]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: shrink extent_cache entries
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 set_sbi_flag(sbi, SBI_NEED_FSCK); \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
54
55 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
56 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
57 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
58
59 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
60 typecheck(unsigned long long, b) && \
61 ((long long)((a) - (b)) > 0))
62
63 typedef u32 block_t; /*
64 * should not change u32, since it is the on-disk block
65 * address format, __le32.
66 */
67 typedef u32 nid_t;
68
69 struct f2fs_mount_info {
70 unsigned int opt;
71 };
72
73 #define F2FS_FEATURE_ENCRYPT 0x0001
74
75 #define F2FS_HAS_FEATURE(sb, mask) \
76 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
77 #define F2FS_SET_FEATURE(sb, mask) \
78 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
79 #define F2FS_CLEAR_FEATURE(sb, mask) \
80 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
81
82 #define CRCPOLY_LE 0xedb88320
83
84 static inline __u32 f2fs_crc32(void *buf, size_t len)
85 {
86 unsigned char *p = (unsigned char *)buf;
87 __u32 crc = F2FS_SUPER_MAGIC;
88 int i;
89
90 while (len--) {
91 crc ^= *p++;
92 for (i = 0; i < 8; i++)
93 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
94 }
95 return crc;
96 }
97
98 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
99 {
100 return f2fs_crc32(buf, buf_size) == blk_crc;
101 }
102
103 /*
104 * For checkpoint manager
105 */
106 enum {
107 NAT_BITMAP,
108 SIT_BITMAP
109 };
110
111 enum {
112 CP_UMOUNT,
113 CP_FASTBOOT,
114 CP_SYNC,
115 CP_RECOVERY,
116 CP_DISCARD,
117 };
118
119 #define DEF_BATCHED_TRIM_SECTIONS 32
120 #define BATCHED_TRIM_SEGMENTS(sbi) \
121 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
122 #define BATCHED_TRIM_BLOCKS(sbi) \
123 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
124
125 struct cp_control {
126 int reason;
127 __u64 trim_start;
128 __u64 trim_end;
129 __u64 trim_minlen;
130 __u64 trimmed;
131 };
132
133 /*
134 * For CP/NAT/SIT/SSA readahead
135 */
136 enum {
137 META_CP,
138 META_NAT,
139 META_SIT,
140 META_SSA,
141 META_POR,
142 };
143
144 /* for the list of ino */
145 enum {
146 ORPHAN_INO, /* for orphan ino list */
147 APPEND_INO, /* for append ino list */
148 UPDATE_INO, /* for update ino list */
149 MAX_INO_ENTRY, /* max. list */
150 };
151
152 struct ino_entry {
153 struct list_head list; /* list head */
154 nid_t ino; /* inode number */
155 };
156
157 /*
158 * for the list of directory inodes or gc inodes.
159 * NOTE: there are two slab users for this structure, if we add/modify/delete
160 * fields in structure for one of slab users, it may affect fields or size of
161 * other one, in this condition, it's better to split both of slab and related
162 * data structure.
163 */
164 struct inode_entry {
165 struct list_head list; /* list head */
166 struct inode *inode; /* vfs inode pointer */
167 };
168
169 /* for the list of blockaddresses to be discarded */
170 struct discard_entry {
171 struct list_head list; /* list head */
172 block_t blkaddr; /* block address to be discarded */
173 int len; /* # of consecutive blocks of the discard */
174 };
175
176 /* for the list of fsync inodes, used only during recovery */
177 struct fsync_inode_entry {
178 struct list_head list; /* list head */
179 struct inode *inode; /* vfs inode pointer */
180 block_t blkaddr; /* block address locating the last fsync */
181 block_t last_dentry; /* block address locating the last dentry */
182 block_t last_inode; /* block address locating the last inode */
183 };
184
185 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
186 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
187
188 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
189 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
190 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
191 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
192
193 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
194 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
195
196 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
197 {
198 int before = nats_in_cursum(rs);
199 rs->n_nats = cpu_to_le16(before + i);
200 return before;
201 }
202
203 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
204 {
205 int before = sits_in_cursum(rs);
206 rs->n_sits = cpu_to_le16(before + i);
207 return before;
208 }
209
210 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
211 int type)
212 {
213 if (type == NAT_JOURNAL)
214 return size <= MAX_NAT_JENTRIES(sum);
215 return size <= MAX_SIT_JENTRIES(sum);
216 }
217
218 /*
219 * ioctl commands
220 */
221 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
222 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
223 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
224
225 #define F2FS_IOCTL_MAGIC 0xf5
226 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
227 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
228 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
229 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
230 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
231
232 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
233 _IOR('f', 19, struct f2fs_encryption_policy)
234 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
235 _IOW('f', 20, __u8[16])
236 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
237 _IOW('f', 21, struct f2fs_encryption_policy)
238
239 /*
240 * should be same as XFS_IOC_GOINGDOWN.
241 * Flags for going down operation used by FS_IOC_GOINGDOWN
242 */
243 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
244 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
245 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
246 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
247
248 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
249 /*
250 * ioctl commands in 32 bit emulation
251 */
252 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
253 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
254 #endif
255
256 /*
257 * For INODE and NODE manager
258 */
259 /* for directory operations */
260 struct f2fs_str {
261 unsigned char *name;
262 u32 len;
263 };
264
265 struct f2fs_filename {
266 const struct qstr *usr_fname;
267 struct f2fs_str disk_name;
268 f2fs_hash_t hash;
269 #ifdef CONFIG_F2FS_FS_ENCRYPTION
270 struct f2fs_str crypto_buf;
271 #endif
272 };
273
274 #define FSTR_INIT(n, l) { .name = n, .len = l }
275 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
276 #define fname_name(p) ((p)->disk_name.name)
277 #define fname_len(p) ((p)->disk_name.len)
278
279 struct f2fs_dentry_ptr {
280 struct inode *inode;
281 const void *bitmap;
282 struct f2fs_dir_entry *dentry;
283 __u8 (*filename)[F2FS_SLOT_LEN];
284 int max;
285 };
286
287 static inline void make_dentry_ptr(struct inode *inode,
288 struct f2fs_dentry_ptr *d, void *src, int type)
289 {
290 d->inode = inode;
291
292 if (type == 1) {
293 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
294 d->max = NR_DENTRY_IN_BLOCK;
295 d->bitmap = &t->dentry_bitmap;
296 d->dentry = t->dentry;
297 d->filename = t->filename;
298 } else {
299 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
300 d->max = NR_INLINE_DENTRY;
301 d->bitmap = &t->dentry_bitmap;
302 d->dentry = t->dentry;
303 d->filename = t->filename;
304 }
305 }
306
307 /*
308 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
309 * as its node offset to distinguish from index node blocks.
310 * But some bits are used to mark the node block.
311 */
312 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
313 >> OFFSET_BIT_SHIFT)
314 enum {
315 ALLOC_NODE, /* allocate a new node page if needed */
316 LOOKUP_NODE, /* look up a node without readahead */
317 LOOKUP_NODE_RA, /*
318 * look up a node with readahead called
319 * by get_data_block.
