]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: fix 32-bit build
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_EVICT_INODE,
49 FAULT_IO,
50 FAULT_CHECKPOINT,
51 FAULT_MAX,
52 };
53
54 struct f2fs_fault_info {
55 atomic_t inject_ops;
56 unsigned int inject_rate;
57 unsigned int inject_type;
58 };
59
60 extern char *fault_name[FAULT_MAX];
61 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type)))
62 #endif
63
64 /*
65 * For mount options
66 */
67 #define F2FS_MOUNT_BG_GC 0x00000001
68 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
69 #define F2FS_MOUNT_DISCARD 0x00000004
70 #define F2FS_MOUNT_NOHEAP 0x00000008
71 #define F2FS_MOUNT_XATTR_USER 0x00000010
72 #define F2FS_MOUNT_POSIX_ACL 0x00000020
73 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
74 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
75 #define F2FS_MOUNT_INLINE_DATA 0x00000100
76 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
77 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
78 #define F2FS_MOUNT_NOBARRIER 0x00000800
79 #define F2FS_MOUNT_FASTBOOT 0x00001000
80 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
81 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
82 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
83 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
84 #define F2FS_MOUNT_ADAPTIVE 0x00020000
85 #define F2FS_MOUNT_LFS 0x00040000
86
87 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
88 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
89 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
90
91 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
92 typecheck(unsigned long long, b) && \
93 ((long long)((a) - (b)) > 0))
94
95 typedef u32 block_t; /*
96 * should not change u32, since it is the on-disk block
97 * address format, __le32.
98 */
99 typedef u32 nid_t;
100
101 struct f2fs_mount_info {
102 unsigned int opt;
103 };
104
105 #define F2FS_FEATURE_ENCRYPT 0x0001
106 #define F2FS_FEATURE_BLKZONED 0x0002
107
108 #define F2FS_HAS_FEATURE(sb, mask) \
109 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
110 #define F2FS_SET_FEATURE(sb, mask) \
111 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
112 #define F2FS_CLEAR_FEATURE(sb, mask) \
113 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
114
115 /*
116 * For checkpoint manager
117 */
118 enum {
119 NAT_BITMAP,
120 SIT_BITMAP
121 };
122
123 enum {
124 CP_UMOUNT,
125 CP_FASTBOOT,
126 CP_SYNC,
127 CP_RECOVERY,
128 CP_DISCARD,
129 };
130
131 #define DEF_BATCHED_TRIM_SECTIONS 2
132 #define BATCHED_TRIM_SEGMENTS(sbi) \
133 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
134 #define BATCHED_TRIM_BLOCKS(sbi) \
135 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
136 #define DEF_CP_INTERVAL 60 /* 60 secs */
137 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
138
139 struct cp_control {
140 int reason;
141 __u64 trim_start;
142 __u64 trim_end;
143 __u64 trim_minlen;
144 __u64 trimmed;
145 };
146
147 /*
148 * For CP/NAT/SIT/SSA readahead
149 */
150 enum {
151 META_CP,
152 META_NAT,
153 META_SIT,
154 META_SSA,
155 META_POR,
156 };
157
158 /* for the list of ino */
159 enum {
160 ORPHAN_INO, /* for orphan ino list */
161 APPEND_INO, /* for append ino list */
162 UPDATE_INO, /* for update ino list */
163 MAX_INO_ENTRY, /* max. list */
164 };
165
166 struct ino_entry {
167 struct list_head list; /* list head */
168 nid_t ino; /* inode number */
169 };
170
171 /* for the list of inodes to be GCed */
172 struct inode_entry {
173 struct list_head list; /* list head */
174 struct inode *inode; /* vfs inode pointer */
175 };
176
177 /* for the list of blockaddresses to be discarded */
178 struct discard_entry {
179 struct list_head list; /* list head */
180 block_t blkaddr; /* block address to be discarded */
181 int len; /* # of consecutive blocks of the discard */
182 };
183
184 struct bio_entry {
185 struct list_head list;
186 struct bio *bio;
187 struct completion event;
188 int error;
189 };
190
191 /* for the list of fsync inodes, used only during recovery */
192 struct fsync_inode_entry {
193 struct list_head list; /* list head */
194 struct inode *inode; /* vfs inode pointer */
195 block_t blkaddr; /* block address locating the last fsync */
196 block_t last_dentry; /* block address locating the last dentry */
197 };
198
199 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
200 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
201
202 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
203 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
204 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
205 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
206
207 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
208 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
209
210 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
211 {
212 int before = nats_in_cursum(journal);
213 journal->n_nats = cpu_to_le16(before + i);
214 return before;
215 }
216
217 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
218 {
219 int before = sits_in_cursum(journal);
220 journal->n_sits = cpu_to_le16(before + i);
221 return before;
222 }
223
224 static inline bool __has_cursum_space(struct f2fs_journal *journal,
225 int size, int type)
226 {
227 if (type == NAT_JOURNAL)
228 return size <= MAX_NAT_JENTRIES(journal);
229 return size <= MAX_SIT_JENTRIES(journal);
230 }
231
232 /*
233 * ioctl commands
234 */
235 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
236 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
237 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
238
239 #define F2FS_IOCTL_MAGIC 0xf5
240 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
241 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
242 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
243 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
244 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
245 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
246 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
247 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
248 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
249 struct f2fs_move_range)
250
251 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
252 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
253 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
254
255 /*
256 * should be same as XFS_IOC_GOINGDOWN.
257 * Flags for going down operation used by FS_IOC_GOINGDOWN
258 */
259 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
260 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
261 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
262 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
263 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
264
265 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
266 /*
267 * ioctl commands in 32 bit emulation
268 */
269 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
270 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
271 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
272 #endif
273
274 struct f2fs_defragment {
275 u64 start;
276 u64 len;
277 };
278
279 struct f2fs_move_range {
280 u32 dst_fd; /* destination fd */
281 u64 pos_in; /* start position in src_fd */
282 u64 pos_out; /* start position in dst_fd */
283 u64 len; /* size to move */
284 };
285
286 /*
287 * For INODE and NODE manager
288 */
289 /* for directory operations */
290 struct f2fs_dentry_ptr {
291 struct inode *inode;
292 const void *bitmap;
293 struct f2fs_dir_entry *dentry;
294 __u8 (*filename)[F2FS_SLOT_LEN];
295 int max;
296 };
297
298 static inline void make_dentry_ptr(struct inode *inode,
299 struct f2fs_dentry_ptr *d, void *src, int type)
300 {
301 d->inode = inode;
302
303 if (type == 1) {
304 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
305 d->max = NR_DENTRY_IN_BLOCK;
306 d->bitmap = &t->dentry_bitmap;
307 d->dentry = t->dentry;
308 d->filename = t->filename;
309 } else {
310 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
311 d->max = NR_INLINE_DENTRY;
312 d->bitmap = &t->dentry_bitmap;
313 d->dentry = t->dentry;
314 d->filename = t->filename;
315 }
316 }
317
318 /*
319 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
320 * as its node offset to distinguish from index node blocks.
321 * But some bits are used to mark the node block.
322 */
323 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
324 >> OFFSET_BIT_SHIFT)
325 enum {
326 ALLOC_NODE, /* allocate a new node page if needed */
327 LOOKUP_NODE, /* look up a node without readahead */
328 LOOKUP_NODE_RA, /*
329 * look up a node with readahead called
330 * by get_data_block.
331 */
332 };
333
334 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
335
336 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
337
338 /* vector size for gang look-up from extent cache that consists of radix tree */
339 #define EXT_TREE_VEC_SIZE 64
340
341 /* for in-memory extent cache entry */
342 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
343
344 /* number of extent info in extent cache we try to shrink */
345 #define EXTENT_CACHE_SHRINK_NUMBER 128
346
347 struct extent_info {
348 unsigned int fofs; /* start offset in a file */
349 u32 blk; /* start block address of the extent */
350 unsigned int len; /* length of the extent */
351 };
352
353 struct extent_node {
354 struct rb_node rb_node; /* rb node located in rb-tree */
355 struct list_head list; /* node in global extent list of sbi */
356 struct extent_info ei; /* extent info */
357 struct extent_tree *et; /* extent tree pointer */
358 };
359
360 struct extent_tree {
361 nid_t ino; /* inode number */
362 struct rb_root root; /* root of extent info rb-tree */
363 struct extent_node *cached_en; /* recently accessed extent node */
364 struct extent_info largest; /* largested extent info */
365 struct list_head list; /* to be used by sbi->zombie_list */
366 rwlock_t lock; /* protect extent info rb-tree */
367 atomic_t node_cnt; /* # of extent node in rb-tree*/
368 };
369
370 /*
371 * This structure is taken from ext4_map_blocks.
