]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: cleanup the disk level filename updating
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #ifdef CONFIG_F2FS_FS_ENCRYPTION
26 #include <linux/fscrypt_supp.h>
27 #else
28 #include <linux/fscrypt_notsupp.h>
29 #endif
30 #include <crypto/hash.h>
31
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition) \
36 do { \
37 if (unlikely(condition)) { \
38 WARN_ON(1); \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } \
41 } while (0)
42 #endif
43
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 FAULT_KMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_ALLOC_NID,
49 FAULT_ORPHAN,
50 FAULT_BLOCK,
51 FAULT_DIR_DEPTH,
52 FAULT_EVICT_INODE,
53 FAULT_TRUNCATE,
54 FAULT_IO,
55 FAULT_CHECKPOINT,
56 FAULT_MAX,
57 };
58
59 struct f2fs_fault_info {
60 atomic_t inject_ops;
61 unsigned int inject_rate;
62 unsigned int inject_type;
63 };
64
65 extern char *fault_name[FAULT_MAX];
66 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type)))
67 #endif
68
69 /*
70 * For mount options
71 */
72 #define F2FS_MOUNT_BG_GC 0x00000001
73 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
74 #define F2FS_MOUNT_DISCARD 0x00000004
75 #define F2FS_MOUNT_NOHEAP 0x00000008
76 #define F2FS_MOUNT_XATTR_USER 0x00000010
77 #define F2FS_MOUNT_POSIX_ACL 0x00000020
78 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
79 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
80 #define F2FS_MOUNT_INLINE_DATA 0x00000100
81 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
82 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
83 #define F2FS_MOUNT_NOBARRIER 0x00000800
84 #define F2FS_MOUNT_FASTBOOT 0x00001000
85 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
86 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
87 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
88 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
89 #define F2FS_MOUNT_ADAPTIVE 0x00020000
90 #define F2FS_MOUNT_LFS 0x00040000
91
92 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
93 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
94 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
95
96 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
97 typecheck(unsigned long long, b) && \
98 ((long long)((a) - (b)) > 0))
99
100 typedef u32 block_t; /*
101 * should not change u32, since it is the on-disk block
102 * address format, __le32.
103 */
104 typedef u32 nid_t;
105
106 struct f2fs_mount_info {
107 unsigned int opt;
108 };
109
110 #define F2FS_FEATURE_ENCRYPT 0x0001
111 #define F2FS_FEATURE_BLKZONED 0x0002
112
113 #define F2FS_HAS_FEATURE(sb, mask) \
114 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
115 #define F2FS_SET_FEATURE(sb, mask) \
116 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
117 #define F2FS_CLEAR_FEATURE(sb, mask) \
118 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
119
120 /*
121 * For checkpoint manager
122 */
123 enum {
124 NAT_BITMAP,
125 SIT_BITMAP
126 };
127
128 enum {
129 CP_UMOUNT,
130 CP_FASTBOOT,
131 CP_SYNC,
132 CP_RECOVERY,
133 CP_DISCARD,
134 };
135
136 #define DEF_BATCHED_TRIM_SECTIONS 2048
137 #define BATCHED_TRIM_SEGMENTS(sbi) \
138 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
139 #define BATCHED_TRIM_BLOCKS(sbi) \
140 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
141 #define MAX_DISCARD_BLOCKS(sbi) \
142 ((1 << (sbi)->log_blocks_per_seg) * (sbi)->segs_per_sec)
143 #define DISCARD_ISSUE_RATE 8
144 #define DEF_CP_INTERVAL 60 /* 60 secs */
145 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
146
147 struct cp_control {
148 int reason;
149 __u64 trim_start;
150 __u64 trim_end;
151 __u64 trim_minlen;
152 __u64 trimmed;
153 };
154
155 /*
156 * For CP/NAT/SIT/SSA readahead
157 */
158 enum {
159 META_CP,
160 META_NAT,
161 META_SIT,
162 META_SSA,
163 META_POR,
164 };
165
166 /* for the list of ino */
167 enum {
168 ORPHAN_INO, /* for orphan ino list */
169 APPEND_INO, /* for append ino list */
170 UPDATE_INO, /* for update ino list */
171 MAX_INO_ENTRY, /* max. list */
172 };
173
174 struct ino_entry {
175 struct list_head list; /* list head */
176 nid_t ino; /* inode number */
177 };
178
179 /* for the list of inodes to be GCed */
180 struct inode_entry {
181 struct list_head list; /* list head */
182 struct inode *inode; /* vfs inode pointer */
183 };
184
185 /* for the list of blockaddresses to be discarded */
186 struct discard_entry {
187 struct list_head list; /* list head */
188 block_t blkaddr; /* block address to be discarded */
189 int len; /* # of consecutive blocks of the discard */
190 };
191
192 enum {
193 D_PREP,
194 D_SUBMIT,
195 D_DONE,
196 };
197
198 struct discard_cmd {
199 struct list_head list; /* command list */
200 struct completion wait; /* compleation */
201 struct block_device *bdev; /* bdev */
202 block_t lstart; /* logical start address */
203 block_t start; /* actual start address in dev */
204 block_t len; /* length */
205 int state; /* state */
206 int error; /* bio error */
207 };
208
209 struct discard_cmd_control {
210 struct task_struct *f2fs_issue_discard; /* discard thread */
211 struct list_head discard_entry_list; /* 4KB discard entry list */
212 int nr_discards; /* # of discards in the list */
213 struct list_head discard_cmd_list; /* discard cmd list */
214 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
215 struct mutex cmd_lock;
216 int max_discards; /* max. discards to be issued */
217 atomic_t submit_discard; /* # of issued discard */
218 };
219
220 /* for the list of fsync inodes, used only during recovery */
221 struct fsync_inode_entry {
222 struct list_head list; /* list head */
223 struct inode *inode; /* vfs inode pointer */
224 block_t blkaddr; /* block address locating the last fsync */
225 block_t last_dentry; /* block address locating the last dentry */
226 };
227
228 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
229 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
230
231 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
232 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
233 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
234 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
235
236 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
237 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
238
239 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
240 {
241 int before = nats_in_cursum(journal);
242
243 journal->n_nats = cpu_to_le16(before + i);
244 return before;
245 }
246
247 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
248 {
249 int before = sits_in_cursum(journal);
250
251 journal->n_sits = cpu_to_le16(before + i);
252 return before;
253 }
254
255 static inline bool __has_cursum_space(struct f2fs_journal *journal,
256 int size, int type)
257 {
258 if (type == NAT_JOURNAL)
259 return size <= MAX_NAT_JENTRIES(journal);
260 return size <= MAX_SIT_JENTRIES(journal);
261 }
262
263 /*
264 * ioctl commands
265 */
266 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
267 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
268 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
269
270 #define F2FS_IOCTL_MAGIC 0xf5
271 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
272 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
273 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
274 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
275 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
276 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
277 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
278 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
279 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
280 struct f2fs_move_range)
281
282 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
283 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
284 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
285
286 /*
287 * should be same as XFS_IOC_GOINGDOWN.
288 * Flags for going down operation used by FS_IOC_GOINGDOWN
289 */
290 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
291 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
292 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
293 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
294 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
295
296 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
297 /*
298 * ioctl commands in 32 bit emulation
299 */
300 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
301 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
302 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
303 #endif
304
305 struct f2fs_defragment {
306 u64 start;
307 u64 len;
308 };
309
310 struct f2fs_move_range {
311 u32 dst_fd; /* destination fd */
312 u64 pos_in; /* start position in src_fd */
313 u64 pos_out; /* start position in dst_fd */
314 u64 len; /* size to move */
315 };
316
317 /*
318 * For INODE and NODE manager
319 */
320 /* for directory operations */
321 struct f2fs_dentry_ptr {
322 struct inode *inode;
323 const void *bitmap;
324 struct f2fs_dir_entry *dentry;
325 __u8 (*filename)[F2FS_SLOT_LEN];
326 int max;
327 };
328
329 static inline void make_dentry_ptr(struct inode *inode,
330 struct f2fs_dentry_ptr *d, void *src, int type)
331 {
332 d->inode = inode;
333
334 if (type == 1) {
335 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
336
337 d->max = NR_DENTRY_IN_BLOCK;
338 d->bitmap = &t->dentry_bitmap;
339 d->dentry = t->dentry;
340 d->filename = t->filename;
341 } else {
342 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
343
344 d->max = NR_INLINE_DENTRY;
345 d->bitmap = &t->dentry_bitmap;
346 d->dentry = t->dentry;
347 d->filename = t->filename;
348 }
349 }
350
351 /*
352 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
353 * as its node offset to distinguish from index node blocks.
354 * But some bits are used to mark the node block.
355 */
356 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
357 >> OFFSET_BIT_SHIFT)
358 enum {
359 ALLOC_NODE, /* allocate a new node page if needed */
360 LOOKUP_NODE, /* look up a node without readahead */
361 LOOKUP_NODE_RA, /*
362 * look up a node with readahead called
363 * by get_data_block.