320 */
321 };
322
323 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
324
325 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
326
327 /* vector size for gang look-up from extent cache that consists of radix tree */
328 #define EXT_TREE_VEC_SIZE 64
329
330 /* for in-memory extent cache entry */
331 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
332
333 /* number of extent info in extent cache we try to shrink */
334 #define EXTENT_CACHE_SHRINK_NUMBER 128
335
336 struct extent_info {
337 unsigned int fofs; /* start offset in a file */
338 u32 blk; /* start block address of the extent */
339 unsigned int len; /* length of the extent */
340 };
341
342 struct extent_node {
343 struct rb_node rb_node; /* rb node located in rb-tree */
344 struct list_head list; /* node in global extent list of sbi */
345 struct extent_info ei; /* extent info */
346 };
347
348 struct extent_tree {
349 nid_t ino; /* inode number */
350 struct rb_root root; /* root of extent info rb-tree */
351 struct extent_node *cached_en; /* recently accessed extent node */
352 rwlock_t lock; /* protect extent info rb-tree */
353 atomic_t refcount; /* reference count of rb-tree */
354 unsigned int count; /* # of extent node in rb-tree*/
355 };
356
357 /*
358 * This structure is taken from ext4_map_blocks.
359 *
360 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
361 */
362 #define F2FS_MAP_NEW (1 << BH_New)
363 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
364 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
365 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
366 F2FS_MAP_UNWRITTEN)
367
368 struct f2fs_map_blocks {
369 block_t m_pblk;
370 block_t m_lblk;
371 unsigned int m_len;
372 unsigned int m_flags;
373 };
374
375 /*
376 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
377 */
378 #define FADVISE_COLD_BIT 0x01
379 #define FADVISE_LOST_PINO_BIT 0x02
380 #define FADVISE_ENCRYPT_BIT 0x04
381 #define FADVISE_ENC_NAME_BIT 0x08
382
383 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
384 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
385 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
386 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
387 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
388 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
389 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
390 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
391 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
392 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
393 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
394
395 /* Encryption algorithms */
396 #define F2FS_ENCRYPTION_MODE_INVALID 0
397 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
398 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
399 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
400 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
401
402 #include "f2fs_crypto.h"
403
404 #define DEF_DIR_LEVEL 0
405
406 struct f2fs_inode_info {
407 struct inode vfs_inode; /* serve a vfs inode */
408 unsigned long i_flags; /* keep an inode flags for ioctl */
409 unsigned char i_advise; /* use to give file attribute hints */
410 unsigned char i_dir_level; /* use for dentry level for large dir */
411 unsigned int i_current_depth; /* use only in directory structure */
412 unsigned int i_pino; /* parent inode number */
413 umode_t i_acl_mode; /* keep file acl mode temporarily */
414
415 /* Use below internally in f2fs*/
416 unsigned long flags; /* use to pass per-file flags */
417 struct rw_semaphore i_sem; /* protect fi info */
418 atomic_t dirty_pages; /* # of dirty pages */
419 f2fs_hash_t chash; /* hash value of given file name */
420 unsigned int clevel; /* maximum level of given file name */
421 nid_t i_xattr_nid; /* node id that contains xattrs */
422 unsigned long long xattr_ver; /* cp version of xattr modification */
423 struct extent_info ext; /* in-memory extent cache entry */
424 rwlock_t ext_lock; /* rwlock for single extent cache */
425 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
426
427 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
428 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
429 struct mutex inmem_lock; /* lock for inmemory pages */
430
431 #ifdef CONFIG_F2FS_FS_ENCRYPTION
432 /* Encryption params */
433 struct f2fs_crypt_info *i_crypt_info;
434 #endif
435 };
436
437 static inline void get_extent_info(struct extent_info *ext,
438 struct f2fs_extent i_ext)
439 {
440 ext->fofs = le32_to_cpu(i_ext.fofs);
441 ext->blk = le32_to_cpu(i_ext.blk);
442 ext->len = le32_to_cpu(i_ext.len);
443 }
444
445 static inline void set_raw_extent(struct extent_info *ext,
446 struct f2fs_extent *i_ext)
447 {
448 i_ext->fofs = cpu_to_le32(ext->fofs);
449 i_ext->blk = cpu_to_le32(ext->blk);
450 i_ext->len = cpu_to_le32(ext->len);
451 }
452
453 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
454 u32 blk, unsigned int len)
455 {
456 ei->fofs = fofs;
457 ei->blk = blk;
458 ei->len = len;
459 }
460
461 static inline bool __is_extent_same(struct extent_info *ei1,
462 struct extent_info *ei2)
463 {
464 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
465 ei1->len == ei2->len);
466 }
467
468 static inline bool __is_extent_mergeable(struct extent_info *back,
469 struct extent_info *front)
470 {
471 return (back->fofs + back->len == front->fofs &&
472 back->blk + back->len == front->blk);
473 }
474
475 static inline bool __is_back_mergeable(struct extent_info *cur,
476 struct extent_info *back)
477 {
478 return __is_extent_mergeable(back, cur);
479 }
480
481 static inline bool __is_front_mergeable(struct extent_info *cur,
482 struct extent_info *front)
483 {
484 return __is_extent_mergeable(cur, front);
485 }
486
487 struct f2fs_nm_info {
488 block_t nat_blkaddr; /* base disk address of NAT */
489 nid_t max_nid; /* maximum possible node ids */
490 nid_t available_nids; /* maximum available node ids */
491 nid_t next_scan_nid; /* the next nid to be scanned */
492 unsigned int ram_thresh; /* control the memory footprint */
493
494 /* NAT cache management */
495 struct radix_tree_root nat_root;/* root of the nat entry cache */
496 struct radix_tree_root nat_set_root;/* root of the nat set cache */
497 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
498 struct list_head nat_entries; /* cached nat entry list (clean) */
499 unsigned int nat_cnt; /* the # of cached nat entries */
500 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
501
502 /* free node ids management */
503 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
504 struct list_head free_nid_list; /* a list for free nids */
505 spinlock_t free_nid_list_lock; /* protect free nid list */
506 unsigned int fcnt; /* the number of free node id */
507 struct mutex build_lock; /* lock for build free nids */
508
509 /* for checkpoint */
510 char *nat_bitmap; /* NAT bitmap pointer */
511 int bitmap_size; /* bitmap size */
512 };
513
514 /*
515 * this structure is used as one of function parameters.
516 * all the information are dedicated to a given direct node block determined
517 * by the data offset in a file.
518 */
519 struct dnode_of_data {
520 struct inode *inode; /* vfs inode pointer */
521 struct page *inode_page; /* its inode page, NULL is possible */
522 struct page *node_page; /* cached direct node page */
523 nid_t nid; /* node id of the direct node block */
524 unsigned int ofs_in_node; /* data offset in the node page */
525 bool inode_page_locked; /* inode page is locked or not */
526 block_t data_blkaddr; /* block address of the node block */
527 };
528
529 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
530 struct page *ipage, struct page *npage, nid_t nid)
531 {
532 memset(dn, 0, sizeof(*dn));
533 dn->inode = inode;
534 dn->inode_page = ipage;
535 dn->node_page = npage;
536 dn->nid = nid;
537 }
538
539 /*
540 * For SIT manager
541 *
542 * By default, there are 6 active log areas across the whole main area.
543 * When considering hot and cold data separation to reduce cleaning overhead,
544 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
545 * respectively.
546 * In the current design, you should not change the numbers intentionally.
547 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
548 * logs individually according to the underlying devices. (default: 6)
549 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
550 * data and 8 for node logs.
