]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: restrict setting up inode.i_advise
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/cred.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/quotaops.h>
27 #include <crypto/hash.h>
28
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition) \
36 do { \
37 if (unlikely(condition)) { \
38 WARN_ON(1); \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } \
41 } while (0)
42 #endif
43
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 FAULT_KMALLOC,
47 FAULT_KVMALLOC,
48 FAULT_PAGE_ALLOC,
49 FAULT_PAGE_GET,
50 FAULT_ALLOC_BIO,
51 FAULT_ALLOC_NID,
52 FAULT_ORPHAN,
53 FAULT_BLOCK,
54 FAULT_DIR_DEPTH,
55 FAULT_EVICT_INODE,
56 FAULT_TRUNCATE,
57 FAULT_IO,
58 FAULT_CHECKPOINT,
59 FAULT_MAX,
60 };
61
62 struct f2fs_fault_info {
63 atomic_t inject_ops;
64 unsigned int inject_rate;
65 unsigned int inject_type;
66 };
67
68 extern char *f2fs_fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71
72 /*
73 * For mount options
74 */
75 #define F2FS_MOUNT_BG_GC 0x00000001
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
77 #define F2FS_MOUNT_DISCARD 0x00000004
78 #define F2FS_MOUNT_NOHEAP 0x00000008
79 #define F2FS_MOUNT_XATTR_USER 0x00000010
80 #define F2FS_MOUNT_POSIX_ACL 0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
83 #define F2FS_MOUNT_INLINE_DATA 0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
86 #define F2FS_MOUNT_NOBARRIER 0x00000800
87 #define F2FS_MOUNT_FASTBOOT 0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
89 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
90 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
92 #define F2FS_MOUNT_ADAPTIVE 0x00020000
93 #define F2FS_MOUNT_LFS 0x00040000
94 #define F2FS_MOUNT_USRQUOTA 0x00080000
95 #define F2FS_MOUNT_GRPQUOTA 0x00100000
96 #define F2FS_MOUNT_PRJQUOTA 0x00200000
97 #define F2FS_MOUNT_QUOTA 0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
99 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
100
101 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
102 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105
106 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
107 typecheck(unsigned long long, b) && \
108 ((long long)((a) - (b)) > 0))
109
110 typedef u32 block_t; /*
111 * should not change u32, since it is the on-disk block
112 * address format, __le32.
113 */
114 typedef u32 nid_t;
115
116 struct f2fs_mount_info {
117 unsigned int opt;
118 int write_io_size_bits; /* Write IO size bits */
119 block_t root_reserved_blocks; /* root reserved blocks */
120 kuid_t s_resuid; /* reserved blocks for uid */
121 kgid_t s_resgid; /* reserved blocks for gid */
122 int active_logs; /* # of active logs */
123 int inline_xattr_size; /* inline xattr size */
124 #ifdef CONFIG_F2FS_FAULT_INJECTION
125 struct f2fs_fault_info fault_info; /* For fault injection */
126 #endif
127 #ifdef CONFIG_QUOTA
128 /* Names of quota files with journalled quota */
129 char *s_qf_names[MAXQUOTAS];
130 int s_jquota_fmt; /* Format of quota to use */
131 #endif
132 /* For which write hints are passed down to block layer */
133 int whint_mode;
134 int alloc_mode; /* segment allocation policy */
135 int fsync_mode; /* fsync policy */
136 bool test_dummy_encryption; /* test dummy encryption */
137 };
138
139 #define F2FS_FEATURE_ENCRYPT 0x0001
140 #define F2FS_FEATURE_BLKZONED 0x0002
141 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
142 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
143 #define F2FS_FEATURE_PRJQUOTA 0x0010
144 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
145 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
146 #define F2FS_FEATURE_QUOTA_INO 0x0080
147 #define F2FS_FEATURE_INODE_CRTIME 0x0100
148 #define F2FS_FEATURE_LOST_FOUND 0x0200
149 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */
150
151 #define F2FS_HAS_FEATURE(sb, mask) \
152 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
153 #define F2FS_SET_FEATURE(sb, mask) \
154 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
155 #define F2FS_CLEAR_FEATURE(sb, mask) \
156 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
157
158 /*
159 * Default values for user and/or group using reserved blocks
160 */
161 #define F2FS_DEF_RESUID 0
162 #define F2FS_DEF_RESGID 0
163
164 /*
165 * For checkpoint manager
166 */
167 enum {
168 NAT_BITMAP,
169 SIT_BITMAP
170 };
171
172 #define CP_UMOUNT 0x00000001
173 #define CP_FASTBOOT 0x00000002
174 #define CP_SYNC 0x00000004
175 #define CP_RECOVERY 0x00000008
176 #define CP_DISCARD 0x00000010
177 #define CP_TRIMMED 0x00000020
178
179 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
180 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
181 #define DEF_MAX_DISCARD_LEN 512 /* Max. 2MB per discard */
182 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
183 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
184 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
185 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
186 #define DEF_CP_INTERVAL 60 /* 60 secs */
187 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
188
189 struct cp_control {
190 int reason;
191 __u64 trim_start;
192 __u64 trim_end;
193 __u64 trim_minlen;
194 };
195
196 /*
197 * indicate meta/data type
198 */
199 enum {
200 META_CP,
201 META_NAT,
202 META_SIT,
203 META_SSA,
204 META_POR,
205 DATA_GENERIC,
206 META_GENERIC,
207 };
208
209 /* for the list of ino */
210 enum {
211 ORPHAN_INO, /* for orphan ino list */
212 APPEND_INO, /* for append ino list */
213 UPDATE_INO, /* for update ino list */
214 TRANS_DIR_INO, /* for trasactions dir ino list */
215 FLUSH_INO, /* for multiple device flushing */
216 MAX_INO_ENTRY, /* max. list */
217 };
218
219 struct ino_entry {
220 struct list_head list; /* list head */
221 nid_t ino; /* inode number */
222 unsigned int dirty_device; /* dirty device bitmap */
223 };
224
225 /* for the list of inodes to be GCed */
226 struct inode_entry {
227 struct list_head list; /* list head */
228 struct inode *inode; /* vfs inode pointer */
229 };
230
231 /* for the bitmap indicate blocks to be discarded */
232 struct discard_entry {
233 struct list_head list; /* list head */
234 block_t start_blkaddr; /* start blockaddr of current segment */
235 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
236 };
237
238 /* default discard granularity of inner discard thread, unit: block count */
239 #define DEFAULT_DISCARD_GRANULARITY 16
240
241 /* max discard pend list number */
242 #define MAX_PLIST_NUM 512
243 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
244 (MAX_PLIST_NUM - 1) : (blk_num - 1))
245
246 enum {
247 D_PREP,
248 D_SUBMIT,
249 D_DONE,
250 };
251
252 struct discard_info {
253 block_t lstart; /* logical start address */
254 block_t len; /* length */
255 block_t start; /* actual start address in dev */
256 };
257
258 struct discard_cmd {
259 struct rb_node rb_node; /* rb node located in rb-tree */
260 union {
261 struct {
262 block_t lstart; /* logical start address */
263 block_t len; /* length */
264 block_t start; /* actual start address in dev */
265 };
266 struct discard_info di; /* discard info */
267
268 };
269 struct list_head list; /* command list */
270 struct completion wait; /* compleation */
271 struct block_device *bdev; /* bdev */
272 unsigned short ref; /* reference count */
273 unsigned char state; /* state */
274 int error; /* bio error */
275 };
276
277 enum {
278 DPOLICY_BG,
279 DPOLICY_FORCE,
280 DPOLICY_FSTRIM,
281 DPOLICY_UMOUNT,
282 MAX_DPOLICY,
283 };
284
285 struct discard_policy {
286 int type; /* type of discard */
287 unsigned int min_interval; /* used for candidates exist */
288 unsigned int mid_interval; /* used for device busy */
289 unsigned int max_interval; /* used for candidates not exist */
290 unsigned int max_requests; /* # of discards issued per round */
291 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
292 bool io_aware; /* issue discard in idle time */
293 bool sync; /* submit discard with REQ_SYNC flag */
294 bool ordered; /* issue discard by lba order */
295 unsigned int granularity; /* discard granularity */
296 };
297
298 struct discard_cmd_control {
299 struct task_struct *f2fs_issue_discard; /* discard thread */
300 struct list_head entry_list; /* 4KB discard entry list */
301 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
302 struct list_head wait_list; /* store on-flushing entries */
303 struct list_head fstrim_list; /* in-flight discard from fstrim */
304 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
305 unsigned int discard_wake; /* to wake up discard thread */
306 struct mutex cmd_lock;
307 unsigned int nr_discards; /* # of discards in the list */
308 unsigned int max_discards; /* max. discards to be issued */
309 unsigned int discard_granularity; /* discard granularity */
310 unsigned int undiscard_blks; /* # of undiscard blocks */
311 unsigned int next_pos; /* next discard position */
312 atomic_t issued_discard; /* # of issued discard */
313 atomic_t issing_discard; /* # of issing discard */
314 atomic_t discard_cmd_cnt; /* # of cached cmd count */
315 struct rb_root root; /* root of discard rb-tree */
316 bool rbtree_check; /* config for consistence check */
317 };
318
319 /* for the list of fsync inodes, used only during recovery */
320 struct fsync_inode_entry {
321 struct list_head list; /* list head */
322 struct inode *inode; /* vfs inode pointer */
323 block_t blkaddr; /* block address locating the last fsync */
324 block_t last_dentry; /* block address locating the last dentry */
325 };
326
327 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
328 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
329
330 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
331 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
332 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
333 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
334
335 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
336 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
337
338 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
339 {
340 int before = nats_in_cursum(journal);
341
342 journal->n_nats = cpu_to_le16(before + i);
343 return before;
344 }
345
346 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
347 {
348 int before = sits_in_cursum(journal);
349
350 journal->n_sits = cpu_to_le16(before + i);
351 return before;
352 }
353
354 static inline bool __has_cursum_space(struct f2fs_journal *journal,
355 int size, int type)
356 {
357 if (type == NAT_JOURNAL)
358 return size <= MAX_NAT_JENTRIES(journal);
359 return size <= MAX_SIT_JENTRIES(journal);
360 }
361
362 /*
363 * ioctl commands
364 */
365 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
366 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
367 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
368
369 #define F2FS_IOCTL_MAGIC 0xf5
370 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
371 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
372 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
373 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
374 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
375 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
376 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
377 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
378 struct f2fs_defragment)
379 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
380 struct f2fs_move_range)
381 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
382 struct f2fs_flush_device)
383 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
384 struct f2fs_gc_range)
385 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
386 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
387 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
388 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15)
389
390 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
391 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
392 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
393
394 /*
395 * should be same as XFS_IOC_GOINGDOWN.
396 * Flags for going down operation used by FS_IOC_GOINGDOWN
397 */
398 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
399 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
400 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
401 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
402 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
403
404 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
405 /*
406 * ioctl commands in 32 bit emulation
407 */
408 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
409 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
410 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
411 #endif
412
413 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
414 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
415
416 struct f2fs_gc_range {
417 u32 sync;
418 u64 start;
419 u64 len;
420 };
421
422 struct f2fs_defragment {
423 u64 start;
424 u64 len;
425 };
426
427 struct f2fs_move_range {
428 u32 dst_fd; /* destination fd */
429 u64 pos_in; /* start position in src_fd */
430 u64 pos_out; /* start position in dst_fd */
431 u64 len; /* size to move */
432 };
433
434 struct f2fs_flush_device {
435 u32 dev_num; /* device number to flush */
436 u32 segments; /* # of segments to flush */
437 };
438
439 /* for inline stuff */
440 #define DEF_INLINE_RESERVED_SIZE 1
441 #define DEF_MIN_INLINE_SIZE 1
442 static inline int get_extra_isize(struct inode *inode);
443 static inline int get_inline_xattr_addrs(struct inode *inode);
444 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
445 (CUR_ADDRS_PER_INODE(inode) - \
446 get_inline_xattr_addrs(inode) - \
447 DEF_INLINE_RESERVED_SIZE))
448
449 /* for inline dir */
450 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
451 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
452 BITS_PER_BYTE + 1))
453 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
454 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
455 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
456 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
457 NR_INLINE_DENTRY(inode) + \
458 INLINE_DENTRY_BITMAP_SIZE(inode)))
459
460 /*
461 * For INODE and NODE manager
462 */
463 /* for directory operations */
464 struct f2fs_dentry_ptr {
465 struct inode *inode;
466 void *bitmap;
467 struct f2fs_dir_entry *dentry;
468 __u8 (*filename)[F2FS_SLOT_LEN];
469 int max;
470 int nr_bitmap;
471 };
472
473 static inline void make_dentry_ptr_block(struct inode *inode,
474 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
475 {
476 d->inode = inode;
477 d->max = NR_DENTRY_IN_BLOCK;
478 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
479 d->bitmap = t->dentry_bitmap;
480 d->dentry = t->dentry;
481 d->filename = t->filename;
482 }
483
484 static inline void make_dentry_ptr_inline(struct inode *inode,
485 struct f2fs_dentry_ptr *d, void *t)
486 {
487 int entry_cnt = NR_INLINE_DENTRY(inode);
488 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
489 int reserved_size = INLINE_RESERVED_SIZE(inode);
490
491 d->inode = inode;
492 d->max = entry_cnt;
493 d->nr_bitmap = bitmap_size;
494 d->bitmap = t;
495 d->dentry = t + bitmap_size + reserved_size;
496 d->filename = t + bitmap_size + reserved_size +
497 SIZE_OF_DIR_ENTRY * entry_cnt;
498 }
499
500 /*
501 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
502 * as its node offset to distinguish from index node blocks.