364 */
365 };
366
367 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
368
369 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
370
371 /* vector size for gang look-up from extent cache that consists of radix tree */
372 #define EXT_TREE_VEC_SIZE 64
373
374 /* for in-memory extent cache entry */
375 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
376
377 /* number of extent info in extent cache we try to shrink */
378 #define EXTENT_CACHE_SHRINK_NUMBER 128
379
380 struct extent_info {
381 unsigned int fofs; /* start offset in a file */
382 u32 blk; /* start block address of the extent */
383 unsigned int len; /* length of the extent */
384 };
385
386 struct extent_node {
387 struct rb_node rb_node; /* rb node located in rb-tree */
388 struct list_head list; /* node in global extent list of sbi */
389 struct extent_info ei; /* extent info */
390 struct extent_tree *et; /* extent tree pointer */
391 };
392
393 struct extent_tree {
394 nid_t ino; /* inode number */
395 struct rb_root root; /* root of extent info rb-tree */
396 struct extent_node *cached_en; /* recently accessed extent node */
397 struct extent_info largest; /* largested extent info */
398 struct list_head list; /* to be used by sbi->zombie_list */
399 rwlock_t lock; /* protect extent info rb-tree */
400 atomic_t node_cnt; /* # of extent node in rb-tree*/
401 };
402
403 /*
404 * This structure is taken from ext4_map_blocks.
405 *
406 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
407 */
408 #define F2FS_MAP_NEW (1 << BH_New)
409 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
410 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
411 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
412 F2FS_MAP_UNWRITTEN)
413
414 struct f2fs_map_blocks {
415 block_t m_pblk;
416 block_t m_lblk;
417 unsigned int m_len;
418 unsigned int m_flags;
419 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
420 };
421
422 /* for flag in get_data_block */
423 #define F2FS_GET_BLOCK_READ 0
424 #define F2FS_GET_BLOCK_DIO 1
425 #define F2FS_GET_BLOCK_FIEMAP 2
426 #define F2FS_GET_BLOCK_BMAP 3
427 #define F2FS_GET_BLOCK_PRE_DIO 4
428 #define F2FS_GET_BLOCK_PRE_AIO 5
429
430 /*
431 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
432 */
433 #define FADVISE_COLD_BIT 0x01
434 #define FADVISE_LOST_PINO_BIT 0x02
435 #define FADVISE_ENCRYPT_BIT 0x04
436 #define FADVISE_ENC_NAME_BIT 0x08
437 #define FADVISE_KEEP_SIZE_BIT 0x10
438
439 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
440 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
441 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
442 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
443 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
444 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
445 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
446 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
447 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
448 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
449 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
450 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
451 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
452
453 #define DEF_DIR_LEVEL 0
454
455 struct f2fs_inode_info {
456 struct inode vfs_inode; /* serve a vfs inode */
457 unsigned long i_flags; /* keep an inode flags for ioctl */
458 unsigned char i_advise; /* use to give file attribute hints */
459 unsigned char i_dir_level; /* use for dentry level for large dir */
460 unsigned int i_current_depth; /* use only in directory structure */
461 unsigned int i_pino; /* parent inode number */
462 umode_t i_acl_mode; /* keep file acl mode temporarily */
463
464 /* Use below internally in f2fs*/
465 unsigned long flags; /* use to pass per-file flags */
466 struct rw_semaphore i_sem; /* protect fi info */
467 atomic_t dirty_pages; /* # of dirty pages */
468 f2fs_hash_t chash; /* hash value of given file name */
469 unsigned int clevel; /* maximum level of given file name */
470 struct task_struct *task; /* lookup and create consistency */
471 nid_t i_xattr_nid; /* node id that contains xattrs */
472 loff_t last_disk_size; /* lastly written file size */
473
474 struct list_head dirty_list; /* dirty list for dirs and files */
475 struct list_head gdirty_list; /* linked in global dirty list */
476 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
477 struct mutex inmem_lock; /* lock for inmemory pages */
478 struct extent_tree *extent_tree; /* cached extent_tree entry */
479 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
480 };
481
482 static inline void get_extent_info(struct extent_info *ext,
483 struct f2fs_extent *i_ext)
484 {
485 ext->fofs = le32_to_cpu(i_ext->fofs);
486 ext->blk = le32_to_cpu(i_ext->blk);
487 ext->len = le32_to_cpu(i_ext->len);
488 }
489
490 static inline void set_raw_extent(struct extent_info *ext,
491 struct f2fs_extent *i_ext)
492 {
493 i_ext->fofs = cpu_to_le32(ext->fofs);
494 i_ext->blk = cpu_to_le32(ext->blk);
495 i_ext->len = cpu_to_le32(ext->len);
496 }
497
498 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
499 u32 blk, unsigned int len)
500 {
501 ei->fofs = fofs;
502 ei->blk = blk;
503 ei->len = len;
504 }
505
506 static inline bool __is_extent_mergeable(struct extent_info *back,
507 struct extent_info *front)
508 {
509 return (back->fofs + back->len == front->fofs &&
510 back->blk + back->len == front->blk);
511 }
512
513 static inline bool __is_back_mergeable(struct extent_info *cur,
514 struct extent_info *back)
515 {
516 return __is_extent_mergeable(back, cur);
517 }
518
519 static inline bool __is_front_mergeable(struct extent_info *cur,
520 struct extent_info *front)
521 {
522 return __is_extent_mergeable(cur, front);
523 }
524
525 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
526 static inline void __try_update_largest_extent(struct inode *inode,
527 struct extent_tree *et, struct extent_node *en)
528 {
529 if (en->ei.len > et->largest.len) {
530 et->largest = en->ei;
531 f2fs_mark_inode_dirty_sync(inode, true);
532 }
533 }
534
535 enum nid_list {
536 FREE_NID_LIST,
537 ALLOC_NID_LIST,
538 MAX_NID_LIST,
539 };
540
541 struct f2fs_nm_info {
542 block_t nat_blkaddr; /* base disk address of NAT */
543 nid_t max_nid; /* maximum possible node ids */
544 nid_t available_nids; /* # of available node ids */
545 nid_t next_scan_nid; /* the next nid to be scanned */
546 unsigned int ram_thresh; /* control the memory footprint */
547 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
548 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
549
550 /* NAT cache management */
551 struct radix_tree_root nat_root;/* root of the nat entry cache */
552 struct radix_tree_root nat_set_root;/* root of the nat set cache */
553 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
554 struct list_head nat_entries; /* cached nat entry list (clean) */
555 unsigned int nat_cnt; /* the # of cached nat entries */
556 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
557 unsigned int nat_blocks; /* # of nat blocks */
558
559 /* free node ids management */
560 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
561 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
562 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */
563 spinlock_t nid_list_lock; /* protect nid lists ops */
564 struct mutex build_lock; /* lock for build free nids */
565 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
566 unsigned char *nat_block_bitmap;
567 unsigned short *free_nid_count; /* free nid count of NAT block */
568
569 /* for checkpoint */
570 char *nat_bitmap; /* NAT bitmap pointer */
571
572 unsigned int nat_bits_blocks; /* # of nat bits blocks */
573 unsigned char *nat_bits; /* NAT bits blocks */
574 unsigned char *full_nat_bits; /* full NAT pages */
575 unsigned char *empty_nat_bits; /* empty NAT pages */
576 #ifdef CONFIG_F2FS_CHECK_FS
577 char *nat_bitmap_mir; /* NAT bitmap mirror */
578 #endif
579 int bitmap_size; /* bitmap size */
580 };
581
582 /*
583 * this structure is used as one of function parameters.
584 * all the information are dedicated to a given direct node block determined
585 * by the data offset in a file.
586 */
587 struct dnode_of_data {
588 struct inode *inode; /* vfs inode pointer */
589 struct page *inode_page; /* its inode page, NULL is possible */
590 struct page *node_page; /* cached direct node page */
591 nid_t nid; /* node id of the direct node block */
592 unsigned int ofs_in_node; /* data offset in the node page */
593 bool inode_page_locked; /* inode page is locked or not */
594 bool node_changed; /* is node block changed */
595 char cur_level; /* level of hole node page */
596 char max_level; /* level of current page located */
597 block_t data_blkaddr; /* block address of the node block */
598 };
599
600 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
601 struct page *ipage, struct page *npage, nid_t nid)
602 {
603 memset(dn, 0, sizeof(*dn));
604 dn->inode = inode;
605 dn->inode_page = ipage;
606 dn->node_page = npage;
607 dn->nid = nid;
608 }
609
610 /*
611 * For SIT manager
612 *
613 * By default, there are 6 active log areas across the whole main area.
614 * When considering hot and cold data separation to reduce cleaning overhead,
615 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
616 * respectively.
617 * In the current design, you should not change the numbers intentionally.
618 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
619 * logs individually according to the underlying devices. (default: 6)
620 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
621 * data and 8 for node logs.