372 *
373 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
374 */
375 #define F2FS_MAP_NEW (1 << BH_New)
376 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
377 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
378 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
379 F2FS_MAP_UNWRITTEN)
380
381 struct f2fs_map_blocks {
382 block_t m_pblk;
383 block_t m_lblk;
384 unsigned int m_len;
385 unsigned int m_flags;
386 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
387 };
388
389 /* for flag in get_data_block */
390 #define F2FS_GET_BLOCK_READ 0
391 #define F2FS_GET_BLOCK_DIO 1
392 #define F2FS_GET_BLOCK_FIEMAP 2
393 #define F2FS_GET_BLOCK_BMAP 3
394 #define F2FS_GET_BLOCK_PRE_DIO 4
395 #define F2FS_GET_BLOCK_PRE_AIO 5
396
397 /*
398 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
399 */
400 #define FADVISE_COLD_BIT 0x01
401 #define FADVISE_LOST_PINO_BIT 0x02
402 #define FADVISE_ENCRYPT_BIT 0x04
403 #define FADVISE_ENC_NAME_BIT 0x08
404
405 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
406 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
407 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
408 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
409 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
410 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
411 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
412 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
413 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
414 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
415 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
416
417 #define DEF_DIR_LEVEL 0
418
419 struct f2fs_inode_info {
420 struct inode vfs_inode; /* serve a vfs inode */
421 unsigned long i_flags; /* keep an inode flags for ioctl */
422 unsigned char i_advise; /* use to give file attribute hints */
423 unsigned char i_dir_level; /* use for dentry level for large dir */
424 unsigned int i_current_depth; /* use only in directory structure */
425 unsigned int i_pino; /* parent inode number */
426 umode_t i_acl_mode; /* keep file acl mode temporarily */
427
428 /* Use below internally in f2fs*/
429 unsigned long flags; /* use to pass per-file flags */
430 struct rw_semaphore i_sem; /* protect fi info */
431 struct percpu_counter dirty_pages; /* # of dirty pages */
432 f2fs_hash_t chash; /* hash value of given file name */
433 unsigned int clevel; /* maximum level of given file name */
434 nid_t i_xattr_nid; /* node id that contains xattrs */
435 unsigned long long xattr_ver; /* cp version of xattr modification */
436 loff_t last_disk_size; /* lastly written file size */
437
438 struct list_head dirty_list; /* dirty list for dirs and files */
439 struct list_head gdirty_list; /* linked in global dirty list */
440 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
441 struct mutex inmem_lock; /* lock for inmemory pages */
442 struct extent_tree *extent_tree; /* cached extent_tree entry */
443 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
444 };
445
446 static inline void get_extent_info(struct extent_info *ext,
447 struct f2fs_extent *i_ext)
448 {
449 ext->fofs = le32_to_cpu(i_ext->fofs);
450 ext->blk = le32_to_cpu(i_ext->blk);
451 ext->len = le32_to_cpu(i_ext->len);
452 }
453
454 static inline void set_raw_extent(struct extent_info *ext,
455 struct f2fs_extent *i_ext)
456 {
457 i_ext->fofs = cpu_to_le32(ext->fofs);
458 i_ext->blk = cpu_to_le32(ext->blk);
459 i_ext->len = cpu_to_le32(ext->len);
460 }
461
462 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
463 u32 blk, unsigned int len)
464 {
465 ei->fofs = fofs;
466 ei->blk = blk;
467 ei->len = len;
468 }
469
470 static inline bool __is_extent_same(struct extent_info *ei1,
471 struct extent_info *ei2)
472 {
473 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
474 ei1->len == ei2->len);
475 }
476
477 static inline bool __is_extent_mergeable(struct extent_info *back,
478 struct extent_info *front)
479 {
480 return (back->fofs + back->len == front->fofs &&
481 back->blk + back->len == front->blk);
482 }
483
484 static inline bool __is_back_mergeable(struct extent_info *cur,
485 struct extent_info *back)
486 {
487 return __is_extent_mergeable(back, cur);
488 }
489
490 static inline bool __is_front_mergeable(struct extent_info *cur,
491 struct extent_info *front)
492 {
493 return __is_extent_mergeable(cur, front);
494 }
495
496 extern void f2fs_mark_inode_dirty_sync(struct inode *, bool);
497 static inline void __try_update_largest_extent(struct inode *inode,
498 struct extent_tree *et, struct extent_node *en)
499 {
500 if (en->ei.len > et->largest.len) {
501 et->largest = en->ei;
502 f2fs_mark_inode_dirty_sync(inode, true);
503 }
504 }
505
506 enum nid_list {
507 FREE_NID_LIST,
508 ALLOC_NID_LIST,
509 MAX_NID_LIST,
510 };
511
512 struct f2fs_nm_info {
513 block_t nat_blkaddr; /* base disk address of NAT */
514 nid_t max_nid; /* maximum possible node ids */
515 nid_t available_nids; /* # of available node ids */
516 nid_t next_scan_nid; /* the next nid to be scanned */
517 unsigned int ram_thresh; /* control the memory footprint */
518 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
519 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
520
521 /* NAT cache management */
522 struct radix_tree_root nat_root;/* root of the nat entry cache */
523 struct radix_tree_root nat_set_root;/* root of the nat set cache */
524 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
525 struct list_head nat_entries; /* cached nat entry list (clean) */
526 unsigned int nat_cnt; /* the # of cached nat entries */
527 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
528
529 /* free node ids management */
530 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
531 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
532 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */
533 spinlock_t nid_list_lock; /* protect nid lists ops */
534 struct mutex build_lock; /* lock for build free nids */
535
536 /* for checkpoint */
537 char *nat_bitmap; /* NAT bitmap pointer */
538 int bitmap_size; /* bitmap size */
539 };
540
541 /*
542 * this structure is used as one of function parameters.
543 * all the information are dedicated to a given direct node block determined
544 * by the data offset in a file.
545 */
546 struct dnode_of_data {
547 struct inode *inode; /* vfs inode pointer */
548 struct page *inode_page; /* its inode page, NULL is possible */
549 struct page *node_page; /* cached direct node page */
550 nid_t nid; /* node id of the direct node block */
551 unsigned int ofs_in_node; /* data offset in the node page */
552 bool inode_page_locked; /* inode page is locked or not */
553 bool node_changed; /* is node block changed */
554 char cur_level; /* level of hole node page */
555 char max_level; /* level of current page located */
556 block_t data_blkaddr; /* block address of the node block */
557 };
558
559 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
560 struct page *ipage, struct page *npage, nid_t nid)
561 {
562 memset(dn, 0, sizeof(*dn));
563 dn->inode = inode;
564 dn->inode_page = ipage;
565 dn->node_page = npage;
566 dn->nid = nid;
567 }
568
569 /*
570 * For SIT manager
571 *
572 * By default, there are 6 active log areas across the whole main area.
573 * When considering hot and cold data separation to reduce cleaning overhead,
574 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
575 * respectively.
576 * In the current design, you should not change the numbers intentionally.
577 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
578 * logs individually according to the underlying devices. (default: 6)
579 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
580 * data and 8 for node logs.
581 */
582 #define NR_CURSEG_DATA_TYPE (3)
583 #define NR_CURSEG_NODE_TYPE (3)
584 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
585
586 enum {
587 CURSEG_HOT_DATA = 0, /* directory entry blocks */
588 CURSEG_WARM_DATA, /* data blocks */
589 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
590 CURSEG_HOT_NODE, /* direct node blocks of directory files */
591 CURSEG_WARM_NODE, /* direct node blocks of normal files */
592 CURSEG_COLD_NODE, /* indirect node blocks */
593 NO_CHECK_TYPE,
594 };
595
596 struct flush_cmd {
597 struct completion wait;
598 struct llist_node llnode;
599 int ret;
600 };
601
602 struct flush_cmd_control {
603 struct task_struct *f2fs_issue_flush; /* flush thread */
604 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
605 atomic_t submit_flush; /* # of issued flushes */
606 struct llist_head issue_list; /* list for command issue */
607 struct llist_node *dispatch_list; /* list for command dispatch */
608 };
609
610 struct f2fs_sm_info {
611 struct sit_info *sit_info; /* whole segment information */
612 struct free_segmap_info *free_info; /* free segment information */
613 struct dirty_seglist_info *dirty_info; /* dirty segment information */
614 struct curseg_info *curseg_array; /* active segment information */
615
616 block_t seg0_blkaddr; /* block address of 0'th segment */
617 block_t main_blkaddr; /* start block address of main area */
618 block_t ssa_blkaddr; /* start block address of SSA area */
619
620 unsigned int segment_count; /* total # of segments */
621 unsigned int main_segments; /* # of segments in main area */
622 unsigned int reserved_segments; /* # of reserved segments */
623 unsigned int ovp_segments; /* # of overprovision segments */
624
625 /* a threshold to reclaim prefree segments */
626 unsigned int rec_prefree_segments;
627
628 /* for small discard management */
629 struct list_head discard_list; /* 4KB discard list */
630 struct list_head wait_list; /* linked with issued discard bio */
631 int nr_discards; /* # of discards in the list */
632 int max_discards; /* max. discards to be issued */
633
634 /* for batched trimming */
635 unsigned int trim_sections; /* # of sections to trim */
636
637 struct list_head sit_entry_set; /* sit entry set list */
638
639 unsigned int ipu_policy; /* in-place-update policy */
640 unsigned int min_ipu_util; /* in-place-update threshold */
641 unsigned int min_fsync_blocks; /* threshold for fsync */
642
643 /* for flush command control */
644 struct flush_cmd_control *cmd_control_info;
645
646 };
647
648 /*
649 * For superblock
650 */
651 /*
652 * COUNT_TYPE for monitoring
653 *
654 * f2fs monitors the number of several block types such as on-writeback,
655 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
656 */
657 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
658 enum count_type {
659 F2FS_DIRTY_DENTS,
660 F2FS_DIRTY_DATA,
661 F2FS_DIRTY_NODES,
662 F2FS_DIRTY_META,
663 F2FS_INMEM_PAGES,
664 F2FS_DIRTY_IMETA,
665 F2FS_WB_CP_DATA,
666 F2FS_WB_DATA,
667 NR_COUNT_TYPE,
668 };
669
670 /*
671 * The below are the page types of bios used in submit_bio().