503 * But some bits are used to mark the node block.
504 */
505 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
506 >> OFFSET_BIT_SHIFT)
507 enum {
508 ALLOC_NODE, /* allocate a new node page if needed */
509 LOOKUP_NODE, /* look up a node without readahead */
510 LOOKUP_NODE_RA, /*
511 * look up a node with readahead called
512 * by get_data_block.
513 */
514 };
515
516 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
517
518 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
519
520 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
521
522 /* for in-memory extent cache entry */
523 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
524
525 /* number of extent info in extent cache we try to shrink */
526 #define EXTENT_CACHE_SHRINK_NUMBER 128
527
528 struct rb_entry {
529 struct rb_node rb_node; /* rb node located in rb-tree */
530 unsigned int ofs; /* start offset of the entry */
531 unsigned int len; /* length of the entry */
532 };
533
534 struct extent_info {
535 unsigned int fofs; /* start offset in a file */
536 unsigned int len; /* length of the extent */
537 u32 blk; /* start block address of the extent */
538 };
539
540 struct extent_node {
541 struct rb_node rb_node;
542 union {
543 struct {
544 unsigned int fofs;
545 unsigned int len;
546 u32 blk;
547 };
548 struct extent_info ei; /* extent info */
549
550 };
551 struct list_head list; /* node in global extent list of sbi */
552 struct extent_tree *et; /* extent tree pointer */
553 };
554
555 struct extent_tree {
556 nid_t ino; /* inode number */
557 struct rb_root root; /* root of extent info rb-tree */
558 struct extent_node *cached_en; /* recently accessed extent node */
559 struct extent_info largest; /* largested extent info */
560 struct list_head list; /* to be used by sbi->zombie_list */
561 rwlock_t lock; /* protect extent info rb-tree */
562 atomic_t node_cnt; /* # of extent node in rb-tree*/
563 };
564
565 /*
566 * This structure is taken from ext4_map_blocks.
567 *
568 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
569 */
570 #define F2FS_MAP_NEW (1 << BH_New)
571 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
572 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
573 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
574 F2FS_MAP_UNWRITTEN)
575
576 struct f2fs_map_blocks {
577 block_t m_pblk;
578 block_t m_lblk;
579 unsigned int m_len;
580 unsigned int m_flags;
581 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
582 pgoff_t *m_next_extent; /* point to next possible extent */
583 int m_seg_type;
584 };
585
586 /* for flag in get_data_block */
587 enum {
588 F2FS_GET_BLOCK_DEFAULT,
589 F2FS_GET_BLOCK_FIEMAP,
590 F2FS_GET_BLOCK_BMAP,
591 F2FS_GET_BLOCK_PRE_DIO,
592 F2FS_GET_BLOCK_PRE_AIO,
593 F2FS_GET_BLOCK_PRECACHE,
594 };
595
596 /*
597 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
598 */
599 #define FADVISE_COLD_BIT 0x01
600 #define FADVISE_LOST_PINO_BIT 0x02
601 #define FADVISE_ENCRYPT_BIT 0x04
602 #define FADVISE_ENC_NAME_BIT 0x08
603 #define FADVISE_KEEP_SIZE_BIT 0x10
604 #define FADVISE_HOT_BIT 0x20
605 #define FADVISE_VERITY_BIT 0x40 /* reserved */
606
607 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
608
609 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
610 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
611 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
612 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
613 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
614 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
615 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
616 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
617 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
618 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
619 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
620 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
621 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
622 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
623 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
624 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
625
626 #define DEF_DIR_LEVEL 0
627
628 enum {
629 GC_FAILURE_PIN,
630 GC_FAILURE_ATOMIC,
631 MAX_GC_FAILURE
632 };
633
634 struct f2fs_inode_info {
635 struct inode vfs_inode; /* serve a vfs inode */
636 unsigned long i_flags; /* keep an inode flags for ioctl */
637 unsigned char i_advise; /* use to give file attribute hints */
638 unsigned char i_dir_level; /* use for dentry level for large dir */
639 unsigned int i_current_depth; /* only for directory depth */
640 /* for gc failure statistic */
641 unsigned int i_gc_failures[MAX_GC_FAILURE];
642 unsigned int i_pino; /* parent inode number */
643 umode_t i_acl_mode; /* keep file acl mode temporarily */
644
645 /* Use below internally in f2fs*/
646 unsigned long flags; /* use to pass per-file flags */
647 struct rw_semaphore i_sem; /* protect fi info */
648 atomic_t dirty_pages; /* # of dirty pages */
649 f2fs_hash_t chash; /* hash value of given file name */
650 unsigned int clevel; /* maximum level of given file name */
651 struct task_struct *task; /* lookup and create consistency */
652 struct task_struct *cp_task; /* separate cp/wb IO stats*/
653 nid_t i_xattr_nid; /* node id that contains xattrs */
654 loff_t last_disk_size; /* lastly written file size */
655
656 #ifdef CONFIG_QUOTA
657 struct dquot *i_dquot[MAXQUOTAS];
658
659 /* quota space reservation, managed internally by quota code */
660 qsize_t i_reserved_quota;
661 #endif
662 struct list_head dirty_list; /* dirty list for dirs and files */
663 struct list_head gdirty_list; /* linked in global dirty list */
664 struct list_head inmem_ilist; /* list for inmem inodes */
665 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
666 struct task_struct *inmem_task; /* store inmemory task */
667 struct mutex inmem_lock; /* lock for inmemory pages */
668 struct extent_tree *extent_tree; /* cached extent_tree entry */
669
670 /* avoid racing between foreground op and gc */
671 struct rw_semaphore i_gc_rwsem[2];
672 struct rw_semaphore i_mmap_sem;
673 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
674
675 int i_extra_isize; /* size of extra space located in i_addr */
676 kprojid_t i_projid; /* id for project quota */
677 int i_inline_xattr_size; /* inline xattr size */
678 struct timespec64 i_crtime; /* inode creation time */
679 struct timespec64 i_disk_time[4];/* inode disk times */
680 };
681
682 static inline void get_extent_info(struct extent_info *ext,
683 struct f2fs_extent *i_ext)
684 {
685 ext->fofs = le32_to_cpu(i_ext->fofs);
686 ext->blk = le32_to_cpu(i_ext->blk);
687 ext->len = le32_to_cpu(i_ext->len);
688 }
689
690 static inline void set_raw_extent(struct extent_info *ext,
691 struct f2fs_extent *i_ext)
692 {
693 i_ext->fofs = cpu_to_le32(ext->fofs);
694 i_ext->blk = cpu_to_le32(ext->blk);
695 i_ext->len = cpu_to_le32(ext->len);
696 }
697
698 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
699 u32 blk, unsigned int len)
700 {
701 ei->fofs = fofs;
702 ei->blk = blk;
703 ei->len = len;
704 }
705
706 static inline bool __is_discard_mergeable(struct discard_info *back,
707 struct discard_info *front)
708 {
709 return (back->lstart + back->len == front->lstart) &&
710 (back->len + front->len < DEF_MAX_DISCARD_LEN);
711 }
712
713 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
714 struct discard_info *back)
715 {
716 return __is_discard_mergeable(back, cur);
717 }
718
719 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
720 struct discard_info *front)
721 {
722 return __is_discard_mergeable(cur, front);
723 }
724
725 static inline bool __is_extent_mergeable(struct extent_info *back,
726 struct extent_info *front)
727 {
728 return (back->fofs + back->len == front->fofs &&
729 back->blk + back->len == front->blk);
730 }
731
732 static inline bool __is_back_mergeable(struct extent_info *cur,
733 struct extent_info *back)
734 {
735 return __is_extent_mergeable(back, cur);
736 }
737
738 static inline bool __is_front_mergeable(struct extent_info *cur,
739 struct extent_info *front)
740 {
741 return __is_extent_mergeable(cur, front);
742 }
743
744 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
745 static inline void __try_update_largest_extent(struct inode *inode,
746 struct extent_tree *et, struct extent_node *en)
747 {
748 if (en->ei.len > et->largest.len) {
749 et->largest = en->ei;
750 f2fs_mark_inode_dirty_sync(inode, true);
751 }
752 }
753
754 /*
755 * For free nid management
756 */
757 enum nid_state {
758 FREE_NID, /* newly added to free nid list */
759 PREALLOC_NID, /* it is preallocated */
760 MAX_NID_STATE,
761 };
762
763 struct f2fs_nm_info {
764 block_t nat_blkaddr; /* base disk address of NAT */
765 nid_t max_nid; /* maximum possible node ids */
766 nid_t available_nids; /* # of available node ids */
767 nid_t next_scan_nid; /* the next nid to be scanned */
768 unsigned int ram_thresh; /* control the memory footprint */
769 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
770 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
771
772 /* NAT cache management */
773 struct radix_tree_root nat_root;/* root of the nat entry cache */
774 struct radix_tree_root nat_set_root;/* root of the nat set cache */
775 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
776 struct list_head nat_entries; /* cached nat entry list (clean) */
777 unsigned int nat_cnt; /* the # of cached nat entries */
778 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
779 unsigned int nat_blocks; /* # of nat blocks */
780
781 /* free node ids management */
782 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
783 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
784 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
785 spinlock_t nid_list_lock; /* protect nid lists ops */
786 struct mutex build_lock; /* lock for build free nids */
787 unsigned char **free_nid_bitmap;
788 unsigned char *nat_block_bitmap;
789 unsigned short *free_nid_count; /* free nid count of NAT block */
790
791 /* for checkpoint */
792 char *nat_bitmap; /* NAT bitmap pointer */
793
794 unsigned int nat_bits_blocks; /* # of nat bits blocks */
795 unsigned char *nat_bits; /* NAT bits blocks */
796 unsigned char *full_nat_bits; /* full NAT pages */
797 unsigned char *empty_nat_bits; /* empty NAT pages */
798 #ifdef CONFIG_F2FS_CHECK_FS
799 char *nat_bitmap_mir; /* NAT bitmap mirror */
800 #endif
801 int bitmap_size; /* bitmap size */
802 };
803
804 /*
805 * this structure is used as one of function parameters.
806 * all the information are dedicated to a given direct node block determined
807 * by the data offset in a file.
808 */
809 struct dnode_of_data {
810 struct inode *inode; /* vfs inode pointer */
811 struct page *inode_page; /* its inode page, NULL is possible */
812 struct page *node_page; /* cached direct node page */
813 nid_t nid; /* node id of the direct node block */
814 unsigned int ofs_in_node; /* data offset in the node page */
815 bool inode_page_locked; /* inode page is locked or not */
816 bool node_changed; /* is node block changed */
817 char cur_level; /* level of hole node page */
818 char max_level; /* level of current page located */
819 block_t data_blkaddr; /* block address of the node block */
820 };
821
822 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
823 struct page *ipage, struct page *npage, nid_t nid)
824 {
825 memset(dn, 0, sizeof(*dn));
826 dn->inode = inode;
827 dn->inode_page = ipage;
828 dn->node_page = npage;
829 dn->nid = nid;
830 }
831
832 /*
833 * For SIT manager
834 *
835 * By default, there are 6 active log areas across the whole main area.