622 */
623 #define NR_CURSEG_DATA_TYPE (3)
624 #define NR_CURSEG_NODE_TYPE (3)
625 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
626
627 enum {
628 CURSEG_HOT_DATA = 0, /* directory entry blocks */
629 CURSEG_WARM_DATA, /* data blocks */
630 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
631 CURSEG_HOT_NODE, /* direct node blocks of directory files */
632 CURSEG_WARM_NODE, /* direct node blocks of normal files */
633 CURSEG_COLD_NODE, /* indirect node blocks */
634 NO_CHECK_TYPE,
635 };
636
637 struct flush_cmd {
638 struct completion wait;
639 struct llist_node llnode;
640 int ret;
641 };
642
643 struct flush_cmd_control {
644 struct task_struct *f2fs_issue_flush; /* flush thread */
645 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
646 atomic_t submit_flush; /* # of issued flushes */
647 struct llist_head issue_list; /* list for command issue */
648 struct llist_node *dispatch_list; /* list for command dispatch */
649 };
650
651 struct f2fs_sm_info {
652 struct sit_info *sit_info; /* whole segment information */
653 struct free_segmap_info *free_info; /* free segment information */
654 struct dirty_seglist_info *dirty_info; /* dirty segment information */
655 struct curseg_info *curseg_array; /* active segment information */
656
657 block_t seg0_blkaddr; /* block address of 0'th segment */
658 block_t main_blkaddr; /* start block address of main area */
659 block_t ssa_blkaddr; /* start block address of SSA area */
660
661 unsigned int segment_count; /* total # of segments */
662 unsigned int main_segments; /* # of segments in main area */
663 unsigned int reserved_segments; /* # of reserved segments */
664 unsigned int ovp_segments; /* # of overprovision segments */
665
666 /* a threshold to reclaim prefree segments */
667 unsigned int rec_prefree_segments;
668
669 /* for batched trimming */
670 unsigned int trim_sections; /* # of sections to trim */
671
672 struct list_head sit_entry_set; /* sit entry set list */
673
674 unsigned int ipu_policy; /* in-place-update policy */
675 unsigned int min_ipu_util; /* in-place-update threshold */
676 unsigned int min_fsync_blocks; /* threshold for fsync */
677
678 /* for flush command control */
679 struct flush_cmd_control *fcc_info;
680
681 /* for discard command control */
682 struct discard_cmd_control *dcc_info;
683 };
684
685 /*
686 * For superblock
687 */
688 /*
689 * COUNT_TYPE for monitoring
690 *
691 * f2fs monitors the number of several block types such as on-writeback,
692 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
693 */
694 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
695 enum count_type {
696 F2FS_DIRTY_DENTS,
697 F2FS_DIRTY_DATA,
698 F2FS_DIRTY_NODES,
699 F2FS_DIRTY_META,
700 F2FS_INMEM_PAGES,
701 F2FS_DIRTY_IMETA,
702 F2FS_WB_CP_DATA,
703 F2FS_WB_DATA,
704 NR_COUNT_TYPE,
705 };
706
707 /*
708 * The below are the page types of bios used in submit_bio().
709 * The available types are:
710 * DATA User data pages. It operates as async mode.
711 * NODE Node pages. It operates as async mode.
712 * META FS metadata pages such as SIT, NAT, CP.
713 * NR_PAGE_TYPE The number of page types.
714 * META_FLUSH Make sure the previous pages are written
715 * with waiting the bio's completion
716 * ... Only can be used with META.
717 */
718 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
719 enum page_type {
720 DATA,
721 NODE,
722 META,
723 NR_PAGE_TYPE,
724 META_FLUSH,
725 INMEM, /* the below types are used by tracepoints only. */
726 INMEM_DROP,
727 INMEM_INVALIDATE,
728 INMEM_REVOKE,
729 IPU,
730 OPU,
731 };
732
733 struct f2fs_io_info {
734 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
735 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
736 int op; /* contains REQ_OP_ */
737 int op_flags; /* req_flag_bits */
738 block_t new_blkaddr; /* new block address to be written */
739 block_t old_blkaddr; /* old block address before Cow */
740 struct page *page; /* page to be written */
741 struct page *encrypted_page; /* encrypted page */
742 bool submitted; /* indicate IO submission */
743 };
744
745 #define is_read_io(rw) (rw == READ)
746 struct f2fs_bio_info {
747 struct f2fs_sb_info *sbi; /* f2fs superblock */
748 struct bio *bio; /* bios to merge */
749 sector_t last_block_in_bio; /* last block number */
750 struct f2fs_io_info fio; /* store buffered io info. */
751 struct rw_semaphore io_rwsem; /* blocking op for bio */
752 };
753
754 #define FDEV(i) (sbi->devs[i])
755 #define RDEV(i) (raw_super->devs[i])
756 struct f2fs_dev_info {
757 struct block_device *bdev;
758 char path[MAX_PATH_LEN];
759 unsigned int total_segments;
760 block_t start_blk;
761 block_t end_blk;
762 #ifdef CONFIG_BLK_DEV_ZONED
763 unsigned int nr_blkz; /* Total number of zones */
764 u8 *blkz_type; /* Array of zones type */
765 #endif
766 };
767
768 enum inode_type {
769 DIR_INODE, /* for dirty dir inode */
770 FILE_INODE, /* for dirty regular/symlink inode */
771 DIRTY_META, /* for all dirtied inode metadata */
772 NR_INODE_TYPE,
773 };
774
775 /* for inner inode cache management */
776 struct inode_management {
777 struct radix_tree_root ino_root; /* ino entry array */
778 spinlock_t ino_lock; /* for ino entry lock */
779 struct list_head ino_list; /* inode list head */
780 unsigned long ino_num; /* number of entries */
781 };
782
783 /* For s_flag in struct f2fs_sb_info */
784 enum {
785 SBI_IS_DIRTY, /* dirty flag for checkpoint */
786 SBI_IS_CLOSE, /* specify unmounting */
787 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
788 SBI_POR_DOING, /* recovery is doing or not */
789 SBI_NEED_SB_WRITE, /* need to recover superblock */
790 SBI_NEED_CP, /* need to checkpoint */
791 };
792
793 enum {
794 CP_TIME,
795 REQ_TIME,
796 MAX_TIME,
797 };
798
799 struct f2fs_sb_info {
800 struct super_block *sb; /* pointer to VFS super block */
801 struct proc_dir_entry *s_proc; /* proc entry */
802 struct f2fs_super_block *raw_super; /* raw super block pointer */
803 int valid_super_block; /* valid super block no */
804 unsigned long s_flag; /* flags for sbi */
805
806 #ifdef CONFIG_BLK_DEV_ZONED
807 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
808 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
809 #endif
810
811 /* for node-related operations */
812 struct f2fs_nm_info *nm_info; /* node manager */
813 struct inode *node_inode; /* cache node blocks */
814
815 /* for segment-related operations */
816 struct f2fs_sm_info *sm_info; /* segment manager */
817
818 /* for bio operations */
819 struct f2fs_bio_info read_io; /* for read bios */
820 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
821 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */
822 int write_io_size_bits; /* Write IO size bits */
823 mempool_t *write_io_dummy; /* Dummy pages */
824
825 /* for checkpoint */
826 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
827 int cur_cp_pack; /* remain current cp pack */
828 spinlock_t cp_lock; /* for flag in ckpt */
829 struct inode *meta_inode; /* cache meta blocks */
830 struct mutex cp_mutex; /* checkpoint procedure lock */
831 struct rw_semaphore cp_rwsem; /* blocking FS operations */
832 struct rw_semaphore node_write; /* locking node writes */
833 wait_queue_head_t cp_wait;
834 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
835 long interval_time[MAX_TIME]; /* to store thresholds */
836
837 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
838
839 /* for orphan inode, use 0'th array */
840 unsigned int max_orphans; /* max orphan inodes */
841
842 /* for inode management */
843 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
844 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
845
846 /* for extent tree cache */
847 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
848 struct mutex extent_tree_lock; /* locking extent radix tree */
849 struct list_head extent_list; /* lru list for shrinker */
850 spinlock_t extent_lock; /* locking extent lru list */
851 atomic_t total_ext_tree; /* extent tree count */
852 struct list_head zombie_list; /* extent zombie tree list */
853 atomic_t total_zombie_tree; /* extent zombie tree count */
854 atomic_t total_ext_node; /* extent info count */
855
856 /* basic filesystem units */
857 unsigned int log_sectors_per_block; /* log2 sectors per block */
858 unsigned int log_blocksize; /* log2 block size */
859 unsigned int blocksize; /* block size */
860 unsigned int root_ino_num; /* root inode number*/
861 unsigned int node_ino_num; /* node inode number*/
862 unsigned int meta_ino_num; /* meta inode number*/
863 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
864 unsigned int blocks_per_seg; /* blocks per segment */
865 unsigned int segs_per_sec; /* segments per section */
866 unsigned int secs_per_zone; /* sections per zone */
867 unsigned int total_sections; /* total section count */
868 unsigned int total_node_count; /* total node block count */
869 unsigned int total_valid_node_count; /* valid node block count */
870 loff_t max_file_blocks; /* max block index of file */
871 int active_logs; /* # of active logs */
872 int dir_level; /* directory level */
873
874 block_t user_block_count; /* # of user blocks */
875 block_t total_valid_block_count; /* # of valid blocks */
876 block_t discard_blks; /* discard command candidats */
877 block_t last_valid_block_count; /* for recovery */
878 u32 s_next_generation; /* for NFS support */
879
880 /* # of pages, see count_type */
881 atomic_t nr_pages[NR_COUNT_TYPE];
882 /* # of allocated blocks */
883 struct percpu_counter alloc_valid_block_count;
884
885 /* valid inode count */
886 struct percpu_counter total_valid_inode_count;
887
888 struct f2fs_mount_info mount_opt; /* mount options */
889
890 /* for cleaning operations */
891 struct mutex gc_mutex; /* mutex for GC */
892 struct f2fs_gc_kthread *gc_thread; /* GC thread */
893 unsigned int cur_victim_sec; /* current victim section num */
894
895 /* threshold for converting bg victims for fg */
896 u64 fggc_threshold;
897
898 /* maximum # of trials to find a victim segment for SSR and GC */
899 unsigned int max_victim_search;
900
901 /*
902 * for stat information.
903 * one is for the LFS mode, and the other is for the SSR mode.
