]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/f2fs.h
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 set_sbi_flag(sbi, SBI_NEED_FSCK); \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
54
55 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
56 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
57 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
58
59 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
60 typecheck(unsigned long long, b) && \
61 ((long long)((a) - (b)) > 0))
62
63 typedef u32 block_t; /*
64 * should not change u32, since it is the on-disk block
65 * address format, __le32.
66 */
67 typedef u32 nid_t;
68
69 struct f2fs_mount_info {
70 unsigned int opt;
71 };
72
73 #define CRCPOLY_LE 0xedb88320
74
75 static inline __u32 f2fs_crc32(void *buf, size_t len)
76 {
77 unsigned char *p = (unsigned char *)buf;
78 __u32 crc = F2FS_SUPER_MAGIC;
79 int i;
80
81 while (len--) {
82 crc ^= *p++;
83 for (i = 0; i < 8; i++)
84 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
85 }
86 return crc;
87 }
88
89 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
90 {
91 return f2fs_crc32(buf, buf_size) == blk_crc;
92 }
93
94 /*
95 * For checkpoint manager
96 */
97 enum {
98 NAT_BITMAP,
99 SIT_BITMAP
100 };
101
102 enum {
103 CP_UMOUNT,
104 CP_FASTBOOT,
105 CP_SYNC,
106 CP_RECOVERY,
107 CP_DISCARD,
108 };
109
110 #define DEF_BATCHED_TRIM_SECTIONS 32
111 #define BATCHED_TRIM_SEGMENTS(sbi) \
112 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
113
114 struct cp_control {
115 int reason;
116 __u64 trim_start;
117 __u64 trim_end;
118 __u64 trim_minlen;
119 __u64 trimmed;
120 };
121
122 /*
123 * For CP/NAT/SIT/SSA readahead
124 */
125 enum {
126 META_CP,
127 META_NAT,
128 META_SIT,
129 META_SSA,
130 META_POR,
131 };
132
133 /* for the list of ino */
134 enum {
135 ORPHAN_INO, /* for orphan ino list */
136 APPEND_INO, /* for append ino list */
137 UPDATE_INO, /* for update ino list */
138 MAX_INO_ENTRY, /* max. list */
139 };
140
141 struct ino_entry {
142 struct list_head list; /* list head */
143 nid_t ino; /* inode number */
144 };
145
146 /*
147 * for the list of directory inodes or gc inodes.
148 * NOTE: there are two slab users for this structure, if we add/modify/delete
149 * fields in structure for one of slab users, it may affect fields or size of
150 * other one, in this condition, it's better to split both of slab and related
151 * data structure.
152 */
153 struct inode_entry {
154 struct list_head list; /* list head */
155 struct inode *inode; /* vfs inode pointer */
156 };
157
158 /* for the list of blockaddresses to be discarded */
159 struct discard_entry {
160 struct list_head list; /* list head */
161 block_t blkaddr; /* block address to be discarded */
162 int len; /* # of consecutive blocks of the discard */
163 };
164
165 /* for the list of fsync inodes, used only during recovery */
166 struct fsync_inode_entry {
167 struct list_head list; /* list head */
168 struct inode *inode; /* vfs inode pointer */
169 block_t blkaddr; /* block address locating the last fsync */
170 block_t last_dentry; /* block address locating the last dentry */
171 block_t last_inode; /* block address locating the last inode */
172 };
173
174 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
175 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
176
177 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
178 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
179 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
180 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
181
182 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
183 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
184
185 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
186 {
187 int before = nats_in_cursum(rs);
188 rs->n_nats = cpu_to_le16(before + i);
189 return before;
190 }
191
192 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
193 {
194 int before = sits_in_cursum(rs);
195 rs->n_sits = cpu_to_le16(before + i);
196 return before;
197 }
198
199 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
200 int type)
201 {
202 if (type == NAT_JOURNAL)
203 return size <= MAX_NAT_JENTRIES(sum);
204 return size <= MAX_SIT_JENTRIES(sum);
205 }
206
207 /*
208 * ioctl commands
209 */
210 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
211 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
212 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
213
214 #define F2FS_IOCTL_MAGIC 0xf5
215 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
216 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
217 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
218 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
219 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
220
221 /*
222 * should be same as XFS_IOC_GOINGDOWN.
223 * Flags for going down operation used by FS_IOC_GOINGDOWN
224 */
225 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
226 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
227 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
228 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
229
230 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
231 /*
232 * ioctl commands in 32 bit emulation
233 */
234 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
235 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
236 #endif
237
238 /*
239 * For INODE and NODE manager
240 */
241 /* for directory operations */
242 struct f2fs_dentry_ptr {
243 const void *bitmap;
244 struct f2fs_dir_entry *dentry;
245 __u8 (*filename)[F2FS_SLOT_LEN];
246 int max;
247 };
248
249 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
250 void *src, int type)
251 {
252 if (type == 1) {
253 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
254 d->max = NR_DENTRY_IN_BLOCK;
255 d->bitmap = &t->dentry_bitmap;
256 d->dentry = t->dentry;
257 d->filename = t->filename;
258 } else {
259 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
260 d->max = NR_INLINE_DENTRY;
261 d->bitmap = &t->dentry_bitmap;
262 d->dentry = t->dentry;
263 d->filename = t->filename;
264 }
265 }
266
267 /*
268 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
269 * as its node offset to distinguish from index node blocks.
270 * But some bits are used to mark the node block.
271 */
272 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
273 >> OFFSET_BIT_SHIFT)
274 enum {
275 ALLOC_NODE, /* allocate a new node page if needed */
276 LOOKUP_NODE, /* look up a node without readahead */
277 LOOKUP_NODE_RA, /*
278 * look up a node with readahead called
279 * by get_data_block.