551 */
552 #define NR_CURSEG_DATA_TYPE (3)
553 #define NR_CURSEG_NODE_TYPE (3)
554 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
555
556 enum {
557 CURSEG_HOT_DATA = 0, /* directory entry blocks */
558 CURSEG_WARM_DATA, /* data blocks */
559 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
560 CURSEG_HOT_NODE, /* direct node blocks of directory files */
561 CURSEG_WARM_NODE, /* direct node blocks of normal files */
562 CURSEG_COLD_NODE, /* indirect node blocks */
563 NO_CHECK_TYPE,
564 CURSEG_DIRECT_IO, /* to use for the direct IO path */
565 };
566
567 struct flush_cmd {
568 struct completion wait;
569 struct llist_node llnode;
570 int ret;
571 };
572
573 struct flush_cmd_control {
574 struct task_struct *f2fs_issue_flush; /* flush thread */
575 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
576 struct llist_head issue_list; /* list for command issue */
577 struct llist_node *dispatch_list; /* list for command dispatch */
578 };
579
580 struct f2fs_sm_info {
581 struct sit_info *sit_info; /* whole segment information */
582 struct free_segmap_info *free_info; /* free segment information */
583 struct dirty_seglist_info *dirty_info; /* dirty segment information */
584 struct curseg_info *curseg_array; /* active segment information */
585
586 block_t seg0_blkaddr; /* block address of 0'th segment */
587 block_t main_blkaddr; /* start block address of main area */
588 block_t ssa_blkaddr; /* start block address of SSA area */
589
590 unsigned int segment_count; /* total # of segments */
591 unsigned int main_segments; /* # of segments in main area */
592 unsigned int reserved_segments; /* # of reserved segments */
593 unsigned int ovp_segments; /* # of overprovision segments */
594
595 /* a threshold to reclaim prefree segments */
596 unsigned int rec_prefree_segments;
597
598 /* for small discard management */
599 struct list_head discard_list; /* 4KB discard list */
600 int nr_discards; /* # of discards in the list */
601 int max_discards; /* max. discards to be issued */
602
603 /* for batched trimming */
604 unsigned int trim_sections; /* # of sections to trim */
605
606 struct list_head sit_entry_set; /* sit entry set list */
607
608 unsigned int ipu_policy; /* in-place-update policy */
609 unsigned int min_ipu_util; /* in-place-update threshold */
610 unsigned int min_fsync_blocks; /* threshold for fsync */
611
612 /* for flush command control */
613 struct flush_cmd_control *cmd_control_info;
614
615 };
616
617 /*
618 * For superblock
619 */
620 /*
621 * COUNT_TYPE for monitoring
622 *
623 * f2fs monitors the number of several block types such as on-writeback,
624 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
625 */
626 enum count_type {
627 F2FS_WRITEBACK,
628 F2FS_DIRTY_DENTS,
629 F2FS_DIRTY_NODES,
630 F2FS_DIRTY_META,
631 F2FS_INMEM_PAGES,
632 NR_COUNT_TYPE,
633 };
634
635 /*
636 * The below are the page types of bios used in submit_bio().
637 * The available types are:
638 * DATA User data pages. It operates as async mode.
639 * NODE Node pages. It operates as async mode.
640 * META FS metadata pages such as SIT, NAT, CP.
641 * NR_PAGE_TYPE The number of page types.
642 * META_FLUSH Make sure the previous pages are written
643 * with waiting the bio's completion
644 * ... Only can be used with META.
645 */
646 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
647 enum page_type {
648 DATA,
649 NODE,
650 META,
651 NR_PAGE_TYPE,
652 META_FLUSH,
653 INMEM, /* the below types are used by tracepoints only. */
654 INMEM_DROP,
655 IPU,
656 OPU,
657 };
658
659 struct f2fs_io_info {
660 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
661 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
662 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
663 block_t blk_addr; /* block address to be written */
664 struct page *page; /* page to be written */
665 struct page *encrypted_page; /* encrypted page */
666 };
667
668 #define is_read_io(rw) (((rw) & 1) == READ)
669 struct f2fs_bio_info {
670 struct f2fs_sb_info *sbi; /* f2fs superblock */
671 struct bio *bio; /* bios to merge */
672 sector_t last_block_in_bio; /* last block number */
673 struct f2fs_io_info fio; /* store buffered io info. */
674 struct rw_semaphore io_rwsem; /* blocking op for bio */
675 };
676
677 /* for inner inode cache management */
678 struct inode_management {
679 struct radix_tree_root ino_root; /* ino entry array */
680 spinlock_t ino_lock; /* for ino entry lock */
681 struct list_head ino_list; /* inode list head */
682 unsigned long ino_num; /* number of entries */
683 };
684
685 /* For s_flag in struct f2fs_sb_info */
686 enum {
687 SBI_IS_DIRTY, /* dirty flag for checkpoint */
688 SBI_IS_CLOSE, /* specify unmounting */
689 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
690 SBI_POR_DOING, /* recovery is doing or not */
691 };
692
693 struct f2fs_sb_info {
694 struct super_block *sb; /* pointer to VFS super block */
695 struct proc_dir_entry *s_proc; /* proc entry */
696 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
697 struct f2fs_super_block *raw_super; /* raw super block pointer */
698 int s_flag; /* flags for sbi */
699
700 /* for node-related operations */
701 struct f2fs_nm_info *nm_info; /* node manager */
702 struct inode *node_inode; /* cache node blocks */
703
704 /* for segment-related operations */
705 struct f2fs_sm_info *sm_info; /* segment manager */
706
707 /* for bio operations */
708 struct f2fs_bio_info read_io; /* for read bios */
709 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
710
711 /* for checkpoint */
712 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
713 struct inode *meta_inode; /* cache meta blocks */
714 struct mutex cp_mutex; /* checkpoint procedure lock */
715 struct rw_semaphore cp_rwsem; /* blocking FS operations */
716 struct rw_semaphore node_write; /* locking node writes */
717 struct mutex writepages; /* mutex for writepages() */
718 wait_queue_head_t cp_wait;
719
720 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
721
722 /* for orphan inode, use 0'th array */
723 unsigned int max_orphans; /* max orphan inodes */
724
725 /* for directory inode management */
726 struct list_head dir_inode_list; /* dir inode list */
727 spinlock_t dir_inode_lock; /* for dir inode list lock */
728
729 /* for extent tree cache */
730 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
731 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
732 struct list_head extent_list; /* lru list for shrinker */
733 spinlock_t extent_lock; /* locking extent lru list */
734 int total_ext_tree; /* extent tree count */
735 atomic_t total_ext_node; /* extent info count */
736
737 /* basic filesystem units */
738 unsigned int log_sectors_per_block; /* log2 sectors per block */
739 unsigned int log_blocksize; /* log2 block size */
740 unsigned int blocksize; /* block size */
741 unsigned int root_ino_num; /* root inode number*/
742 unsigned int node_ino_num; /* node inode number*/
743 unsigned int meta_ino_num; /* meta inode number*/
744 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
745 unsigned int blocks_per_seg; /* blocks per segment */
746 unsigned int segs_per_sec; /* segments per section */
747 unsigned int secs_per_zone; /* sections per zone */
748 unsigned int total_sections; /* total section count */
749 unsigned int total_node_count; /* total node block count */
750 unsigned int total_valid_node_count; /* valid node block count */
751 unsigned int total_valid_inode_count; /* valid inode count */
752 int active_logs; /* # of active logs */
753 int dir_level; /* directory level */
754
755 block_t user_block_count; /* # of user blocks */
756 block_t total_valid_block_count; /* # of valid blocks */
757 block_t alloc_valid_block_count; /* # of allocated blocks */
758 block_t discard_blks; /* discard command candidats */
759 block_t last_valid_block_count; /* for recovery */
760 u32 s_next_generation; /* for NFS support */
761 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
762
763 struct f2fs_mount_info mount_opt; /* mount options */
764
765 /* for cleaning operations */
766 struct mutex gc_mutex; /* mutex for GC */
767 struct f2fs_gc_kthread *gc_thread; /* GC thread */
768 unsigned int cur_victim_sec; /* current victim section num */
769
770 /* maximum # of trials to find a victim segment for SSR and GC */
771 unsigned int max_victim_search;
772
773 /*
774 * for stat information.