672 * The available types are:
673 * DATA User data pages. It operates as async mode.
674 * NODE Node pages. It operates as async mode.
675 * META FS metadata pages such as SIT, NAT, CP.
676 * NR_PAGE_TYPE The number of page types.
677 * META_FLUSH Make sure the previous pages are written
678 * with waiting the bio's completion
679 * ... Only can be used with META.
680 */
681 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
682 enum page_type {
683 DATA,
684 NODE,
685 META,
686 NR_PAGE_TYPE,
687 META_FLUSH,
688 INMEM, /* the below types are used by tracepoints only. */
689 INMEM_DROP,
690 INMEM_REVOKE,
691 IPU,
692 OPU,
693 };
694
695 struct f2fs_io_info {
696 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
697 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
698 int op; /* contains REQ_OP_ */
699 int op_flags; /* rq_flag_bits */
700 block_t new_blkaddr; /* new block address to be written */
701 block_t old_blkaddr; /* old block address before Cow */
702 struct page *page; /* page to be written */
703 struct page *encrypted_page; /* encrypted page */
704 };
705
706 #define is_read_io(rw) (rw == READ)
707 struct f2fs_bio_info {
708 struct f2fs_sb_info *sbi; /* f2fs superblock */
709 struct bio *bio; /* bios to merge */
710 sector_t last_block_in_bio; /* last block number */
711 struct f2fs_io_info fio; /* store buffered io info. */
712 struct rw_semaphore io_rwsem; /* blocking op for bio */
713 };
714
715 #define FDEV(i) (sbi->devs[i])
716 #define RDEV(i) (raw_super->devs[i])
717 struct f2fs_dev_info {
718 struct block_device *bdev;
719 char path[MAX_PATH_LEN];
720 unsigned int total_segments;
721 block_t start_blk;
722 block_t end_blk;
723 #ifdef CONFIG_BLK_DEV_ZONED
724 unsigned int nr_blkz; /* Total number of zones */
725 u8 *blkz_type; /* Array of zones type */
726 #endif
727 };
728
729 enum inode_type {
730 DIR_INODE, /* for dirty dir inode */
731 FILE_INODE, /* for dirty regular/symlink inode */
732 DIRTY_META, /* for all dirtied inode metadata */
733 NR_INODE_TYPE,
734 };
735
736 /* for inner inode cache management */
737 struct inode_management {
738 struct radix_tree_root ino_root; /* ino entry array */
739 spinlock_t ino_lock; /* for ino entry lock */
740 struct list_head ino_list; /* inode list head */
741 unsigned long ino_num; /* number of entries */
742 };
743
744 /* For s_flag in struct f2fs_sb_info */
745 enum {
746 SBI_IS_DIRTY, /* dirty flag for checkpoint */
747 SBI_IS_CLOSE, /* specify unmounting */
748 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
749 SBI_POR_DOING, /* recovery is doing or not */
750 SBI_NEED_SB_WRITE, /* need to recover superblock */
751 SBI_NEED_CP, /* need to checkpoint */
752 };
753
754 enum {
755 CP_TIME,
756 REQ_TIME,
757 MAX_TIME,
758 };
759
760 #ifdef CONFIG_F2FS_FS_ENCRYPTION
761 #define F2FS_KEY_DESC_PREFIX "f2fs:"
762 #define F2FS_KEY_DESC_PREFIX_SIZE 5
763 #endif
764 struct f2fs_sb_info {
765 struct super_block *sb; /* pointer to VFS super block */
766 struct proc_dir_entry *s_proc; /* proc entry */
767 struct f2fs_super_block *raw_super; /* raw super block pointer */
768 int valid_super_block; /* valid super block no */
769 unsigned long s_flag; /* flags for sbi */
770
771 #ifdef CONFIG_F2FS_FS_ENCRYPTION
772 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
773 u8 key_prefix_size;
774 #endif
775
776 #ifdef CONFIG_BLK_DEV_ZONED
777 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
778 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
779 #endif
780
781 /* for node-related operations */
782 struct f2fs_nm_info *nm_info; /* node manager */
783 struct inode *node_inode; /* cache node blocks */
784
785 /* for segment-related operations */
786 struct f2fs_sm_info *sm_info; /* segment manager */
787
788 /* for bio operations */
789 struct f2fs_bio_info read_io; /* for read bios */
790 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
791 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */
792
793 /* for checkpoint */
794 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
795 spinlock_t cp_lock; /* for flag in ckpt */
796 struct inode *meta_inode; /* cache meta blocks */
797 struct mutex cp_mutex; /* checkpoint procedure lock */
798 struct rw_semaphore cp_rwsem; /* blocking FS operations */
799 struct rw_semaphore node_write; /* locking node writes */
800 wait_queue_head_t cp_wait;
801 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
802 long interval_time[MAX_TIME]; /* to store thresholds */
803
804 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
805
806 /* for orphan inode, use 0'th array */
807 unsigned int max_orphans; /* max orphan inodes */
808
809 /* for inode management */
810 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
811 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
812
813 /* for extent tree cache */
814 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
815 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
816 struct list_head extent_list; /* lru list for shrinker */
817 spinlock_t extent_lock; /* locking extent lru list */
818 atomic_t total_ext_tree; /* extent tree count */
819 struct list_head zombie_list; /* extent zombie tree list */
820 atomic_t total_zombie_tree; /* extent zombie tree count */
821 atomic_t total_ext_node; /* extent info count */
822
823 /* basic filesystem units */
824 unsigned int log_sectors_per_block; /* log2 sectors per block */
825 unsigned int log_blocksize; /* log2 block size */
826 unsigned int blocksize; /* block size */
827 unsigned int root_ino_num; /* root inode number*/
828 unsigned int node_ino_num; /* node inode number*/
829 unsigned int meta_ino_num; /* meta inode number*/
830 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
831 unsigned int blocks_per_seg; /* blocks per segment */
832 unsigned int segs_per_sec; /* segments per section */
833 unsigned int secs_per_zone; /* sections per zone */
834 unsigned int total_sections; /* total section count */
835 unsigned int total_node_count; /* total node block count */
836 unsigned int total_valid_node_count; /* valid node block count */
837 loff_t max_file_blocks; /* max block index of file */
838 int active_logs; /* # of active logs */
839 int dir_level; /* directory level */
840
841 block_t user_block_count; /* # of user blocks */
842 block_t total_valid_block_count; /* # of valid blocks */
843 block_t discard_blks; /* discard command candidats */
844 block_t last_valid_block_count; /* for recovery */
845 u32 s_next_generation; /* for NFS support */
846
847 /* # of pages, see count_type */
848 atomic_t nr_pages[NR_COUNT_TYPE];
849 /* # of allocated blocks */
850 struct percpu_counter alloc_valid_block_count;
851
852 /* valid inode count */
853 struct percpu_counter total_valid_inode_count;
854
855 struct f2fs_mount_info mount_opt; /* mount options */
856
857 /* for cleaning operations */
858 struct mutex gc_mutex; /* mutex for GC */
859 struct f2fs_gc_kthread *gc_thread; /* GC thread */
860 unsigned int cur_victim_sec; /* current victim section num */
861
862 /* maximum # of trials to find a victim segment for SSR and GC */
863 unsigned int max_victim_search;
864
865 /*
866 * for stat information.
867 * one is for the LFS mode, and the other is for the SSR mode.