280 */
281 };
282
283 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
284
285 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
286
287 /* vector size for gang look-up from extent cache that consists of radix tree */
288 #define EXT_TREE_VEC_SIZE 64
289
290 /* for in-memory extent cache entry */
291 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
292
293 /* number of extent info in extent cache we try to shrink */
294 #define EXTENT_CACHE_SHRINK_NUMBER 128
295
296 struct extent_info {
297 unsigned int fofs; /* start offset in a file */
298 u32 blk; /* start block address of the extent */
299 unsigned int len; /* length of the extent */
300 };
301
302 struct extent_node {
303 struct rb_node rb_node; /* rb node located in rb-tree */
304 struct list_head list; /* node in global extent list of sbi */
305 struct extent_info ei; /* extent info */
306 };
307
308 struct extent_tree {
309 nid_t ino; /* inode number */
310 struct rb_root root; /* root of extent info rb-tree */
311 struct extent_node *cached_en; /* recently accessed extent node */
312 rwlock_t lock; /* protect extent info rb-tree */
313 atomic_t refcount; /* reference count of rb-tree */
314 unsigned int count; /* # of extent node in rb-tree*/
315 };
316
317 /*
318 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
319 */
320 #define FADVISE_COLD_BIT 0x01
321 #define FADVISE_LOST_PINO_BIT 0x02
322
323 #define DEF_DIR_LEVEL 0
324
325 struct f2fs_inode_info {
326 struct inode vfs_inode; /* serve a vfs inode */
327 unsigned long i_flags; /* keep an inode flags for ioctl */
328 unsigned char i_advise; /* use to give file attribute hints */
329 unsigned char i_dir_level; /* use for dentry level for large dir */
330 unsigned int i_current_depth; /* use only in directory structure */
331 unsigned int i_pino; /* parent inode number */
332 umode_t i_acl_mode; /* keep file acl mode temporarily */
333
334 /* Use below internally in f2fs*/
335 unsigned long flags; /* use to pass per-file flags */
336 struct rw_semaphore i_sem; /* protect fi info */
337 atomic_t dirty_pages; /* # of dirty pages */
338 f2fs_hash_t chash; /* hash value of given file name */
339 unsigned int clevel; /* maximum level of given file name */
340 nid_t i_xattr_nid; /* node id that contains xattrs */
341 unsigned long long xattr_ver; /* cp version of xattr modification */
342 struct extent_info ext; /* in-memory extent cache entry */
343 rwlock_t ext_lock; /* rwlock for single extent cache */
344 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
345
346 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
347 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
348 struct mutex inmem_lock; /* lock for inmemory pages */
349 };
350
351 static inline void get_extent_info(struct extent_info *ext,
352 struct f2fs_extent i_ext)
353 {
354 ext->fofs = le32_to_cpu(i_ext.fofs);
355 ext->blk = le32_to_cpu(i_ext.blk);
356 ext->len = le32_to_cpu(i_ext.len);
357 }
358
359 static inline void set_raw_extent(struct extent_info *ext,
360 struct f2fs_extent *i_ext)
361 {
362 i_ext->fofs = cpu_to_le32(ext->fofs);
363 i_ext->blk = cpu_to_le32(ext->blk);
364 i_ext->len = cpu_to_le32(ext->len);
365 }
366
367 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
368 u32 blk, unsigned int len)
369 {
370 ei->fofs = fofs;
371 ei->blk = blk;
372 ei->len = len;
373 }
374
375 static inline bool __is_extent_same(struct extent_info *ei1,
376 struct extent_info *ei2)
377 {
378 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
379 ei1->len == ei2->len);
380 }
381
382 static inline bool __is_extent_mergeable(struct extent_info *back,
383 struct extent_info *front)
384 {
385 return (back->fofs + back->len == front->fofs &&
386 back->blk + back->len == front->blk);
387 }
388
389 static inline bool __is_back_mergeable(struct extent_info *cur,
390 struct extent_info *back)
391 {
392 return __is_extent_mergeable(back, cur);
393 }
394
395 static inline bool __is_front_mergeable(struct extent_info *cur,
396 struct extent_info *front)
397 {
398 return __is_extent_mergeable(cur, front);
399 }
400
401 struct f2fs_nm_info {
402 block_t nat_blkaddr; /* base disk address of NAT */
403 nid_t max_nid; /* maximum possible node ids */
404 nid_t available_nids; /* maximum available node ids */
405 nid_t next_scan_nid; /* the next nid to be scanned */
406 unsigned int ram_thresh; /* control the memory footprint */
407
408 /* NAT cache management */
409 struct radix_tree_root nat_root;/* root of the nat entry cache */
410 struct radix_tree_root nat_set_root;/* root of the nat set cache */
411 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
412 struct list_head nat_entries; /* cached nat entry list (clean) */
413 unsigned int nat_cnt; /* the # of cached nat entries */
414 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
415
416 /* free node ids management */
417 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
418 struct list_head free_nid_list; /* a list for free nids */
419 spinlock_t free_nid_list_lock; /* protect free nid list */
420 unsigned int fcnt; /* the number of free node id */
421 struct mutex build_lock; /* lock for build free nids */
422
423 /* for checkpoint */
424 char *nat_bitmap; /* NAT bitmap pointer */
425 int bitmap_size; /* bitmap size */
426 };
427
428 /*
429 * this structure is used as one of function parameters.
430 * all the information are dedicated to a given direct node block determined
431 * by the data offset in a file.
432 */
433 struct dnode_of_data {
434 struct inode *inode; /* vfs inode pointer */
435 struct page *inode_page; /* its inode page, NULL is possible */
436 struct page *node_page; /* cached direct node page */
437 nid_t nid; /* node id of the direct node block */
438 unsigned int ofs_in_node; /* data offset in the node page */
439 bool inode_page_locked; /* inode page is locked or not */
440 block_t data_blkaddr; /* block address of the node block */
441 };
442
443 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
444 struct page *ipage, struct page *npage, nid_t nid)
445 {
446 memset(dn, 0, sizeof(*dn));
447 dn->inode = inode;
448 dn->inode_page = ipage;
449 dn->node_page = npage;
450 dn->nid = nid;
451 }
452
453 /*
454 * For SIT manager
455 *
456 * By default, there are 6 active log areas across the whole main area.
457 * When considering hot and cold data separation to reduce cleaning overhead,
458 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
459 * respectively.
460 * In the current design, you should not change the numbers intentionally.
461 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
462 * logs individually according to the underlying devices. (default: 6)
463 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
464 * data and 8 for node logs.