904 */
905 #ifdef CONFIG_F2FS_STAT_FS
906 struct f2fs_stat_info *stat_info; /* FS status information */
907 unsigned int segment_count[2]; /* # of allocated segments */
908 unsigned int block_count[2]; /* # of allocated blocks */
909 atomic_t inplace_count; /* # of inplace update */
910 atomic64_t total_hit_ext; /* # of lookup extent cache */
911 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
912 atomic64_t read_hit_largest; /* # of hit largest extent node */
913 atomic64_t read_hit_cached; /* # of hit cached extent node */
914 atomic_t inline_xattr; /* # of inline_xattr inodes */
915 atomic_t inline_inode; /* # of inline_data inodes */
916 atomic_t inline_dir; /* # of inline_dentry inodes */
917 atomic_t aw_cnt; /* # of atomic writes */
918 atomic_t max_aw_cnt; /* max # of atomic writes */
919 int bg_gc; /* background gc calls */
920 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
921 #endif
922 unsigned int last_victim[2]; /* last victim segment # */
923 spinlock_t stat_lock; /* lock for stat operations */
924
925 /* For sysfs suppport */
926 struct kobject s_kobj;
927 struct completion s_kobj_unregister;
928
929 /* For shrinker support */
930 struct list_head s_list;
931 int s_ndevs; /* number of devices */
932 struct f2fs_dev_info *devs; /* for device list */
933 struct mutex umount_mutex;
934 unsigned int shrinker_run_no;
935
936 /* For write statistics */
937 u64 sectors_written_start;
938 u64 kbytes_written;
939
940 /* Reference to checksum algorithm driver via cryptoapi */
941 struct crypto_shash *s_chksum_driver;
942
943 /* For fault injection */
944 #ifdef CONFIG_F2FS_FAULT_INJECTION
945 struct f2fs_fault_info fault_info;
946 #endif
947 };
948
949 #ifdef CONFIG_F2FS_FAULT_INJECTION
950 #define f2fs_show_injection_info(type) \
951 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
952 KERN_INFO, fault_name[type], \
953 __func__, __builtin_return_address(0))
954 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
955 {
956 struct f2fs_fault_info *ffi = &sbi->fault_info;
957
958 if (!ffi->inject_rate)
959 return false;
960
961 if (!IS_FAULT_SET(ffi, type))
962 return false;
963
964 atomic_inc(&ffi->inject_ops);
965 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
966 atomic_set(&ffi->inject_ops, 0);
967 return true;
968 }
969 return false;
970 }
971 #endif
972
973 /* For write statistics. Suppose sector size is 512 bytes,
974 * and the return value is in kbytes. s is of struct f2fs_sb_info.
975 */
976 #define BD_PART_WRITTEN(s) \
977 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
978 s->sectors_written_start) >> 1)
979
980 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
981 {
982 sbi->last_time[type] = jiffies;
983 }
984
985 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
986 {
987 struct timespec ts = {sbi->interval_time[type], 0};
988 unsigned long interval = timespec_to_jiffies(&ts);
989
990 return time_after(jiffies, sbi->last_time[type] + interval);
991 }
992
993 static inline bool is_idle(struct f2fs_sb_info *sbi)
994 {
995 struct block_device *bdev = sbi->sb->s_bdev;
996 struct request_queue *q = bdev_get_queue(bdev);
997 struct request_list *rl = &q->root_rl;
998
999 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1000 return 0;
1001
1002 return f2fs_time_over(sbi, REQ_TIME);
1003 }
1004
1005 /*
1006 * Inline functions
1007 */
1008 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1009 unsigned int length)
1010 {
1011 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1012 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1013 int err;
1014
1015 shash->tfm = sbi->s_chksum_driver;
1016 shash->flags = 0;
1017 *ctx = F2FS_SUPER_MAGIC;
1018
1019 err = crypto_shash_update(shash, address, length);
1020 BUG_ON(err);
1021
1022 return *ctx;
1023 }
1024
1025 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1026 void *buf, size_t buf_size)
1027 {
1028 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1029 }
1030
1031 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1032 {
1033 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1034 }
1035
1036 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1037 {
1038 return sb->s_fs_info;
1039 }
1040
1041 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1042 {
1043 return F2FS_SB(inode->i_sb);
1044 }
1045
1046 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1047 {
1048 return F2FS_I_SB(mapping->host);
1049 }
1050
1051 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1052 {
1053 return F2FS_M_SB(page->mapping);
1054 }
1055
1056 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1057 {
1058 return (struct f2fs_super_block *)(sbi->raw_super);
1059 }
1060
1061 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1062 {
1063 return (struct f2fs_checkpoint *)(sbi->ckpt);
1064 }
1065
1066 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1067 {
1068 return (struct f2fs_node *)page_address(page);
1069 }
1070
1071 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1072 {
1073 return &((struct f2fs_node *)page_address(page))->i;
1074 }
1075
1076 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1077 {
1078 return (struct f2fs_nm_info *)(sbi->nm_info);
1079 }
1080
1081 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1082 {
1083 return (struct f2fs_sm_info *)(sbi->sm_info);
1084 }
1085
1086 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1087 {
1088 return (struct sit_info *)(SM_I(sbi)->sit_info);
1089 }
1090
1091 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1092 {
1093 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1094 }
1095
1096 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1097 {
1098 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1099 }
1100
1101 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1102 {
1103 return sbi->meta_inode->i_mapping;
1104 }
1105
1106 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1107 {
1108 return sbi->node_inode->i_mapping;
1109 }
1110
1111 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1112 {
1113 return test_bit(type, &sbi->s_flag);
1114 }
1115
1116 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1117 {
1118 set_bit(type, &sbi->s_flag);
1119 }
1120
1121 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1122 {
1123 clear_bit(type, &sbi->s_flag);
1124 }
1125
1126 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1127 {
1128 return le64_to_cpu(cp->checkpoint_ver);
1129 }
1130
1131 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1132 {
1133 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1134 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1135 }
1136
1137 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1138 {
1139 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1140
1141 return ckpt_flags & f;
1142 }
1143
1144 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1145 {
1146 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1147 }
1148
1149 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1150 {
1151 unsigned int ckpt_flags;
1152
1153 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1154 ckpt_flags |= f;
1155 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1156 }
1157
1158 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1159 {
1160 spin_lock(&sbi->cp_lock);
1161 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1162 spin_unlock(&sbi->cp_lock);
1163 }
1164
1165 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1166 {
1167 unsigned int ckpt_flags;
1168
1169 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1170 ckpt_flags &= (~f);
1171 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1172 }
1173
1174 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1175 {
1176 spin_lock(&sbi->cp_lock);
1177 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1178 spin_unlock(&sbi->cp_lock);
1179 }
1180
1181 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1182 {
1183 set_sbi_flag(sbi, SBI_NEED_FSCK);
1184
1185 if (lock)
1186 spin_lock(&sbi->cp_lock);
1187 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1188 kfree(NM_I(sbi)->nat_bits);
1189 NM_I(sbi)->nat_bits = NULL;
1190 if (lock)
1191 spin_unlock(&sbi->cp_lock);
1192 }
1193
1194 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1195 struct cp_control *cpc)
1196 {
1197 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1198
1199 return (cpc) ? (cpc->reason == CP_UMOUNT) && set : set;
1200 }
1201
1202 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1203 {
1204 down_read(&sbi->cp_rwsem);
1205 }
1206
1207 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1208 {
1209 up_read(&sbi->cp_rwsem);
1210 }
1211
1212 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1213 {
1214 down_write(&sbi->cp_rwsem);
1215 }
1216
1217 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1218 {
1219 up_write(&sbi->cp_rwsem);
1220 }
1221
1222 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1223 {
1224 int reason = CP_SYNC;
1225
1226 if (test_opt(sbi, FASTBOOT))
1227 reason = CP_FASTBOOT;
1228 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1229 reason = CP_UMOUNT;
1230 return reason;
1231 }
1232
1233 static inline bool __remain_node_summaries(int reason)
1234 {
1235 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1236 }
1237
1238 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1239 {
1240 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1241 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1242 }
1243
1244 /*
1245 * Check whether the given nid is within node id range.
