failure on bio allocation */
1490 bio = bio_alloc(GFP_NOIO, npages);
1491 if (!bio)
1492 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1493 return bio;
1494 }
1495
1496 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1497 unsigned long index, void *item)
1498 {
1499 while (radix_tree_insert(root, index, item))
1500 cond_resched();
1501 }
1502
1503 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1504
1505 static inline bool IS_INODE(struct page *page)
1506 {
1507 struct f2fs_node *p = F2FS_NODE(page);
1508 return RAW_IS_INODE(p);
1509 }
1510
1511 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1512 {
1513 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1514 }
1515
1516 static inline block_t datablock_addr(struct page *node_page,
1517 unsigned int offset)
1518 {
1519 struct f2fs_node *raw_node;
1520 __le32 *addr_array;
1521 raw_node = F2FS_NODE(node_page);
1522 addr_array = blkaddr_in_node(raw_node);
1523 return le32_to_cpu(addr_array[offset]);
1524 }
1525
1526 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1527 {
1528 int mask;
1529
1530 addr += (nr >> 3);
1531 mask = 1 << (7 - (nr & 0x07));
1532 return mask & *addr;
1533 }
1534
1535 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1536 {
1537 int mask;
1538
1539 addr += (nr >> 3);
1540 mask = 1 << (7 - (nr & 0x07));
1541 *addr |= mask;
1542 }
1543
1544 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1545 {
1546 int mask;
1547
1548 addr += (nr >> 3);
1549 mask = 1 << (7 - (nr & 0x07));
1550 *addr &= ~mask;
1551 }
1552
1553 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1554 {
1555 int mask;
1556 int ret;
1557
1558 addr += (nr >> 3);
1559 mask = 1 << (7 - (nr & 0x07));
1560 ret = mask & *addr;
1561 *addr |= mask;
1562 return ret;
1563 }
1564
1565 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1566 {
1567 int mask;
1568 int ret;
1569
1570 addr += (nr >> 3);
1571 mask = 1 << (7 - (nr & 0x07));
1572 ret = mask & *addr;
1573 *addr &= ~mask;
1574 return ret;
1575 }
1576
1577 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1578 {
1579 int mask;
1580
1581 addr += (nr >> 3);
1582 mask = 1 << (7 - (nr & 0x07));
1583 *addr ^= mask;
1584 }
1585
1586 /* used for f2fs_inode_info->flags */
1587 enum {
1588 FI_NEW_INODE, /* indicate newly allocated inode */
1589 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1590 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1591 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1592 FI_INC_LINK, /* need to increment i_nlink */
1593 FI_ACL_MODE, /* indicate acl mode */
1594 FI_NO_ALLOC, /* should not allocate any blocks */
1595 FI_FREE_NID, /* free allocated nide */
1596 FI_NO_EXTENT, /* not to use the extent cache */
1597 FI_INLINE_XATTR, /* used for inline xattr */
1598 FI_INLINE_DATA, /* used for inline data*/
1599 FI_INLINE_DENTRY, /* used for inline dentry */
1600 FI_APPEND_WRITE, /* inode has appended data */
1601 FI_UPDATE_WRITE, /* inode has in-place-update data */
1602 FI_NEED_IPU, /* used for ipu per file */
1603 FI_ATOMIC_FILE, /* indicate atomic file */
1604 FI_VOLATILE_FILE, /* indicate volatile file */
1605 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1606 FI_DROP_CACHE, /* drop dirty page cache */
1607 FI_DATA_EXIST, /* indicate data exists */
1608 FI_INLINE_DOTS, /* indicate inline dot dentries */
1609 FI_DO_DEFRAG, /* indicate defragment is running */
1610 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1611 };
1612
1613 static inline void __mark_inode_dirty_flag(struct inode *inode,
1614 int flag, bool set)
1615 {