465 */
466 #define NR_CURSEG_DATA_TYPE (3)
467 #define NR_CURSEG_NODE_TYPE (3)
468 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
469
470 enum {
471 CURSEG_HOT_DATA = 0, /* directory entry blocks */
472 CURSEG_WARM_DATA, /* data blocks */
473 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
474 CURSEG_HOT_NODE, /* direct node blocks of directory files */
475 CURSEG_WARM_NODE, /* direct node blocks of normal files */
476 CURSEG_COLD_NODE, /* indirect node blocks */
477 NO_CHECK_TYPE,
478 CURSEG_DIRECT_IO, /* to use for the direct IO path */
479 };
480
481 struct flush_cmd {
482 struct completion wait;
483 struct llist_node llnode;
484 int ret;
485 };
486
487 struct flush_cmd_control {
488 struct task_struct *f2fs_issue_flush; /* flush thread */
489 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
490 struct llist_head issue_list; /* list for command issue */
491 struct llist_node *dispatch_list; /* list for command dispatch */
492 };
493
494 struct f2fs_sm_info {
495 struct sit_info *sit_info; /* whole segment information */
496 struct free_segmap_info *free_info; /* free segment information */
497 struct dirty_seglist_info *dirty_info; /* dirty segment information */
498 struct curseg_info *curseg_array; /* active segment information */
499
500 block_t seg0_blkaddr; /* block address of 0'th segment */
501 block_t main_blkaddr; /* start block address of main area */
502 block_t ssa_blkaddr; /* start block address of SSA area */
503
504 unsigned int segment_count; /* total # of segments */
505 unsigned int main_segments; /* # of segments in main area */
506 unsigned int reserved_segments; /* # of reserved segments */
507 unsigned int ovp_segments; /* # of overprovision segments */
508
509 /* a threshold to reclaim prefree segments */
510 unsigned int rec_prefree_segments;
511
512 /* for small discard management */
513 struct list_head discard_list; /* 4KB discard list */
514 int nr_discards; /* # of discards in the list */
515 int max_discards; /* max. discards to be issued */
516
517 /* for batched trimming */
518 unsigned int trim_sections; /* # of sections to trim */
519
520 struct list_head sit_entry_set; /* sit entry set list */
521
522 unsigned int ipu_policy; /* in-place-update policy */
523 unsigned int min_ipu_util; /* in-place-update threshold */
524 unsigned int min_fsync_blocks; /* threshold for fsync */
525
526 /* for flush command control */
527 struct flush_cmd_control *cmd_control_info;
528
529 };
530
531 /*
532 * For superblock
533 */
534 /*
535 * COUNT_TYPE for monitoring
536 *
537 * f2fs monitors the number of several block types such as on-writeback,
538 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
539 */
540 enum count_type {
541 F2FS_WRITEBACK,
542 F2FS_DIRTY_DENTS,
543 F2FS_DIRTY_NODES,
544 F2FS_DIRTY_META,
545 F2FS_INMEM_PAGES,
546 NR_COUNT_TYPE,
547 };
548
549 /*
550 * The below are the page types of bios used in submit_bio().
551 * The available types are:
552 * DATA User data pages. It operates as async mode.
553 * NODE Node pages. It operates as async mode.
554 * META FS metadata pages such as SIT, NAT, CP.
555 * NR_PAGE_TYPE The number of page types.
556 * META_FLUSH Make sure the previous pages are written
557 * with waiting the bio's completion
558 * ... Only can be used with META.
559 */
560 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
561 enum page_type {
562 DATA,
563 NODE,
564 META,
565 NR_PAGE_TYPE,
566 META_FLUSH,
567 INMEM, /* the below types are used by tracepoints only. */
568 INMEM_DROP,
569 IPU,
570 OPU,
571 };
572
573 struct f2fs_io_info {
574 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
575 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
576 block_t blk_addr; /* block address to be written */
577 };
578
579 #define is_read_io(rw) (((rw) & 1) == READ)
580 struct f2fs_bio_info {
581 struct f2fs_sb_info *sbi; /* f2fs superblock */
582 struct bio *bio; /* bios to merge */
583 sector_t last_block_in_bio; /* last block number */
584 struct f2fs_io_info fio; /* store buffered io info. */
585 struct rw_semaphore io_rwsem; /* blocking op for bio */
586 };
587
588 /* for inner inode cache management */
589 struct inode_management {
590 struct radix_tree_root ino_root; /* ino entry array */
591 spinlock_t ino_lock; /* for ino entry lock */
592 struct list_head ino_list; /* inode list head */
593 unsigned long ino_num; /* number of entries */
594 };
595
596 /* For s_flag in struct f2fs_sb_info */
597 enum {
598 SBI_IS_DIRTY, /* dirty flag for checkpoint */
599 SBI_IS_CLOSE, /* specify unmounting */
600 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
601 SBI_POR_DOING, /* recovery is doing or not */
602 };
603
604 struct f2fs_sb_info {
605 struct super_block *sb; /* pointer to VFS super block */
606 struct proc_dir_entry *s_proc; /* proc entry */
607 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
608 struct f2fs_super_block *raw_super; /* raw super block pointer */
609 int s_flag; /* flags for sbi */
610
611 /* for node-related operations */
612 struct f2fs_nm_info *nm_info; /* node manager */
613 struct inode *node_inode; /* cache node blocks */
614
615 /* for segment-related operations */
616 struct f2fs_sm_info *sm_info; /* segment manager */
617
618 /* for bio operations */
619 struct f2fs_bio_info read_io; /* for read bios */
620 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
621
622 /* for checkpoint */
623 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
624 struct inode *meta_inode; /* cache meta blocks */
625 struct mutex cp_mutex; /* checkpoint procedure lock */
626 struct rw_semaphore cp_rwsem; /* blocking FS operations */
627 struct rw_semaphore node_write; /* locking node writes */
628 wait_queue_head_t cp_wait;
629
630 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
631
632 /* for orphan inode, use 0'th array */
633 unsigned int max_orphans; /* max orphan inodes */
634
635 /* for directory inode management */
636 struct list_head dir_inode_list; /* dir inode list */
637 spinlock_t dir_inode_lock; /* for dir inode list lock */
638
639 /* for extent tree cache */
640 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
641 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
642 struct list_head extent_list; /* lru list for shrinker */
643 spinlock_t extent_lock; /* locking extent lru list */
644 int total_ext_tree; /* extent tree count */
645 atomic_t total_ext_node; /* extent info count */
646
647 /* basic filesystem units */
648 unsigned int log_sectors_per_block; /* log2 sectors per block */
649 unsigned int log_blocksize; /* log2 block size */
650 unsigned int blocksize; /* block size */
651 unsigned int root_ino_num; /* root inode number*/
652 unsigned int node_ino_num; /* node inode number*/
653 unsigned int meta_ino_num; /* meta inode number*/
654 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
655 unsigned int blocks_per_seg; /* blocks per segment */
656 unsigned int segs_per_sec; /* segments per section */
657 unsigned int secs_per_zone; /* sections per zone */
658 unsigned int total_sections; /* total section count */
659 unsigned int total_node_count; /* total node block count */
660 unsigned int total_valid_node_count; /* valid node block count */
661 unsigned int total_valid_inode_count; /* valid inode count */
662 int active_logs; /* # of active logs */
663 int dir_level; /* directory level */
664
665 block_t user_block_count; /* # of user blocks */
666 block_t total_valid_block_count; /* # of valid blocks */
667 block_t alloc_valid_block_count; /* # of allocated blocks */
668 block_t last_valid_block_count; /* for recovery */
669 u32 s_next_generation; /* for NFS support */
670 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
671
672 struct f2fs_mount_info mount_opt; /* mount options */
673
674 /* for cleaning operations */
675 struct mutex gc_mutex; /* mutex for GC */
676 struct f2fs_gc_kthread *gc_thread; /* GC thread */
677 unsigned int cur_victim_sec; /* current victim section num */
678
679 /* maximum # of trials to find a victim segment for SSR and GC */
680 unsigned int max_victim_search;
681
682 /*
683 * for stat information.