775 * one is for the LFS mode, and the other is for the SSR mode.
776 */
777 #ifdef CONFIG_F2FS_STAT_FS
778 struct f2fs_stat_info *stat_info; /* FS status information */
779 unsigned int segment_count[2]; /* # of allocated segments */
780 unsigned int block_count[2]; /* # of allocated blocks */
781 atomic_t inplace_count; /* # of inplace update */
782 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
783 atomic_t inline_inode; /* # of inline_data inodes */
784 atomic_t inline_dir; /* # of inline_dentry inodes */
785 int bg_gc; /* background gc calls */
786 unsigned int n_dirty_dirs; /* # of dir inodes */
787 #endif
788 unsigned int last_victim[2]; /* last victim segment # */
789 spinlock_t stat_lock; /* lock for stat operations */
790
791 /* For sysfs suppport */
792 struct kobject s_kobj;
793 struct completion s_kobj_unregister;
794
795 /* For shrinker support */
796 struct list_head s_list;
797 struct mutex umount_mutex;
798 unsigned int shrinker_run_no;
799 };
800
801 /*
802 * Inline functions
803 */
804 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
805 {
806 return container_of(inode, struct f2fs_inode_info, vfs_inode);
807 }
808
809 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
810 {
811 return sb->s_fs_info;
812 }
813
814 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
815 {
816 return F2FS_SB(inode->i_sb);
817 }
818
819 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
820 {
821 return F2FS_I_SB(mapping->host);
822 }
823
824 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
825 {
826 return F2FS_M_SB(page->mapping);
827 }
828
829 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
830 {
831 return (struct f2fs_super_block *)(sbi->raw_super);
832 }
833
834 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
835 {
836 return (struct f2fs_checkpoint *)(sbi->ckpt);
837 }
838
839 static inline struct f2fs_node *F2FS_NODE(struct page *page)
840 {
841 return (struct f2fs_node *)page_address(page);
842 }
843
844 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
845 {
846 return &((struct f2fs_node *)page_address(page))->i;
847 }
848
849 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
850 {
851 return (struct f2fs_nm_info *)(sbi->nm_info);
852 }
853
854 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
855 {
856 return (struct f2fs_sm_info *)(sbi->sm_info);
857 }
858
859 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
860 {
861 return (struct sit_info *)(SM_I(sbi)->sit_info);
862 }
863
864 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
865 {
866 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
867 }
868
869 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
870 {
871 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
872 }
873
874 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
875 {
876 return sbi->meta_inode->i_mapping;
877 }
878
879 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
880 {
881 return sbi->node_inode->i_mapping;
882 }
883
884 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
885 {
886 return sbi->s_flag & (0x01 << type);
887 }
888
889 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
890 {
891 sbi->s_flag |= (0x01 << type);
892 }
893
894 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
895 {
896 sbi->s_flag &= ~(0x01 << type);
897 }
898
899 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
900 {
901 return le64_to_cpu(cp->checkpoint_ver);
902 }
903
904 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
905 {
906 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
907 return ckpt_flags & f;
908 }
909
910 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
911 {
912 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
913 ckpt_flags |= f;
914 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
915 }
916
917 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
918 {
919 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
920 ckpt_flags &= (~f);
921 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
922 }
923
924 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
925 {
926 down_read(&sbi->cp_rwsem);
927 }
928
929 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
930 {
931 up_read(&sbi->cp_rwsem);
932 }
933
934 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
935 {
936 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
937 }
938
939 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
940 {
941 up_write(&sbi->cp_rwsem);
942 }
943
944 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
945 {
946 int reason = CP_SYNC;
947
948 if (test_opt(sbi, FASTBOOT))
949 reason = CP_FASTBOOT;
950 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
951 reason = CP_UMOUNT;
952 return reason;
953 }
954
955 static inline bool __remain_node_summaries(int reason)
956 {
957 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
958 }
959
960 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
961 {
962 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
963 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
964 }
965
966 /*
967 * Check whether the given nid is within node id range.
968 */
969 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
970 {
971 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
972 return -EINVAL;
973 if (unlikely(nid >= NM_I(sbi)->max_nid))
974 return -EINVAL;
975 return 0;
976 }
977
978 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
979
980 /*
981 * Check whether the inode has blocks or not
982 */
983 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
984 {
985 if (F2FS_I(inode)->i_xattr_nid)
986 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
987 else
988 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
989 }
990
991 static inline bool f2fs_has_xattr_block(unsigned int ofs)
992 {
993 return ofs == XATTR_NODE_OFFSET;
994 }
995
996 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
997 struct inode *inode, blkcnt_t count)
998 {
999 block_t valid_block_count;
1000
1001 spin_lock(&sbi->stat_lock);
1002 valid_block_count =
1003 sbi->total_valid_block_count + (block_t)count;
1004 if (unlikely(valid_block_count > sbi->user_block_count)) {
1005 spin_unlock(&sbi->stat_lock);
1006 return false;
1007 }
1008 inode->i_blocks += count;
1009 sbi->total_valid_block_count = valid_block_count;
1010 sbi->alloc_valid_block_count += (block_t)count;
1011 spin_unlock(&sbi->stat_lock);
1012 return true;
1013 }
1014
1015 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1016 struct inode *inode,
1017 blkcnt_t count)
1018 {
1019 spin_lock(&sbi->stat_lock);
1020 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1021 f2fs_bug_on(sbi, inode->i_blocks < count);
1022 inode->i_blocks -= count;
1023 sbi->total_valid_block_count -= (block_t)count;
1024 spin_unlock(&sbi->stat_lock);
1025 }
1026
1027 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1028 {
1029 atomic_inc(&sbi->nr_pages[count_type]);
1030 set_sbi_flag(sbi, SBI_IS_DIRTY);
1031 }
1032
1033 static inline void inode_inc_dirty_pages(struct inode *inode)
1034 {
1035 atomic_inc(&F2FS_I(inode)->dirty_pages);
1036 if (S_ISDIR(inode->i_mode))
1037 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1038 }
1039
1040 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1041 {
1042 atomic_dec(&sbi->nr_pages[count_type]);
1043 }
1044
1045 static inline void inode_dec_dirty_pages(struct inode *inode)
1046 {
1047 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1048 !S_ISLNK(inode->i_mode))
1049 return;
1050
1051 atomic_dec(&F2FS_I(inode)->dirty_pages);
1052
1053 if (S_ISDIR(inode->i_mode))
1054 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1055 }
1056
1057 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1058 {
1059 return atomic_read(&sbi->nr_pages[count_type]);
1060 }
1061
1062 static inline int get_dirty_pages(struct inode *inode)
1063 {
1064 return atomic_read(&F2FS_I(inode)->dirty_pages);
1065 }
1066
1067 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1068 {
1069 unsigned int pages_per_sec = sbi->segs_per_sec *
1070 (1 << sbi->log_blocks_per_seg);
1071 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1072 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1073 }
1074
1075 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1076 {
1077 return sbi->total_valid_block_count;
1078 }
1079
1080 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1081 {
1082 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1083
1084 /* return NAT or SIT bitmap */
1085 if (flag == NAT_BITMAP)
1086 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1087 else if (flag == SIT_BITMAP)
1088 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1089
1090 return 0;
1091 }
1092
1093 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1094 {
1095 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1096 }
1097
1098 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1099 {
1100 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1101 int offset;
1102
1103 if (__cp_payload(sbi) > 0) {
1104 if (flag == NAT_BITMAP)
1105 return &ckpt->sit_nat_version_bitmap;
1106 else
1107 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1108 } else {
1109 offset = (flag == NAT_BITMAP) ?