836 * When considering hot and cold data separation to reduce cleaning overhead,
837 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
838 * respectively.
839 * In the current design, you should not change the numbers intentionally.
840 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
841 * logs individually according to the underlying devices. (default: 6)
842 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
843 * data and 8 for node logs.
844 */
845 #define NR_CURSEG_DATA_TYPE (3)
846 #define NR_CURSEG_NODE_TYPE (3)
847 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
848
849 enum {
850 CURSEG_HOT_DATA = 0, /* directory entry blocks */
851 CURSEG_WARM_DATA, /* data blocks */
852 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
853 CURSEG_HOT_NODE, /* direct node blocks of directory files */
854 CURSEG_WARM_NODE, /* direct node blocks of normal files */
855 CURSEG_COLD_NODE, /* indirect node blocks */
856 NO_CHECK_TYPE,
857 };
858
859 struct flush_cmd {
860 struct completion wait;
861 struct llist_node llnode;
862 nid_t ino;
863 int ret;
864 };
865
866 struct flush_cmd_control {
867 struct task_struct *f2fs_issue_flush; /* flush thread */
868 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
869 atomic_t issued_flush; /* # of issued flushes */
870 atomic_t issing_flush; /* # of issing flushes */
871 struct llist_head issue_list; /* list for command issue */
872 struct llist_node *dispatch_list; /* list for command dispatch */
873 };
874
875 struct f2fs_sm_info {
876 struct sit_info *sit_info; /* whole segment information */
877 struct free_segmap_info *free_info; /* free segment information */
878 struct dirty_seglist_info *dirty_info; /* dirty segment information */
879 struct curseg_info *curseg_array; /* active segment information */
880
881 struct rw_semaphore curseg_lock; /* for preventing curseg change */
882
883 block_t seg0_blkaddr; /* block address of 0'th segment */
884 block_t main_blkaddr; /* start block address of main area */
885 block_t ssa_blkaddr; /* start block address of SSA area */
886
887 unsigned int segment_count; /* total # of segments */
888 unsigned int main_segments; /* # of segments in main area */
889 unsigned int reserved_segments; /* # of reserved segments */
890 unsigned int ovp_segments; /* # of overprovision segments */
891
892 /* a threshold to reclaim prefree segments */
893 unsigned int rec_prefree_segments;
894
895 /* for batched trimming */
896 unsigned int trim_sections; /* # of sections to trim */
897
898 struct list_head sit_entry_set; /* sit entry set list */
899
900 unsigned int ipu_policy; /* in-place-update policy */
901 unsigned int min_ipu_util; /* in-place-update threshold */
902 unsigned int min_fsync_blocks; /* threshold for fsync */
903 unsigned int min_hot_blocks; /* threshold for hot block allocation */
904 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
905
906 /* for flush command control */
907 struct flush_cmd_control *fcc_info;
908
909 /* for discard command control */
910 struct discard_cmd_control *dcc_info;
911 };
912
913 /*
914 * For superblock
915 */
916 /*
917 * COUNT_TYPE for monitoring
918 *
919 * f2fs monitors the number of several block types such as on-writeback,
920 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
921 */
922 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
923 enum count_type {
924 F2FS_DIRTY_DENTS,
925 F2FS_DIRTY_DATA,
926 F2FS_DIRTY_QDATA,
927 F2FS_DIRTY_NODES,
928 F2FS_DIRTY_META,
929 F2FS_INMEM_PAGES,
930 F2FS_DIRTY_IMETA,
931 F2FS_WB_CP_DATA,
932 F2FS_WB_DATA,
933 NR_COUNT_TYPE,
934 };
935
936 /*
937 * The below are the page types of bios used in submit_bio().
938 * The available types are:
939 * DATA User data pages. It operates as async mode.
940 * NODE Node pages. It operates as async mode.
941 * META FS metadata pages such as SIT, NAT, CP.
942 * NR_PAGE_TYPE The number of page types.
943 * META_FLUSH Make sure the previous pages are written
944 * with waiting the bio's completion
945 * ... Only can be used with META.
946 */
947 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
948 enum page_type {
949 DATA,
950 NODE,
951 META,
952 NR_PAGE_TYPE,
953 META_FLUSH,
954 INMEM, /* the below types are used by tracepoints only. */
955 INMEM_DROP,
956 INMEM_INVALIDATE,
957 INMEM_REVOKE,
958 IPU,
959 OPU,
960 };
961
962 enum temp_type {
963 HOT = 0, /* must be zero for meta bio */
964 WARM,
965 COLD,
966 NR_TEMP_TYPE,
967 };
968
969 enum need_lock_type {
970 LOCK_REQ = 0,
971 LOCK_DONE,
972 LOCK_RETRY,
973 };
974
975 enum cp_reason_type {
976 CP_NO_NEEDED,
977 CP_NON_REGULAR,
978 CP_HARDLINK,
979 CP_SB_NEED_CP,
980 CP_WRONG_PINO,
981 CP_NO_SPC_ROLL,
982 CP_NODE_NEED_CP,
983 CP_FASTBOOT_MODE,
984 CP_SPEC_LOG_NUM,
985 CP_RECOVER_DIR,
986 };
987
988 enum iostat_type {
989 APP_DIRECT_IO, /* app direct IOs */
990 APP_BUFFERED_IO, /* app buffered IOs */
991 APP_WRITE_IO, /* app write IOs */
992 APP_MAPPED_IO, /* app mapped IOs */
993 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
994 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
995 FS_META_IO, /* meta IOs from kworker/reclaimer */
996 FS_GC_DATA_IO, /* data IOs from forground gc */
997 FS_GC_NODE_IO, /* node IOs from forground gc */
998 FS_CP_DATA_IO, /* data IOs from checkpoint */
999 FS_CP_NODE_IO, /* node IOs from checkpoint */
1000 FS_CP_META_IO, /* meta IOs from checkpoint */
1001 FS_DISCARD, /* discard */
1002 NR_IO_TYPE,
1003 };
1004
1005 struct f2fs_io_info {
1006 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1007 nid_t ino; /* inode number */
1008 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1009 enum temp_type temp; /* contains HOT/WARM/COLD */
1010 int op; /* contains REQ_OP_ */
1011 int op_flags; /* req_flag_bits */
1012 block_t new_blkaddr; /* new block address to be written */
1013 block_t old_blkaddr; /* old block address before Cow */
1014 struct page *page; /* page to be written */
1015 struct page *encrypted_page; /* encrypted page */
1016 struct list_head list; /* serialize IOs */
1017 bool submitted; /* indicate IO submission */
1018 int need_lock; /* indicate we need to lock cp_rwsem */
1019 bool in_list; /* indicate fio is in io_list */
1020 bool is_meta; /* indicate borrow meta inode mapping or not */
1021 bool retry; /* need to reallocate block address */
1022 enum iostat_type io_type; /* io type */
1023 struct writeback_control *io_wbc; /* writeback control */
1024 unsigned char version; /* version of the node */
1025 };
1026
1027 #define is_read_io(rw) ((rw) == READ)
1028 struct f2fs_bio_info {
1029 struct f2fs_sb_info *sbi; /* f2fs superblock */
1030 struct bio *bio; /* bios to merge */
1031 sector_t last_block_in_bio; /* last block number */
1032 struct f2fs_io_info fio; /* store buffered io info. */
1033 struct rw_semaphore io_rwsem; /* blocking op for bio */
1034 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1035 struct list_head io_list; /* track fios */
1036 };
1037
1038 #define FDEV(i) (sbi->devs[i])
1039 #define RDEV(i) (raw_super->devs[i])
1040 struct f2fs_dev_info {
1041 struct block_device *bdev;
1042 char path[MAX_PATH_LEN];
1043 unsigned int total_segments;
1044 block_t start_blk;
1045 block_t end_blk;
1046 #ifdef CONFIG_BLK_DEV_ZONED
1047 unsigned int nr_blkz; /* Total number of zones */
1048 u8 *blkz_type; /* Array of zones type */
1049 #endif
1050 };
1051
1052 enum inode_type {
1053 DIR_INODE, /* for dirty dir inode */
1054 FILE_INODE, /* for dirty regular/symlink inode */
1055 DIRTY_META, /* for all dirtied inode metadata */
1056 ATOMIC_FILE, /* for all atomic files */
1057 NR_INODE_TYPE,
1058 };
1059
1060 /* for inner inode cache management */
1061 struct inode_management {
1062 struct radix_tree_root ino_root; /* ino entry array */
1063 spinlock_t ino_lock; /* for ino entry lock */
1064 struct list_head ino_list; /* inode list head */
1065 unsigned long ino_num; /* number of entries */
1066 };
1067
1068 /* For s_flag in struct f2fs_sb_info */
1069 enum {
1070 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1071 SBI_IS_CLOSE, /* specify unmounting */
1072 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1073 SBI_POR_DOING, /* recovery is doing or not */
1074 SBI_NEED_SB_WRITE, /* need to recover superblock */
1075 SBI_NEED_CP, /* need to checkpoint */
1076 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1077 };
1078
1079 enum {
1080 CP_TIME,
1081 REQ_TIME,
1082 MAX_TIME,
1083 };
1084
1085 enum {
1086 GC_NORMAL,
1087 GC_IDLE_CB,
1088 GC_IDLE_GREEDY,
1089 GC_URGENT,
1090 };
1091
1092 enum {
1093 WHINT_MODE_OFF, /* not pass down write hints */
1094 WHINT_MODE_USER, /* try to pass down hints given by users */
1095 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1096 };
1097
1098 enum {
1099 ALLOC_MODE_DEFAULT, /* stay default */
1100 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1101 };
1102
1103 enum fsync_mode {
1104 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1105 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1106 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1107 };
1108
1109 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1110 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1111 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1112 #else
1113 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1114 #endif
1115
1116 struct f2fs_sb_info {
1117 struct super_block *sb; /* pointer to VFS super block */
1118 struct proc_dir_entry *s_proc; /* proc entry */
1119 struct f2fs_super_block *raw_super; /* raw super block pointer */
1120 struct rw_semaphore sb_lock; /* lock for raw super block */
1121 int valid_super_block; /* valid super block no */
1122 unsigned long s_flag; /* flags for sbi */
1123
1124 #ifdef CONFIG_BLK_DEV_ZONED
1125 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1126 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1127 #endif
1128
1129 /* for node-related operations */
1130 struct f2fs_nm_info *nm_info; /* node manager */
1131 struct inode *node_inode; /* cache node blocks */
1132
1133 /* for segment-related operations */
1134 struct f2fs_sm_info *sm_info; /* segment manager */
1135
1136 /* for bio operations */
1137 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1138 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1139 /* bio ordering for NODE/DATA */
1140 /* keep migration IO order for LFS mode */
1141 struct rw_semaphore io_order_lock;
1142 mempool_t *write_io_dummy; /* Dummy pages */
1143
1144 /* for checkpoint */
1145 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1146 int cur_cp_pack; /* remain current cp pack */
1147 spinlock_t cp_lock; /* for flag in ckpt */
1148 struct inode *meta_inode; /* cache meta blocks */
1149 struct mutex cp_mutex; /* checkpoint procedure lock */
1150 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1151 struct rw_semaphore node_write; /* locking node writes */
1152 struct rw_semaphore node_change; /* locking node change */
1153 wait_queue_head_t cp_wait;
1154 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1155 long interval_time[MAX_TIME]; /* to store thresholds */
1156
1157 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1158
1159 /* for orphan inode, use 0'th array */
1160 unsigned int max_orphans; /* max orphan inodes */
1161
1162 /* for inode management */
1163 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1164 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1165
1166 /* for extent tree cache */
1167 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1168 struct mutex extent_tree_lock; /* locking extent radix tree */
1169 struct list_head extent_list; /* lru list for shrinker */
1170 spinlock_t extent_lock; /* locking extent lru list */
1171 atomic_t total_ext_tree; /* extent tree count */
1172 struct list_head zombie_list; /* extent zombie tree list */
1173 atomic_t total_zombie_tree; /* extent zombie tree count */
1174 atomic_t total_ext_node; /* extent info count */
1175
1176 /* basic filesystem units */
1177 unsigned int log_sectors_per_block; /* log2 sectors per block */
1178 unsigned int log_blocksize; /* log2 block size */
1179 unsigned int blocksize; /* block size */
1180 unsigned int root_ino_num; /* root inode number*/
1181 unsigned int node_ino_num; /* node inode number*/
1182 unsigned int meta_ino_num; /* meta inode number*/
1183 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1184 unsigned int blocks_per_seg; /* blocks per segment */
1185 unsigned int segs_per_sec; /* segments per section */
1186 unsigned int secs_per_zone; /* sections per zone */
1187 unsigned int total_sections; /* total section count */
1188 unsigned int total_node_count; /* total node block count */
1189 unsigned int total_valid_node_count; /* valid node block count */
1190 loff_t max_file_blocks; /* max block index of file */
1191 int dir_level; /* directory level */
1192 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */
1193 int readdir_ra; /* readahead inode in readdir */
1194
1195 block_t user_block_count; /* # of user blocks */
1196 block_t total_valid_block_count; /* # of valid blocks */
1197 block_t discard_blks; /* discard command candidats */
1198 block_t last_valid_block_count; /* for recovery */
1199 block_t reserved_blocks; /* configurable reserved blocks */
1200 block_t current_reserved_blocks; /* current reserved blocks */
1201
1202 unsigned int nquota_files; /* # of quota sysfile */
1203
1204 u32 s_next_generation; /* for NFS support */
1205
1206 /* # of pages, see count_type */
1207 atomic_t nr_pages[NR_COUNT_TYPE];
1208 /* # of allocated blocks */
1209 struct percpu_counter alloc_valid_block_count;
1210
1211 /* writeback control */
1212 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1213
1214 /* valid inode count */
1215 struct percpu_counter total_valid_inode_count;
1216
1217 struct f2fs_mount_info mount_opt; /* mount options */
1218
1219 /* for cleaning operations */
1220 struct mutex gc_mutex; /* mutex for GC */
1221 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1222 unsigned int cur_victim_sec; /* current victim section num */
1223 unsigned int gc_mode; /* current GC state */
1224 /* for skip statistic */
1225 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1226
1227 /* threshold for gc trials on pinned files */
1228 u64 gc_pin_file_threshold;
1229
1230 /* maximum # of trials to find a victim segment for SSR and GC */
1231 unsigned int max_victim_search;
1232
1233 /*
1234 * for stat information.