1246 */
1247 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1248 {
1249 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1250 return -EINVAL;
1251 if (unlikely(nid >= NM_I(sbi)->max_nid))
1252 return -EINVAL;
1253 return 0;
1254 }
1255
1256 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1257
1258 /*
1259 * Check whether the inode has blocks or not
1260 */
1261 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1262 {
1263 if (F2FS_I(inode)->i_xattr_nid)
1264 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1265 else
1266 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1267 }
1268
1269 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1270 {
1271 return ofs == XATTR_NODE_OFFSET;
1272 }
1273
1274 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1275 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1276 struct inode *inode, blkcnt_t *count)
1277 {
1278 blkcnt_t diff;
1279
1280 #ifdef CONFIG_F2FS_FAULT_INJECTION
1281 if (time_to_inject(sbi, FAULT_BLOCK)) {
1282 f2fs_show_injection_info(FAULT_BLOCK);
1283 return false;
1284 }
1285 #endif
1286 /*
1287 * let's increase this in prior to actual block count change in order
1288 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1289 */
1290 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1291
1292 spin_lock(&sbi->stat_lock);
1293 sbi->total_valid_block_count += (block_t)(*count);
1294 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1295 diff = sbi->total_valid_block_count - sbi->user_block_count;
1296 *count -= diff;
1297 sbi->total_valid_block_count = sbi->user_block_count;
1298 if (!*count) {
1299 spin_unlock(&sbi->stat_lock);
1300 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1301 return false;
1302 }
1303 }
1304 spin_unlock(&sbi->stat_lock);
1305
1306 f2fs_i_blocks_write(inode, *count, true);
1307 return true;
1308 }
1309
1310 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1311 struct inode *inode,
1312 blkcnt_t count)
1313 {
1314 spin_lock(&sbi->stat_lock);
1315 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1316 f2fs_bug_on(sbi, inode->i_blocks < count);
1317 sbi->total_valid_block_count -= (block_t)count;
1318 spin_unlock(&sbi->stat_lock);
1319 f2fs_i_blocks_write(inode, count, false);
1320 }
1321
1322 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1323 {
1324 atomic_inc(&sbi->nr_pages[count_type]);
1325
1326 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1327 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1328 return;
1329
1330 set_sbi_flag(sbi, SBI_IS_DIRTY);
1331 }
1332
1333 static inline void inode_inc_dirty_pages(struct inode *inode)
1334 {
1335 atomic_inc(&F2FS_I(inode)->dirty_pages);
1336 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1337 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1338 }
1339
1340 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1341 {
1342 atomic_dec(&sbi->nr_pages[count_type]);
1343 }
1344
1345 static inline void inode_dec_dirty_pages(struct inode *inode)
1346 {
1347 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1348 !S_ISLNK(inode->i_mode))
1349 return;
1350
1351 atomic_dec(&F2FS_I(inode)->dirty_pages);
1352 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1353 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1354 }
1355
1356 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1357 {
1358 return atomic_read(&sbi->nr_pages[count_type]);
1359 }
1360
1361 static inline int get_dirty_pages(struct inode *inode)
1362 {
1363 return atomic_read(&F2FS_I(inode)->dirty_pages);
1364 }
1365
1366 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1367 {
1368 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1369 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1370 sbi->log_blocks_per_seg;
1371
1372 return segs / sbi->segs_per_sec;
1373 }
1374
1375 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1376 {
1377 return sbi->total_valid_block_count;
1378 }
1379
1380 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1381 {
1382 return sbi->discard_blks;
1383 }
1384
1385 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1386 {
1387 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1388
1389 /* return NAT or SIT bitmap */
1390 if (flag == NAT_BITMAP)
1391 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1392 else if (flag == SIT_BITMAP)
1393 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1394
1395 return 0;
1396 }
1397
1398 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1399 {
1400 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1401 }
1402
1403 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1404 {
1405 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1406 int offset;
1407
1408 if (__cp_payload(sbi) > 0) {
1409 if (flag == NAT_BITMAP)
1410 return &ckpt->sit_nat_version_bitmap;
1411 else
1412 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1413 } else {
1414 offset = (flag == NAT_BITMAP) ?
1415 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1416 return &ckpt->sit_nat_version_bitmap + offset;
1417 }
1418 }
1419
1420 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1421 {
1422 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1423
1424 if (sbi->cur_cp_pack == 2)
1425 start_addr += sbi->blocks_per_seg;
1426 return start_addr;
1427 }
1428
1429 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1430 {
1431 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1432
1433 if (sbi->cur_cp_pack == 1)
1434 start_addr += sbi->blocks_per_seg;
1435 return start_addr;
1436 }
1437
1438 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1439 {
1440 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1441 }
1442
1443 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1444 {
1445 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1446 }
1447
1448 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1449 struct inode *inode)
1450 {
1451 block_t valid_block_count;
1452 unsigned int valid_node_count;
1453
1454 spin_lock(&sbi->stat_lock);
1455
1456 valid_block_count = sbi->total_valid_block_count + 1;
1457 if (unlikely(valid_block_count > sbi->user_block_count)) {
1458 spin_unlock(&sbi->stat_lock);
1459 return false;
1460 }
1461
1462 valid_node_count = sbi->total_valid_node_count + 1;
1463 if (unlikely(valid_node_count > sbi->total_node_count)) {
1464 spin_unlock(&sbi->stat_lock);
1465 return false;
1466 }
1467
1468 if (inode)
1469 f2fs_i_blocks_write(inode, 1, true);
1470
1471 sbi->total_valid_node_count++;
1472 sbi->total_valid_block_count++;
1473 spin_unlock(&sbi->stat_lock);
1474
1475 percpu_counter_inc(&sbi->alloc_valid_block_count);
1476 return true;
1477 }
1478
1479 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1480 struct inode *inode)
1481 {
1482 spin_lock(&sbi->stat_lock);
1483
1484 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1485 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1486 f2fs_bug_on(sbi, !inode->i_blocks);
1487
1488 f2fs_i_blocks_write(inode, 1, false);
1489 sbi->total_valid_node_count--;
1490 sbi->total_valid_block_count--;
1491
1492 spin_unlock(&sbi->stat_lock);
1493 }
1494
1495 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1496 {
1497 return sbi->total_valid_node_count;
1498 }
1499
1500 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1501 {
1502 percpu_counter_inc(&sbi->total_valid_inode_count);
1503 }
1504
1505 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1506 {
1507 percpu_counter_dec(&sbi->total_valid_inode_count);
1508 }
1509
1510 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1511 {
1512 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1513 }
1514
1515 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1516 pgoff_t index, bool for_write)
1517 {
1518 #ifdef CONFIG_F2FS_FAULT_INJECTION
1519 struct page *page = find_lock_page(mapping, index);
1520
1521 if (page)
1522 return page;
1523
1524 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1525 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1526 return NULL;
1527 }
1528 #endif
1529 if (!for_write)
1530 return grab_cache_page(mapping, index);
1531 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1532 }
1533
1534 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1535 {
1536 char *src_kaddr = kmap(src);
1537 char *dst_kaddr = kmap(dst);
1538
1539 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1540 kunmap(dst);
1541 kunmap(src);
1542 }
1543
1544 static inline void f2fs_put_page(struct page *page, int unlock)
1545 {
1546 if (!page)
1547 return;
1548
1549 if (unlock) {
1550 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1551 unlock_page(page);
1552 }
1553 put_page(page);
1554 }
1555
1556 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1557 {
1558 if (dn->node_page)
1559 f2fs_put_page(dn->node_page, 1);
1560 if (dn->inode_page && dn->node_page != dn->inode_page)
1561 f2fs_put_page(dn->inode_page, 0);
1562 dn->node_page = NULL;
1563 dn->inode_page = NULL;
1564 }
1565
1566 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1567 size_t size)
1568 {
1569 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1570 }
1571
1572 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1573 gfp_t flags)
1574 {
1575 void *entry;
1576
1577 entry = kmem_cache_alloc(cachep, flags);
1578 if (!entry)
1579 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1580 return entry;
1581 }
1582
1583 static inline struct bio *f2fs_bio_alloc(int npages)
1584 {
1585 struct bio *bio;
1586
1587 /* No failure on bio allocation */
1588 bio = bio_alloc(GFP_NOIO, npages);
1589 if (!bio)
1590 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1591 return bio;
1592 }
1593
1594 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1595 unsigned long index, void *item)
1596 {
1597 while (radix_tree_insert(root, index, item))
1598 cond_resched();
1599 }
1600
1601 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1602
1603 static inline bool IS_INODE(struct page *page)
1604 {
1605 struct f2fs_node *p = F2FS_NODE(page);
1606
1607 return RAW_IS_INODE(p);
1608 }
1609
1610 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1611 {
1612 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1613 }
1614
1615 static inline block_t datablock_addr(struct page *node_page,
1616 unsigned int offset)
1617 {
1618 struct f2fs_node *raw_node;
1619 __le32 *addr_array;