1616 switch (flag) {
1617 case FI_INLINE_XATTR:
1618 case FI_INLINE_DATA:
1619 case FI_INLINE_DENTRY:
1620 if (set)
1621 return;
1622 case FI_DATA_EXIST:
1623 case FI_INLINE_DOTS:
1624 f2fs_mark_inode_dirty_sync(inode);
1625 }
1626 }
1627
1628 static inline void set_inode_flag(struct inode *inode, int flag)
1629 {
1630 if (!test_bit(flag, &F2FS_I(inode)->flags))
1631 set_bit(flag, &F2FS_I(inode)->flags);
1632 __mark_inode_dirty_flag(inode, flag, true);
1633 }
1634
1635 static inline int is_inode_flag_set(struct inode *inode, int flag)
1636 {
1637 return test_bit(flag, &F2FS_I(inode)->flags);
1638 }
1639
1640 static inline void clear_inode_flag(struct inode *inode, int flag)
1641 {
1642 if (test_bit(flag, &F2FS_I(inode)->flags))
1643 clear_bit(flag, &F2FS_I(inode)->flags);
1644 __mark_inode_dirty_flag(inode, flag, false);
1645 }
1646
1647 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1648 {
1649 F2FS_I(inode)->i_acl_mode = mode;
1650 set_inode_flag(inode, FI_ACL_MODE);
1651 f2fs_mark_inode_dirty_sync(inode);
1652 }
1653
1654 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1655 {
1656 if (inc)
1657 inc_nlink(inode);
1658 else
1659 drop_nlink(inode);
1660 f2fs_mark_inode_dirty_sync(inode);
1661 }
1662
1663 static inline void f2fs_i_blocks_write(struct inode *inode,
1664 blkcnt_t diff, bool add)
1665 {
1666 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1667 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1668
1669 inode->i_blocks = add ? inode->i_blocks + diff :
1670 inode->i_blocks - diff;
1671 f2fs_mark_inode_dirty_sync(inode);
1672 if (clean || recover)
1673 set_inode_flag(inode, FI_AUTO_RECOVER);
1674 }
1675
1676 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1677 {
1678 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1679 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1680
1681 if (i_size_read(inode) == i_size)
1682 return;
1683
1684 i_size_write(inode, i_size);
1685 f2fs_mark_inode_dirty_sync(inode);
1686 if (clean || recover)
1687 set_inode_flag(inode, FI_AUTO_RECOVER);
1688 }
1689
1690 static inline bool f2fs_skip_inode_update(struct inode *inode)
1691 {
1692 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER))
1693 return false;
1694 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1695 }
1696
1697 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1698 {
1699 F2FS_I(inode)->i_current_depth = depth;
1700 f2fs_mark_inode_dirty_sync(inode);
1701 }
1702
1703 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1704 {
1705 F2FS_I(inode)->i_xattr_nid = xnid;
1706 f2fs_mark_inode_dirty_sync(inode);
1707 }
1708
1709 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1710 {
1711 F2FS_I(inode)->i_pino = pino;
1712 f2fs_mark_inode_dirty_sync(inode);
1713 }
1714
1715 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1716 {
1717 struct f2fs_inode_info *fi = F2FS_I(inode);
1718
1719 if (ri->i_inline & F2FS_INLINE_XATTR)
1720 set_bit(FI_INLINE_XATTR, &fi->flags);
1721 if (ri->i_inline & F2FS_INLINE_DATA)
1722 set_bit(FI_INLINE_DATA, &fi->flags);
1723 if (ri->i_inline & F2FS_INLINE_DENTRY)
1724 set_bit(FI_INLINE_DENTRY, &fi->flags);
1725 if (ri->i_inline & F2FS_DATA_EXIST)
1726 set_bit(FI_DATA_EXIST, &fi->flags);
1727 if (ri->i_inline & F2FS_INLINE_DOTS)
1728 set_bit(FI_INLINE_DOTS, &fi->flags);
1729 }
1730
1731 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1732 {
1733 ri->i_inline = 0;
1734
1735 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1736 ri->i_inline |= F2FS_INLINE_XATTR;