684 * one is for the LFS mode, and the other is for the SSR mode.
685 */
686 #ifdef CONFIG_F2FS_STAT_FS
687 struct f2fs_stat_info *stat_info; /* FS status information */
688 unsigned int segment_count[2]; /* # of allocated segments */
689 unsigned int block_count[2]; /* # of allocated blocks */
690 atomic_t inplace_count; /* # of inplace update */
691 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
692 atomic_t inline_inode; /* # of inline_data inodes */
693 atomic_t inline_dir; /* # of inline_dentry inodes */
694 int bg_gc; /* background gc calls */
695 unsigned int n_dirty_dirs; /* # of dir inodes */
696 #endif
697 unsigned int last_victim[2]; /* last victim segment # */
698 spinlock_t stat_lock; /* lock for stat operations */
699
700 /* For sysfs suppport */
701 struct kobject s_kobj;
702 struct completion s_kobj_unregister;
703 };
704
705 /*
706 * Inline functions
707 */
708 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
709 {
710 return container_of(inode, struct f2fs_inode_info, vfs_inode);
711 }
712
713 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
714 {
715 return sb->s_fs_info;
716 }
717
718 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
719 {
720 return F2FS_SB(inode->i_sb);
721 }
722
723 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
724 {
725 return F2FS_I_SB(mapping->host);
726 }
727
728 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
729 {
730 return F2FS_M_SB(page->mapping);
731 }
732
733 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
734 {
735 return (struct f2fs_super_block *)(sbi->raw_super);
736 }
737
738 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
739 {
740 return (struct f2fs_checkpoint *)(sbi->ckpt);
741 }
742
743 static inline struct f2fs_node *F2FS_NODE(struct page *page)
744 {
745 return (struct f2fs_node *)page_address(page);
746 }
747
748 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
749 {
750 return &((struct f2fs_node *)page_address(page))->i;
751 }
752
753 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
754 {
755 return (struct f2fs_nm_info *)(sbi->nm_info);
756 }
757
758 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
759 {
760 return (struct f2fs_sm_info *)(sbi->sm_info);
761 }
762
763 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
764 {
765 return (struct sit_info *)(SM_I(sbi)->sit_info);
766 }
767
768 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
769 {
770 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
771 }
772
773 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
774 {
775 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
776 }
777
778 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
779 {
780 return sbi->meta_inode->i_mapping;
781 }
782
783 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
784 {
785 return sbi->node_inode->i_mapping;
786 }
787
788 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
789 {
790 return sbi->s_flag & (0x01 << type);
791 }
792
793 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
794 {
795 sbi->s_flag |= (0x01 << type);
796 }
797
798 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
799 {
800 sbi->s_flag &= ~(0x01 << type);
801 }
802
803 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
804 {
805 return le64_to_cpu(cp->checkpoint_ver);
806 }
807
808 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
809 {
810 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
811 return ckpt_flags & f;
812 }
813
814 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
815 {
816 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
817 ckpt_flags |= f;
818 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
819 }
820
821 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
822 {
823 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
824 ckpt_flags &= (~f);
825 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
826 }
827
828 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
829 {
830 down_read(&sbi->cp_rwsem);
831 }
832
833 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
834 {
835 up_read(&sbi->cp_rwsem);
836 }
837
838 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
839 {
840 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
841 }
842
843 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
844 {
845 up_write(&sbi->cp_rwsem);
846 }
847
848 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
849 {
850 int reason = CP_SYNC;
851
852 if (test_opt(sbi, FASTBOOT))
853 reason = CP_FASTBOOT;
854 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
855 reason = CP_UMOUNT;
856 return reason;
857 }
858
859 static inline bool __remain_node_summaries(int reason)
860 {
861 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
862 }
863
864 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
865 {
866 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
867 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
868 }
869
870 /*
871 * Check whether the given nid is within node id range.
872 */
873 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
874 {
875 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
876 return -EINVAL;
877 if (unlikely(nid >= NM_I(sbi)->max_nid))
878 return -EINVAL;
879 return 0;
880 }
881
882 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
883
884 /*
885 * Check whether the inode has blocks or not
886 */
887 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
888 {
889 if (F2FS_I(inode)->i_xattr_nid)
890 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
891 else
892 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
893 }
894
895 static inline bool f2fs_has_xattr_block(unsigned int ofs)
896 {
897 return ofs == XATTR_NODE_OFFSET;
898 }
899
900 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
901 struct inode *inode, blkcnt_t count)
902 {
903 block_t valid_block_count;
904
905 spin_lock(&sbi->stat_lock);
906 valid_block_count =
907 sbi->total_valid_block_count + (block_t)count;
908 if (unlikely(valid_block_count > sbi->user_block_count)) {
909 spin_unlock(&sbi->stat_lock);
910 return false;
911 }
912 inode->i_blocks += count;
913 sbi->total_valid_block_count = valid_block_count;
914 sbi->alloc_valid_block_count += (block_t)count;
915 spin_unlock(&sbi->stat_lock);
916 return true;
917 }
918
919 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
920 struct inode *inode,
921 blkcnt_t count)
922 {
923 spin_lock(&sbi->stat_lock);
924 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
925 f2fs_bug_on(sbi, inode->i_blocks < count);
926 inode->i_blocks -= count;
927 sbi->total_valid_block_count -= (block_t)count;
928 spin_unlock(&sbi->stat_lock);
929 }
930
931 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
932 {
933 atomic_inc(&sbi->nr_pages[count_type]);
934 set_sbi_flag(sbi, SBI_IS_DIRTY);
935 }
936
937 static inline void inode_inc_dirty_pages(struct inode *inode)
938 {
939 atomic_inc(&F2FS_I(inode)->dirty_pages);
940 if (S_ISDIR(inode->i_mode))
941 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
942 }
943
944 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
945 {
946 atomic_dec(&sbi->nr_pages[count_type]);
947 }
948
949 static inline void inode_dec_dirty_pages(struct inode *inode)
950 {
951 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
952 return;
953
954 atomic_dec(&F2FS_I(inode)->dirty_pages);
955
956 if (S_ISDIR(inode->i_mode))
957 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
958 }
959
960 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
961 {
962 return atomic_read(&sbi->nr_pages[count_type]);
963 }
964
965 static inline int get_dirty_pages(struct inode *inode)
966 {
967 return atomic_read(&F2FS_I(inode)->dirty_pages);
968 }
969
970 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
971 {
972 unsigned int pages_per_sec = sbi->segs_per_sec *
973 (1 << sbi->log_blocks_per_seg);
974 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
975 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
976 }
977
978 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
979 {
980 return sbi->total_valid_block_count;
981 }
982
983 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
984 {
985 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
986
987 /* return NAT or SIT bitmap */
988 if (flag == NAT_BITMAP)
989 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
990 else if (flag == SIT_BITMAP)
991 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
992
993 return 0;
994 }
995
996 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
997 {
998 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
999 }
1000
1001 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1002 {
1003 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1004 int offset;
1005
1006 if (__cp_payload(sbi) > 0) {
1007 if (flag == NAT_BITMAP)
1008 return &ckpt->sit_nat_version_bitmap;
1009 else
1010 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1011 } else {
1012 offset = (flag == NAT_BITMAP) ?