1235 * one is for the LFS mode, and the other is for the SSR mode.
1236 */
1237 #ifdef CONFIG_F2FS_STAT_FS
1238 struct f2fs_stat_info *stat_info; /* FS status information */
1239 unsigned int segment_count[2]; /* # of allocated segments */
1240 unsigned int block_count[2]; /* # of allocated blocks */
1241 atomic_t inplace_count; /* # of inplace update */
1242 atomic64_t total_hit_ext; /* # of lookup extent cache */
1243 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1244 atomic64_t read_hit_largest; /* # of hit largest extent node */
1245 atomic64_t read_hit_cached; /* # of hit cached extent node */
1246 atomic_t inline_xattr; /* # of inline_xattr inodes */
1247 atomic_t inline_inode; /* # of inline_data inodes */
1248 atomic_t inline_dir; /* # of inline_dentry inodes */
1249 atomic_t aw_cnt; /* # of atomic writes */
1250 atomic_t vw_cnt; /* # of volatile writes */
1251 atomic_t max_aw_cnt; /* max # of atomic writes */
1252 atomic_t max_vw_cnt; /* max # of volatile writes */
1253 int bg_gc; /* background gc calls */
1254 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1255 #endif
1256 spinlock_t stat_lock; /* lock for stat operations */
1257
1258 /* For app/fs IO statistics */
1259 spinlock_t iostat_lock;
1260 unsigned long long write_iostat[NR_IO_TYPE];
1261 bool iostat_enable;
1262
1263 /* For sysfs suppport */
1264 struct kobject s_kobj;
1265 struct completion s_kobj_unregister;
1266
1267 /* For shrinker support */
1268 struct list_head s_list;
1269 int s_ndevs; /* number of devices */
1270 struct f2fs_dev_info *devs; /* for device list */
1271 unsigned int dirty_device; /* for checkpoint data flush */
1272 spinlock_t dev_lock; /* protect dirty_device */
1273 struct mutex umount_mutex;
1274 unsigned int shrinker_run_no;
1275
1276 /* For write statistics */
1277 u64 sectors_written_start;
1278 u64 kbytes_written;
1279
1280 /* Reference to checksum algorithm driver via cryptoapi */
1281 struct crypto_shash *s_chksum_driver;
1282
1283 /* Precomputed FS UUID checksum for seeding other checksums */
1284 __u32 s_chksum_seed;
1285 };
1286
1287 #ifdef CONFIG_F2FS_FAULT_INJECTION
1288 #define f2fs_show_injection_info(type) \
1289 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1290 KERN_INFO, f2fs_fault_name[type], \
1291 __func__, __builtin_return_address(0))
1292 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1293 {
1294 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1295
1296 if (!ffi->inject_rate)
1297 return false;
1298
1299 if (!IS_FAULT_SET(ffi, type))
1300 return false;
1301
1302 atomic_inc(&ffi->inject_ops);
1303 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1304 atomic_set(&ffi->inject_ops, 0);
1305 return true;
1306 }
1307 return false;
1308 }
1309 #endif
1310
1311 /* For write statistics. Suppose sector size is 512 bytes,
1312 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1313 */
1314 #define BD_PART_WRITTEN(s) \
1315 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1316 (s)->sectors_written_start) >> 1)
1317
1318 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1319 {
1320 sbi->last_time[type] = jiffies;
1321 }
1322
1323 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1324 {
1325 unsigned long interval = sbi->interval_time[type] * HZ;
1326
1327 return time_after(jiffies, sbi->last_time[type] + interval);
1328 }
1329
1330 static inline bool is_idle(struct f2fs_sb_info *sbi)
1331 {
1332 struct block_device *bdev = sbi->sb->s_bdev;
1333 struct request_queue *q = bdev_get_queue(bdev);
1334 struct request_list *rl = &q->root_rl;
1335
1336 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1337 return 0;
1338
1339 return f2fs_time_over(sbi, REQ_TIME);
1340 }
1341
1342 /*
1343 * Inline functions
1344 */
1345 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1346 const void *address, unsigned int length)
1347 {
1348 struct {
1349 struct shash_desc shash;
1350 char ctx[4];
1351 } desc;
1352 int err;
1353
1354 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1355
1356 desc.shash.tfm = sbi->s_chksum_driver;
1357 desc.shash.flags = 0;
1358 *(u32 *)desc.ctx = crc;
1359
1360 err = crypto_shash_update(&desc.shash, address, length);
1361 BUG_ON(err);
1362
1363 return *(u32 *)desc.ctx;
1364 }
1365
1366 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1367 unsigned int length)
1368 {
1369 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1370 }
1371
1372 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1373 void *buf, size_t buf_size)
1374 {
1375 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1376 }
1377
1378 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1379 const void *address, unsigned int length)
1380 {
1381 return __f2fs_crc32(sbi, crc, address, length);
1382 }
1383
1384 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1385 {
1386 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1387 }
1388
1389 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1390 {
1391 return sb->s_fs_info;
1392 }
1393
1394 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1395 {
1396 return F2FS_SB(inode->i_sb);
1397 }
1398
1399 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1400 {
1401 return F2FS_I_SB(mapping->host);
1402 }
1403
1404 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1405 {
1406 return F2FS_M_SB(page->mapping);
1407 }
1408
1409 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1410 {
1411 return (struct f2fs_super_block *)(sbi->raw_super);
1412 }
1413
1414 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1415 {
1416 return (struct f2fs_checkpoint *)(sbi->ckpt);
1417 }
1418
1419 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1420 {
1421 return (struct f2fs_node *)page_address(page);
1422 }
1423
1424 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1425 {
1426 return &((struct f2fs_node *)page_address(page))->i;
1427 }
1428
1429 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1430 {
1431 return (struct f2fs_nm_info *)(sbi->nm_info);
1432 }
1433
1434 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1435 {
1436 return (struct f2fs_sm_info *)(sbi->sm_info);
1437 }
1438
1439 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1440 {
1441 return (struct sit_info *)(SM_I(sbi)->sit_info);
1442 }
1443
1444 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1445 {
1446 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1447 }
1448
1449 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1450 {
1451 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1452 }
1453
1454 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1455 {
1456 return sbi->meta_inode->i_mapping;
1457 }
1458
1459 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1460 {
1461 return sbi->node_inode->i_mapping;
1462 }
1463
1464 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1465 {
1466 return test_bit(type, &sbi->s_flag);
1467 }
1468
1469 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1470 {
1471 set_bit(type, &sbi->s_flag);
1472 }
1473
1474 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1475 {
1476 clear_bit(type, &sbi->s_flag);
1477 }
1478
1479 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1480 {
1481 return le64_to_cpu(cp->checkpoint_ver);
1482 }
1483
1484 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1485 {
1486 if (type < F2FS_MAX_QUOTAS)
1487 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1488 return 0;
1489 }
1490
1491 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1492 {
1493 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1494 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1495 }
1496
1497 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1498 {
1499 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1500
1501 return ckpt_flags & f;
1502 }
1503
1504 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1505 {
1506 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1507 }
1508
1509 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1510 {
1511 unsigned int ckpt_flags;
1512
1513 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1514 ckpt_flags |= f;
1515 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1516 }
1517
1518 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1519 {
1520 unsigned long flags;
1521
1522 spin_lock_irqsave(&sbi->cp_lock, flags);
1523 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1524 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1525 }
1526
1527 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1528 {
1529 unsigned int ckpt_flags;
1530
1531 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1532 ckpt_flags &= (~f);
1533 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1534 }
1535
1536 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1537 {
1538 unsigned long flags;
1539
1540 spin_lock_irqsave(&sbi->cp_lock, flags);
1541 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1542 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1543 }
1544
1545 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1546 {
1547 unsigned long flags;
1548
1549 set_sbi_flag(sbi, SBI_NEED_FSCK);
1550
1551 if (lock)
1552 spin_lock_irqsave(&sbi->cp_lock, flags);
1553 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1554 kfree(NM_I(sbi)->nat_bits);
1555 NM_I(sbi)->nat_bits = NULL;
1556 if (lock)
1557 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1558 }
1559
1560 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1561 struct cp_control *cpc)
1562 {
1563 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1564
1565 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1566 }
1567
1568 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1569 {
1570 down_read(&sbi->cp_rwsem);
1571 }
1572
1573 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1574 {
1575 return down_read_trylock(&sbi->cp_rwsem);
1576 }
1577
1578 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1579 {
1580 up_read(&sbi->cp_rwsem);
1581 }
1582
1583 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1584 {
1585 down_write(&sbi->cp_rwsem);
1586 }
1587
1588 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1589 {
1590 up_write(&sbi->cp_rwsem);
1591 }
1592
1593 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1594 {
1595 int reason = CP_SYNC;
1596
1597 if (test_opt(sbi, FASTBOOT))
1598 reason = CP_FASTBOOT;
1599 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1600 reason = CP_UMOUNT;
1601 return reason;
1602 }
1603
1604 static inline bool __remain_node_summaries(int reason)
1605 {
1606 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1607 }
1608
1609 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1610 {
1611 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1612 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1613 }
1614
1615 /*
1616 * Check whether the inode has blocks or not
1617 */
1618 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1619 {
1620 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1621
1622 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1623 }
1624
1625 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1626 {
1627 return ofs == XATTR_NODE_OFFSET;
1628 }
1629
1630 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1631 struct inode *inode, bool cap)
1632 {
1633 if (!inode)
1634 return true;
1635 if (!test_opt(sbi, RESERVE_ROOT))
1636 return false;
1637 if (IS_NOQUOTA(inode))
1638 return true;
1639 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1640 return true;
1641 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1642 in_group_p(F2FS_OPTION(sbi).s_resgid))
1643 return true;
1644 if (cap && capable(CAP_SYS_RESOURCE))
1645 return true;
1646 return false;
1647 }
1648
1649 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1650 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1651 struct inode *inode, blkcnt_t *count)
1652 {
1653 blkcnt_t diff = 0, release = 0;
1654 block_t avail_user_block_count;
1655 int ret;
1656
1657 ret = dquot_reserve_block(inode, *count);
1658 if (ret)
1659 return ret;
1660
1661 #ifdef CONFIG_F2FS_FAULT_INJECTION
1662 if (time_to_inject(sbi, FAULT_BLOCK)) {
1663 f2fs_show_injection_info(FAULT_BLOCK);
1664 release = *count;
1665 goto enospc;
1666 }
1667 #endif
1668 /*
1669 * let's increase this in prior to actual block count change in order
1670 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1671 */
1672 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1673
1674 spin_lock(&sbi->stat_lock);
1675 sbi->total_valid_block_count += (block_t)(*count);
1676 avail_user_block_count = sbi->user_block_count -
1677 sbi->current_reserved_blocks;
1678
1679 if (!__allow_reserved_blocks(sbi, inode, true))
1680 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1681
1682 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1683 diff = sbi->total_valid_block_count - avail_user_block_count;
1684 if (diff > *count)
1685 diff = *count;
1686 *count -= diff;
1687 release = diff;
1688 sbi->total_valid_block_count -= diff;
1689 if (!*count) {
1690 spin_unlock(&sbi->stat_lock);
1691 goto enospc;
1692 }
1693 }
1694 spin_unlock(&sbi->stat_lock);
1695
1696 if (unlikely(release)) {
1697 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1698 dquot_release_reservation_block(inode, release);