1737 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1738 ri->i_inline |= F2FS_INLINE_DATA;
1739 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1740 ri->i_inline |= F2FS_INLINE_DENTRY;
1741 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1742 ri->i_inline |= F2FS_DATA_EXIST;
1743 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1744 ri->i_inline |= F2FS_INLINE_DOTS;
1745 }
1746
1747 static inline int f2fs_has_inline_xattr(struct inode *inode)
1748 {
1749 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1750 }
1751
1752 static inline unsigned int addrs_per_inode(struct inode *inode)
1753 {
1754 if (f2fs_has_inline_xattr(inode))
1755 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1756 return DEF_ADDRS_PER_INODE;
1757 }
1758
1759 static inline void *inline_xattr_addr(struct page *page)
1760 {
1761 struct f2fs_inode *ri = F2FS_INODE(page);
1762 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1763 F2FS_INLINE_XATTR_ADDRS]);
1764 }
1765
1766 static inline int inline_xattr_size(struct inode *inode)
1767 {
1768 if (f2fs_has_inline_xattr(inode))
1769 return F2FS_INLINE_XATTR_ADDRS << 2;
1770 else
1771 return 0;
1772 }
1773
1774 static inline int f2fs_has_inline_data(struct inode *inode)
1775 {
1776 return is_inode_flag_set(inode, FI_INLINE_DATA);
1777 }
1778
1779 static inline void f2fs_clear_inline_inode(struct inode *inode)
1780 {
1781 clear_inode_flag(inode, FI_INLINE_DATA);
1782 clear_inode_flag(inode, FI_DATA_EXIST);
1783 }
1784
1785 static inline int f2fs_exist_data(struct inode *inode)
1786 {
1787 return is_inode_flag_set(inode, FI_DATA_EXIST);
1788 }
1789
1790 static inline int f2fs_has_inline_dots(struct inode *inode)
1791 {
1792 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1793 }
1794
1795 static inline bool f2fs_is_atomic_file(struct inode *inode)
1796 {
1797 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1798 }
1799
1800 static inline bool f2fs_is_volatile_file(struct inode *inode)
1801 {
1802 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1803 }
1804
1805 static inline bool f2fs_is_first_block_written(struct inode *inode)
1806 {
1807 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1808 }
1809
1810 static inline bool f2fs_is_drop_cache(struct inode *inode)
1811 {
1812 return is_inode_flag_set(inode, FI_DROP_CACHE);
1813 }
1814
1815 static inline void *inline_data_addr(struct page *page)
1816 {
1817 struct f2fs_inode *ri = F2FS_INODE(page);
1818 return (void *)&(ri->i_addr[1]);
1819 }
1820
1821 static inline int f2fs_has_inline_dentry(struct inode *inode)
1822 {
1823 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1824 }
1825
1826 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1827 {
1828 if (!f2fs_has_inline_dentry(dir))
1829 kunmap(page);
1830 }
1831
1832 static inline int is_file(struct inode *inode, int type)
1833 {
1834 return F2FS_I(inode)->i_advise & type;
1835 }
1836
1837 static inline void set_file(struct inode *inode, int type)
1838 {
1839 F2FS_I(inode)->i_advise |= type;
1840 f2fs_mark_inode_dirty_sync(inode);
1841 }
1842
1843 static inline void clear_file(struct inode *inode, int type)
1844 {
1845 F2FS_I(inode)->i_advise &= ~type;
1846 f2fs_mark_inode_dirty_sync(inode);
1847 }
1848
1849 static inline int f2fs_readonly(struct super_block *sb)
1850 {
1851 return sb->s_flags & MS_RDONLY;
1852 }
1853
1854 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1855 {
1856 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
1857 }
1858
1859 static inline bool is_dot_dotdot(const struct qstr *str)
1860 {
1861 if (str->len == 1 && str->name[0] == '.')