1620
1621 raw_node = F2FS_NODE(node_page);
1622 addr_array = blkaddr_in_node(raw_node);
1623 return le32_to_cpu(addr_array[offset]);
1624 }
1625
1626 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1627 {
1628 int mask;
1629
1630 addr += (nr >> 3);
1631 mask = 1 << (7 - (nr & 0x07));
1632 return mask & *addr;
1633 }
1634
1635 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1636 {
1637 int mask;
1638
1639 addr += (nr >> 3);
1640 mask = 1 << (7 - (nr & 0x07));
1641 *addr |= mask;
1642 }
1643
1644 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1645 {
1646 int mask;
1647
1648 addr += (nr >> 3);
1649 mask = 1 << (7 - (nr & 0x07));
1650 *addr &= ~mask;
1651 }
1652
1653 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1654 {
1655 int mask;
1656 int ret;
1657
1658 addr += (nr >> 3);
1659 mask = 1 << (7 - (nr & 0x07));
1660 ret = mask & *addr;
1661 *addr |= mask;
1662 return ret;
1663 }
1664
1665 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1666 {
1667 int mask;
1668 int ret;
1669
1670 addr += (nr >> 3);
1671 mask = 1 << (7 - (nr & 0x07));
1672 ret = mask & *addr;
1673 *addr &= ~mask;
1674 return ret;
1675 }
1676
1677 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1678 {
1679 int mask;
1680
1681 addr += (nr >> 3);
1682 mask = 1 << (7 - (nr & 0x07));
1683 *addr ^= mask;
1684 }
1685
1686 /* used for f2fs_inode_info->flags */
1687 enum {
1688 FI_NEW_INODE, /* indicate newly allocated inode */
1689 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1690 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1691 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1692 FI_INC_LINK, /* need to increment i_nlink */
1693 FI_ACL_MODE, /* indicate acl mode */
1694 FI_NO_ALLOC, /* should not allocate any blocks */
1695 FI_FREE_NID, /* free allocated nide */
1696 FI_NO_EXTENT, /* not to use the extent cache */
1697 FI_INLINE_XATTR, /* used for inline xattr */
1698 FI_INLINE_DATA, /* used for inline data*/
1699 FI_INLINE_DENTRY, /* used for inline dentry */
1700 FI_APPEND_WRITE, /* inode has appended data */
1701 FI_UPDATE_WRITE, /* inode has in-place-update data */
1702 FI_NEED_IPU, /* used for ipu per file */
1703 FI_ATOMIC_FILE, /* indicate atomic file */
1704 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
1705 FI_VOLATILE_FILE, /* indicate volatile file */
1706 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1707 FI_DROP_CACHE, /* drop dirty page cache */
1708 FI_DATA_EXIST, /* indicate data exists */
1709 FI_INLINE_DOTS, /* indicate inline dot dentries */
1710 FI_DO_DEFRAG, /* indicate defragment is running */
1711 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1712 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
1713 };
1714
1715 static inline void __mark_inode_dirty_flag(struct inode *inode,
1716 int flag, bool set)
1717 {
1718 switch (flag) {
1719 case FI_INLINE_XATTR:
1720 case FI_INLINE_DATA:
1721 case FI_INLINE_DENTRY:
1722 if (set)
1723 return;
1724 case FI_DATA_EXIST:
1725 case FI_INLINE_DOTS:
1726 f2fs_mark_inode_dirty_sync(inode, true);
1727 }
1728 }
1729
1730 static inline void set_inode_flag(struct inode *inode, int flag)
1731 {
1732 if (!test_bit(flag, &F2FS_I(inode)->flags))
1733 set_bit(flag, &F2FS_I(inode)->flags);
1734 __mark_inode_dirty_flag(inode, flag, true);
1735 }
1736
1737 static inline int is_inode_flag_set(struct inode *inode, int flag)
1738 {
1739 return test_bit(flag, &F2FS_I(inode)->flags);
1740 }
1741
1742 static inline void clear_inode_flag(struct inode *inode, int flag)
1743 {
1744 if (test_bit(flag, &F2FS_I(inode)->flags))
1745 clear_bit(flag, &F2FS_I(inode)->flags);
1746 __mark_inode_dirty_flag(inode, flag, false);
1747 }
1748
1749 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1750 {
1751 F2FS_I(inode)->i_acl_mode = mode;
1752 set_inode_flag(inode, FI_ACL_MODE);
1753 f2fs_mark_inode_dirty_sync(inode, false);
1754 }
1755
1756 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1757 {
1758 if (inc)
1759 inc_nlink(inode);
1760 else
1761 drop_nlink(inode);
1762 f2fs_mark_inode_dirty_sync(inode, true);
1763 }
1764
1765 static inline void f2fs_i_blocks_write(struct inode *inode,
1766 blkcnt_t diff, bool add)
1767 {
1768 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1769 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1770
1771 inode->i_blocks = add ? inode->i_blocks + diff :
1772 inode->i_blocks - diff;
1773 f2fs_mark_inode_dirty_sync(inode, true);
1774 if (clean || recover)
1775 set_inode_flag(inode, FI_AUTO_RECOVER);
1776 }
1777
1778 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1779 {
1780 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1781 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1782
1783 if (i_size_read(inode) == i_size)
1784 return;
1785
1786 i_size_write(inode, i_size);
1787 f2fs_mark_inode_dirty_sync(inode, true);
1788 if (clean || recover)
1789 set_inode_flag(inode, FI_AUTO_RECOVER);
1790 }
1791
1792 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1793 {
1794 F2FS_I(inode)->i_current_depth = depth;
1795 f2fs_mark_inode_dirty_sync(inode, true);
1796 }
1797
1798 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1799 {
1800 F2FS_I(inode)->i_xattr_nid = xnid;
1801 f2fs_mark_inode_dirty_sync(inode, true);
1802 }
1803
1804 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1805 {
1806 F2FS_I(inode)->i_pino = pino;
1807 f2fs_mark_inode_dirty_sync(inode, true);
1808 }
1809
1810 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1811 {
1812 struct f2fs_inode_info *fi = F2FS_I(inode);
1813
1814 if (ri->i_inline & F2FS_INLINE_XATTR)
1815 set_bit(FI_INLINE_XATTR, &fi->flags);
1816 if (ri->i_inline & F2FS_INLINE_DATA)
1817 set_bit(FI_INLINE_DATA, &fi->flags);
1818 if (ri->i_inline & F2FS_INLINE_DENTRY)
1819 set_bit(FI_INLINE_DENTRY, &fi->flags);
1820 if (ri->i_inline & F2FS_DATA_EXIST)
1821 set_bit(FI_DATA_EXIST, &fi->flags);
1822 if (ri->i_inline & F2FS_INLINE_DOTS)
1823 set_bit(FI_INLINE_DOTS, &fi->flags);
1824 }
1825
1826 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1827 {
1828 ri->i_inline = 0;
1829
1830 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1831 ri->i_inline |= F2FS_INLINE_XATTR;
1832 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1833 ri->i_inline |= F2FS_INLINE_DATA;
1834 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1835 ri->i_inline |= F2FS_INLINE_DENTRY;
1836 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1837 ri->i_inline |= F2FS_DATA_EXIST;
1838 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1839 ri->i_inline |= F2FS_INLINE_DOTS;
1840 }
1841
1842 static inline int f2fs_has_inline_xattr(struct inode *inode)
1843 {
1844 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1845 }
1846
1847 static inline unsigned int addrs_per_inode(struct inode *inode)
1848 {
1849 if (f2fs_has_inline_xattr(inode))
1850 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1851 return DEF_ADDRS_PER_INODE;
1852 }
1853
1854 static inline void *inline_xattr_addr(struct page *page)
1855 {
1856 struct f2fs_inode *ri = F2FS_INODE(page);
1857
1858 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1859 F2FS_INLINE_XATTR_ADDRS]);
1860 }
1861
1862 static inline int inline_xattr_size(struct inode *inode)
1863 {
1864 if (f2fs_has_inline_xattr(inode))
1865 return F2FS_INLINE_XATTR_ADDRS << 2;
1866 else
1867 return 0;
1868 }
1869
1870 static inline int f2fs_has_inline_data(struct inode *inode)
1871 {
1872 return is_inode_flag_set(inode, FI_INLINE_DATA);
1873 }
1874
1875 static inline int f2fs_exist_data(struct inode *inode)
1876 {
1877 return is_inode_flag_set(inode, FI_DATA_EXIST);
1878 }
1879
1880 static inline int f2fs_has_inline_dots(struct inode *inode)
1881 {
1882 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1883 }
1884
1885 static inline bool f2fs_is_atomic_file(struct inode *inode)
1886 {
1887 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1888 }
1889
1890 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
1891 {
1892 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
1893 }
1894
1895 static inline bool f2fs_is_volatile_file(struct inode *inode)
1896 {
1897 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1898 }
1899
1900 static inline bool f2fs_is_first_block_written(struct inode *inode)
1901 {
1902 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1903 }
1904
1905 static inline bool f2fs_is_drop_cache(struct inode *inode)
1906 {
1907 return is_inode_flag_set(inode, FI_DROP_CACHE);
1908 }
1909
1910 static inline void *inline_data_addr(struct page *page)
1911 {
1912 struct f2fs_inode *ri = F2FS_INODE(page);
1913
1914 return (void *)&(ri->i_addr[1]);
1915 }
1916
1917 static inline int f2fs_has_inline_dentry(struct inode *inode)
1918 {
1919 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1920 }
1921
1922 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1923 {
1924 if (!f2fs_has_inline_dentry(dir))
1925 kunmap(page);
1926 }
1927
1928 static inline int is_file(struct inode *inode, int type)
1929 {
1930 return F2FS_I(inode)->i_advise & type;
1931 }
1932
1933 static inline void set_file(struct inode *inode, int type)
1934 {
1935 F2FS_I(inode)->i_advise |= type;
1936 f2fs_mark_inode_dirty_sync(inode, true);
1937 }
1938
1939 static inline void clear_file(struct inode *inode, int type)
1940 {
1941 F2FS_I(inode)->i_advise &= ~type;
1942 f2fs_mark_inode_dirty_sync(inode, true);
1943 }
1944
1945 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
1946 {
1947 if (dsync) {
1948 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1949 bool ret;
1950
1951 spin_lock(&sbi->inode_lock[DIRTY_META]);
1952 ret = list_empty(&F2FS_I(inode)->gdirty_list);
1953 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1954 return ret;
1955 }
1956 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
1957 file_keep_isize(inode) ||
1958 i_size_read(inode) & PAGE_MASK)
1959 return false;
1960 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1961 }
1962
1963 static inline int f2fs_readonly(struct super_block *sb)
1964 {
1965 return sb->s_flags & MS_RDONLY;
1966 }
1967
1968 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1969 {
1970 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
1971 }
1972
1973 static inline bool is_dot_dotdot(const struct qstr *str)
1974 {
1975 if (str->len == 1 && str->name[0] == '.')