1013 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1014 return &ckpt->sit_nat_version_bitmap + offset;
1015 }
1016 }
1017
1018 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1019 {
1020 block_t start_addr;
1021 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1022 unsigned long long ckpt_version = cur_cp_version(ckpt);
1023
1024 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1025
1026 /*
1027 * odd numbered checkpoint should at cp segment 0
1028 * and even segment must be at cp segment 1
1029 */
1030 if (!(ckpt_version & 1))
1031 start_addr += sbi->blocks_per_seg;
1032
1033 return start_addr;
1034 }
1035
1036 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1037 {
1038 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1039 }
1040
1041 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1042 struct inode *inode)
1043 {
1044 block_t valid_block_count;
1045 unsigned int valid_node_count;
1046
1047 spin_lock(&sbi->stat_lock);
1048
1049 valid_block_count = sbi->total_valid_block_count + 1;
1050 if (unlikely(valid_block_count > sbi->user_block_count)) {
1051 spin_unlock(&sbi->stat_lock);
1052 return false;
1053 }
1054
1055 valid_node_count = sbi->total_valid_node_count + 1;
1056 if (unlikely(valid_node_count > sbi->total_node_count)) {
1057 spin_unlock(&sbi->stat_lock);
1058 return false;
1059 }
1060
1061 if (inode)
1062 inode->i_blocks++;
1063
1064 sbi->alloc_valid_block_count++;
1065 sbi->total_valid_node_count++;
1066 sbi->total_valid_block_count++;
1067 spin_unlock(&sbi->stat_lock);
1068
1069 return true;
1070 }
1071
1072 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1073 struct inode *inode)
1074 {
1075 spin_lock(&sbi->stat_lock);
1076
1077 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1078 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1079 f2fs_bug_on(sbi, !inode->i_blocks);
1080
1081 inode->i_blocks--;
1082 sbi->total_valid_node_count--;
1083 sbi->total_valid_block_count--;
1084
1085 spin_unlock(&sbi->stat_lock);
1086 }
1087
1088 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1089 {
1090 return sbi->total_valid_node_count;
1091 }
1092
1093 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1094 {
1095 spin_lock(&sbi->stat_lock);
1096 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1097 sbi->total_valid_inode_count++;
1098 spin_unlock(&sbi->stat_lock);
1099 }
1100
1101 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1102 {
1103 spin_lock(&sbi->stat_lock);
1104 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1105 sbi->total_valid_inode_count--;
1106 spin_unlock(&sbi->stat_lock);
1107 }
1108
1109 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1110 {
1111 return sbi->total_valid_inode_count;
1112 }
1113
1114 static inline void f2fs_put_page(struct page *page, int unlock)
1115 {
1116 if (!page)
1117 return;
1118
1119 if (unlock) {
1120 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1121 unlock_page(page);
1122 }
1123 page_cache_release(page);
1124 }
1125
1126 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1127 {
1128 if (dn->node_page)
1129 f2fs_put_page(dn->node_page, 1);
1130 if (dn->inode_page && dn->node_page != dn->inode_page)
1131 f2fs_put_page(dn->inode_page, 0);
1132 dn->node_page = NULL;
1133 dn->inode_page = NULL;
1134 }
1135
1136 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1137 size_t size)
1138 {
1139 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1140 }
1141
1142 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1143 gfp_t flags)
1144 {
1145 void *entry;
1146 retry:
1147 entry = kmem_cache_alloc(cachep, flags);
1148 if (!entry) {
1149 cond_resched();
1150 goto retry;
1151 }
1152
1153 return entry;
1154 }
1155
1156 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1157 unsigned long index, void *item)
1158 {
1159 while (radix_tree_insert(root, index, item))
1160 cond_resched();
1161 }
1162
1163 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1164
1165 static inline bool IS_INODE(struct page *page)
1166 {
1167 struct f2fs_node *p = F2FS_NODE(page);
1168 return RAW_IS_INODE(p);
1169 }
1170
1171 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1172 {
1173 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1174 }
1175
1176 static inline block_t datablock_addr(struct page *node_page,
1177 unsigned int offset)
1178 {
1179 struct f2fs_node *raw_node;
1180 __le32 *addr_array;
1181 raw_node = F2FS_NODE(node_page);
1182 addr_array = blkaddr_in_node(raw_node);
1183 return le32_to_cpu(addr_array[offset]);
1184 }
1185
1186 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1187 {
1188 int mask;
1189
1190 addr += (nr >> 3);
1191 mask = 1 << (7 - (nr & 0x07));
1192 return mask & *addr;
1193 }
1194
1195 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1196 {
1197 int mask;
1198 int ret;
1199
1200 addr += (nr >> 3);
1201 mask = 1 << (7 - (nr & 0x07));
1202 ret = mask & *addr;
1203 *addr |= mask;
1204 return ret;
1205 }
1206
1207 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1208 {
1209 int mask;
1210 int ret;
1211
1212 addr += (nr >> 3);
1213 mask = 1 << (7 - (nr & 0x07));
1214 ret = mask & *addr;
1215 *addr &= ~mask;
1216 return ret;
1217 }
1218
1219 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1220 {
1221 int mask;
1222
1223 addr += (nr >> 3);
1224 mask = 1 << (7 - (nr & 0x07));
1225 *addr ^= mask;
1226 }
1227
1228 /* used for f2fs_inode_info->flags */
1229 enum {
1230 FI_NEW_INODE, /* indicate newly allocated inode */
1231 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1232 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1233 FI_INC_LINK, /* need to increment i_nlink */
1234 FI_ACL_MODE, /* indicate acl mode */
1235 FI_NO_ALLOC, /* should not allocate any blocks */
1236 FI_UPDATE_DIR, /* should update inode block for consistency */
1237 FI_DELAY_IPUT, /* used for the recovery */
1238 FI_NO_EXTENT, /* not to use the extent cache */
1239 FI_INLINE_XATTR, /* used for inline xattr */
1240 FI_INLINE_DATA, /* used for inline data*/
1241 FI_INLINE_DENTRY, /* used for inline dentry */
1242 FI_APPEND_WRITE, /* inode has appended data */
1243 FI_UPDATE_WRITE, /* inode has in-place-update data */
1244 FI_NEED_IPU, /* used for ipu per file */
1245 FI_ATOMIC_FILE, /* indicate atomic file */
1246 FI_VOLATILE_FILE, /* indicate volatile file */
1247 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1248 FI_DROP_CACHE, /* drop dirty page cache */
1249 FI_DATA_EXIST, /* indicate data exists */
1250 FI_INLINE_DOTS, /* indicate inline dot dentries */
1251 };
1252
1253 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1254 {
1255 if (!test_bit(flag, &fi->flags))
1256 set_bit(flag, &fi->flags);
1257 }
1258
1259 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1260 {
1261 return test_bit(flag, &fi->flags);
1262 }
1263
1264 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1265 {
1266 if (test_bit(flag, &fi->flags))
1267 clear_bit(flag, &fi->flags);
1268 }
1269
1270 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1271 {
1272 fi->i_acl_mode = mode;