1862 return true;
1863
1864 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1865 return true;
1866
1867 return false;
1868 }
1869
1870 static inline bool f2fs_may_extent_tree(struct inode *inode)
1871 {
1872 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1873 is_inode_flag_set(inode, FI_NO_EXTENT))
1874 return false;
1875
1876 return S_ISREG(inode->i_mode);
1877 }
1878
1879 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
1880 size_t size, gfp_t flags)
1881 {
1882 #ifdef CONFIG_F2FS_FAULT_INJECTION
1883 if (time_to_inject(sbi, FAULT_KMALLOC))
1884 return NULL;
1885 #endif
1886 return kmalloc(size, flags);
1887 }
1888
1889 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1890 {
1891 void *ret;
1892
1893 ret = kmalloc(size, flags | __GFP_NOWARN);
1894 if (!ret)
1895 ret = __vmalloc(size, flags, PAGE_KERNEL);
1896 return ret;
1897 }
1898
1899 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1900 {
1901 void *ret;
1902
1903 ret = kzalloc(size, flags | __GFP_NOWARN);
1904 if (!ret)
1905 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1906 return ret;
1907 }
1908
1909 #define get_inode_mode(i) \
1910 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1911 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1912
1913 /* get offset of first page in next direct node */
1914 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1915 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1916 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1917 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1918
1919 /*
1920 * file.c
1921 */
1922 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1923 void truncate_data_blocks(struct dnode_of_data *);
1924 int truncate_blocks(struct inode *, u64, bool);
1925 int f2fs_truncate(struct inode *);
1926 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1927 int f2fs_setattr(struct dentry *, struct iattr *);
1928 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1929 int truncate_data_blocks_range(struct dnode_of_data *, int);
1930 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1931 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1932
1933 /*
1934 * inode.c
1935 */
1936 void f2fs_set_inode_flags(struct inode *);
1937 struct inode *f2fs_iget(struct super_block *, unsigned long);
1938 struct inode *f2fs_iget_retry(struct super_block *, unsigned long);
1939 int try_to_free_nats(struct f2fs_sb_info *, int);
1940 int update_inode(struct inode *, struct page *);
1941 int update_inode_page(struct inode *);
1942 int f2fs_write_inode(struct inode *, struct writeback_control *);
1943 void f2fs_evict_inode(struct inode *);
1944 void handle_failed_inode(struct inode *);
1945
1946 /*
1947 * namei.c
1948 */
1949 struct dentry *f2fs_get_parent(struct dentry *child);
1950
1951 /*
1952 * dir.c
1953 */
1954 void set_de_type(struct f2fs_dir_entry *, umode_t);
1955 unsigned char get_de_type(struct f2fs_dir_entry *);
1956 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1957 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1958 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1959 unsigned int, struct fscrypt_str *);
1960 void do_make_empty_dir(struct inode *, struct inode *,
1961 struct f2fs_dentry_ptr *);
1962 struct page *init_inode_metadata(struct inode *, struct inode *,
1963 const struct qstr *, const struct qstr *, struct page *);
1964 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1965 int room_for_filename(const void *, int, int);
1966 void f2fs_drop_nlink(struct inode *, struct inode *);
1967 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *, struct fscrypt_name *,
1968 struct page **);
1969 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *,
1970 struct page **);
1971 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1972 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **);
1973 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1974 struct page *, struct inode *);
1975 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1976 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1977 const struct qstr *, f2fs_hash_t , unsigned int);
1978 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1979 const struct qstr *, struct inode *, nid_t, umode_t);
1980 int __f2fs_do_add_link(struct inode *, struct fscrypt_name*, struct inode *,
1981 nid_t, umode_t);
1982 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1983 umode_t);
1984 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1985 struct inode *);
1986 int f2fs_do_tmpfile(struct inode *, struct inode *);
1987 bool f2fs_empty_dir(struct inode *);
1988
1989 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1990 {
1991 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1992 inode, inode->i_ino, inode->i_mode);
1993 }
1994
1995 /*
1996 * super.c
1997 */
1998 int f2fs_inode_dirtied(struct inode *);
1999 void f2fs_inode_synced(struct inode *);