1699 }
1700 f2fs_i_blocks_write(inode, *count, true, true);
1701 return 0;
1702
1703 enospc:
1704 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1705 dquot_release_reservation_block(inode, release);
1706 return -ENOSPC;
1707 }
1708
1709 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1710 struct inode *inode,
1711 block_t count)
1712 {
1713 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1714
1715 spin_lock(&sbi->stat_lock);
1716 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1717 f2fs_bug_on(sbi, inode->i_blocks < sectors);
1718 sbi->total_valid_block_count -= (block_t)count;
1719 if (sbi->reserved_blocks &&
1720 sbi->current_reserved_blocks < sbi->reserved_blocks)
1721 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1722 sbi->current_reserved_blocks + count);
1723 spin_unlock(&sbi->stat_lock);
1724 f2fs_i_blocks_write(inode, count, false, true);
1725 }
1726
1727 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1728 {
1729 atomic_inc(&sbi->nr_pages[count_type]);
1730
1731 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1732 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1733 return;
1734
1735 set_sbi_flag(sbi, SBI_IS_DIRTY);
1736 }
1737
1738 static inline void inode_inc_dirty_pages(struct inode *inode)
1739 {
1740 atomic_inc(&F2FS_I(inode)->dirty_pages);
1741 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1742 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1743 if (IS_NOQUOTA(inode))
1744 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1745 }
1746
1747 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1748 {
1749 atomic_dec(&sbi->nr_pages[count_type]);
1750 }
1751
1752 static inline void inode_dec_dirty_pages(struct inode *inode)
1753 {
1754 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1755 !S_ISLNK(inode->i_mode))
1756 return;
1757
1758 atomic_dec(&F2FS_I(inode)->dirty_pages);
1759 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1760 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1761 if (IS_NOQUOTA(inode))
1762 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1763 }
1764
1765 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1766 {
1767 return atomic_read(&sbi->nr_pages[count_type]);
1768 }
1769
1770 static inline int get_dirty_pages(struct inode *inode)
1771 {
1772 return atomic_read(&F2FS_I(inode)->dirty_pages);
1773 }
1774
1775 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1776 {
1777 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1778 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1779 sbi->log_blocks_per_seg;
1780
1781 return segs / sbi->segs_per_sec;
1782 }
1783
1784 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1785 {
1786 return sbi->total_valid_block_count;
1787 }
1788
1789 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1790 {
1791 return sbi->discard_blks;
1792 }
1793
1794 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1795 {
1796 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1797
1798 /* return NAT or SIT bitmap */
1799 if (flag == NAT_BITMAP)
1800 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1801 else if (flag == SIT_BITMAP)
1802 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1803
1804 return 0;
1805 }
1806
1807 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1808 {
1809 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1810 }
1811
1812 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1813 {
1814 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1815 int offset;
1816
1817 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1818 offset = (flag == SIT_BITMAP) ?
1819 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1820 return &ckpt->sit_nat_version_bitmap + offset;
1821 }
1822
1823 if (__cp_payload(sbi) > 0) {
1824 if (flag == NAT_BITMAP)
1825 return &ckpt->sit_nat_version_bitmap;
1826 else
1827 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1828 } else {
1829 offset = (flag == NAT_BITMAP) ?
1830 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1831 return &ckpt->sit_nat_version_bitmap + offset;
1832 }
1833 }
1834
1835 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1836 {
1837 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1838
1839 if (sbi->cur_cp_pack == 2)
1840 start_addr += sbi->blocks_per_seg;
1841 return start_addr;
1842 }
1843
1844 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1845 {
1846 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1847
1848 if (sbi->cur_cp_pack == 1)
1849 start_addr += sbi->blocks_per_seg;
1850 return start_addr;
1851 }
1852
1853 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1854 {
1855 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1856 }
1857
1858 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1859 {
1860 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1861 }
1862
1863 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1864 struct inode *inode, bool is_inode)
1865 {
1866 block_t valid_block_count;
1867 unsigned int valid_node_count;
1868 bool quota = inode && !is_inode;
1869
1870 if (quota) {
1871 int ret = dquot_reserve_block(inode, 1);
1872 if (ret)
1873 return ret;
1874 }
1875
1876 #ifdef CONFIG_F2FS_FAULT_INJECTION
1877 if (time_to_inject(sbi, FAULT_BLOCK)) {
1878 f2fs_show_injection_info(FAULT_BLOCK);
1879 goto enospc;
1880 }
1881 #endif
1882
1883 spin_lock(&sbi->stat_lock);
1884
1885 valid_block_count = sbi->total_valid_block_count +
1886 sbi->current_reserved_blocks + 1;
1887
1888 if (!__allow_reserved_blocks(sbi, inode, false))
1889 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1890
1891 if (unlikely(valid_block_count > sbi->user_block_count)) {
1892 spin_unlock(&sbi->stat_lock);
1893 goto enospc;
1894 }
1895
1896 valid_node_count = sbi->total_valid_node_count + 1;
1897 if (unlikely(valid_node_count > sbi->total_node_count)) {
1898 spin_unlock(&sbi->stat_lock);
1899 goto enospc;
1900 }
1901
1902 sbi->total_valid_node_count++;
1903 sbi->total_valid_block_count++;
1904 spin_unlock(&sbi->stat_lock);
1905
1906 if (inode) {
1907 if (is_inode)
1908 f2fs_mark_inode_dirty_sync(inode, true);
1909 else
1910 f2fs_i_blocks_write(inode, 1, true, true);
1911 }
1912
1913 percpu_counter_inc(&sbi->alloc_valid_block_count);
1914 return 0;
1915
1916 enospc:
1917 if (quota)
1918 dquot_release_reservation_block(inode, 1);
1919 return -ENOSPC;
1920 }
1921
1922 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1923 struct inode *inode, bool is_inode)
1924 {
1925 spin_lock(&sbi->stat_lock);
1926
1927 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1928 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1929 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1930
1931 sbi->total_valid_node_count--;
1932 sbi->total_valid_block_count--;
1933 if (sbi->reserved_blocks &&
1934 sbi->current_reserved_blocks < sbi->reserved_blocks)
1935 sbi->current_reserved_blocks++;
1936
1937 spin_unlock(&sbi->stat_lock);
1938
1939 if (!is_inode)
1940 f2fs_i_blocks_write(inode, 1, false, true);
1941 }
1942
1943 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1944 {
1945 return sbi->total_valid_node_count;
1946 }
1947
1948 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1949 {
1950 percpu_counter_inc(&sbi->total_valid_inode_count);
1951 }
1952
1953 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1954 {
1955 percpu_counter_dec(&sbi->total_valid_inode_count);
1956 }
1957
1958 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1959 {
1960 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1961 }
1962
1963 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1964 pgoff_t index, bool for_write)
1965 {
1966 #ifdef CONFIG_F2FS_FAULT_INJECTION
1967 struct page *page = find_lock_page(mapping, index);
1968
1969 if (page)
1970 return page;
1971
1972 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1973 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1974 return NULL;
1975 }
1976 #endif
1977 if (!for_write)
1978 return grab_cache_page(mapping, index);
1979 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1980 }
1981
1982 static inline struct page *f2fs_pagecache_get_page(
1983 struct address_space *mapping, pgoff_t index,
1984 int fgp_flags, gfp_t gfp_mask)
1985 {
1986 #ifdef CONFIG_F2FS_FAULT_INJECTION
1987 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1988 f2fs_show_injection_info(FAULT_PAGE_GET);
1989 return NULL;
1990 }
1991 #endif
1992 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1993 }
1994
1995 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1996 {
1997 char *src_kaddr = kmap(src);
1998 char *dst_kaddr = kmap(dst);
1999
2000 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2001 kunmap(dst);
2002 kunmap(src);
2003 }
2004
2005 static inline void f2fs_put_page(struct page *page, int unlock)
2006 {
2007 if (!page)
2008 return;
2009
2010 if (unlock) {
2011 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2012 unlock_page(page);
2013 }
2014 put_page(page);
2015 }
2016
2017 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2018 {
2019 if (dn->node_page)
2020 f2fs_put_page(dn->node_page, 1);
2021 if (dn->inode_page && dn->node_page != dn->inode_page)
2022 f2fs_put_page(dn->inode_page, 0);
2023 dn->node_page = NULL;
2024 dn->inode_page = NULL;
2025 }
2026
2027 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2028 size_t size)
2029 {
2030 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2031 }
2032
2033 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2034 gfp_t flags)
2035 {
2036 void *entry;
2037
2038 entry = kmem_cache_alloc(cachep, flags);
2039 if (!entry)
2040 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2041 return entry;
2042 }
2043
2044 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2045 int npages, bool no_fail)
2046 {
2047 struct bio *bio;
2048
2049 if (no_fail) {
2050 /* No failure on bio allocation */
2051 bio = bio_alloc(GFP_NOIO, npages);
2052 if (!bio)
2053 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2054 return bio;
2055 }
2056 #ifdef CONFIG_F2FS_FAULT_INJECTION
2057 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2058 f2fs_show_injection_info(FAULT_ALLOC_BIO);
2059 return NULL;
2060 }
2061 #endif
2062 return bio_alloc(GFP_KERNEL, npages);
2063 }
2064
2065 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2066 unsigned long index, void *item)
2067 {
2068 while (radix_tree_insert(root, index, item))
2069 cond_resched();
2070 }
2071
2072 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2073
2074 static inline bool IS_INODE(struct page *page)
2075 {
2076 struct f2fs_node *p = F2FS_NODE(page);
2077
2078 return RAW_IS_INODE(p);
2079 }
2080
2081 static inline int offset_in_addr(struct f2fs_inode *i)
2082 {
2083 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2084 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2085 }
2086
2087 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2088 {
2089 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2090 }
2091
2092 static inline int f2fs_has_extra_attr(struct inode *inode);
2093 static inline block_t datablock_addr(struct inode *inode,
2094 struct page *node_page, unsigned int offset)
2095 {
2096 struct f2fs_node *raw_node;
2097 __le32 *addr_array;
2098 int base = 0;
2099 bool is_inode = IS_INODE(node_page);
2100
2101 raw_node = F2FS_NODE(node_page);
2102
2103 /* from GC path only */
2104 if (is_inode) {
2105 if (!inode)
2106 base = offset_in_addr(&raw_node->i);
2107 else if (f2fs_has_extra_attr(inode))
2108 base = get_extra_isize(inode);
2109 }
2110
2111 addr_array = blkaddr_in_node(raw_node);
2112 return le32_to_cpu(addr_array[base + offset]);
2113 }
2114
2115 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2116 {
2117 int mask;
2118
2119 addr += (nr >> 3);
2120 mask = 1 << (7 - (nr & 0x07));
2121 return mask & *addr;
2122 }
2123
2124 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2125 {
2126 int mask;
2127
2128 addr += (nr >> 3);
2129 mask = 1 << (7 - (nr & 0x07));
2130 *addr |= mask;
2131 }
2132
2133 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2134 {
2135 int mask;
2136
2137 addr += (nr >> 3);
2138 mask = 1 << (7 - (nr & 0x07));
2139 *addr &= ~mask;
2140 }
2141
2142 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2143 {
2144 int mask;
2145 int ret;
2146
2147 addr += (nr >> 3);
2148 mask = 1 << (7 - (nr & 0x07));
2149 ret = mask & *addr;
2150 *addr |= mask;
2151 return ret;
2152 }
2153
2154 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2155 {
2156 int mask;
2157 int ret;
2158
2159 addr += (nr >> 3);
2160 mask = 1 << (7 - (nr & 0x07));
2161 ret = mask & *addr;
2162 *addr &= ~mask;
2163 return ret;
2164 }
2165
2166 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2167 {
2168 int mask;
2169
2170 addr += (nr >> 3);
2171 mask = 1 << (7 - (nr & 0x07));
2172 *addr ^= mask;
2173 }
2174
2175 /*
2176 * Inode flags
2177 */
2178 #define F2FS_SECRM_FL 0x00000001 /* Secure deletion */
2179 #define F2FS_UNRM_FL 0x00000002 /* Undelete */