1110 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1111 return &ckpt->sit_nat_version_bitmap + offset;
1112 }
1113 }
1114
1115 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1116 {
1117 block_t start_addr;
1118 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1119 unsigned long long ckpt_version = cur_cp_version(ckpt);
1120
1121 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1122
1123 /*
1124 * odd numbered checkpoint should at cp segment 0
1125 * and even segment must be at cp segment 1
1126 */
1127 if (!(ckpt_version & 1))
1128 start_addr += sbi->blocks_per_seg;
1129
1130 return start_addr;
1131 }
1132
1133 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1134 {
1135 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1136 }
1137
1138 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1139 struct inode *inode)
1140 {
1141 block_t valid_block_count;
1142 unsigned int valid_node_count;
1143
1144 spin_lock(&sbi->stat_lock);
1145
1146 valid_block_count = sbi->total_valid_block_count + 1;
1147 if (unlikely(valid_block_count > sbi->user_block_count)) {
1148 spin_unlock(&sbi->stat_lock);
1149 return false;
1150 }
1151
1152 valid_node_count = sbi->total_valid_node_count + 1;
1153 if (unlikely(valid_node_count > sbi->total_node_count)) {
1154 spin_unlock(&sbi->stat_lock);
1155 return false;
1156 }
1157
1158 if (inode)
1159 inode->i_blocks++;
1160
1161 sbi->alloc_valid_block_count++;
1162 sbi->total_valid_node_count++;
1163 sbi->total_valid_block_count++;
1164 spin_unlock(&sbi->stat_lock);
1165
1166 return true;
1167 }
1168
1169 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1170 struct inode *inode)
1171 {
1172 spin_lock(&sbi->stat_lock);
1173
1174 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1175 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1176 f2fs_bug_on(sbi, !inode->i_blocks);
1177
1178 inode->i_blocks--;
1179 sbi->total_valid_node_count--;
1180 sbi->total_valid_block_count--;
1181
1182 spin_unlock(&sbi->stat_lock);
1183 }
1184
1185 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1186 {
1187 return sbi->total_valid_node_count;
1188 }
1189
1190 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1191 {
1192 spin_lock(&sbi->stat_lock);
1193 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1194 sbi->total_valid_inode_count++;
1195 spin_unlock(&sbi->stat_lock);
1196 }
1197
1198 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1199 {
1200 spin_lock(&sbi->stat_lock);
1201 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1202 sbi->total_valid_inode_count--;
1203 spin_unlock(&sbi->stat_lock);
1204 }
1205
1206 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1207 {
1208 return sbi->total_valid_inode_count;
1209 }
1210
1211 static inline void f2fs_put_page(struct page *page, int unlock)
1212 {
1213 if (!page)
1214 return;
1215
1216 if (unlock) {
1217 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1218 unlock_page(page);
1219 }
1220 page_cache_release(page);
1221 }
1222
1223 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1224 {
1225 if (dn->node_page)
1226 f2fs_put_page(dn->node_page, 1);
1227 if (dn->inode_page && dn->node_page != dn->inode_page)
1228 f2fs_put_page(dn->inode_page, 0);
1229 dn->node_page = NULL;
1230 dn->inode_page = NULL;
1231 }
1232
1233 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1234 size_t size)
1235 {
1236 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1237 }
1238
1239 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1240 gfp_t flags)
1241 {
1242 void *entry;
1243 retry:
1244 entry = kmem_cache_alloc(cachep, flags);
1245 if (!entry) {
1246 cond_resched();
1247 goto retry;
1248 }
1249
1250 return entry;
1251 }
1252
1253 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1254 unsigned long index, void *item)
1255 {
1256 while (radix_tree_insert(root, index, item))
1257 cond_resched();
1258 }
1259
1260 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1261
1262 static inline bool IS_INODE(struct page *page)
1263 {
1264 struct f2fs_node *p = F2FS_NODE(page);
1265 return RAW_IS_INODE(p);
1266 }
1267
1268 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1269 {
1270 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1271 }
1272
1273 static inline block_t datablock_addr(struct page *node_page,
1274 unsigned int offset)
1275 {
1276 struct f2fs_node *raw_node;
1277 __le32 *addr_array;
1278 raw_node = F2FS_NODE(node_page);
1279 addr_array = blkaddr_in_node(raw_node);
1280 return le32_to_cpu(addr_array[offset]);
1281 }
1282
1283 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1284 {
1285 int mask;
1286
1287 addr += (nr >> 3);
1288 mask = 1 << (7 - (nr & 0x07));
1289 return mask & *addr;
1290 }
1291
1292 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1293 {
1294 int mask;
1295
1296 addr += (nr >> 3);
1297 mask = 1 << (7 - (nr & 0x07));
1298 *addr |= mask;
1299 }
1300
1301 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1302 {
1303 int mask;
1304
1305 addr += (nr >> 3);
1306 mask = 1 << (7 - (nr & 0x07));
1307 *addr &= ~mask;
1308 }
1309
1310 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1311 {
1312 int mask;
1313 int ret;
1314
1315 addr += (nr >> 3);
1316 mask = 1 << (7 - (nr & 0x07));
1317 ret = mask & *addr;
1318 *addr |= mask;
1319 return ret;
1320 }
1321
1322 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1323 {
1324 int mask;
1325 int ret;
1326
1327 addr += (nr >> 3);
1328 mask = 1 << (7 - (nr & 0x07));
1329 ret = mask & *addr;
1330 *addr &= ~mask;
1331 return ret;
1332 }
1333
1334 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1335 {
1336 int mask;
1337
1338 addr += (nr >> 3);
1339 mask = 1 << (7 - (nr & 0x07));
1340 *addr ^= mask;
1341 }
1342
1343 /* used for f2fs_inode_info->flags */
1344 enum {
1345 FI_NEW_INODE, /* indicate newly allocated inode */
1346 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1347 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1348 FI_INC_LINK, /* need to increment i_nlink */
1349 FI_ACL_MODE, /* indicate acl mode */
1350 FI_NO_ALLOC, /* should not allocate any blocks */
1351 FI_FREE_NID, /* free allocated nide */
1352 FI_UPDATE_DIR, /* should update inode block for consistency */
1353 FI_DELAY_IPUT, /* used for the recovery */
1354 FI_NO_EXTENT, /* not to use the extent cache */
1355 FI_INLINE_XATTR, /* used for inline xattr */
1356 FI_INLINE_DATA, /* used for inline data*/
1357 FI_INLINE_DENTRY, /* used for inline dentry */
1358 FI_APPEND_WRITE, /* inode has appended data */
1359 FI_UPDATE_WRITE, /* inode has in-place-update data */
1360 FI_NEED_IPU, /* used for ipu per file */
1361 FI_ATOMIC_FILE, /* indicate atomic file */
1362 FI_VOLATILE_FILE, /* indicate volatile file */
1363 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1364 FI_DROP_CACHE, /* drop dirty page cache */
1365 FI_DATA_EXIST, /* indicate data exists */
1366 FI_INLINE_DOTS, /* indicate inline dot dentries */
1367 };
1368
1369 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1370 {
1371 if (!test_bit(flag, &fi->flags))
1372 set_bit(flag, &fi->flags);
1373 }
1374
1375 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1376 {
1377 return test_bit(flag, &fi->flags);
1378 }
1379
1380 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1381 {
1382 if (test_bit(flag, &fi->flags))
1383 clear_bit(flag, &fi->flags);
1384 }
1385
1386 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1387 {
1388 fi->i_acl_mode = mode;
1389 set_inode_flag(fi, FI_ACL_MODE);
1390 }
1391
1392 static inline void get_inline_info(struct f2fs_inode_info *fi,
1393 struct f2fs_inode *ri)
1394 {
1395 if (ri->i_inline & F2FS_INLINE_XATTR)
1396 set_inode_flag(fi, FI_INLINE_XATTR);
1397 if (ri->i_inline & F2FS_INLINE_DATA)
1398 set_inode_flag(fi, FI_INLINE_DATA);
1399 if (ri->i_inline & F2FS_INLINE_DENTRY)
1400 set_inode_flag(fi, FI_INLINE_DENTRY);
1401 if (ri->i_inline & F2FS_DATA_EXIST)
1402 set_inode_flag(fi, FI_DATA_EXIST);
1403 if (ri->i_inline & F2FS_INLINE_DOTS)
1404 set_inode_flag(fi, FI_INLINE_DOTS);
1405 }
1406
1407 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1408 struct f2fs_inode *ri)
1409 {
1410 ri->i_inline = 0;
1411
1412 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1413 ri->i_inline |= F2FS_INLINE_XATTR;
1414 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1415 ri->i_inline |= F2FS_INLINE_DATA;
1416 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1417 ri->i_inline |= F2FS_INLINE_DENTRY;
1418 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1419 ri->i_inline |= F2FS_DATA_EXIST;