2000 int f2fs_commit_super(struct f2fs_sb_info *, bool);
2001 int f2fs_sync_fs(struct super_block *, int);
2002 extern __printf(3, 4)
2003 void f2fs_msg(struct super_block *, const char *, const char *, ...);
2004 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2005
2006 /*
2007 * hash.c
2008 */
2009 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
2010
2011 /*
2012 * node.c
2013 */
2014 struct dnode_of_data;
2015 struct node_info;
2016
2017 bool available_free_memory(struct f2fs_sb_info *, int);
2018 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
2019 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
2020 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
2021 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
2022 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
2023 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
2024 int truncate_inode_blocks(struct inode *, pgoff_t);
2025 int truncate_xattr_node(struct inode *, struct page *);
2026 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
2027 int remove_inode_page(struct inode *);
2028 struct page *new_inode_page(struct inode *);
2029 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
2030 void ra_node_page(struct f2fs_sb_info *, nid_t);
2031 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
2032 struct page *get_node_page_ra(struct page *, int);
2033 void move_node_page(struct page *, int);
2034 int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
2035 struct writeback_control *, bool);
2036 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
2037 void build_free_nids(struct f2fs_sb_info *);
2038 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
2039 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
2040 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
2041 int try_to_free_nids(struct f2fs_sb_info *, int);
2042 void recover_inline_xattr(struct inode *, struct page *);
2043 void recover_xattr_data(struct inode *, struct page *, block_t);
2044 int recover_inode_page(struct f2fs_sb_info *, struct page *);
2045 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
2046 struct f2fs_summary_block *);
2047 void flush_nat_entries(struct f2fs_sb_info *);
2048 int build_node_manager(struct f2fs_sb_info *);
2049 void destroy_node_manager(struct f2fs_sb_info *);
2050 int __init create_node_manager_caches(void);
2051 void destroy_node_manager_caches(void);
2052
2053 /*
2054 * segment.c
2055 */
2056 void register_inmem_page(struct inode *, struct page *);
2057 void drop_inmem_pages(struct inode *);
2058 int commit_inmem_pages(struct inode *);
2059 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
2060 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
2061 int f2fs_issue_flush(struct f2fs_sb_info *);
2062 int create_flush_cmd_control(struct f2fs_sb_info *);
2063 void destroy_flush_cmd_control(struct f2fs_sb_info *);
2064 void invalidate_blocks(struct f2fs_sb_info *, block_t);
2065 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
2066 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
2067 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *);
2068 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
2069 void release_discard_addrs(struct f2fs_sb_info *);
2070 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
2071 void allocate_new_segments(struct f2fs_sb_info *);
2072 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
2073 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
2074 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
2075 void write_meta_page(struct f2fs_sb_info *, struct page *);
2076 void write_node_page(unsigned int, struct f2fs_io_info *);
2077 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2078 void rewrite_data_page(struct f2fs_io_info *);
2079 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2080 block_t, block_t, bool, bool);
2081 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2082 block_t, block_t, unsigned char, bool, bool);
2083 void allocate_data_block(struct f2fs_sb_info *, struct page *,
2084 block_t, block_t *, struct f2fs_summary *, int);
2085 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2086 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2087 void write_data_summaries(struct f2fs_sb_info *, block_t);
2088 void write_node_summaries(struct f2fs_sb_info *, block_t);
2089 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2090 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2091 int build_segment_manager(struct f2fs_sb_info *);
2092 void destroy_segment_manager(struct f2fs_sb_info *);
2093 int __init create_segment_manager_caches(void);
2094 void destroy_segment_manager_caches(void);
2095
2096 /*
2097 * checkpoint.c
2098 */