1976 return true;
1977
1978 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1979 return true;
1980
1981 return false;
1982 }
1983
1984 static inline bool f2fs_may_extent_tree(struct inode *inode)
1985 {
1986 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1987 is_inode_flag_set(inode, FI_NO_EXTENT))
1988 return false;
1989
1990 return S_ISREG(inode->i_mode);
1991 }
1992
1993 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
1994 size_t size, gfp_t flags)
1995 {
1996 #ifdef CONFIG_F2FS_FAULT_INJECTION
1997 if (time_to_inject(sbi, FAULT_KMALLOC)) {
1998 f2fs_show_injection_info(FAULT_KMALLOC);
1999 return NULL;
2000 }
2001 #endif
2002 return kmalloc(size, flags);
2003 }
2004
2005 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
2006 {
2007 void *ret;
2008
2009 ret = kmalloc(size, flags | __GFP_NOWARN);
2010 if (!ret)
2011 ret = __vmalloc(size, flags, PAGE_KERNEL);
2012 return ret;
2013 }
2014
2015 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
2016 {
2017 void *ret;
2018
2019 ret = kzalloc(size, flags | __GFP_NOWARN);
2020 if (!ret)
2021 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
2022 return ret;
2023 }
2024
2025 #define get_inode_mode(i) \
2026 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2027 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2028
2029 /*
2030 * file.c
2031 */
2032 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2033 void truncate_data_blocks(struct dnode_of_data *dn);
2034 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2035 int f2fs_truncate(struct inode *inode);
2036 int f2fs_getattr(const struct path *path, struct kstat *stat,
2037 u32 request_mask, unsigned int flags);
2038 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2039 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2040 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2041 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2042 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2043
2044 /*
2045 * inode.c
2046 */
2047 void f2fs_set_inode_flags(struct inode *inode);
2048 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2049 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2050 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2051 int update_inode(struct inode *inode, struct page *node_page);
2052 int update_inode_page(struct inode *inode);
2053 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2054 void f2fs_evict_inode(struct inode *inode);
2055 void handle_failed_inode(struct inode *inode);
2056
2057 /*
2058 * namei.c
2059 */
2060 struct dentry *f2fs_get_parent(struct dentry *child);
2061
2062 /*
2063 * dir.c
2064 */
2065 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2066 unsigned char get_de_type(struct f2fs_dir_entry *de);
2067 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2068 f2fs_hash_t namehash, int *max_slots,
2069 struct f2fs_dentry_ptr *d);
2070 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2071 unsigned int start_pos, struct fscrypt_str *fstr);
2072 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2073 struct f2fs_dentry_ptr *d);
2074 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2075 const struct qstr *new_name,
2076 const struct qstr *orig_name, struct page *dpage);
2077 void update_parent_metadata(struct inode *dir, struct inode *inode,
2078 unsigned int current_depth);
2079 int room_for_filename(const void *bitmap, int slots, int max_slots);
2080 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2081 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2082 struct fscrypt_name *fname, struct page **res_page);
2083 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2084 const struct qstr *child, struct page **res_page);
2085 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2086 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2087 struct page **page);
2088 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2089 struct page *page, struct inode *inode);
2090 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2091 const struct qstr *name, f2fs_hash_t name_hash,
2092 unsigned int bit_pos);
2093 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2094 const struct qstr *orig_name,
2095 struct inode *inode, nid_t ino, umode_t mode);
2096 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2097 struct inode *inode, nid_t ino, umode_t mode);
2098 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2099 struct inode *inode, nid_t ino, umode_t mode);
2100 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2101 struct inode *dir, struct inode *inode);
2102 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2103 bool f2fs_empty_dir(struct inode *dir);
2104
2105 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2106 {
2107 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2108 inode, inode->i_ino, inode->i_mode);
2109 }
2110
2111 /*
2112 * super.c
2113 */
2114 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2115 void f2fs_inode_synced(struct inode *inode);
2116 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2117 int f2fs_sync_fs(struct super_block *sb, int sync);
2118 extern __printf(3, 4)
2119 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2120 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2121
2122 /*
2123 * hash.c
2124 */
2125 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info);
2126
2127 /*
2128 * node.c
2129 */
2130 struct dnode_of_data;
2131 struct node_info;
2132
2133 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2134 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2135 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2136 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2137 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2138 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2139 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2140 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2141 int truncate_xattr_node(struct inode *inode, struct page *page);
2142 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2143 int remove_inode_page(struct inode *inode);
2144 struct page *new_inode_page(struct inode *inode);
2145 struct page *new_node_page(struct dnode_of_data *dn,
2146 unsigned int ofs, struct page *ipage);
2147 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2148 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2149 struct page *get_node_page_ra(struct page *parent, int start);
2150 void move_node_page(struct page *node_page, int gc_type);
2151 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2152 struct writeback_control *wbc, bool atomic);
2153 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2154 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2155 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2156 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2157 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2158 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2159 void recover_inline_xattr(struct inode *inode, struct page *page);
2160 int recover_xattr_data(struct inode *inode, struct page *page,
2161 block_t blkaddr);
2162 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2163 int restore_node_summary(struct f2fs_sb_info *sbi,
2164 unsigned int segno, struct f2fs_summary_block *sum);
2165 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2166 int build_node_manager(struct f2fs_sb_info *sbi);
2167 void destroy_node_manager(struct f2fs_sb_info *sbi);
2168 int __init create_node_manager_caches(void);
2169 void destroy_node_manager_caches(void);
2170
2171 /*
2172 * segment.c
2173 */
2174 void register_inmem_page(struct inode *inode, struct page *page);
2175 void drop_inmem_pages(struct inode *inode);
2176 void drop_inmem_page(struct inode *inode, struct page *page);
2177 int commit_inmem_pages(struct inode *inode);
2178 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2179 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2180 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2181 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2182 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2183 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2184 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2185 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2186 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr);
2187 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2188 void release_discard_addrs(struct f2fs_sb_info *sbi);
2189 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2190 void allocate_new_segments(struct f2fs_sb_info *sbi);
2191 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2192 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2193 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2194 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2195 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2196 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2197 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2198 void rewrite_data_page(struct f2fs_io_info *fio);
2199 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2200 block_t old_blkaddr, block_t new_blkaddr,
2201 bool recover_curseg, bool recover_newaddr);
2202 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2203 block_t old_addr, block_t new_addr,
2204 unsigned char version, bool recover_curseg,
2205 bool recover_newaddr);
2206 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2207 block_t old_blkaddr, block_t *new_blkaddr,
2208 struct f2fs_summary *sum, int type);
2209 void f2fs_wait_on_page_writeback(struct page *page,
2210 enum page_type type, bool ordered);
2211 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2212 block_t blkaddr);
2213 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2214 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2215 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2216 unsigned int val, int alloc);
2217 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2218 int build_segment_manager(struct f2fs_sb_info *sbi);
2219 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2220 int __init create_segment_manager_caches(void);
2221 void destroy_segment_manager_caches(void);
2222
2223 /*
2224 * checkpoint.c
2225 */
2226 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2227 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2228 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2229 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2230 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2231 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2232 int type, bool sync);
2233 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2234 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2235 long nr_to_write);
2236 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2237 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2238 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2239 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2240 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2241 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2242 void release_orphan_inode(struct f2fs_sb_info *sbi);
2243 void add_orphan_inode(struct inode *inode);
2244 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2245 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2246 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2247 void update_dirty_page(struct inode *inode, struct page *page);
2248 void remove_dirty_inode(struct inode *inode);
2249 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2250 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2251 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2252 int __init create_checkpoint_caches(void);
2253 void destroy_checkpoint_caches(void);
2254
2255 /*
2256 * data.c
2257 */
2258 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
2259 int rw);
2260 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
2261 struct inode *inode, nid_t ino, pgoff_t idx,
2262 enum page_type type, int rw);
2263 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi);
2264 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2265 int f2fs_submit_page_mbio(struct f2fs_io_info *fio);
2266 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2267 block_t blk_addr, struct bio *bio);
2268 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2269 void set_data_blkaddr(struct dnode_of_data *dn);
2270 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2271 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2272 int reserve_new_block(struct dnode_of_data *dn);
2273 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2274 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2275 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2276 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2277 int op_flags, bool for_write);
2278 struct page *find_data_page(struct inode *inode, pgoff_t index);