2180 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2181 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2182 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2183 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2184 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2185 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2186 /* Reserved for compression usage... */
2187 #define F2FS_DIRTY_FL 0x00000100
2188 #define F2FS_COMPRBLK_FL 0x00000200 /* One or more compressed clusters */
2189 #define F2FS_NOCOMPR_FL 0x00000400 /* Don't compress */
2190 #define F2FS_ENCRYPT_FL 0x00000800 /* encrypted file */
2191 /* End compression flags --- maybe not all used */
2192 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2193 #define F2FS_IMAGIC_FL 0x00002000 /* AFS directory */
2194 #define F2FS_JOURNAL_DATA_FL 0x00004000 /* file data should be journaled */
2195 #define F2FS_NOTAIL_FL 0x00008000 /* file tail should not be merged */
2196 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2197 #define F2FS_TOPDIR_FL 0x00020000 /* Top of directory hierarchies*/
2198 #define F2FS_HUGE_FILE_FL 0x00040000 /* Set to each huge file */
2199 #define F2FS_EXTENTS_FL 0x00080000 /* Inode uses extents */
2200 #define F2FS_EA_INODE_FL 0x00200000 /* Inode used for large EA */
2201 #define F2FS_EOFBLOCKS_FL 0x00400000 /* Blocks allocated beyond EOF */
2202 #define F2FS_INLINE_DATA_FL 0x10000000 /* Inode has inline data. */
2203 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2204 #define F2FS_RESERVED_FL 0x80000000 /* reserved for ext4 lib */
2205
2206 #define F2FS_FL_USER_VISIBLE 0x304BDFFF /* User visible flags */
2207 #define F2FS_FL_USER_MODIFIABLE 0x204BC0FF /* User modifiable flags */
2208
2209 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2210 #define F2FS_FL_XFLAG_VISIBLE (F2FS_SYNC_FL | \
2211 F2FS_IMMUTABLE_FL | \
2212 F2FS_APPEND_FL | \
2213 F2FS_NODUMP_FL | \
2214 F2FS_NOATIME_FL | \
2215 F2FS_PROJINHERIT_FL)
2216
2217 /* Flags that should be inherited by new inodes from their parent. */
2218 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2219 F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2220 F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2221 F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2222 F2FS_PROJINHERIT_FL)
2223
2224 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2225 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2226
2227 /* Flags that are appropriate for non-directories/regular files. */
2228 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2229
2230 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2231 {
2232 if (S_ISDIR(mode))
2233 return flags;
2234 else if (S_ISREG(mode))
2235 return flags & F2FS_REG_FLMASK;
2236 else
2237 return flags & F2FS_OTHER_FLMASK;
2238 }
2239
2240 /* used for f2fs_inode_info->flags */
2241 enum {
2242 FI_NEW_INODE, /* indicate newly allocated inode */
2243 FI_DIRTY_INODE, /* indicate inode is dirty or not */
2244 FI_AUTO_RECOVER, /* indicate inode is recoverable */
2245 FI_DIRTY_DIR, /* indicate directory has dirty pages */
2246 FI_INC_LINK, /* need to increment i_nlink */
2247 FI_ACL_MODE, /* indicate acl mode */
2248 FI_NO_ALLOC, /* should not allocate any blocks */
2249 FI_FREE_NID, /* free allocated nide */
2250 FI_NO_EXTENT, /* not to use the extent cache */
2251 FI_INLINE_XATTR, /* used for inline xattr */
2252 FI_INLINE_DATA, /* used for inline data*/
2253 FI_INLINE_DENTRY, /* used for inline dentry */
2254 FI_APPEND_WRITE, /* inode has appended data */
2255 FI_UPDATE_WRITE, /* inode has in-place-update data */
2256 FI_NEED_IPU, /* used for ipu per file */
2257 FI_ATOMIC_FILE, /* indicate atomic file */
2258 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2259 FI_VOLATILE_FILE, /* indicate volatile file */
2260 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2261 FI_DROP_CACHE, /* drop dirty page cache */
2262 FI_DATA_EXIST, /* indicate data exists */
2263 FI_INLINE_DOTS, /* indicate inline dot dentries */
2264 FI_DO_DEFRAG, /* indicate defragment is running */
2265 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2266 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2267 FI_HOT_DATA, /* indicate file is hot */
2268 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2269 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2270 FI_PIN_FILE, /* indicate file should not be gced */
2271 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2272 };
2273
2274 static inline void __mark_inode_dirty_flag(struct inode *inode,
2275 int flag, bool set)
2276 {
2277 switch (flag) {
2278 case FI_INLINE_XATTR:
2279 case FI_INLINE_DATA:
2280 case FI_INLINE_DENTRY:
2281 case FI_NEW_INODE:
2282 if (set)
2283 return;
2284 case FI_DATA_EXIST:
2285 case FI_INLINE_DOTS:
2286 case FI_PIN_FILE:
2287 f2fs_mark_inode_dirty_sync(inode, true);
2288 }
2289 }
2290
2291 static inline void set_inode_flag(struct inode *inode, int flag)
2292 {
2293 if (!test_bit(flag, &F2FS_I(inode)->flags))
2294 set_bit(flag, &F2FS_I(inode)->flags);
2295 __mark_inode_dirty_flag(inode, flag, true);
2296 }
2297
2298 static inline int is_inode_flag_set(struct inode *inode, int flag)
2299 {
2300 return test_bit(flag, &F2FS_I(inode)->flags);
2301 }
2302
2303 static inline void clear_inode_flag(struct inode *inode, int flag)
2304 {
2305 if (test_bit(flag, &F2FS_I(inode)->flags))
2306 clear_bit(flag, &F2FS_I(inode)->flags);
2307 __mark_inode_dirty_flag(inode, flag, false);
2308 }
2309
2310 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2311 {
2312 F2FS_I(inode)->i_acl_mode = mode;
2313 set_inode_flag(inode, FI_ACL_MODE);
2314 f2fs_mark_inode_dirty_sync(inode, false);
2315 }
2316
2317 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2318 {
2319 if (inc)
2320 inc_nlink(inode);
2321 else
2322 drop_nlink(inode);
2323 f2fs_mark_inode_dirty_sync(inode, true);
2324 }
2325
2326 static inline void f2fs_i_blocks_write(struct inode *inode,
2327 block_t diff, bool add, bool claim)
2328 {
2329 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2330 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2331
2332 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2333 if (add) {
2334 if (claim)
2335 dquot_claim_block(inode, diff);
2336 else
2337 dquot_alloc_block_nofail(inode, diff);
2338 } else {
2339 dquot_free_block(inode, diff);
2340 }
2341
2342 f2fs_mark_inode_dirty_sync(inode, true);
2343 if (clean || recover)
2344 set_inode_flag(inode, FI_AUTO_RECOVER);
2345 }
2346
2347 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2348 {
2349 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2350 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2351
2352 if (i_size_read(inode) == i_size)
2353 return;
2354
2355 i_size_write(inode, i_size);
2356 f2fs_mark_inode_dirty_sync(inode, true);
2357 if (clean || recover)
2358 set_inode_flag(inode, FI_AUTO_RECOVER);
2359 }
2360
2361 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2362 {
2363 F2FS_I(inode)->i_current_depth = depth;
2364 f2fs_mark_inode_dirty_sync(inode, true);
2365 }
2366
2367 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2368 unsigned int count)
2369 {
2370 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2371 f2fs_mark_inode_dirty_sync(inode, true);
2372 }
2373
2374 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2375 {
2376 F2FS_I(inode)->i_xattr_nid = xnid;
2377 f2fs_mark_inode_dirty_sync(inode, true);
2378 }
2379
2380 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2381 {
2382 F2FS_I(inode)->i_pino = pino;
2383 f2fs_mark_inode_dirty_sync(inode, true);
2384 }
2385
2386 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2387 {
2388 struct f2fs_inode_info *fi = F2FS_I(inode);
2389
2390 if (ri->i_inline & F2FS_INLINE_XATTR)
2391 set_bit(FI_INLINE_XATTR, &fi->flags);
2392 if (ri->i_inline & F2FS_INLINE_DATA)
2393 set_bit(FI_INLINE_DATA, &fi->flags);
2394 if (ri->i_inline & F2FS_INLINE_DENTRY)
2395 set_bit(FI_INLINE_DENTRY, &fi->flags);
2396 if (ri->i_inline & F2FS_DATA_EXIST)
2397 set_bit(FI_DATA_EXIST, &fi->flags);
2398 if (ri->i_inline & F2FS_INLINE_DOTS)
2399 set_bit(FI_INLINE_DOTS, &fi->flags);
2400 if (ri->i_inline & F2FS_EXTRA_ATTR)
2401 set_bit(FI_EXTRA_ATTR, &fi->flags);
2402 if (ri->i_inline & F2FS_PIN_FILE)
2403 set_bit(FI_PIN_FILE, &fi->flags);
2404 }
2405
2406 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2407 {
2408 ri->i_inline = 0;
2409
2410 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2411 ri->i_inline |= F2FS_INLINE_XATTR;
2412 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2413 ri->i_inline |= F2FS_INLINE_DATA;
2414 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2415 ri->i_inline |= F2FS_INLINE_DENTRY;
2416 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2417 ri->i_inline |= F2FS_DATA_EXIST;
2418 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2419 ri->i_inline |= F2FS_INLINE_DOTS;
2420 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2421 ri->i_inline |= F2FS_EXTRA_ATTR;
2422 if (is_inode_flag_set(inode, FI_PIN_FILE))
2423 ri->i_inline |= F2FS_PIN_FILE;
2424 }
2425
2426 static inline int f2fs_has_extra_attr(struct inode *inode)
2427 {
2428 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2429 }
2430
2431 static inline int f2fs_has_inline_xattr(struct inode *inode)
2432 {
2433 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2434 }
2435
2436 static inline unsigned int addrs_per_inode(struct inode *inode)
2437 {
2438 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2439 }
2440
2441 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2442 {
2443 struct f2fs_inode *ri = F2FS_INODE(page);
2444
2445 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2446 get_inline_xattr_addrs(inode)]);
2447 }
2448
2449 static inline int inline_xattr_size(struct inode *inode)
2450 {
2451 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2452 }
2453
2454 static inline int f2fs_has_inline_data(struct inode *inode)
2455 {
2456 return is_inode_flag_set(inode, FI_INLINE_DATA);
2457 }
2458
2459 static inline int f2fs_exist_data(struct inode *inode)
2460 {
2461 return is_inode_flag_set(inode, FI_DATA_EXIST);
2462 }
2463
2464 static inline int f2fs_has_inline_dots(struct inode *inode)
2465 {
2466 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2467 }
2468
2469 static inline bool f2fs_is_pinned_file(struct inode *inode)
2470 {
2471 return is_inode_flag_set(inode, FI_PIN_FILE);
2472 }
2473
2474 static inline bool f2fs_is_atomic_file(struct inode *inode)
2475 {
2476 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2477 }
2478
2479 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2480 {
2481 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2482 }
2483
2484 static inline bool f2fs_is_volatile_file(struct inode *inode)
2485 {
2486 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2487 }
2488
2489 static inline bool f2fs_is_first_block_written(struct inode *inode)
2490 {
2491 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2492 }
2493
2494 static inline bool f2fs_is_drop_cache(struct inode *inode)
2495 {
2496 return is_inode_flag_set(inode, FI_DROP_CACHE);
2497 }
2498
2499 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2500 {
2501 struct f2fs_inode *ri = F2FS_INODE(page);
2502 int extra_size = get_extra_isize(inode);
2503
2504 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2505 }
2506
2507 static inline int f2fs_has_inline_dentry(struct inode *inode)
2508 {
2509 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2510 }
2511
2512 static inline int is_file(struct inode *inode, int type)
2513 {
2514 return F2FS_I(inode)->i_advise & type;
2515 }
2516
2517 static inline void set_file(struct inode *inode, int type)
2518 {
2519 F2FS_I(inode)->i_advise |= type;
2520 f2fs_mark_inode_dirty_sync(inode, true);
2521 }
2522
2523 static inline void clear_file(struct inode *inode, int type)
2524 {
2525 F2FS_I(inode)->i_advise &= ~type;
2526 f2fs_mark_inode_dirty_sync(inode, true);
2527 }
2528
2529 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2530 {
2531 bool ret;
2532
2533 if (dsync) {
2534 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2535
2536 spin_lock(&sbi->inode_lock[DIRTY_META]);
2537 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2538 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2539 return ret;
2540 }
2541 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2542 file_keep_isize(inode) ||
2543 i_size_read(inode) & ~PAGE_MASK)
2544 return false;
2545
2546 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2547 return false;
2548 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2549 return false;
2550 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2551 return false;
2552 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2553 &F2FS_I(inode)->i_crtime))
2554 return false;
2555
2556 down_read(&F2FS_I(inode)->i_sem);
2557 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2558 up_read(&F2FS_I(inode)->i_sem);
2559
2560 return ret;
2561 }
2562
2563 static inline bool f2fs_readonly(struct super_block *sb)
2564 {
2565 return sb_rdonly(sb);
2566 }
2567
2568 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2569 {
2570 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2571 }
2572
2573 static inline bool is_dot_dotdot(const struct qstr *str)
2574 {
2575 if (str->len == 1 && str->name[0] == '.')