1420 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1421 ri->i_inline |= F2FS_INLINE_DOTS;
1422 }
1423
1424 static inline int f2fs_has_inline_xattr(struct inode *inode)
1425 {
1426 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1427 }
1428
1429 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1430 {
1431 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1432 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1433 return DEF_ADDRS_PER_INODE;
1434 }
1435
1436 static inline void *inline_xattr_addr(struct page *page)
1437 {
1438 struct f2fs_inode *ri = F2FS_INODE(page);
1439 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1440 F2FS_INLINE_XATTR_ADDRS]);
1441 }
1442
1443 static inline int inline_xattr_size(struct inode *inode)
1444 {
1445 if (f2fs_has_inline_xattr(inode))
1446 return F2FS_INLINE_XATTR_ADDRS << 2;
1447 else
1448 return 0;
1449 }
1450
1451 static inline int f2fs_has_inline_data(struct inode *inode)
1452 {
1453 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1454 }
1455
1456 static inline void f2fs_clear_inline_inode(struct inode *inode)
1457 {
1458 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1459 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1460 }
1461
1462 static inline int f2fs_exist_data(struct inode *inode)
1463 {
1464 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1465 }
1466
1467 static inline int f2fs_has_inline_dots(struct inode *inode)
1468 {
1469 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1470 }
1471
1472 static inline bool f2fs_is_atomic_file(struct inode *inode)
1473 {
1474 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1475 }
1476
1477 static inline bool f2fs_is_volatile_file(struct inode *inode)
1478 {
1479 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1480 }
1481
1482 static inline bool f2fs_is_first_block_written(struct inode *inode)
1483 {
1484 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1485 }
1486
1487 static inline bool f2fs_is_drop_cache(struct inode *inode)
1488 {
1489 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1490 }
1491
1492 static inline void *inline_data_addr(struct page *page)
1493 {
1494 struct f2fs_inode *ri = F2FS_INODE(page);
1495 return (void *)&(ri->i_addr[1]);
1496 }
1497
1498 static inline int f2fs_has_inline_dentry(struct inode *inode)
1499 {
1500 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1501 }
1502
1503 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1504 {
1505 if (!f2fs_has_inline_dentry(dir))
1506 kunmap(page);
1507 }
1508
1509 static inline int is_file(struct inode *inode, int type)
1510 {
1511 return F2FS_I(inode)->i_advise & type;
1512 }
1513
1514 static inline void set_file(struct inode *inode, int type)
1515 {
1516 F2FS_I(inode)->i_advise |= type;
1517 }
1518
1519 static inline void clear_file(struct inode *inode, int type)
1520 {
1521 F2FS_I(inode)->i_advise &= ~type;
1522 }
1523
1524 static inline int f2fs_readonly(struct super_block *sb)
1525 {
1526 return sb->s_flags & MS_RDONLY;
1527 }
1528
1529 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1530 {
1531 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1532 }
1533
1534 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1535 {
1536 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1537 sbi->sb->s_flags |= MS_RDONLY;
1538 }
1539
1540 static inline bool is_dot_dotdot(const struct qstr *str)
1541 {
1542 if (str->len == 1 && str->name[0] == '.')
1543 return true;
1544
1545 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1546 return true;
1547
1548 return false;
1549 }
1550
1551 #define get_inode_mode(i) \
1552 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1553 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1554
1555 /* get offset of first page in next direct node */
1556 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1557 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1558 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1559 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1560
1561 /*
1562 * file.c
1563 */
1564 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1565 void truncate_data_blocks(struct dnode_of_data *);
1566 int truncate_blocks(struct inode *, u64, bool);
1567 void f2fs_truncate(struct inode *);
1568 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1569 int f2fs_setattr(struct dentry *, struct iattr *);
1570 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1571 int truncate_data_blocks_range(struct dnode_of_data *, int);
1572 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1573 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1574
1575 /*
1576 * inode.c
1577 */
1578 void f2fs_set_inode_flags(struct inode *);
1579 struct inode *f2fs_iget(struct super_block *, unsigned long);
1580 int try_to_free_nats(struct f2fs_sb_info *, int);
1581 void update_inode(struct inode *, struct page *);
1582 void update_inode_page(struct inode *);
1583 int f2fs_write_inode(struct inode *, struct writeback_control *);
1584 void f2fs_evict_inode(struct inode *);
1585 void handle_failed_inode(struct inode *);
1586
1587 /*
1588 * namei.c
1589 */
1590 struct dentry *f2fs_get_parent(struct dentry *child);
1591
1592 /*
1593 * dir.c
1594 */
1595 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1596 void set_de_type(struct f2fs_dir_entry *, umode_t);
1597
1598 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1599 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1600 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1601 unsigned int, struct f2fs_str *);
1602 void do_make_empty_dir(struct inode *, struct inode *,
1603 struct f2fs_dentry_ptr *);
1604 struct page *init_inode_metadata(struct inode *, struct inode *,
1605 const struct qstr *, struct page *);
1606 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1607 int room_for_filename(const void *, int, int);
1608 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1609 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1610 struct page **);
1611 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1612 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1613 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1614 struct page *, struct inode *);
1615 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1616 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1617 const struct qstr *, f2fs_hash_t , unsigned int);
1618 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1619 umode_t);
1620 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1621 struct inode *);
1622 int f2fs_do_tmpfile(struct inode *, struct inode *);
1623 bool f2fs_empty_dir(struct inode *);
1624
1625 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1626 {
1627 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1628 inode, inode->i_ino, inode->i_mode);
1629 }
1630
1631 /*
1632 * super.c
1633 */
1634 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1635 int f2fs_sync_fs(struct super_block *, int);
1636 extern __printf(3, 4)
1637 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1638
1639 /*
1640 * hash.c
1641 */
1642 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1643
1644 /*
1645 * node.c
1646 */
1647 struct dnode_of_data;
1648 struct node_info;
1649
1650 bool available_free_memory(struct f2fs_sb_info *, int);
1651 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1652 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1653 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1654 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1655 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1656 int truncate_inode_blocks(struct inode *, pgoff_t);
1657 int truncate_xattr_node(struct inode *, struct page *);
1658 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1659 void remove_inode_page(struct inode *);
1660 struct page *new_inode_page(struct inode *);
1661 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1662 void ra_node_page(struct f2fs_sb_info *, nid_t);
1663 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1664 struct page *get_node_page_ra(struct page *, int);
1665 void sync_inode_page(struct dnode_of_data *);
1666 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1667 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1668 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1669 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1670 void recover_inline_xattr(struct inode *, struct page *);