1273 set_inode_flag(fi, FI_ACL_MODE);
1274 }
1275
1276 static inline void get_inline_info(struct f2fs_inode_info *fi,
1277 struct f2fs_inode *ri)
1278 {
1279 if (ri->i_inline & F2FS_INLINE_XATTR)
1280 set_inode_flag(fi, FI_INLINE_XATTR);
1281 if (ri->i_inline & F2FS_INLINE_DATA)
1282 set_inode_flag(fi, FI_INLINE_DATA);
1283 if (ri->i_inline & F2FS_INLINE_DENTRY)
1284 set_inode_flag(fi, FI_INLINE_DENTRY);
1285 if (ri->i_inline & F2FS_DATA_EXIST)
1286 set_inode_flag(fi, FI_DATA_EXIST);
1287 if (ri->i_inline & F2FS_INLINE_DOTS)
1288 set_inode_flag(fi, FI_INLINE_DOTS);
1289 }
1290
1291 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1292 struct f2fs_inode *ri)
1293 {
1294 ri->i_inline = 0;
1295
1296 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1297 ri->i_inline |= F2FS_INLINE_XATTR;
1298 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1299 ri->i_inline |= F2FS_INLINE_DATA;
1300 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1301 ri->i_inline |= F2FS_INLINE_DENTRY;
1302 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1303 ri->i_inline |= F2FS_DATA_EXIST;
1304 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1305 ri->i_inline |= F2FS_INLINE_DOTS;
1306 }
1307
1308 static inline int f2fs_has_inline_xattr(struct inode *inode)
1309 {
1310 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1311 }
1312
1313 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1314 {
1315 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1316 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1317 return DEF_ADDRS_PER_INODE;
1318 }
1319
1320 static inline void *inline_xattr_addr(struct page *page)
1321 {
1322 struct f2fs_inode *ri = F2FS_INODE(page);
1323 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1324 F2FS_INLINE_XATTR_ADDRS]);
1325 }
1326
1327 static inline int inline_xattr_size(struct inode *inode)
1328 {
1329 if (f2fs_has_inline_xattr(inode))
1330 return F2FS_INLINE_XATTR_ADDRS << 2;
1331 else
1332 return 0;
1333 }
1334
1335 static inline int f2fs_has_inline_data(struct inode *inode)
1336 {
1337 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1338 }
1339
1340 static inline void f2fs_clear_inline_inode(struct inode *inode)
1341 {
1342 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1343 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1344 }
1345
1346 static inline int f2fs_exist_data(struct inode *inode)
1347 {
1348 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1349 }
1350
1351 static inline int f2fs_has_inline_dots(struct inode *inode)
1352 {
1353 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1354 }
1355
1356 static inline bool f2fs_is_atomic_file(struct inode *inode)
1357 {
1358 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1359 }
1360
1361 static inline bool f2fs_is_volatile_file(struct inode *inode)
1362 {
1363 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1364 }
1365
1366 static inline bool f2fs_is_first_block_written(struct inode *inode)
1367 {
1368 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1369 }
1370
1371 static inline bool f2fs_is_drop_cache(struct inode *inode)
1372 {
1373 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1374 }
1375
1376 static inline void *inline_data_addr(struct page *page)
1377 {
1378 struct f2fs_inode *ri = F2FS_INODE(page);
1379 return (void *)&(ri->i_addr[1]);
1380 }
1381
1382 static inline int f2fs_has_inline_dentry(struct inode *inode)
1383 {
1384 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1385 }
1386
1387 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1388 {
1389 if (!f2fs_has_inline_dentry(dir))
1390 kunmap(page);
1391 }
1392
1393 static inline int f2fs_readonly(struct super_block *sb)
1394 {
1395 return sb->s_flags & MS_RDONLY;
1396 }
1397
1398 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1399 {
1400 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1401 }
1402
1403 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1404 {
1405 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1406 sbi->sb->s_flags |= MS_RDONLY;
1407 }
1408
1409 #define get_inode_mode(i) \
1410 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1411 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1412
1413 /* get offset of first page in next direct node */
1414 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1415 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1416 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1417 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1418
1419 /*
1420 * file.c
1421 */
1422 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1423 void truncate_data_blocks(struct dnode_of_data *);
1424 int truncate_blocks(struct inode *, u64, bool);
1425 void f2fs_truncate(struct inode *);
1426 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1427 int f2fs_setattr(struct dentry *, struct iattr *);
1428 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1429 int truncate_data_blocks_range(struct dnode_of_data *, int);
1430 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1431 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1432
1433 /*
1434 * inode.c
1435 */
1436 void f2fs_set_inode_flags(struct inode *);
1437 struct inode *f2fs_iget(struct super_block *, unsigned long);
1438 int try_to_free_nats(struct f2fs_sb_info *, int);
1439 void update_inode(struct inode *, struct page *);
1440 void update_inode_page(struct inode *);
1441 int f2fs_write_inode(struct inode *, struct writeback_control *);
1442 void f2fs_evict_inode(struct inode *);
1443 void handle_failed_inode(struct inode *);
1444
1445 /*
1446 * namei.c
1447 */
1448 struct dentry *f2fs_get_parent(struct dentry *child);
1449
1450 /*
1451 * dir.c
1452 */
1453 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1454 void set_de_type(struct f2fs_dir_entry *, umode_t);
1455 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1456 struct f2fs_dentry_ptr *);
1457 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1458 unsigned int);
1459 void do_make_empty_dir(struct inode *, struct inode *,
1460 struct f2fs_dentry_ptr *);
1461 struct page *init_inode_metadata(struct inode *, struct inode *,
1462 const struct qstr *, struct page *);
1463 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1464 int room_for_filename(const void *, int, int);
1465 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1466 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1467 struct page **);
1468 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1469 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1470 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1471 struct page *, struct inode *);
1472 int update_dent_inode(struct inode *, const struct qstr *);
1473 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1474 const struct qstr *, f2fs_hash_t , unsigned int);
1475 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1476 umode_t);
1477 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1478 struct inode *);
1479 int f2fs_do_tmpfile(struct inode *, struct inode *);