2576 return true;
2577
2578 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2579 return true;
2580
2581 return false;
2582 }
2583
2584 static inline bool f2fs_may_extent_tree(struct inode *inode)
2585 {
2586 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2587 is_inode_flag_set(inode, FI_NO_EXTENT))
2588 return false;
2589
2590 return S_ISREG(inode->i_mode);
2591 }
2592
2593 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2594 size_t size, gfp_t flags)
2595 {
2596 #ifdef CONFIG_F2FS_FAULT_INJECTION
2597 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2598 f2fs_show_injection_info(FAULT_KMALLOC);
2599 return NULL;
2600 }
2601 #endif
2602 return kmalloc(size, flags);
2603 }
2604
2605 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2606 size_t size, gfp_t flags)
2607 {
2608 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2609 }
2610
2611 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2612 size_t size, gfp_t flags)
2613 {
2614 #ifdef CONFIG_F2FS_FAULT_INJECTION
2615 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2616 f2fs_show_injection_info(FAULT_KVMALLOC);
2617 return NULL;
2618 }
2619 #endif
2620 return kvmalloc(size, flags);
2621 }
2622
2623 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2624 size_t size, gfp_t flags)
2625 {
2626 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2627 }
2628
2629 static inline int get_extra_isize(struct inode *inode)
2630 {
2631 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2632 }
2633
2634 static inline int get_inline_xattr_addrs(struct inode *inode)
2635 {
2636 return F2FS_I(inode)->i_inline_xattr_size;
2637 }
2638
2639 #define f2fs_get_inode_mode(i) \
2640 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2641 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2642
2643 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2644 (offsetof(struct f2fs_inode, i_extra_end) - \
2645 offsetof(struct f2fs_inode, i_extra_isize)) \
2646
2647 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2648 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2649 ((offsetof(typeof(*f2fs_inode), field) + \
2650 sizeof((f2fs_inode)->field)) \
2651 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \
2652
2653 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2654 {
2655 int i;
2656
2657 spin_lock(&sbi->iostat_lock);
2658 for (i = 0; i < NR_IO_TYPE; i++)
2659 sbi->write_iostat[i] = 0;
2660 spin_unlock(&sbi->iostat_lock);
2661 }
2662
2663 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2664 enum iostat_type type, unsigned long long io_bytes)
2665 {
2666 if (!sbi->iostat_enable)
2667 return;
2668 spin_lock(&sbi->iostat_lock);
2669 sbi->write_iostat[type] += io_bytes;
2670
2671 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2672 sbi->write_iostat[APP_BUFFERED_IO] =
2673 sbi->write_iostat[APP_WRITE_IO] -
2674 sbi->write_iostat[APP_DIRECT_IO];
2675 spin_unlock(&sbi->iostat_lock);
2676 }
2677
2678 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO(fio->type) == META && \
2679 (!is_read_io(fio->op) || fio->is_meta))
2680
2681 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2682 block_t blkaddr, int type);
2683 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2684 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2685 block_t blkaddr, int type)
2686 {
2687 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2688 f2fs_msg(sbi->sb, KERN_ERR,
2689 "invalid blkaddr: %u, type: %d, run fsck to fix.",
2690 blkaddr, type);
2691 f2fs_bug_on(sbi, 1);
2692 }
2693 }
2694
2695 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2696 {
2697 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2698 return false;
2699 return true;
2700 }
2701
2702 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2703 block_t blkaddr)
2704 {
2705 if (!__is_valid_data_blkaddr(blkaddr))
2706 return false;
2707 verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2708 return true;
2709 }
2710
2711 /*
2712 * file.c
2713 */
2714 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2715 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2716 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2717 int f2fs_truncate(struct inode *inode);
2718 int f2fs_getattr(const struct path *path, struct kstat *stat,
2719 u32 request_mask, unsigned int flags);
2720 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2721 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2722 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2723 int f2fs_precache_extents(struct inode *inode);
2724 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2725 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2726 int f2fs_pin_file_control(struct inode *inode, bool inc);
2727
2728 /*
2729 * inode.c
2730 */
2731 void f2fs_set_inode_flags(struct inode *inode);
2732 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2733 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2734 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2735 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2736 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2737 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2738 void f2fs_update_inode_page(struct inode *inode);
2739 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2740 void f2fs_evict_inode(struct inode *inode);
2741 void f2fs_handle_failed_inode(struct inode *inode);
2742
2743 /*
2744 * namei.c
2745 */
2746 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2747 bool hot, bool set);
2748 struct dentry *f2fs_get_parent(struct dentry *child);
2749
2750 /*
2751 * dir.c
2752 */
2753 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2754 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2755 f2fs_hash_t namehash, int *max_slots,
2756 struct f2fs_dentry_ptr *d);
2757 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2758 unsigned int start_pos, struct fscrypt_str *fstr);
2759 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2760 struct f2fs_dentry_ptr *d);
2761 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2762 const struct qstr *new_name,
2763 const struct qstr *orig_name, struct page *dpage);
2764 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2765 unsigned int current_depth);
2766 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2767 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2768 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2769 struct fscrypt_name *fname, struct page **res_page);
2770 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2771 const struct qstr *child, struct page **res_page);
2772 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2773 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2774 struct page **page);
2775 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2776 struct page *page, struct inode *inode);
2777 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2778 const struct qstr *name, f2fs_hash_t name_hash,
2779 unsigned int bit_pos);
2780 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2781 const struct qstr *orig_name,
2782 struct inode *inode, nid_t ino, umode_t mode);
2783 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2784 struct inode *inode, nid_t ino, umode_t mode);
2785 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2786 struct inode *inode, nid_t ino, umode_t mode);
2787 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2788 struct inode *dir, struct inode *inode);
2789 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2790 bool f2fs_empty_dir(struct inode *dir);
2791
2792 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2793 {
2794 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2795 inode, inode->i_ino, inode->i_mode);
2796 }
2797
2798 /*
2799 * super.c
2800 */
2801 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2802 void f2fs_inode_synced(struct inode *inode);
2803 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2804 void f2fs_quota_off_umount(struct super_block *sb);
2805 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2806 int f2fs_sync_fs(struct super_block *sb, int sync);
2807 extern __printf(3, 4)
2808 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2809 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2810
2811 /*
2812 * hash.c
2813 */
2814 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2815 struct fscrypt_name *fname);
2816
2817 /*
2818 * node.c
2819 */
2820 struct dnode_of_data;
2821 struct node_info;
2822
2823 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2824 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2825 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2826 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2827 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2828 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2829 struct node_info *ni);
2830 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2831 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2832 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2833 int f2fs_truncate_xattr_node(struct inode *inode);
2834 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2835 int f2fs_remove_inode_page(struct inode *inode);
2836 struct page *f2fs_new_inode_page(struct inode *inode);
2837 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2838 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2839 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2840 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2841 void f2fs_move_node_page(struct page *node_page, int gc_type);
2842 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2843 struct writeback_control *wbc, bool atomic);
2844 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2845 struct writeback_control *wbc,
2846 bool do_balance, enum iostat_type io_type);
2847 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2848 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2849 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2850 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2851 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2852 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
2853 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
2854 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2855 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2856 unsigned int segno, struct f2fs_summary_block *sum);
2857 void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2858 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
2859 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
2860 int __init f2fs_create_node_manager_caches(void);
2861 void f2fs_destroy_node_manager_caches(void);
2862
2863 /*
2864 * segment.c
2865 */
2866 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
2867 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
2868 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
2869 void f2fs_drop_inmem_pages(struct inode *inode);
2870 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
2871 int f2fs_commit_inmem_pages(struct inode *inode);
2872 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2873 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2874 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2875 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
2876 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2877 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2878 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2879 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2880 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
2881 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
2882 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2883 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2884 struct cp_control *cpc);
2885 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
2886 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2887 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
2888 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2889 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2890 struct cp_control *cpc);
2891 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2892 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
2893 block_t blk_addr);
2894 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2895 enum iostat_type io_type);
2896 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2897 void f2fs_outplace_write_data(struct dnode_of_data *dn,
2898 struct f2fs_io_info *fio);
2899 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
2900 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2901 block_t old_blkaddr, block_t new_blkaddr,
2902 bool recover_curseg, bool recover_newaddr);
2903 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2904 block_t old_addr, block_t new_addr,
2905 unsigned char version, bool recover_curseg,
2906 bool recover_newaddr);
2907 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2908 block_t old_blkaddr, block_t *new_blkaddr,
2909 struct f2fs_summary *sum, int type,
2910 struct f2fs_io_info *fio, bool add_list);
2911 void f2fs_wait_on_page_writeback(struct page *page,
2912 enum page_type type, bool ordered);
2913 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2914 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2915 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2916 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2917 unsigned int val, int alloc);
2918 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2919 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
2920 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
2921 int __init f2fs_create_segment_manager_caches(void);
2922 void f2fs_destroy_segment_manager_caches(void);
2923 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
2924 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2925 enum page_type type, enum temp_type temp);
2926
2927 /*
2928 * checkpoint.c
2929 */
2930 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2931 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2932 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2933 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
2934 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2935 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2936 block_t blkaddr, int type);
2937 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2938 int type, bool sync);
2939 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2940 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2941 long nr_to_write, enum iostat_type io_type);
2942 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2943 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2944 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2945 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2946 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2947 unsigned int devidx, int type);
2948 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2949 unsigned int devidx, int type);
2950 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2951 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
2952 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
2953 void f2fs_add_orphan_inode(struct inode *inode);
2954 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2955 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
2956 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
2957 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
2958 void f2fs_remove_dirty_inode(struct inode *inode);
2959 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2960 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2961 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
2962 int __init f2fs_create_checkpoint_caches(void);
2963 void f2fs_destroy_checkpoint_caches(void);
2964
2965 /*
2966 * data.c
2967 */
2968 int f2fs_init_post_read_processing(void);
2969 void f2fs_destroy_post_read_processing(void);
2970 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2971 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2972 struct inode *inode, nid_t ino, pgoff_t idx,
2973 enum page_type type);
2974 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2975 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2976 void f2fs_submit_page_write(struct f2fs_io_info *fio);
2977 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2978 block_t blk_addr, struct bio *bio);
2979 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2980 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
2981 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2982 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2983 int f2fs_reserve_new_block(struct dnode_of_data *dn);
2984 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2985 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2986 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2987 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