1671 void recover_xattr_data(struct inode *, struct page *, block_t);
1672 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1673 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1674 struct f2fs_summary_block *);
1675 void flush_nat_entries(struct f2fs_sb_info *);
1676 int build_node_manager(struct f2fs_sb_info *);
1677 void destroy_node_manager(struct f2fs_sb_info *);
1678 int __init create_node_manager_caches(void);
1679 void destroy_node_manager_caches(void);
1680
1681 /*
1682 * segment.c
1683 */
1684 void register_inmem_page(struct inode *, struct page *);
1685 void commit_inmem_pages(struct inode *, bool);
1686 void f2fs_balance_fs(struct f2fs_sb_info *);
1687 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1688 int f2fs_issue_flush(struct f2fs_sb_info *);
1689 int create_flush_cmd_control(struct f2fs_sb_info *);
1690 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1691 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1692 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1693 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1694 void release_discard_addrs(struct f2fs_sb_info *);
1695 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1696 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1697 void allocate_new_segments(struct f2fs_sb_info *);
1698 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1699 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1700 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1701 void write_meta_page(struct f2fs_sb_info *, struct page *);
1702 void write_node_page(unsigned int, struct f2fs_io_info *);
1703 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1704 void rewrite_data_page(struct f2fs_io_info *);
1705 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1706 block_t, block_t, unsigned char, bool);
1707 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1708 block_t, block_t *, struct f2fs_summary *, int);
1709 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1710 void write_data_summaries(struct f2fs_sb_info *, block_t);
1711 void write_node_summaries(struct f2fs_sb_info *, block_t);
1712 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1713 int, unsigned int, int);
1714 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1715 int build_segment_manager(struct f2fs_sb_info *);
1716 void destroy_segment_manager(struct f2fs_sb_info *);
1717 int __init create_segment_manager_caches(void);
1718 void destroy_segment_manager_caches(void);
1719
1720 /*
1721 * checkpoint.c
1722 */
1723 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1724 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1725 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1726 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1727 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1728 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1729 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1730 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1731 void release_dirty_inode(struct f2fs_sb_info *);
1732 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1733 int acquire_orphan_inode(struct f2fs_sb_info *);
1734 void release_orphan_inode(struct f2fs_sb_info *);
1735 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1736 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1737 void recover_orphan_inodes(struct f2fs_sb_info *);
1738 int get_valid_checkpoint(struct f2fs_sb_info *);
1739 void update_dirty_page(struct inode *, struct page *);
1740 void add_dirty_dir_inode(struct inode *);
1741 void remove_dirty_dir_inode(struct inode *);
1742 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1743 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1744 void init_ino_entry_info(struct f2fs_sb_info *);
1745 int __init create_checkpoint_caches(void);
1746 void destroy_checkpoint_caches(void);
1747
1748 /*
1749 * data.c
1750 */
1751 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1752 int f2fs_submit_page_bio(struct f2fs_io_info *);
1753 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1754 void set_data_blkaddr(struct dnode_of_data *);
1755 int reserve_new_block(struct dnode_of_data *);
1756 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1757 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
1758 void f2fs_destroy_extent_tree(struct inode *);
1759 void f2fs_init_extent_cache(struct inode *, struct f2fs_extent *);
1760 void f2fs_update_extent_cache(struct dnode_of_data *);
1761 void f2fs_preserve_extent_tree(struct inode *);
1762 struct page *get_read_data_page(struct inode *, pgoff_t, int);
1763 struct page *find_data_page(struct inode *, pgoff_t);
1764 struct page *get_lock_data_page(struct inode *, pgoff_t);
1765 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1766 int do_write_data_page(struct f2fs_io_info *);
1767 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1768 void init_extent_cache_info(struct f2fs_sb_info *);
1769 int __init create_extent_cache(void);
1770 void destroy_extent_cache(void);
1771 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1772 int f2fs_release_page(struct page *, gfp_t);
1773
1774 /*
1775 * gc.c
1776 */
1777 int start_gc_thread(struct f2fs_sb_info *);
1778 void stop_gc_thread(struct f2fs_sb_info *);
1779 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1780 int f2fs_gc(struct f2fs_sb_info *);
1781 void build_gc_manager(struct f2fs_sb_info *);
1782
1783 /*
1784 * recovery.c
1785 */
1786 int recover_fsync_data(struct f2fs_sb_info *);
1787 bool space_for_roll_forward(struct f2fs_sb_info *);
1788
1789 /*
1790 * debug.c
1791 */
1792 #ifdef CONFIG_F2FS_STAT_FS
1793 struct f2fs_stat_info {
1794 struct list_head stat_list;
1795 struct f2fs_sb_info *sbi;
1796 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1797 int main_area_segs, main_area_sections, main_area_zones;
1798 int hit_ext, total_ext, ext_tree, ext_node;
1799 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1800 int nats, dirty_nats, sits, dirty_sits, fnids;
1801 int total_count, utilization;
1802 int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1803 unsigned int valid_count, valid_node_count, valid_inode_count;
1804 unsigned int bimodal, avg_vblocks;
1805 int util_free, util_valid, util_invalid;
1806 int rsvd_segs, overp_segs;
1807 int dirty_count, node_pages, meta_pages;
1808 int prefree_count, call_count, cp_count;
1809 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1810 int bg_node_segs, bg_data_segs;
1811 int tot_blks, data_blks, node_blks;
1812 int bg_data_blks, bg_node_blks;
1813 int curseg[NR_CURSEG_TYPE];
1814 int cursec[NR_CURSEG_TYPE];
1815 int curzone[NR_CURSEG_TYPE];
1816
1817 unsigned int segment_count[2];
1818 unsigned int block_count[2];
1819 unsigned int inplace_count;
1820 unsigned base_mem, cache_mem, page_mem;
1821 };
1822
1823 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1824 {
1825 return (struct f2fs_stat_info *)sbi->stat_info;
1826 }
1827
1828 #define stat_inc_cp_count(si) ((si)->cp_count++)
1829 #define stat_inc_call_count(si) ((si)->call_count++)
1830 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1831 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1832 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1833 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1834 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1835 #define stat_inc_inline_inode(inode) \
1836 do { \
1837 if (f2fs_has_inline_data(inode)) \
1838 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1839 } while (0)
1840 #define stat_dec_inline_inode(inode) \
1841 do { \
1842 if (f2fs_has_inline_data(inode)) \
1843 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1844 } while (0)
1845 #define stat_inc_inline_dir(inode) \
1846 do { \
1847 if (f2fs_has_inline_dentry(inode)) \
1848 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1849 } while (0)
1850 #define stat_dec_inline_dir(inode) \
1851 do { \
1852 if (f2fs_has_inline_dentry(inode)) \
1853 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1854 } while (0)
1855 #define stat_inc_seg_type(sbi, curseg) \
1856 ((sbi)->segment_count[(curseg)->alloc_type]++)
1857 #define stat_inc_block_count(sbi, curseg) \
1858 ((sbi)->block_count[(curseg)->alloc_type]++)
1859 #define stat_inc_inplace_blocks(sbi) \
1860 (atomic_inc(&(sbi)->inplace_count))
1861 #define stat_inc_seg_count(sbi, type, gc_type) \
1862 do { \
1863 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1864 (si)->tot_segs++; \
1865 if (type == SUM_TYPE_DATA) { \
1866 si->data_segs++; \