868 */
869 #ifdef CONFIG_F2FS_STAT_FS
870 struct f2fs_stat_info *stat_info; /* FS status information */
871 unsigned int segment_count[2]; /* # of allocated segments */
872 unsigned int block_count[2]; /* # of allocated blocks */
873 atomic_t inplace_count; /* # of inplace update */
874 atomic64_t total_hit_ext; /* # of lookup extent cache */
875 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
876 atomic64_t read_hit_largest; /* # of hit largest extent node */
877 atomic64_t read_hit_cached; /* # of hit cached extent node */
878 atomic_t inline_xattr; /* # of inline_xattr inodes */
879 atomic_t inline_inode; /* # of inline_data inodes */
880 atomic_t inline_dir; /* # of inline_dentry inodes */
881 int bg_gc; /* background gc calls */
882 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
883 #endif
884 unsigned int last_victim[2]; /* last victim segment # */
885 spinlock_t stat_lock; /* lock for stat operations */
886
887 /* For sysfs suppport */
888 struct kobject s_kobj;
889 struct completion s_kobj_unregister;
890
891 /* For shrinker support */
892 struct list_head s_list;
893 int s_ndevs; /* number of devices */
894 struct f2fs_dev_info *devs; /* for device list */
895 struct mutex umount_mutex;
896 unsigned int shrinker_run_no;
897
898 /* For write statistics */
899 u64 sectors_written_start;
900 u64 kbytes_written;
901
902 /* Reference to checksum algorithm driver via cryptoapi */
903 struct crypto_shash *s_chksum_driver;
904
905 /* For fault injection */
906 #ifdef CONFIG_F2FS_FAULT_INJECTION
907 struct f2fs_fault_info fault_info;
908 #endif
909 };
910
911 #ifdef CONFIG_F2FS_FAULT_INJECTION
912 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
913 {
914 struct f2fs_fault_info *ffi = &sbi->fault_info;
915
916 if (!ffi->inject_rate)
917 return false;
918
919 if (!IS_FAULT_SET(ffi, type))
920 return false;
921
922 atomic_inc(&ffi->inject_ops);
923 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
924 atomic_set(&ffi->inject_ops, 0);
925 printk("%sF2FS-fs : inject %s in %pF\n",
926 KERN_INFO,
927 fault_name[type],
928 __builtin_return_address(0));
929 return true;
930 }
931 return false;
932 }
933 #endif
934
935 /* For write statistics. Suppose sector size is 512 bytes,
936 * and the return value is in kbytes. s is of struct f2fs_sb_info.
937 */
938 #define BD_PART_WRITTEN(s) \
939 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
940 s->sectors_written_start) >> 1)
941
942 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
943 {
944 sbi->last_time[type] = jiffies;
945 }
946
947 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
948 {
949 struct timespec ts = {sbi->interval_time[type], 0};
950 unsigned long interval = timespec_to_jiffies(&ts);
951
952 return time_after(jiffies, sbi->last_time[type] + interval);
953 }
954
955 static inline bool is_idle(struct f2fs_sb_info *sbi)
956 {
957 struct block_device *bdev = sbi->sb->s_bdev;
958 struct request_queue *q = bdev_get_queue(bdev);
959 struct request_list *rl = &q->root_rl;
960
961 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
962 return 0;
963
964 return f2fs_time_over(sbi, REQ_TIME);
965 }
966
967 /*
968 * Inline functions
969 */
970 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
971 unsigned int length)
972 {
973 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
974 u32 *ctx = (u32 *)shash_desc_ctx(shash);
975 int err;
976
977 shash->tfm = sbi->s_chksum_driver;
978 shash->flags = 0;
979 *ctx = F2FS_SUPER_MAGIC;
980
981 err = crypto_shash_update(shash, address, length);
982 BUG_ON(err);
983
984 return *ctx;
985 }
986
987 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
988 void *buf, size_t buf_size)
989 {
990 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
991 }
992
993 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
994 {
995 return container_of(inode, struct f2fs_inode_info, vfs_inode);
996 }
997
998 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
999 {
1000 return sb->s_fs_info;
1001 }
1002
1003 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1004 {
1005 return F2FS_SB(inode->i_sb);
1006 }
1007
1008 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1009 {
1010 return F2FS_I_SB(mapping->host);
1011 }
1012
1013 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1014 {
1015 return F2FS_M_SB(page->mapping);
1016 }
1017
1018 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1019 {
1020 return (struct f2fs_super_block *)(sbi->raw_super);
1021 }
1022
1023 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1024 {
1025 return (struct f2fs_checkpoint *)(sbi->ckpt);
1026 }
1027
1028 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1029 {
1030 return (struct f2fs_node *)page_address(page);
1031 }
1032
1033 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1034 {
1035 return &((struct f2fs_node *)page_address(page))->i;
1036 }
1037
1038 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1039 {
1040 return (struct f2fs_nm_info *)(sbi->nm_info);
1041 }
1042
1043 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1044 {
1045 return (struct f2fs_sm_info *)(sbi->sm_info);
1046 }
1047
1048 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1049 {
1050 return (struct sit_info *)(SM_I(sbi)->sit_info);
1051 }
1052
1053 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1054 {
1055 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1056 }
1057
1058 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1059 {
1060 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1061 }
1062
1063 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1064 {
1065 return sbi->meta_inode->i_mapping;
1066 }
1067
1068 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1069 {
1070 return sbi->node_inode->i_mapping;
1071 }
1072
1073 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1074 {
1075 return test_bit(type, &sbi->s_flag);
1076 }
1077
1078 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1079 {
1080 set_bit(type, &sbi->s_flag);
1081 }
1082
1083 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1084 {
1085 clear_bit(type, &sbi->s_flag);
1086 }
1087
1088 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1089 {
1090 return le64_to_cpu(cp->checkpoint_ver);
1091 }
1092
1093 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1094 {
1095 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1096
1097 return ckpt_flags & f;
1098 }
1099
1100 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1101 {
1102 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1103 }
1104
1105 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1106 {
1107 unsigned int ckpt_flags;
1108
1109 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1110 ckpt_flags |= f;
1111 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1112 }
1113
1114 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1115 {
1116 spin_lock(&sbi->cp_lock);
1117 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1118 spin_unlock(&sbi->cp_lock);
1119 }
1120
1121 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1122 {
1123 unsigned int ckpt_flags;
1124
1125 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1126 ckpt_flags &= (~f);
1127 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1128 }
1129
1130 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1131 {
1132 spin_lock(&sbi->cp_lock);
1133 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1134 spin_unlock(&sbi->cp_lock);
1135 }
1136
1137 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1138 {
1139 down_read(&sbi->cp_rwsem);
1140 }
1141
1142 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1143 {
1144 up_read(&sbi->cp_rwsem);
1145 }
1146
1147 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1148 {
1149 down_write(&sbi->cp_rwsem);
1150 }
1151
1152 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1153 {
1154 up_write(&sbi->cp_rwsem);
1155 }
1156
1157 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1158 {
1159 int reason = CP_SYNC;
1160
1161 if (test_opt(sbi, FASTBOOT))
1162 reason = CP_FASTBOOT;
1163 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1164 reason = CP_UMOUNT;
1165 return reason;
1166 }
1167
1168 static inline bool __remain_node_summaries(int reason)
1169 {
1170 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1171 }
1172
1173 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1174 {
1175 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1176 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1177 }
1178
1179 /*
1180 * Check whether the given nid is within node id range.