2279 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2280 bool for_write);
2281 struct page *get_new_data_page(struct inode *inode,
2282 struct page *ipage, pgoff_t index, bool new_i_size);
2283 int do_write_data_page(struct f2fs_io_info *fio);
2284 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2285 int create, int flag);
2286 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2287 u64 start, u64 len);
2288 void f2fs_set_page_dirty_nobuffers(struct page *page);
2289 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2290 unsigned int length);
2291 int f2fs_release_page(struct page *page, gfp_t wait);
2292 #ifdef CONFIG_MIGRATION
2293 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2294 struct page *page, enum migrate_mode mode);
2295 #endif
2296
2297 /*
2298 * gc.c
2299 */
2300 int start_gc_thread(struct f2fs_sb_info *sbi);
2301 void stop_gc_thread(struct f2fs_sb_info *sbi);
2302 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2303 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background);
2304 void build_gc_manager(struct f2fs_sb_info *sbi);
2305
2306 /*
2307 * recovery.c
2308 */
2309 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2310 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2311
2312 /*
2313 * debug.c
2314 */
2315 #ifdef CONFIG_F2FS_STAT_FS
2316 struct f2fs_stat_info {
2317 struct list_head stat_list;
2318 struct f2fs_sb_info *sbi;
2319 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2320 int main_area_segs, main_area_sections, main_area_zones;
2321 unsigned long long hit_largest, hit_cached, hit_rbtree;
2322 unsigned long long hit_total, total_ext;
2323 int ext_tree, zombie_tree, ext_node;
2324 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2325 int inmem_pages;
2326 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2327 int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids;
2328 int total_count, utilization;
2329 int bg_gc, nr_wb_cp_data, nr_wb_data, nr_flush, nr_discard;
2330 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2331 int aw_cnt, max_aw_cnt;
2332 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2333 unsigned int bimodal, avg_vblocks;
2334 int util_free, util_valid, util_invalid;
2335 int rsvd_segs, overp_segs;
2336 int dirty_count, node_pages, meta_pages;
2337 int prefree_count, call_count, cp_count, bg_cp_count;
2338 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2339 int bg_node_segs, bg_data_segs;
2340 int tot_blks, data_blks, node_blks;
2341 int bg_data_blks, bg_node_blks;
2342 int curseg[NR_CURSEG_TYPE];
2343 int cursec[NR_CURSEG_TYPE];
2344 int curzone[NR_CURSEG_TYPE];
2345
2346 unsigned int segment_count[2];
2347 unsigned int block_count[2];
2348 unsigned int inplace_count;
2349 unsigned long long base_mem, cache_mem, page_mem;
2350 };
2351
2352 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2353 {
2354 return (struct f2fs_stat_info *)sbi->stat_info;
2355 }
2356
2357 #define stat_inc_cp_count(si) ((si)->cp_count++)
2358 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2359 #define stat_inc_call_count(si) ((si)->call_count++)
2360 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2361 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2362 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2363 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2364 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2365 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2366 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2367 #define stat_inc_inline_xattr(inode) \
2368 do { \
2369 if (f2fs_has_inline_xattr(inode)) \
2370 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2371 } while (0)
2372 #define stat_dec_inline_xattr(inode) \
2373 do { \
2374 if (f2fs_has_inline_xattr(inode)) \
2375 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2376 } while (0)
2377 #define stat_inc_inline_inode(inode) \
2378 do { \
2379 if (f2fs_has_inline_data(inode)) \
2380 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2381 } while (0)
2382 #define stat_dec_inline_inode(inode) \
2383 do { \
2384 if (f2fs_has_inline_data(inode)) \
2385 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2386 } while (0)
2387 #define stat_inc_inline_dir(inode) \
2388 do { \
2389 if (f2fs_has_inline_dentry(inode)) \
2390 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2391 } while (0)
2392 #define stat_dec_inline_dir(inode) \
2393 do { \
2394 if (f2fs_has_inline_dentry(inode)) \
2395 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2396 } while (0)
2397 #define stat_inc_seg_type(sbi, curseg) \
2398 ((sbi)->segment_count[(curseg)->alloc_type]++)
2399 #define stat_inc_block_count(sbi, curseg) \
2400 ((sbi)->block_count[(curseg)->alloc_type]++)
2401 #define stat_inc_inplace_blocks(sbi) \
2402 (atomic_inc(&(sbi)->inplace_count))
2403 #define stat_inc_atomic_write(inode) \
2404 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2405 #define stat_dec_atomic_write(inode) \
2406 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2407 #define stat_update_max_atomic_write(inode) \
2408 do { \
2409 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2410 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2411 if (cur > max) \
2412 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2413 } while (0)
2414 #define stat_inc_seg_count(sbi, type, gc_type) \
2415 do { \
2416 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2417 (si)->tot_segs++; \
2418 if (type == SUM_TYPE_DATA) { \
2419 si->data_segs++; \
2420 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2421 } else { \
2422 si->node_segs++; \
2423 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2424 } \
2425 } while (0)
2426
2427 #define stat_inc_tot_blk_count(si, blks) \
2428 (si->tot_blks += (blks))
2429
2430 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2431 do { \
2432 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2433 stat_inc_tot_blk_count(si, blks); \
2434 si->data_blks += (blks); \
2435 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2436 } while (0)
2437
2438 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2439 do { \
2440 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2441 stat_inc_tot_blk_count(si, blks); \
2442 si->node_blks += (blks); \
2443 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2444 } while (0)
2445
2446 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2447 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2448 int __init f2fs_create_root_stats(void);
2449 void f2fs_destroy_root_stats(void);
2450 #else
2451 #define stat_inc_cp_count(si)
2452 #define stat_inc_bg_cp_count(si)
2453 #define stat_inc_call_count(si)
2454 #define stat_inc_bggc_count(si)
2455 #define stat_inc_dirty_inode(sbi, type)
2456 #define stat_dec_dirty_inode(sbi, type)
2457 #define stat_inc_total_hit(sb)
2458 #define stat_inc_rbtree_node_hit(sb)
2459 #define stat_inc_largest_node_hit(sbi)
2460 #define stat_inc_cached_node_hit(sbi)
2461 #define stat_inc_inline_xattr(inode)
2462 #define stat_dec_inline_xattr(inode)
2463 #define stat_inc_inline_inode(inode)
2464 #define stat_dec_inline_inode(inode)
2465 #define stat_inc_inline_dir(inode)
2466 #define stat_dec_inline_dir(inode)
2467 #define stat_inc_atomic_write(inode)
2468 #define stat_dec_atomic_write(inode)
2469 #define stat_update_max_atomic_write(inode)
2470 #define stat_inc_seg_type(sbi, curseg)
2471 #define stat_inc_block_count(sbi, curseg)
2472 #define stat_inc_inplace_blocks(sbi)
2473 #define stat_inc_seg_count(sbi, type, gc_type)
2474 #define stat_inc_tot_blk_count(si, blks)
2475 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2476 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2477
2478 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2479 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2480 static inline int __init f2fs_create_root_stats(void) { return 0; }
2481 static inline void f2fs_destroy_root_stats(void) { }
2482 #endif
2483
2484 extern const struct file_operations f2fs_dir_operations;
2485 extern const struct file_operations f2fs_file_operations;
2486 extern const struct inode_operations f2fs_file_inode_operations;
2487 extern const struct address_space_operations f2fs_dblock_aops;
2488 extern const struct address_space_operations f2fs_node_aops;
2489 extern const struct address_space_operations f2fs_meta_aops;
2490 extern const struct inode_operations f2fs_dir_inode_operations;
2491 extern const struct inode_operations f2fs_symlink_inode_operations;
2492 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2493 extern const struct inode_operations f2fs_special_inode_operations;
2494 extern struct kmem_cache *inode_entry_slab;
2495
2496 /*
2497 * inline.c
2498 */
2499 bool f2fs_may_inline_data(struct inode *inode);
2500 bool f2fs_may_inline_dentry(struct inode *inode);
2501 void read_inline_data(struct page *page, struct page *ipage);
2502 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2503 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2504 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2505 int f2fs_convert_inline_inode(struct inode *inode);
2506 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2507 bool recover_inline_data(struct inode *inode, struct page *npage);
2508 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2509 struct fscrypt_name *fname, struct page **res_page);
2510 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2511 struct page *ipage);
2512 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2513 const struct qstr *orig_name,
2514 struct inode *inode, nid_t ino, umode_t mode);
2515 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2516 struct inode *dir, struct inode *inode);
2517 bool f2fs_empty_inline_dir(struct inode *dir);
2518 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2519 struct fscrypt_str *fstr);
2520 int f2fs_inline_data_fiemap(struct inode *inode,
2521 struct fiemap_extent_info *fieinfo,
2522 __u64 start, __u64 len);
2523
2524 /*
2525 * shrinker.c
2526 */
2527 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2528 struct shrink_control *sc);
2529 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2530 struct shrink_control *sc);
2531 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2532 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2533
2534 /*
2535 * extent_cache.c
2536 */
2537 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2538 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2539 void f2fs_drop_extent_tree(struct inode *inode);
2540 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2541 void f2fs_destroy_extent_tree(struct inode *inode);
2542 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2543 struct extent_info *ei);
2544 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2545 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2546 pgoff_t fofs, block_t blkaddr, unsigned int len);
2547 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2548 int __init create_extent_cache(void);
2549 void destroy_extent_cache(void);
2550
2551 /*
2552 * crypto support
2553 */
2554 static inline bool f2fs_encrypted_inode(struct inode *inode)
2555 {
2556 return file_is_encrypt(inode);
2557 }
2558
2559 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2560 {
2561 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2562 file_set_encrypt(inode);
2563 #endif
2564 }
2565
2566 static inline bool f2fs_bio_encrypted(struct bio *bio)
2567 {
2568 return bio->bi_private != NULL;
2569 }
2570
2571 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2572 {
2573 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2574 }
2575
2576 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2577 {
2578 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2579 }
2580
2581 #ifdef CONFIG_BLK_DEV_ZONED
2582 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2583 struct block_device *bdev, block_t blkaddr)
2584 {
2585 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2586 int i;
2587
2588 for (i = 0; i < sbi->s_ndevs; i++)
2589 if (FDEV(i).bdev == bdev)
2590 return FDEV(i).blkz_type[zno];
2591 return -EINVAL;
2592 }
2593 #endif
2594
2595 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2596 {
2597 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2598
2599 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2600 }
2601
2602 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2603 {
2604 clear_opt(sbi, ADAPTIVE);
2605 clear_opt(sbi, LFS);
2606
2607 switch (mt) {
2608 case F2FS_MOUNT_ADAPTIVE:
2609 set_opt(sbi, ADAPTIVE);
2610 break;
2611 case F2FS_MOUNT_LFS:
2612 set_opt(sbi, LFS);
2613 break;
2614 }
2615 }
2616
2617 static inline bool f2fs_may_encrypt(struct inode *inode)
2618 {
2619 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2620 umode_t mode = inode->i_mode;
2621
2622 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2623 #else
2624 return 0;
2625 #endif
2626 }
2627
2628 #endif