1867 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1868 } else { \
1869 si->node_segs++; \
1870 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1871 } \
1872 } while (0)
1873
1874 #define stat_inc_tot_blk_count(si, blks) \
1875 (si->tot_blks += (blks))
1876
1877 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1878 do { \
1879 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1880 stat_inc_tot_blk_count(si, blks); \
1881 si->data_blks += (blks); \
1882 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1883 } while (0)
1884
1885 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1886 do { \
1887 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1888 stat_inc_tot_blk_count(si, blks); \
1889 si->node_blks += (blks); \
1890 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
1891 } while (0)
1892
1893 int f2fs_build_stats(struct f2fs_sb_info *);
1894 void f2fs_destroy_stats(struct f2fs_sb_info *);
1895 void __init f2fs_create_root_stats(void);
1896 void f2fs_destroy_root_stats(void);
1897 #else
1898 #define stat_inc_cp_count(si)
1899 #define stat_inc_call_count(si)
1900 #define stat_inc_bggc_count(si)
1901 #define stat_inc_dirty_dir(sbi)
1902 #define stat_dec_dirty_dir(sbi)
1903 #define stat_inc_total_hit(sb)
1904 #define stat_inc_read_hit(sb)
1905 #define stat_inc_inline_inode(inode)
1906 #define stat_dec_inline_inode(inode)
1907 #define stat_inc_inline_dir(inode)
1908 #define stat_dec_inline_dir(inode)
1909 #define stat_inc_seg_type(sbi, curseg)
1910 #define stat_inc_block_count(sbi, curseg)
1911 #define stat_inc_inplace_blocks(sbi)
1912 #define stat_inc_seg_count(sbi, type, gc_type)
1913 #define stat_inc_tot_blk_count(si, blks)
1914 #define stat_inc_data_blk_count(sbi, blks, gc_type)
1915 #define stat_inc_node_blk_count(sbi, blks, gc_type)
1916
1917 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1918 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1919 static inline void __init f2fs_create_root_stats(void) { }
1920 static inline void f2fs_destroy_root_stats(void) { }
1921 #endif
1922
1923 extern const struct file_operations f2fs_dir_operations;
1924 extern const struct file_operations f2fs_file_operations;
1925 extern const struct inode_operations f2fs_file_inode_operations;
1926 extern const struct address_space_operations f2fs_dblock_aops;
1927 extern const struct address_space_operations f2fs_node_aops;
1928 extern const struct address_space_operations f2fs_meta_aops;
1929 extern const struct inode_operations f2fs_dir_inode_operations;
1930 extern const struct inode_operations f2fs_symlink_inode_operations;
1931 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
1932 extern const struct inode_operations f2fs_special_inode_operations;
1933 extern struct kmem_cache *inode_entry_slab;
1934
1935 /*
1936 * inline.c
1937 */
1938 bool f2fs_may_inline_data(struct inode *);
1939 bool f2fs_may_inline_dentry(struct inode *);
1940 void read_inline_data(struct page *, struct page *);
1941 bool truncate_inline_inode(struct page *, u64);
1942 int f2fs_read_inline_data(struct inode *, struct page *);
1943 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1944 int f2fs_convert_inline_inode(struct inode *);
1945 int f2fs_write_inline_data(struct inode *, struct page *);
1946 bool recover_inline_data(struct inode *, struct page *);
1947 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
1948 struct f2fs_filename *, struct page **);
1949 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1950 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1951 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
1952 nid_t, umode_t);
1953 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1954 struct inode *, struct inode *);
1955 bool f2fs_empty_inline_dir(struct inode *);
1956 int f2fs_read_inline_dir(struct file *, struct dir_context *,
1957 struct f2fs_str *);
1958
1959 /*
1960 * shrinker.c
1961 */
1962 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
1963 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
1964 void f2fs_join_shrinker(struct f2fs_sb_info *);
1965 void f2fs_leave_shrinker(struct f2fs_sb_info *);
1966
1967 /*
1968 * crypto support
1969 */
1970 static inline int f2fs_encrypted_inode(struct inode *inode)
1971 {
1972 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1973 return file_is_encrypt(inode);
1974 #else
1975 return 0;
1976 #endif
1977 }
1978
1979 static inline void f2fs_set_encrypted_inode(struct inode *inode)
1980 {
1981 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1982 file_set_encrypt(inode);
1983 #endif
1984 }
1985
1986 static inline bool f2fs_bio_encrypted(struct bio *bio)
1987 {
1988 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1989 return unlikely(bio->bi_private != NULL);
1990 #else
1991 return false;
1992 #endif
1993 }
1994
1995 static inline int f2fs_sb_has_crypto(struct super_block *sb)
1996 {
1997 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1998 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
1999 #else
2000 return 0;
2001 #endif
2002 }
2003
2004 static inline bool f2fs_may_encrypt(struct inode *inode)
2005 {
2006 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2007 mode_t mode = inode->i_mode;
2008
2009 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2010 #else
2011 return 0;
2012 #endif
2013 }
2014
2015 /* crypto_policy.c */
2016 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2017 struct inode *);
2018 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2019 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2020 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2021
2022 /* crypt.c */
2023 extern struct kmem_cache *f2fs_crypt_info_cachep;
2024 bool f2fs_valid_contents_enc_mode(uint32_t);
2025 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2026 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2027 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2028 struct page *f2fs_encrypt(struct inode *, struct page *);
2029 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2030 int f2fs_decrypt_one(struct inode *, struct page *);
2031 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2032
2033 /* crypto_key.c */
2034 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2035 int _f2fs_get_encryption_info(struct inode *inode);
2036
2037 /* crypto_fname.c */
2038 bool f2fs_valid_filenames_enc_mode(uint32_t);
2039 u32 f2fs_fname_crypto_round_up(u32, u32);
2040 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2041 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2042 const struct f2fs_str *, struct f2fs_str *);
2043 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2044 struct f2fs_str *);
2045
2046 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2047 void f2fs_restore_and_release_control_page(struct page **);
2048 void f2fs_restore_control_page(struct page *);
2049
2050 int __init f2fs_init_crypto(void);
2051 int f2fs_crypto_initialize(void);
2052 void f2fs_exit_crypto(void);
2053
2054 int f2fs_has_encryption_key(struct inode *);
2055
2056 static inline int f2fs_get_encryption_info(struct inode *inode)
2057 {
2058 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2059
2060 if (!ci ||
2061 (ci->ci_keyring_key &&
2062 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2063 (1 << KEY_FLAG_REVOKED) |
2064 (1 << KEY_FLAG_DEAD)))))
2065 return _f2fs_get_encryption_info(inode);
2066 return 0;
2067 }
2068
2069 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2070 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2071 int lookup, struct f2fs_filename *);
2072 void f2fs_fname_free_filename(struct f2fs_filename *);
2073 #else
2074 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2075 static inline void f2fs_restore_control_page(struct page *p) { }
2076
2077 static inline int __init f2fs_init_crypto(void) { return 0; }
2078 static inline void f2fs_exit_crypto(void) { }
2079
2080 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2081 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2082 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2083
2084 static inline int f2fs_fname_setup_filename(struct inode *dir,
2085 const struct qstr *iname,
2086 int lookup, struct f2fs_filename *fname)
2087 {
2088 memset(fname, 0, sizeof(struct f2fs_filename));
2089 fname->usr_fname = iname;
2090 fname->disk_name.name = (unsigned char *)iname->name;
2091 fname->disk_name.len = iname->len;
2092 return 0;
2093 }
2094
2095 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2096 #endif
2097 #endif