1181 */
1182 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1183 {
1184 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1185 return -EINVAL;
1186 if (unlikely(nid >= NM_I(sbi)->max_nid))
1187 return -EINVAL;
1188 return 0;
1189 }
1190
1191 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1192
1193 /*
1194 * Check whether the inode has blocks or not
1195 */
1196 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1197 {
1198 if (F2FS_I(inode)->i_xattr_nid)
1199 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1200 else
1201 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1202 }
1203
1204 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1205 {
1206 return ofs == XATTR_NODE_OFFSET;
1207 }
1208
1209 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1210 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1211 struct inode *inode, blkcnt_t *count)
1212 {
1213 blkcnt_t diff;
1214
1215 #ifdef CONFIG_F2FS_FAULT_INJECTION
1216 if (time_to_inject(sbi, FAULT_BLOCK))
1217 return false;
1218 #endif
1219 /*
1220 * let's increase this in prior to actual block count change in order
1221 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1222 */
1223 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1224
1225 spin_lock(&sbi->stat_lock);
1226 sbi->total_valid_block_count += (block_t)(*count);
1227 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1228 diff = sbi->total_valid_block_count - sbi->user_block_count;
1229 *count -= diff;
1230 sbi->total_valid_block_count = sbi->user_block_count;
1231 if (!*count) {
1232 spin_unlock(&sbi->stat_lock);
1233 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1234 return false;
1235 }
1236 }
1237 spin_unlock(&sbi->stat_lock);
1238
1239 f2fs_i_blocks_write(inode, *count, true);
1240 return true;
1241 }
1242
1243 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1244 struct inode *inode,
1245 blkcnt_t count)
1246 {
1247 spin_lock(&sbi->stat_lock);
1248 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1249 f2fs_bug_on(sbi, inode->i_blocks < count);
1250 sbi->total_valid_block_count -= (block_t)count;
1251 spin_unlock(&sbi->stat_lock);
1252 f2fs_i_blocks_write(inode, count, false);
1253 }
1254
1255 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1256 {
1257 atomic_inc(&sbi->nr_pages[count_type]);
1258
1259 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1260 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1261 return;
1262
1263 set_sbi_flag(sbi, SBI_IS_DIRTY);
1264 }
1265
1266 static inline void inode_inc_dirty_pages(struct inode *inode)
1267 {
1268 percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1269 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1270 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1271 }
1272
1273 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1274 {
1275 atomic_dec(&sbi->nr_pages[count_type]);
1276 }
1277
1278 static inline void inode_dec_dirty_pages(struct inode *inode)
1279 {
1280 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1281 !S_ISLNK(inode->i_mode))
1282 return;
1283
1284 percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1285 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1286 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1287 }
1288
1289 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1290 {
1291 return atomic_read(&sbi->nr_pages[count_type]);
1292 }
1293
1294 static inline s64 get_dirty_pages(struct inode *inode)
1295 {
1296 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1297 }
1298
1299 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1300 {
1301 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1302 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1303 sbi->log_blocks_per_seg;
1304
1305 return segs / sbi->segs_per_sec;
1306 }
1307
1308 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1309 {
1310 return sbi->total_valid_block_count;
1311 }
1312
1313 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1314 {
1315 return sbi->discard_blks;
1316 }
1317
1318 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1319 {
1320 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1321
1322 /* return NAT or SIT bitmap */
1323 if (flag == NAT_BITMAP)
1324 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1325 else if (flag == SIT_BITMAP)
1326 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1327
1328 return 0;
1329 }
1330
1331 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1332 {
1333 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1334 }
1335
1336 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1337 {
1338 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1339 int offset;
1340
1341 if (__cp_payload(sbi) > 0) {
1342 if (flag == NAT_BITMAP)
1343 return &ckpt->sit_nat_version_bitmap;
1344 else
1345 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1346 } else {
1347 offset = (flag == NAT_BITMAP) ?
1348 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1349 return &ckpt->sit_nat_version_bitmap + offset;
1350 }
1351 }
1352
1353 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1354 {
1355 block_t start_addr;
1356 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1357 unsigned long long ckpt_version = cur_cp_version(ckpt);
1358
1359 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1360
1361 /*
1362 * odd numbered checkpoint should at cp segment 0
1363 * and even segment must be at cp segment 1
1364 */
1365 if (!(ckpt_version & 1))
1366 start_addr += sbi->blocks_per_seg;
1367
1368 return start_addr;
1369 }
1370
1371 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1372 {
1373 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1374 }
1375
1376 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1377 struct inode *inode)
1378 {
1379 block_t valid_block_count;
1380 unsigned int valid_node_count;
1381
1382 spin_lock(&sbi->stat_lock);
1383
1384 valid_block_count = sbi->total_valid_block_count + 1;
1385 if (unlikely(valid_block_count > sbi->user_block_count)) {
1386 spin_unlock(&sbi->stat_lock);
1387 return false;
1388 }
1389
1390 valid_node_count = sbi->total_valid_node_count + 1;
1391 if (unlikely(valid_node_count > sbi->total_node_count)) {
1392 spin_unlock(&sbi->stat_lock);
1393 return false;
1394 }
1395
1396 if (inode)
1397 f2fs_i_blocks_write(inode, 1, true);
1398
1399 sbi->total_valid_node_count++;
1400 sbi->total_valid_block_count++;
1401 spin_unlock(&sbi->stat_lock);
1402
1403 percpu_counter_inc(&sbi->alloc_valid_block_count);
1404 return true;
1405 }
1406
1407 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1408 struct inode *inode)
1409 {
1410 spin_lock(&sbi->stat_lock);
1411
1412 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1413 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1414 f2fs_bug_on(sbi, !inode->i_blocks);
1415
1416 f2fs_i_blocks_write(inode, 1, false);
1417 sbi->total_valid_node_count--;
1418 sbi->total_valid_block_count--;
1419
1420 spin_unlock(&sbi->stat_lock);
1421 }
1422
1423 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1424 {
1425 return sbi->total_valid_node_count;
1426 }
1427
1428 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1429 {
1430 percpu_counter_inc(&sbi->total_valid_inode_count);
1431 }
1432
1433 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1434 {
1435 percpu_counter_dec(&sbi->total_valid_inode_count);
1436 }
1437
1438 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1439 {
1440 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1441 }
1442
1443 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1444 pgoff_t index, bool for_write)
1445 {
1446 #ifdef CONFIG_F2FS_FAULT_INJECTION
1447 struct page *page = find_lock_page(mapping, index);
1448 if (page)
1449 return page;
1450
1451 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
1452 return NULL;
1453 #endif
1454 if (!for_write)
1455 return grab_cache_page(mapping, index);
1456 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1457 }
1458
1459 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1460 {
1461 char *src_kaddr = kmap(src);
1462 char *dst_kaddr = kmap(dst);
1463
1464 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1465 kunmap(dst);
1466 kunmap(src);
1467 }
1468
1469 static inline void f2fs_put_page(struct page *page, int unlock)
1470 {
1471 if (!page)
1472 return;
1473
1474 if (unlock) {
1475 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1476 unlock_page(page);
1477 }
1478 put_page(page);
1479 }
1480
1481 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1482 {
1483 if (dn->node_page)
1484 f2fs_put_page(dn->node_page, 1);
1485 if (dn->inode_page && dn->node_page != dn->inode_page)
1486 f2fs_put_page(dn->inode_page, 0);
1487 dn->node_page = NULL;
1488 dn->inode_page = NULL;
1489 }
1490
1491 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1492 size_t size)
1493 {
1494 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1495 }
1496
1497 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1498 gfp_t flags)
1499 {
1500 void *entry;
1501
1502 entry = kmem_cache_alloc(cachep, flags);
1503 if (!entry)
1504 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1505 return entry;
1506 }
1507
1508 static inline struct bio *f2fs_bio_alloc(int npages)
1509 {
1510 struct bio *bio;
1511
1512 /* No failure on bio allocation */
1513 bio = bio_alloc(GFP_NOIO, npages);
1514 if (!bio)
1515 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1516 return bio;
1517 }
1518
1519 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1520 unsigned long index, void *item)
1521 {
1522 while (radix_tree_insert(root, index, item))
1523 cond_resched();
1524 }
1525
1526 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1527
1528 static inline bool IS_INODE(struct page *page)
1529 {
1530 struct f2fs_node *p = F2FS_NODE(page);
1531 return RAW_IS_INODE(p);
1532 }
1533
1534 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1535 {
1536 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1537 }
1538
1539 static inline block_t datablock_addr(struct page *node_page,
1540 unsigned int offset)
1541 {
1542 struct f2fs_node *raw_node;
1543 __le32 *addr_array;
1544 raw_node = F2FS_NODE(node_page);