2099 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2100 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2101 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2102 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2103 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2104 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2105 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2106 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2107 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2108 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2109 void release_ino_entry(struct f2fs_sb_info *, bool);
2110 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2111 int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2112 int acquire_orphan_inode(struct f2fs_sb_info *);
2113 void release_orphan_inode(struct f2fs_sb_info *);
2114 void add_orphan_inode(struct inode *);
2115 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2116 int recover_orphan_inodes(struct f2fs_sb_info *);
2117 int get_valid_checkpoint(struct f2fs_sb_info *);
2118 void update_dirty_page(struct inode *, struct page *);
2119 void remove_dirty_inode(struct inode *);
2120 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2121 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2122 void init_ino_entry_info(struct f2fs_sb_info *);
2123 int __init create_checkpoint_caches(void);
2124 void destroy_checkpoint_caches(void);
2125
2126 /*
2127 * data.c
2128 */
2129 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2130 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2131 struct page *, nid_t, enum page_type, int);
2132 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2133 int f2fs_submit_page_bio(struct f2fs_io_info *);
2134 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2135 void set_data_blkaddr(struct dnode_of_data *);
2136 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2137 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2138 int reserve_new_block(struct dnode_of_data *);
2139 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2140 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2141 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2142 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2143 struct page *find_data_page(struct inode *, pgoff_t);
2144 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2145 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2146 int do_write_data_page(struct f2fs_io_info *);
2147 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2148 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2149 void f2fs_set_page_dirty_nobuffers(struct page *);
2150 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2151 int f2fs_release_page(struct page *, gfp_t);
2152 #ifdef CONFIG_MIGRATION
2153 int f2fs_migrate_page(struct address_space *, struct page *, struct page *,
2154 enum migrate_mode);
2155 #endif
2156
2157 /*
2158 * gc.c
2159 */
2160 int start_gc_thread(struct f2fs_sb_info *);
2161 void stop_gc_thread(struct f2fs_sb_info *);
2162 block_t start_bidx_of_node(unsigned int, struct inode *);
2163 int f2fs_gc(struct f2fs_sb_info *, bool);
2164 void build_gc_manager(struct f2fs_sb_info *);
2165
2166 /*
2167 * recovery.c
2168 */
2169 int recover_fsync_data(struct f2fs_sb_info *, bool);
2170 bool space_for_roll_forward(struct f2fs_sb_info *);
2171
2172 /*
2173 * debug.c
2174 */
2175 #ifdef CONFIG_F2FS_STAT_FS
2176 struct f2fs_stat_info {
2177 struct list_head stat_list;
2178 struct f2fs_sb_info *sbi;
2179 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2180 int main_area_segs, main_area_sections, main_area_zones;
2181 unsigned long long hit_largest, hit_cached, hit_rbtree;
2182 unsigned long long hit_total, total_ext;
2183 int ext_tree, zombie_tree, ext_node;
2184 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2185 s64 inmem_pages;
2186 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2187 int nats, dirty_nats, sits, dirty_sits, fnids;
2188 int total_count, utilization;
2189 int bg_gc, wb_bios;
2190 int inline_xattr, inline_inode, inline_dir, orphans;
2191 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2192 unsigned int bimodal, avg_vblocks;
2193 int util_free, util_valid, util_invalid;
2194 int rsvd_segs, overp_segs;
2195 int dirty_count, node_pages, meta_pages;
2196 int prefree_count, call_count, cp_count, bg_cp_count;
2197 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2198 int bg_node_segs, bg_data_segs;
2199 int tot_blks, data_blks, node_blks;
2200 int bg_data_blks, bg_node_blks;
2201 int curseg[NR_CURSEG_TYPE];
2202 int cursec[NR_CURSEG_TYPE];
2203 int curzone[NR_CURSEG_TYPE];
2204
2205 unsigned int segment_count[2];
2206 unsigned int block_count[2];
2207 unsigned int inplace_count;
2208 unsigned long long base_mem, cache_mem, page_mem;
2209 };
2210
2211 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2212 {
2213 return (struct f2fs_stat_info *)sbi->stat_info;
2214 }
2215
2216 #define stat_inc_cp_count(si) ((si)->cp_count++)