1480 int f2fs_make_empty(struct inode *, struct inode *);
1481 bool f2fs_empty_dir(struct inode *);
1482
1483 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1484 {
1485 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1486 inode, inode->i_ino, inode->i_mode);
1487 }
1488
1489 /*
1490 * super.c
1491 */
1492 int f2fs_sync_fs(struct super_block *, int);
1493 extern __printf(3, 4)
1494 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1495
1496 /*
1497 * hash.c
1498 */
1499 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1500
1501 /*
1502 * node.c
1503 */
1504 struct dnode_of_data;
1505 struct node_info;
1506
1507 bool available_free_memory(struct f2fs_sb_info *, int);
1508 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1509 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1510 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1511 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1512 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1513 int truncate_inode_blocks(struct inode *, pgoff_t);
1514 int truncate_xattr_node(struct inode *, struct page *);
1515 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1516 void remove_inode_page(struct inode *);
1517 struct page *new_inode_page(struct inode *);
1518 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1519 void ra_node_page(struct f2fs_sb_info *, nid_t);
1520 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1521 struct page *get_node_page_ra(struct page *, int);
1522 void sync_inode_page(struct dnode_of_data *);
1523 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1524 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1525 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1526 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1527 void recover_inline_xattr(struct inode *, struct page *);
1528 void recover_xattr_data(struct inode *, struct page *, block_t);
1529 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1530 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1531 struct f2fs_summary_block *);
1532 void flush_nat_entries(struct f2fs_sb_info *);
1533 int build_node_manager(struct f2fs_sb_info *);
1534 void destroy_node_manager(struct f2fs_sb_info *);
1535 int __init create_node_manager_caches(void);
1536 void destroy_node_manager_caches(void);
1537
1538 /*
1539 * segment.c
1540 */
1541 void register_inmem_page(struct inode *, struct page *);
1542 void commit_inmem_pages(struct inode *, bool);
1543 void f2fs_balance_fs(struct f2fs_sb_info *);
1544 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1545 int f2fs_issue_flush(struct f2fs_sb_info *);
1546 int create_flush_cmd_control(struct f2fs_sb_info *);
1547 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1548 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1549 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1550 void clear_prefree_segments(struct f2fs_sb_info *);
1551 void release_discard_addrs(struct f2fs_sb_info *);
1552 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1553 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1554 void allocate_new_segments(struct f2fs_sb_info *);
1555 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1556 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1557 void write_meta_page(struct f2fs_sb_info *, struct page *);
1558 void write_node_page(struct f2fs_sb_info *, struct page *,
1559 unsigned int, struct f2fs_io_info *);
1560 void write_data_page(struct page *, struct dnode_of_data *,
1561 struct f2fs_io_info *);
1562 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1563 void recover_data_page(struct f2fs_sb_info *, struct page *,
1564 struct f2fs_summary *, block_t, block_t);
1565 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1566 block_t, block_t *, struct f2fs_summary *, int);
1567 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1568 void write_data_summaries(struct f2fs_sb_info *, block_t);
1569 void write_node_summaries(struct f2fs_sb_info *, block_t);
1570 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1571 int, unsigned int, int);
1572 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1573 int build_segment_manager(struct f2fs_sb_info *);
1574 void destroy_segment_manager(struct f2fs_sb_info *);
1575 int __init create_segment_manager_caches(void);
1576 void destroy_segment_manager_caches(void);
1577
1578 /*
1579 * checkpoint.c
1580 */
1581 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1582 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1583 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1584 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1585 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1586 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1587 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1588 void release_dirty_inode(struct f2fs_sb_info *);
1589 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1590 int acquire_orphan_inode(struct f2fs_sb_info *);
1591 void release_orphan_inode(struct f2fs_sb_info *);
1592 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1593 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1594 void recover_orphan_inodes(struct f2fs_sb_info *);
1595 int get_valid_checkpoint(struct f2fs_sb_info *);
1596 void update_dirty_page(struct inode *, struct page *);
1597 void add_dirty_dir_inode(struct inode *);
1598 void remove_dirty_dir_inode(struct inode *);
1599 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1600 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1601 void init_ino_entry_info(struct f2fs_sb_info *);
1602 int __init create_checkpoint_caches(void);
1603 void destroy_checkpoint_caches(void);
1604
1605 /*
1606 * data.c
1607 */
1608 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1609 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1610 struct f2fs_io_info *);
1611 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1612 struct f2fs_io_info *);
1613 void set_data_blkaddr(struct dnode_of_data *);
1614 int reserve_new_block(struct dnode_of_data *);
1615 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1616 void f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
1617 void f2fs_destroy_extent_tree(struct inode *);
1618 void f2fs_init_extent_cache(struct inode *, struct f2fs_extent *);
1619 void f2fs_update_extent_cache(struct dnode_of_data *);
1620 void f2fs_preserve_extent_tree(struct inode *);
1621 struct page *find_data_page(struct inode *, pgoff_t, bool);
1622 struct page *get_lock_data_page(struct inode *, pgoff_t);
1623 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1624 int do_write_data_page(struct page *, struct f2fs_io_info *);
1625 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1626 void init_extent_cache_info(struct f2fs_sb_info *);
1627 int __init create_extent_cache(void);
1628 void destroy_extent_cache(void);
1629 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1630 int f2fs_release_page(struct page *, gfp_t);
1631
1632 /*
1633 * gc.c
1634 */
1635 int start_gc_thread(struct f2fs_sb_info *);