2988 int op_flags, bool for_write);
2989 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
2990 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
2991 bool for_write);
2992 struct page *f2fs_get_new_data_page(struct inode *inode,
2993 struct page *ipage, pgoff_t index, bool new_i_size);
2994 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
2995 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2996 int create, int flag);
2997 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2998 u64 start, u64 len);
2999 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3000 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3001 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3002 unsigned int length);
3003 int f2fs_release_page(struct page *page, gfp_t wait);
3004 #ifdef CONFIG_MIGRATION
3005 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3006 struct page *page, enum migrate_mode mode);
3007 #endif
3008 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3009 void f2fs_clear_radix_tree_dirty_tag(struct page *page);
3010
3011 /*
3012 * gc.c
3013 */
3014 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3015 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3016 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3017 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3018 unsigned int segno);
3019 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3020
3021 /*
3022 * recovery.c
3023 */
3024 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3025 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3026
3027 /*
3028 * debug.c
3029 */
3030 #ifdef CONFIG_F2FS_STAT_FS
3031 struct f2fs_stat_info {
3032 struct list_head stat_list;
3033 struct f2fs_sb_info *sbi;
3034 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3035 int main_area_segs, main_area_sections, main_area_zones;
3036 unsigned long long hit_largest, hit_cached, hit_rbtree;
3037 unsigned long long hit_total, total_ext;
3038 int ext_tree, zombie_tree, ext_node;
3039 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3040 int ndirty_data, ndirty_qdata;
3041 int inmem_pages;
3042 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3043 int nats, dirty_nats, sits, dirty_sits;
3044 int free_nids, avail_nids, alloc_nids;
3045 int total_count, utilization;
3046 int bg_gc, nr_wb_cp_data, nr_wb_data;
3047 int nr_flushing, nr_flushed, flush_list_empty;
3048 int nr_discarding, nr_discarded;
3049 int nr_discard_cmd;
3050 unsigned int undiscard_blks;
3051 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3052 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3053 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3054 unsigned int bimodal, avg_vblocks;
3055 int util_free, util_valid, util_invalid;
3056 int rsvd_segs, overp_segs;
3057 int dirty_count, node_pages, meta_pages;
3058 int prefree_count, call_count, cp_count, bg_cp_count;
3059 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3060 int bg_node_segs, bg_data_segs;
3061 int tot_blks, data_blks, node_blks;
3062 int bg_data_blks, bg_node_blks;
3063 unsigned long long skipped_atomic_files[2];
3064 int curseg[NR_CURSEG_TYPE];
3065 int cursec[NR_CURSEG_TYPE];
3066 int curzone[NR_CURSEG_TYPE];
3067
3068 unsigned int segment_count[2];
3069 unsigned int block_count[2];
3070 unsigned int inplace_count;
3071 unsigned long long base_mem, cache_mem, page_mem;
3072 };
3073
3074 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3075 {
3076 return (struct f2fs_stat_info *)sbi->stat_info;
3077 }
3078
3079 #define stat_inc_cp_count(si) ((si)->cp_count++)
3080 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3081 #define stat_inc_call_count(si) ((si)->call_count++)
3082 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
3083 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3084 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3085 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3086 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3087 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3088 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3089 #define stat_inc_inline_xattr(inode) \
3090 do { \
3091 if (f2fs_has_inline_xattr(inode)) \
3092 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3093 } while (0)
3094 #define stat_dec_inline_xattr(inode) \
3095 do { \
3096 if (f2fs_has_inline_xattr(inode)) \
3097 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3098 } while (0)
3099 #define stat_inc_inline_inode(inode) \
3100 do { \
3101 if (f2fs_has_inline_data(inode)) \
3102 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3103 } while (0)
3104 #define stat_dec_inline_inode(inode) \
3105 do { \
3106 if (f2fs_has_inline_data(inode)) \
3107 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3108 } while (0)
3109 #define stat_inc_inline_dir(inode) \
3110 do { \
3111 if (f2fs_has_inline_dentry(inode)) \
3112 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3113 } while (0)
3114 #define stat_dec_inline_dir(inode) \
3115 do { \
3116 if (f2fs_has_inline_dentry(inode)) \
3117 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3118 } while (0)
3119 #define stat_inc_seg_type(sbi, curseg) \
3120 ((sbi)->segment_count[(curseg)->alloc_type]++)
3121 #define stat_inc_block_count(sbi, curseg) \
3122 ((sbi)->block_count[(curseg)->alloc_type]++)
3123 #define stat_inc_inplace_blocks(sbi) \
3124 (atomic_inc(&(sbi)->inplace_count))
3125 #define stat_inc_atomic_write(inode) \
3126 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3127 #define stat_dec_atomic_write(inode) \
3128 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3129 #define stat_update_max_atomic_write(inode) \
3130 do { \
3131 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
3132 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3133 if (cur > max) \
3134 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3135 } while (0)
3136 #define stat_inc_volatile_write(inode) \
3137 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3138 #define stat_dec_volatile_write(inode) \
3139 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3140 #define stat_update_max_volatile_write(inode) \
3141 do { \
3142 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3143 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3144 if (cur > max) \
3145 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3146 } while (0)
3147 #define stat_inc_seg_count(sbi, type, gc_type) \
3148 do { \
3149 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3150 si->tot_segs++; \
3151 if ((type) == SUM_TYPE_DATA) { \
3152 si->data_segs++; \
3153 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3154 } else { \
3155 si->node_segs++; \
3156 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3157 } \
3158 } while (0)
3159
3160 #define stat_inc_tot_blk_count(si, blks) \
3161 ((si)->tot_blks += (blks))
3162
3163 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3164 do { \
3165 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3166 stat_inc_tot_blk_count(si, blks); \
3167 si->data_blks += (blks); \
3168 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3169 } while (0)
3170
3171 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3172 do { \
3173 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3174 stat_inc_tot_blk_count(si, blks); \
3175 si->node_blks += (blks); \
3176 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3177 } while (0)
3178
3179 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3180 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3181 int __init f2fs_create_root_stats(void);
3182 void f2fs_destroy_root_stats(void);
3183 #else
3184 #define stat_inc_cp_count(si) do { } while (0)
3185 #define stat_inc_bg_cp_count(si) do { } while (0)
3186 #define stat_inc_call_count(si) do { } while (0)
3187 #define stat_inc_bggc_count(si) do { } while (0)
3188 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3189 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3190 #define stat_inc_total_hit(sb) do { } while (0)
3191 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
3192 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3193 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3194 #define stat_inc_inline_xattr(inode) do { } while (0)
3195 #define stat_dec_inline_xattr(inode) do { } while (0)
3196 #define stat_inc_inline_inode(inode) do { } while (0)
3197 #define stat_dec_inline_inode(inode) do { } while (0)
3198 #define stat_inc_inline_dir(inode) do { } while (0)
3199 #define stat_dec_inline_dir(inode) do { } while (0)
3200 #define stat_inc_atomic_write(inode) do { } while (0)
3201 #define stat_dec_atomic_write(inode) do { } while (0)
3202 #define stat_update_max_atomic_write(inode) do { } while (0)
3203 #define stat_inc_volatile_write(inode) do { } while (0)
3204 #define stat_dec_volatile_write(inode) do { } while (0)
3205 #define stat_update_max_volatile_write(inode) do { } while (0)
3206 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3207 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3208 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3209 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3210 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3211 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3212 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3213
3214 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3215 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3216 static inline int __init f2fs_create_root_stats(void) { return 0; }
3217 static inline void f2fs_destroy_root_stats(void) { }
3218 #endif
3219
3220 extern const struct file_operations f2fs_dir_operations;
3221 extern const struct file_operations f2fs_file_operations;
3222 extern const struct inode_operations f2fs_file_inode_operations;
3223 extern const struct address_space_operations f2fs_dblock_aops;
3224 extern const struct address_space_operations f2fs_node_aops;
3225 extern const struct address_space_operations f2fs_meta_aops;
3226 extern const struct inode_operations f2fs_dir_inode_operations;
3227 extern const struct inode_operations f2fs_symlink_inode_operations;
3228 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3229 extern const struct inode_operations f2fs_special_inode_operations;
3230 extern struct kmem_cache *f2fs_inode_entry_slab;
3231
3232 /*
3233 * inline.c
3234 */
3235 bool f2fs_may_inline_data(struct inode *inode);
3236 bool f2fs_may_inline_dentry(struct inode *inode);
3237 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3238 void f2fs_truncate_inline_inode(struct inode *inode,
3239 struct page *ipage, u64 from);
3240 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3241 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3242 int f2fs_convert_inline_inode(struct inode *inode);
3243 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3244 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3245 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3246 struct fscrypt_name *fname, struct page **res_page);
3247 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3248 struct page *ipage);
3249 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3250 const struct qstr *orig_name,
3251 struct inode *inode, nid_t ino, umode_t mode);
3252 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3253 struct page *page, struct inode *dir,
3254 struct inode *inode);
3255 bool f2fs_empty_inline_dir(struct inode *dir);
3256 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3257 struct fscrypt_str *fstr);
3258 int f2fs_inline_data_fiemap(struct inode *inode,
3259 struct fiemap_extent_info *fieinfo,
3260 __u64 start, __u64 len);
3261
3262 /*
3263 * shrinker.c
3264 */
3265 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3266 struct shrink_control *sc);
3267 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3268 struct shrink_control *sc);
3269 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3270 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3271
3272 /*
3273 * extent_cache.c
3274 */
3275 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root *root,
3276 struct rb_entry *cached_re, unsigned int ofs);
3277 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3278 struct rb_root *root, struct rb_node **parent,
3279 unsigned int ofs);
3280 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root *root,
3281 struct rb_entry *cached_re, unsigned int ofs,
3282 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3283 struct rb_node ***insert_p, struct rb_node **insert_parent,
3284 bool force);
3285 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3286 struct rb_root *root);
3287 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3288 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3289 void f2fs_drop_extent_tree(struct inode *inode);
3290 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3291 void f2fs_destroy_extent_tree(struct inode *inode);
3292 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3293 struct extent_info *ei);
3294 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3295 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3296 pgoff_t fofs, block_t blkaddr, unsigned int len);
3297 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3298 int __init f2fs_create_extent_cache(void);
3299 void f2fs_destroy_extent_cache(void);
3300
3301 /*
3302 * sysfs.c
3303 */
3304 int __init f2fs_init_sysfs(void);
3305 void f2fs_exit_sysfs(void);
3306 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3307 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3308
3309 /*
3310 * crypto support
3311 */
3312 static inline bool f2fs_encrypted_inode(struct inode *inode)
3313 {
3314 return file_is_encrypt(inode);
3315 }
3316
3317 static inline bool f2fs_encrypted_file(struct inode *inode)
3318 {
3319 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3320 }
3321
3322 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3323 {
3324 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3325 file_set_encrypt(inode);
3326 inode->i_flags |= S_ENCRYPTED;
3327 #endif
3328 }
3329
3330 /*
3331 * Returns true if the reads of the inode's data need to undergo some
3332 * postprocessing step, like decryption or authenticity verification.
3333 */
3334 static inline bool f2fs_post_read_required(struct inode *inode)
3335 {
3336 return f2fs_encrypted_file(inode);
3337 }
3338
3339 #define F2FS_FEATURE_FUNCS(name, flagname) \
3340 static inline int f2fs_sb_has_##name(struct super_block *sb) \
3341 { \
3342 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3343 }
3344
3345 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3346 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3347 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3348 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3349 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3350 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3351 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3352 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3353 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3354
3355 #ifdef CONFIG_BLK_DEV_ZONED
3356 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3357 struct block_device *bdev, block_t blkaddr)
3358 {
3359 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3360 int i;
3361
3362 for (i = 0; i < sbi->s_ndevs; i++)
3363 if (FDEV(i).bdev == bdev)
3364 return FDEV(i).blkz_type[zno];
3365 return -EINVAL;
3366 }
3367 #endif
3368
3369 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3370 {
3371 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3372
3373 return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb);
3374 }
3375
3376 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3377 {
3378 clear_opt(sbi, ADAPTIVE);
3379 clear_opt(sbi, LFS);
3380
3381 switch (mt) {
3382 case F2FS_MOUNT_ADAPTIVE:
3383 set_opt(sbi, ADAPTIVE);
3384 break;
3385 case F2FS_MOUNT_LFS:
3386 set_opt(sbi, LFS);
3387 break;
3388 }
3389 }
3390
3391 static inline bool f2fs_may_encrypt(struct inode *inode)
3392 {
3393 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3394 umode_t mode = inode->i_mode;
3395
3396 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3397 #else
3398 return 0;
3399 #endif
3400 }
3401
3402 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw)
3403 {
3404 return (f2fs_post_read_required(inode) ||
3405 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
3406 F2FS_I_SB(inode)->s_ndevs);
3407 }
3408
3409 #ifdef CONFIG_F2FS_FAULT_INJECTION
3410 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate);
3411 #else
3412 #define f2fs_build_fault_attr(sbi, rate) do { } while (0)
3413 #endif
3414
3415 #endif