2217 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2218 #define stat_inc_call_count(si) ((si)->call_count++)
2219 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2220 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2221 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2222 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2223 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2224 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2225 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2226 #define stat_inc_inline_xattr(inode) \
2227 do { \
2228 if (f2fs_has_inline_xattr(inode)) \
2229 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2230 } while (0)
2231 #define stat_dec_inline_xattr(inode) \
2232 do { \
2233 if (f2fs_has_inline_xattr(inode)) \
2234 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2235 } while (0)
2236 #define stat_inc_inline_inode(inode) \
2237 do { \
2238 if (f2fs_has_inline_data(inode)) \
2239 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2240 } while (0)
2241 #define stat_dec_inline_inode(inode) \
2242 do { \
2243 if (f2fs_has_inline_data(inode)) \
2244 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2245 } while (0)
2246 #define stat_inc_inline_dir(inode) \
2247 do { \
2248 if (f2fs_has_inline_dentry(inode)) \
2249 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2250 } while (0)
2251 #define stat_dec_inline_dir(inode) \
2252 do { \
2253 if (f2fs_has_inline_dentry(inode)) \
2254 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2255 } while (0)
2256 #define stat_inc_seg_type(sbi, curseg) \
2257 ((sbi)->segment_count[(curseg)->alloc_type]++)
2258 #define stat_inc_block_count(sbi, curseg) \
2259 ((sbi)->block_count[(curseg)->alloc_type]++)
2260 #define stat_inc_inplace_blocks(sbi) \
2261 (atomic_inc(&(sbi)->inplace_count))
2262 #define stat_inc_seg_count(sbi, type, gc_type) \
2263 do { \
2264 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2265 (si)->tot_segs++; \
2266 if (type == SUM_TYPE_DATA) { \
2267 si->data_segs++; \
2268 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2269 } else { \
2270 si->node_segs++; \
2271 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2272 } \
2273 } while (0)
2274
2275 #define stat_inc_tot_blk_count(si, blks) \
2276 (si->tot_blks += (blks))
2277
2278 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2279 do { \
2280 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2281 stat_inc_tot_blk_count(si, blks); \
2282 si->data_blks += (blks); \
2283 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2284 } while (0)
2285
2286 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2287 do { \
2288 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2289 stat_inc_tot_blk_count(si, blks); \
2290 si->node_blks += (blks); \
2291 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2292 } while (0)
2293
2294 int f2fs_build_stats(struct f2fs_sb_info *);
2295 void f2fs_destroy_stats(struct f2fs_sb_info *);
2296 int __init f2fs_create_root_stats(void);
2297 void f2fs_destroy_root_stats(void);
2298 #else
2299 #define stat_inc_cp_count(si)
2300 #define stat_inc_bg_cp_count(si)
2301 #define stat_inc_call_count(si)
2302 #define stat_inc_bggc_count(si)
2303 #define stat_inc_dirty_inode(sbi, type)
2304 #define stat_dec_dirty_inode(sbi, type)
2305 #define stat_inc_total_hit(sb)
2306 #define stat_inc_rbtree_node_hit(sb)
2307 #define stat_inc_largest_node_hit(sbi)
2308 #define stat_inc_cached_node_hit(sbi)
2309 #define stat_inc_inline_xattr(inode)
2310 #define stat_dec_inline_xattr(inode)
2311 #define stat_inc_inline_inode(inode)
2312 #define stat_dec_inline_inode(inode)
2313 #define stat_inc_inline_dir(inode)
2314 #define stat_dec_inline_dir(inode)
2315 #define stat_inc_seg_type(sbi, curseg)
2316 #define stat_inc_block_count(sbi, curseg)
2317 #define stat_inc_inplace_blocks(sbi)
2318 #define stat_inc_seg_count(sbi, type, gc_type)
2319 #define stat_inc_tot_blk_count(si, blks)
2320 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2321 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2322
2323 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2324 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2325 static inline int __init f2fs_create_root_stats(void) { return 0; }
2326 static inline void f2fs_destroy_root_stats(void) { }
2327 #endif
2328
2329 extern const struct file_operations f2fs_dir_operations;
2330 extern const struct file_operations f2fs_file_operations;
2331 extern const struct inode_operations f2fs_file_inode_operations;
2332 extern const struct address_space_operations f2fs_dblock_aops;
2333 extern const struct address_space_operations f2fs_node_aops;
2334 extern const struct address_space_operations f2fs_meta_aops;
2335 extern const struct inode_operations f2fs_dir_inode_operations;
2336 extern const struct inode_operations f2fs_symlink_inode_operations;