1636 void stop_gc_thread(struct f2fs_sb_info *);
1637 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1638 int f2fs_gc(struct f2fs_sb_info *);
1639 void build_gc_manager(struct f2fs_sb_info *);
1640
1641 /*
1642 * recovery.c
1643 */
1644 int recover_fsync_data(struct f2fs_sb_info *);
1645 bool space_for_roll_forward(struct f2fs_sb_info *);
1646
1647 /*
1648 * debug.c
1649 */
1650 #ifdef CONFIG_F2FS_STAT_FS
1651 struct f2fs_stat_info {
1652 struct list_head stat_list;
1653 struct f2fs_sb_info *sbi;
1654 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1655 int main_area_segs, main_area_sections, main_area_zones;
1656 int hit_ext, total_ext, ext_tree, ext_node;
1657 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1658 int nats, dirty_nats, sits, dirty_sits, fnids;
1659 int total_count, utilization;
1660 int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1661 unsigned int valid_count, valid_node_count, valid_inode_count;
1662 unsigned int bimodal, avg_vblocks;
1663 int util_free, util_valid, util_invalid;
1664 int rsvd_segs, overp_segs;
1665 int dirty_count, node_pages, meta_pages;
1666 int prefree_count, call_count, cp_count;
1667 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1668 int bg_node_segs, bg_data_segs;
1669 int tot_blks, data_blks, node_blks;
1670 int bg_data_blks, bg_node_blks;
1671 int curseg[NR_CURSEG_TYPE];
1672 int cursec[NR_CURSEG_TYPE];
1673 int curzone[NR_CURSEG_TYPE];
1674
1675 unsigned int segment_count[2];
1676 unsigned int block_count[2];
1677 unsigned int inplace_count;
1678 unsigned base_mem, cache_mem, page_mem;
1679 };
1680
1681 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1682 {
1683 return (struct f2fs_stat_info *)sbi->stat_info;
1684 }
1685
1686 #define stat_inc_cp_count(si) ((si)->cp_count++)
1687 #define stat_inc_call_count(si) ((si)->call_count++)
1688 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1689 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1690 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1691 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1692 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1693 #define stat_inc_inline_inode(inode) \
1694 do { \
1695 if (f2fs_has_inline_data(inode)) \
1696 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1697 } while (0)
1698 #define stat_dec_inline_inode(inode) \
1699 do { \
1700 if (f2fs_has_inline_data(inode)) \
1701 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1702 } while (0)
1703 #define stat_inc_inline_dir(inode) \
1704 do { \
1705 if (f2fs_has_inline_dentry(inode)) \
1706 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1707 } while (0)
1708 #define stat_dec_inline_dir(inode) \
1709 do { \
1710 if (f2fs_has_inline_dentry(inode)) \
1711 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1712 } while (0)
1713 #define stat_inc_seg_type(sbi, curseg) \
1714 ((sbi)->segment_count[(curseg)->alloc_type]++)
1715 #define stat_inc_block_count(sbi, curseg) \
1716 ((sbi)->block_count[(curseg)->alloc_type]++)
1717 #define stat_inc_inplace_blocks(sbi) \
1718 (atomic_inc(&(sbi)->inplace_count))
1719 #define stat_inc_seg_count(sbi, type, gc_type) \
1720 do { \
1721 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1722 (si)->tot_segs++; \
1723 if (type == SUM_TYPE_DATA) { \
1724 si->data_segs++; \
1725 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1726 } else { \
1727 si->node_segs++; \
1728 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1729 } \
1730 } while (0)
1731
1732 #define stat_inc_tot_blk_count(si, blks) \
1733 (si->tot_blks += (blks))
1734
1735 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1736 do { \
1737 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1738 stat_inc_tot_blk_count(si, blks); \
1739 si->data_blks += (blks); \
1740 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1741 } while (0)
1742
1743 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1744 do { \
1745 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1746 stat_inc_tot_blk_count(si, blks); \
1747 si->node_blks += (blks); \
1748 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
1749 } while (0)
1750
1751 int f2fs_build_stats(struct f2fs_sb_info *);
1752 void f2fs_destroy_stats(struct f2fs_sb_info *);
1753 void __init f2fs_create_root_stats(void);
1754 void f2fs_destroy_root_stats(void);
1755 #else
1756 #define stat_inc_cp_count(si)
1757 #define stat_inc_call_count(si)
1758 #define stat_inc_bggc_count(si)
1759 #define stat_inc_dirty_dir(sbi)
1760 #define stat_dec_dirty_dir(sbi)
1761 #define stat_inc_total_hit(sb)
1762 #define stat_inc_read_hit(sb)
1763 #define stat_inc_inline_inode(inode)
1764 #define stat_dec_inline_inode(inode)
1765 #define stat_inc_inline_dir(inode)
1766 #define stat_dec_inline_dir(inode)
1767 #define stat_inc_seg_type(sbi, curseg)
1768 #define stat_inc_block_count(sbi, curseg)
1769 #define stat_inc_inplace_blocks(sbi)
1770 #define stat_inc_seg_count(sbi, type, gc_type)
1771 #define stat_inc_tot_blk_count(si, blks)
1772 #define stat_inc_data_blk_count(sbi, blks, gc_type)
1773 #define stat_inc_node_blk_count(sbi, blks, gc_type)
1774
1775 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1776 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1777 static inline void __init f2fs_create_root_stats(void) { }
1778 static inline void f2fs_destroy_root_stats(void) { }
1779 #endif
1780
1781 extern const struct file_operations f2fs_dir_operations;
1782 extern const struct file_operations f2fs_file_operations;
1783 extern const struct inode_operations f2fs_file_inode_operations;
1784 extern const struct address_space_operations f2fs_dblock_aops;
1785 extern const struct address_space_operations f2fs_node_aops;
1786 extern const struct address_space_operations f2fs_meta_aops;
1787 extern const struct inode_operations f2fs_dir_inode_operations;
1788 extern const struct inode_operations f2fs_symlink_inode_operations;
1789 extern const struct inode_operations f2fs_special_inode_operations;
1790 extern struct kmem_cache *inode_entry_slab;
1791
1792 /*
1793 * inline.c
1794 */
1795 bool f2fs_may_inline(struct inode *);
1796 void read_inline_data(struct page *, struct page *);
1797 bool truncate_inline_inode(struct page *, u64);
1798 int f2fs_read_inline_data(struct inode *, struct page *);
1799 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1800 int f2fs_convert_inline_inode(struct inode *);
1801 int f2fs_write_inline_data(struct inode *, struct page *);
1802 bool recover_inline_data(struct inode *, struct page *);
1803 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1804 struct page **);
1805 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1806 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1807 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
1808 nid_t, umode_t);
1809 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1810 struct inode *, struct inode *);
1811 bool f2fs_empty_inline_dir(struct inode *);
1812 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1813 #endif