1545 addr_array = blkaddr_in_node(raw_node);
1546 return le32_to_cpu(addr_array[offset]);
1547 }
1548
1549 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1550 {
1551 int mask;
1552
1553 addr += (nr >> 3);
1554 mask = 1 << (7 - (nr & 0x07));
1555 return mask & *addr;
1556 }
1557
1558 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1559 {
1560 int mask;
1561
1562 addr += (nr >> 3);
1563 mask = 1 << (7 - (nr & 0x07));
1564 *addr |= mask;
1565 }
1566
1567 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1568 {
1569 int mask;
1570
1571 addr += (nr >> 3);
1572 mask = 1 << (7 - (nr & 0x07));
1573 *addr &= ~mask;
1574 }
1575
1576 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1577 {
1578 int mask;
1579 int ret;
1580
1581 addr += (nr >> 3);
1582 mask = 1 << (7 - (nr & 0x07));
1583 ret = mask & *addr;
1584 *addr |= mask;
1585 return ret;
1586 }
1587
1588 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1589 {
1590 int mask;
1591 int ret;
1592
1593 addr += (nr >> 3);
1594 mask = 1 << (7 - (nr & 0x07));
1595 ret = mask & *addr;
1596 *addr &= ~mask;
1597 return ret;
1598 }
1599
1600 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1601 {
1602 int mask;
1603
1604 addr += (nr >> 3);
1605 mask = 1 << (7 - (nr & 0x07));
1606 *addr ^= mask;
1607 }
1608
1609 /* used for f2fs_inode_info->flags */
1610 enum {
1611 FI_NEW_INODE, /* indicate newly allocated inode */
1612 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1613 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1614 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1615 FI_INC_LINK, /* need to increment i_nlink */
1616 FI_ACL_MODE, /* indicate acl mode */
1617 FI_NO_ALLOC, /* should not allocate any blocks */
1618 FI_FREE_NID, /* free allocated nide */
1619 FI_NO_EXTENT, /* not to use the extent cache */
1620 FI_INLINE_XATTR, /* used for inline xattr */
1621 FI_INLINE_DATA, /* used for inline data*/
1622 FI_INLINE_DENTRY, /* used for inline dentry */
1623 FI_APPEND_WRITE, /* inode has appended data */
1624 FI_UPDATE_WRITE, /* inode has in-place-update data */
1625 FI_NEED_IPU, /* used for ipu per file */
1626 FI_ATOMIC_FILE, /* indicate atomic file */
1627 FI_VOLATILE_FILE, /* indicate volatile file */
1628 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1629 FI_DROP_CACHE, /* drop dirty page cache */
1630 FI_DATA_EXIST, /* indicate data exists */
1631 FI_INLINE_DOTS, /* indicate inline dot dentries */
1632 FI_DO_DEFRAG, /* indicate defragment is running */
1633 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1634 };
1635
1636 static inline void __mark_inode_dirty_flag(struct inode *inode,
1637 int flag, bool set)
1638 {
1639 switch (flag) {
1640 case FI_INLINE_XATTR:
1641 case FI_INLINE_DATA:
1642 case FI_INLINE_DENTRY:
1643 if (set)
1644 return;
1645 case FI_DATA_EXIST:
1646 case FI_INLINE_DOTS:
1647 f2fs_mark_inode_dirty_sync(inode, true);
1648 }
1649 }
1650
1651 static inline void set_inode_flag(struct inode *inode, int flag)
1652 {
1653 if (!test_bit(flag, &F2FS_I(inode)->flags))
1654 set_bit(flag, &F2FS_I(inode)->flags);
1655 __mark_inode_dirty_flag(inode, flag, true);
1656 }
1657
1658 static inline int is_inode_flag_set(struct inode *inode, int flag)
1659 {
1660 return test_bit(flag, &F2FS_I(inode)->flags);
1661 }
1662
1663 static inline void clear_inode_flag(struct inode *inode, int flag)
1664 {
1665 if (test_bit(flag, &F2FS_I(inode)->flags))
1666 clear_bit(flag, &F2FS_I(inode)->flags);
1667 __mark_inode_dirty_flag(inode, flag, false);
1668 }
1669
1670 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1671 {
1672 F2FS_I(inode)->i_acl_mode = mode;
1673 set_inode_flag(inode, FI_ACL_MODE);
1674 f2fs_mark_inode_dirty_sync(inode, false);
1675 }
1676
1677 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1678 {
1679 if (inc)
1680 inc_nlink(inode);
1681 else
1682 drop_nlink(inode);
1683 f2fs_mark_inode_dirty_sync(inode, true);
1684 }
1685
1686 static inline void f2fs_i_blocks_write(struct inode *inode,
1687 blkcnt_t diff, bool add)
1688 {
1689 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1690 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1691
1692 inode->i_blocks = add ? inode->i_blocks + diff :
1693 inode->i_blocks - diff;
1694 f2fs_mark_inode_dirty_sync(inode, true);
1695 if (clean || recover)
1696 set_inode_flag(inode, FI_AUTO_RECOVER);
1697 }
1698
1699 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1700 {
1701 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1702 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1703
1704 if (i_size_read(inode) == i_size)
1705 return;
1706
1707 i_size_write(inode, i_size);
1708 f2fs_mark_inode_dirty_sync(inode, true);
1709 if (clean || recover)
1710 set_inode_flag(inode, FI_AUTO_RECOVER);
1711 }
1712
1713 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
1714 {
1715 if (dsync) {
1716 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1717 bool ret;
1718
1719 spin_lock(&sbi->inode_lock[DIRTY_META]);
1720 ret = list_empty(&F2FS_I(inode)->gdirty_list);
1721 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1722 return ret;
1723 }
1724 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
1725 i_size_read(inode) & PAGE_MASK)
1726 return false;
1727 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1728 }
1729
1730 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1731 {
1732 F2FS_I(inode)->i_current_depth = depth;
1733 f2fs_mark_inode_dirty_sync(inode, true);
1734 }
1735
1736 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1737 {
1738 F2FS_I(inode)->i_xattr_nid = xnid;
1739 f2fs_mark_inode_dirty_sync(inode, true);
1740 }
1741
1742 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1743 {
1744 F2FS_I(inode)->i_pino = pino;
1745 f2fs_mark_inode_dirty_sync(inode, true);
1746 }
1747
1748 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1749 {
1750 struct f2fs_inode_info *fi = F2FS_I(inode);
1751
1752 if (ri->i_inline & F2FS_INLINE_XATTR)
1753 set_bit(FI_INLINE_XATTR, &fi->flags);
1754 if (ri->i_inline & F2FS_INLINE_DATA)
1755 set_bit(FI_INLINE_DATA, &fi->flags);
1756 if (ri->i_inline & F2FS_INLINE_DENTRY)
1757 set_bit(FI_INLINE_DENTRY, &fi->flags);
1758 if (ri->i_inline & F2FS_DATA_EXIST)
1759 set_bit(FI_DATA_EXIST, &fi->flags);
1760 if (ri->i_inline & F2FS_INLINE_DOTS)
1761 set_bit(FI_INLINE_DOTS, &fi->flags);
1762 }
1763
1764 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1765 {
1766 ri->i_inline = 0;
1767
1768 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1769 ri->i_inline |= F2FS_INLINE_XATTR;
1770 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1771 ri->i_inline |= F2FS_INLINE_DATA;
1772 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1773 ri->i_inline |= F2FS_INLINE_DENTRY;
1774 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1775 ri->i_inline |= F2FS_DATA_EXIST;
1776 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1777 ri->i_inline |= F2FS_INLINE_DOTS;
1778 }
1779
1780 static inline int f2fs_has_inline_xattr(struct inode *inode)
1781 {
1782 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1783 }
1784
1785 static inline unsigned int addrs_per_inode(struct inode *inode)
1786 {
1787 if (f2fs_has_inline_xattr(inode))
1788 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1789 return DEF_ADDRS_PER_INODE;
1790 }
1791
1792 static inline void *inline_xattr_addr(struct page *page)
1793 {
1794 struct f2fs_inode *ri = F2FS_INODE(page);
1795 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1796 F2FS_INLINE_XATTR_ADDRS]);
1797 }
1798
1799 static inline int inline_xattr_size(struct inode *inode)
1800 {
1801 if (f2fs_has_inline_xattr(inode))
1802 return F2FS_INLINE_XATTR_ADDRS << 2;
1803 else
1804 return 0;
1805 }
1806
1807 static inline int f2fs_has_inline_data(struct inode *inode)
1808 {
1809 return is_inode_flag_set(inode, FI_INLINE_DATA);
1810 }
1811
1812 static inline void f2fs_clear_inline_inode(struct inode *inode)
1813 {
1814 clear_inode_flag(inode, FI_INLINE_DATA);
1815 clear_inode_flag(inode, FI_DATA_EXIST);
1816 }
1817
1818 static inline int f2fs_exist_data(struct inode *inode)
1819 {
1820 return is_inode_flag_set(inode, FI_DATA_EXIST);
1821 }
1822
1823 static inline int f2fs_has_inline_dots(struct inode *inode)
1824 {
1825 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1826 }
1827
1828 static inline bool f2fs_is_atomic_file(struct inode *inode)
1829 {
1830 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1831 }
1832
1833 static inline bool f2fs_is_volatile_file(struct inode *inode)
1834 {
1835 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1836 }
1837
1838 static inline bool f2fs_is_first_block_written(struct inode *inode)
1839 {
1840 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1841 }
1842
1843 static inline bool f2fs_is_drop_cache(struct inode *inode)
1844 {
1845 return is_inode_flag_set(inode, FI_DROP_CACHE);
1846 }
1847
1848 static inline void *inline_data_addr(struct page *page)
1849 {
1850 struct f2fs_inode *ri = F2FS_INODE(page);
1851 return (void *)&(ri->i_addr[1]);
1852 }
1853
1854 static inline int f2fs_has_inline_dentry(struct inode *inode)
1855 {
1856 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1857 }
1858
1859 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1860 {
1861 if (!f2fs_has_inline_dentry(dir))
1862 kunmap(page);
1863 }
1864
1865 static inline int is_file(struct inode *inode, int type)
1866 {
1867 return F2FS_I(inode)->i_advise & type;
1868 }
1869
1870 static inline void set_file(struct inode *inode, int type)
1871 {
1872 F2FS_I(inode)->i_advise |= type;
1873 f2fs_mark_inode_dirty_sync(inode, true);
1874 }
1875
1876 static inline void clear_file(struct inode *inode, int type)
1877 {
1878 F2FS_I(inode)->i_advise &= ~type;
1879 f2fs_mark_inode_dirty_sync(inode, true);
1880 }
1881
1882 static inline int f2fs_readonly(struct super_block *sb)
1883 {
1884 return sb->s_flags & MS_RDONLY;
1885 }
1886
1887 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1888 {
1889 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
1890 }
1891
1892 static inline bool is_dot_dotdot(const struct qstr *str)
1893 {
1894 if (str->len == 1 && str->name[0] == '.')