2337 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2338 extern const struct inode_operations f2fs_special_inode_operations;
2339 extern struct kmem_cache *inode_entry_slab;
2340
2341 /*
2342 * inline.c
2343 */
2344 bool f2fs_may_inline_data(struct inode *);
2345 bool f2fs_may_inline_dentry(struct inode *);
2346 void read_inline_data(struct page *, struct page *);
2347 bool truncate_inline_inode(struct page *, u64);
2348 int f2fs_read_inline_data(struct inode *, struct page *);
2349 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2350 int f2fs_convert_inline_inode(struct inode *);
2351 int f2fs_write_inline_data(struct inode *, struct page *);
2352 bool recover_inline_data(struct inode *, struct page *);
2353 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2354 struct fscrypt_name *, struct page **);
2355 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2356 int f2fs_add_inline_entry(struct inode *, const struct qstr *,
2357 const struct qstr *, struct inode *, nid_t, umode_t);
2358 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2359 struct inode *, struct inode *);
2360 bool f2fs_empty_inline_dir(struct inode *);
2361 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2362 struct fscrypt_str *);
2363 int f2fs_inline_data_fiemap(struct inode *,
2364 struct fiemap_extent_info *, __u64, __u64);
2365
2366 /*
2367 * shrinker.c
2368 */
2369 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2370 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2371 void f2fs_join_shrinker(struct f2fs_sb_info *);
2372 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2373
2374 /*
2375 * extent_cache.c
2376 */
2377 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2378 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2379 void f2fs_drop_extent_tree(struct inode *);
2380 unsigned int f2fs_destroy_extent_node(struct inode *);
2381 void f2fs_destroy_extent_tree(struct inode *);
2382 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2383 void f2fs_update_extent_cache(struct dnode_of_data *);
2384 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2385 pgoff_t, block_t, unsigned int);
2386 void init_extent_cache_info(struct f2fs_sb_info *);
2387 int __init create_extent_cache(void);
2388 void destroy_extent_cache(void);
2389
2390 /*
2391 * crypto support
2392 */
2393 static inline bool f2fs_encrypted_inode(struct inode *inode)
2394 {
2395 return file_is_encrypt(inode);
2396 }
2397
2398 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2399 {
2400 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2401 file_set_encrypt(inode);
2402 #endif
2403 }
2404
2405 static inline bool f2fs_bio_encrypted(struct bio *bio)
2406 {
2407 return bio->bi_private != NULL;
2408 }
2409
2410 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2411 {
2412 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2413 }
2414
2415 static inline int f2fs_sb_mounted_hmsmr(struct super_block *sb)
2416 {
2417 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_HMSMR);
2418 }
2419
2420 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2421 {
2422 clear_opt(sbi, ADAPTIVE);
2423 clear_opt(sbi, LFS);
2424
2425 switch (mt) {
2426 case F2FS_MOUNT_ADAPTIVE:
2427 set_opt(sbi, ADAPTIVE);
2428 break;
2429 case F2FS_MOUNT_LFS:
2430 set_opt(sbi, LFS);
2431 break;
2432 }
2433 }
2434
2435 static inline bool f2fs_may_encrypt(struct inode *inode)
2436 {
2437 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2438 umode_t mode = inode->i_mode;
2439
2440 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2441 #else
2442 return 0;
2443 #endif
2444 }
2445
2446 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2447 #define fscrypt_set_d_op(i)
2448 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2449 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2450 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2451 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2452 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2453 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2454 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2455 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2456 #define fscrypt_process_policy fscrypt_notsupp_process_policy
2457 #define fscrypt_get_policy fscrypt_notsupp_get_policy
2458 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2459 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2460 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2461 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2462 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2463 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2464 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2465 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2466 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2467 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2468 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2469 #endif
2470 #endif