1895 return true;
1896
1897 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1898 return true;
1899
1900 return false;
1901 }
1902
1903 static inline bool f2fs_may_extent_tree(struct inode *inode)
1904 {
1905 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1906 is_inode_flag_set(inode, FI_NO_EXTENT))
1907 return false;
1908
1909 return S_ISREG(inode->i_mode);
1910 }
1911
1912 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
1913 size_t size, gfp_t flags)
1914 {
1915 #ifdef CONFIG_F2FS_FAULT_INJECTION
1916 if (time_to_inject(sbi, FAULT_KMALLOC))
1917 return NULL;
1918 #endif
1919 return kmalloc(size, flags);
1920 }
1921
1922 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1923 {
1924 void *ret;
1925
1926 ret = kmalloc(size, flags | __GFP_NOWARN);
1927 if (!ret)
1928 ret = __vmalloc(size, flags, PAGE_KERNEL);
1929 return ret;
1930 }
1931
1932 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1933 {
1934 void *ret;
1935
1936 ret = kzalloc(size, flags | __GFP_NOWARN);
1937 if (!ret)
1938 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1939 return ret;
1940 }
1941
1942 #define get_inode_mode(i) \
1943 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1944 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1945
1946 /* get offset of first page in next direct node */
1947 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1948 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1949 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1950 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1951
1952 /*
1953 * file.c
1954 */
1955 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1956 void truncate_data_blocks(struct dnode_of_data *);
1957 int truncate_blocks(struct inode *, u64, bool);
1958 int f2fs_truncate(struct inode *);
1959 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1960 int f2fs_setattr(struct dentry *, struct iattr *);
1961 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1962 int truncate_data_blocks_range(struct dnode_of_data *, int);
1963 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1964 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1965
1966 /*
1967 * inode.c
1968 */
1969 void f2fs_set_inode_flags(struct inode *);
1970 struct inode *f2fs_iget(struct super_block *, unsigned long);
1971 struct inode *f2fs_iget_retry(struct super_block *, unsigned long);
1972 int try_to_free_nats(struct f2fs_sb_info *, int);
1973 int update_inode(struct inode *, struct page *);
1974 int update_inode_page(struct inode *);
1975 int f2fs_write_inode(struct inode *, struct writeback_control *);
1976 void f2fs_evict_inode(struct inode *);
1977 void handle_failed_inode(struct inode *);
1978
1979 /*
1980 * namei.c
1981 */
1982 struct dentry *f2fs_get_parent(struct dentry *child);
1983
1984 /*
1985 * dir.c
1986 */
1987 void set_de_type(struct f2fs_dir_entry *, umode_t);
1988 unsigned char get_de_type(struct f2fs_dir_entry *);
1989 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1990 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1991 int f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1992 unsigned int, struct fscrypt_str *);
1993 void do_make_empty_dir(struct inode *, struct inode *,
1994 struct f2fs_dentry_ptr *);
1995 struct page *init_inode_metadata(struct inode *, struct inode *,
1996 const struct qstr *, const struct qstr *, struct page *);
1997 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1998 int room_for_filename(const void *, int, int);
1999 void f2fs_drop_nlink(struct inode *, struct inode *);
2000 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *, struct fscrypt_name *,
2001 struct page **);
2002 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *,
2003 struct page **);
2004 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
2005 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **);
2006 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
2007 struct page *, struct inode *);
2008 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
2009 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
2010 const struct qstr *, f2fs_hash_t , unsigned int);
2011 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
2012 const struct qstr *, struct inode *, nid_t, umode_t);
2013 int __f2fs_do_add_link(struct inode *, struct fscrypt_name*, struct inode *,
2014 nid_t, umode_t);
2015 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
2016 umode_t);
2017 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
2018 struct inode *);
2019 int f2fs_do_tmpfile(struct inode *, struct inode *);
2020 bool f2fs_empty_dir(struct inode *);
2021
2022 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2023 {
2024 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2025 inode, inode->i_ino, inode->i_mode);
2026 }
2027
2028 /*
2029 * super.c
2030 */
2031 int f2fs_inode_dirtied(struct inode *, bool);
2032 void f2fs_inode_synced(struct inode *);
2033 int f2fs_commit_super(struct f2fs_sb_info *, bool);
2034 int f2fs_sync_fs(struct super_block *, int);
2035 extern __printf(3, 4)
2036 void f2fs_msg(struct super_block *, const char *, const char *, ...);
2037 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2038
2039 /*
2040 * hash.c
2041 */
2042 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
2043
2044 /*
2045 * node.c
2046 */
2047 struct dnode_of_data;
2048 struct node_info;
2049
2050 bool available_free_memory(struct f2fs_sb_info *, int);
2051 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
2052 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
2053 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
2054 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
2055 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
2056 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
2057 int truncate_inode_blocks(struct inode *, pgoff_t);
2058 int truncate_xattr_node(struct inode *, struct page *);
2059 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
2060 int remove_inode_page(struct inode *);
2061 struct page *new_inode_page(struct inode *);
2062 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
2063 void ra_node_page(struct f2fs_sb_info *, nid_t);
2064 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
2065 struct page *get_node_page_ra(struct page *, int);
2066 void move_node_page(struct page *, int);
2067 int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
2068 struct writeback_control *, bool);
2069 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
2070 void build_free_nids(struct f2fs_sb_info *, bool);
2071 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
2072 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
2073 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
2074 int try_to_free_nids(struct f2fs_sb_info *, int);
2075 void recover_inline_xattr(struct inode *, struct page *);
2076 void recover_xattr_data(struct inode *, struct page *, block_t);
2077 int recover_inode_page(struct f2fs_sb_info *, struct page *);
2078 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
2079 struct f2fs_summary_block *);
2080 void flush_nat_entries(struct f2fs_sb_info *);
2081 int build_node_manager(struct f2fs_sb_info *);
2082 void destroy_node_manager(struct f2fs_sb_info *);
2083 int __init create_node_manager_caches(void);
2084 void destroy_node_manager_caches(void);
2085
2086 /*
2087 * segment.c
2088 */
2089 void register_inmem_page(struct inode *, struct page *);
2090 void drop_inmem_pages(struct inode *);
2091 int commit_inmem_pages(struct inode *);
2092 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
2093 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
2094 int f2fs_issue_flush(struct f2fs_sb_info *);
2095 int create_flush_cmd_control(struct f2fs_sb_info *);
2096 void destroy_flush_cmd_control(struct f2fs_sb_info *);
2097 void invalidate_blocks(struct f2fs_sb_info *, block_t);
2098 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
2099 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
2100 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *);
2101 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
2102 void release_discard_addrs(struct f2fs_sb_info *);
2103 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
2104 void allocate_new_segments(struct f2fs_sb_info *);
2105 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
2106 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
2107 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
2108 void write_meta_page(struct f2fs_sb_info *, struct page *);
2109 void write_node_page(unsigned int, struct f2fs_io_info *);
2110 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2111 void rewrite_data_page(struct f2fs_io_info *);
2112 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2113 block_t, block_t, bool, bool);
2114 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2115 block_t, block_t, unsigned char, bool, bool);
2116 void allocate_data_block(struct f2fs_sb_info *, struct page *,
2117 block_t, block_t *, struct f2fs_summary *, int);
2118 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2119 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2120 void write_data_summaries(struct f2fs_sb_info *, block_t);
2121 void write_node_summaries(struct f2fs_sb_info *, block_t);
2122 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2123 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2124 int build_segment_manager(struct f2fs_sb_info *);
2125 void destroy_segment_manager(struct f2fs_sb_info *);
2126 int __init create_segment_manager_caches(void);
2127 void destroy_segment_manager_caches(void);
2128
2129 /*
2130 * checkpoint.c
2131 */
2132 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2133 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2134 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2135 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2136 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2137 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2138 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2139 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2140 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2141 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2142 void release_ino_entry(struct f2fs_sb_info *, bool);
2143 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2144 int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2145 int acquire_orphan_inode(struct f2fs_sb_info *);
2146 void release_orphan_inode(struct f2fs_sb_info *);
2147 void add_orphan_inode(struct inode *);
2148 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2149 int recover_orphan_inodes(struct f2fs_sb_info *);
2150 int get_valid_checkpoint(struct f2fs_sb_info *);
2151 void update_dirty_page(struct inode *, struct page *);
2152 void remove_dirty_inode(struct inode *);
2153 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2154 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2155 void init_ino_entry_info(struct f2fs_sb_info *);
2156 int __init create_checkpoint_caches(void);
2157 void destroy_checkpoint_caches(void);
2158
2159 /*
2160 * data.c
2161 */
2162 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2163 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2164 struct page *, nid_t, enum page_type, int);
2165 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2166 int f2fs_submit_page_bio(struct f2fs_io_info *);
2167 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2168 struct block_device *f2fs_target_device(struct f2fs_sb_info *,
2169 block_t, struct bio *);
2170 int f2fs_target_device_index(struct f2fs_sb_info *, block_t);
2171 void set_data_blkaddr(struct dnode_of_data *);
2172 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2173 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2174 int reserve_new_block(struct dnode_of_data *);
2175 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2176 int f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2177 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2178 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2179 struct page *find_data_page(struct inode *, pgoff_t);
2180 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2181 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2182 int do_write_data_page(struct f2fs_io_info *);
2183 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2184 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2185 void f2fs_set_page_dirty_nobuffers(struct page *);
2186 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2187 int f2fs_release_page(struct page *, gfp_t);
2188 #ifdef CONFIG_MIGRATION
2189 int f2fs_migrate_page(struct address_space *, struct page *, struct page *,
2190 enum migrate_mode);
2191 #endif
2192
2193 /*
2194 * gc.c
2195 */
2196 int start_gc_thread(struct f2fs_sb_info *);
2197 void stop_gc_thread(struct f2fs_sb_info *);
2198 block_t start_bidx_of_node(unsigned int, struct inode *);
2199 int f2fs_gc(struct f2fs_sb_info *, bool, bool);
2200 void build_gc_manager(struct f2fs_sb_info *);
2201
2202 /*
2203 * recovery.c
2204 */
2205 int recover_fsync_data(struct f2fs_sb_info *, bool);
2206 bool space_for_roll_forward(struct f2fs_sb_info *);
2207
2208 /*
2209 * debug.c
2210 */
2211 #ifdef CONFIG_F2FS_STAT_FS
2212 struct f2fs_stat_info {
2213 struct list_head stat_list;
2214 struct f2fs_sb_info *sbi;
2215 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2216 int main_area_segs, main_area_sections, main_area_zones;
2217 unsigned long long hit_largest, hit_cached, hit_rbtree;
2218 unsigned long long hit_total, total_ext;
2219 int ext_tree, zombie_tree, ext_node;
2220 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2221 int inmem_pages;
2222 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2223 int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids;
2224 int total_count, utilization;
2225 int bg_gc, nr_wb_cp_data, nr_wb_data;
2226 int inline_xattr, inline_inode, inline_dir, orphans;
2227 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2228 unsigned int bimodal, avg_vblocks;
2229 int util_free, util_valid, util_invalid;
2230 int rsvd_segs, overp_segs;
2231 int dirty_count, node_pages, meta_pages;
2232 int prefree_count, call_count, cp_count, bg_cp_count;
2233 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2234 int bg_node_segs, bg_data_segs;
2235 int tot_blks, data_blks, node_blks;
2236 int bg_data_blks, bg_node_blks;
2237 int curseg[NR_CURSEG_TYPE];
2238 int cursec[NR_CURSEG_TYPE];
2239 int curzone[NR_CURSEG_TYPE];
2240
2241 unsigned int segment_count[2];
2242 unsigned int block_count[2];
2243 unsigned int inplace_count;
2244 unsigned long long base_mem, cache_mem, page_mem;
2245 };
2246
2247 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2248 {
2249 return (struct f2fs_stat_info *)sbi->stat_info;
2250 }
2251
2252 #define stat_inc_cp_count(si) ((si)->cp_count++)
2253 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2254 #define stat_inc_call_count(si) ((si)->call_count++)
2255 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2256 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2257 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2258 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2259 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2260 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2261 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2262 #define stat_inc_inline_xattr(inode) \
2263 do { \
2264 if (f2fs_has_inline_xattr(inode)) \
2265 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2266 } while (0)
2267 #define stat_dec_inline_xattr(inode) \
2268 do { \
2269 if (f2fs_has_inline_xattr(inode)) \
2270 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2271 } while (0)
2272 #define stat_inc_inline_inode(inode) \
2273 do { \
2274 if (f2fs_has_inline_data(inode)) \
2275 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2276 } while (0)
2277 #define stat_dec_inline_inode(inode) \
2278 do { \
2279 if (f2fs_has_inline_data(inode)) \
2280 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2281 } while (0)
2282 #define stat_inc_inline_dir(inode) \
2283 do { \
2284 if (f2fs_has_inline_dentry(inode)) \
2285 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2286 } while (0)
2287 #define stat_dec_inline_dir(inode) \
2288 do { \
2289 if (f2fs_has_inline_dentry(inode)) \
2290 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2291 } while (0)
2292 #define stat_inc_seg_type(sbi, curseg) \
2293 ((sbi)->segment_count[(curseg)->alloc_type]++)
2294 #define stat_inc_block_count(sbi, curseg) \
2295 ((sbi)->block_count[(curseg)->alloc_type]++)
2296 #define stat_inc_inplace_blocks(sbi) \
2297 (atomic_inc(&(sbi)->inplace_count))
2298 #define stat_inc_seg_count(sbi, type, gc_type) \
2299 do { \
2300 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2301 (si)->tot_segs++; \
2302 if (type == SUM_TYPE_DATA) { \
2303 si->data_segs++; \
2304 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2305 } else { \
2306 si->node_segs++; \
2307 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2308 } \
2309 } while (0)
2310
2311 #define stat_inc_tot_blk_count(si, blks) \
2312 (si->tot_blks += (blks))
2313
2314 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2315 do { \
2316 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2317 stat_inc_tot_blk_count(si, blks); \
2318 si->data_blks += (blks); \
2319 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2320 } while (0)
2321
2322 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2323 do { \
2324 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2325 stat_inc_tot_blk_count(si, blks); \
2326 si->node_blks += (blks); \
2327 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2328 } while (0)
2329
2330 int f2fs_build_stats(struct f2fs_sb_info *);
2331 void f2fs_destroy_stats(struct f2fs_sb_info *);
2332 int __init f2fs_create_root_stats(void);
2333 void f2fs_destroy_root_stats(void);
2334 #else
2335 #define stat_inc_cp_count(si)
2336 #define stat_inc_bg_cp_count(si)
2337 #define stat_inc_call_count(si)
2338 #define stat_inc_bggc_count(si)
2339 #define stat_inc_dirty_inode(sbi, type)
2340 #define stat_dec_dirty_inode(sbi, type)
2341 #define stat_inc_total_hit(sb)
2342 #define stat_inc_rbtree_node_hit(sb)
2343 #define stat_inc_largest_node_hit(sbi)
2344 #define stat_inc_cached_node_hit(sbi)
2345 #define stat_inc_inline_xattr(inode)
2346 #define stat_dec_inline_xattr(inode)
2347 #define stat_inc_inline_inode(inode)
2348 #define stat_dec_inline_inode(inode)
2349 #define stat_inc_inline_dir(inode)
2350 #define stat_dec_inline_dir(inode)
2351 #define stat_inc_seg_type(sbi, curseg)
2352 #define stat_inc_block_count(sbi, curseg)
2353 #define stat_inc_inplace_blocks(sbi)
2354 #define stat_inc_seg_count(sbi, type, gc_type)
2355 #define stat_inc_tot_blk_count(si, blks)
2356 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2357 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2358
2359 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2360 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2361 static inline int __init f2fs_create_root_stats(void) { return 0; }
2362 static inline void f2fs_destroy_root_stats(void) { }
2363 #endif
2364
2365 extern const struct file_operations f2fs_dir_operations;
2366 extern const struct file_operations f2fs_file_operations;
2367 extern const struct inode_operations f2fs_file_inode_operations;
2368 extern const struct address_space_operations f2fs_dblock_aops;
2369 extern const struct address_space_operations f2fs_node_aops;
2370 extern const struct address_space_operations f2fs_meta_aops;
2371 extern const struct inode_operations f2fs_dir_inode_operations;
2372 extern const struct inode_operations f2fs_symlink_inode_operations;
2373 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2374 extern const struct inode_operations f2fs_special_inode_operations;
2375 extern struct kmem_cache *inode_entry_slab;
2376
2377 /*
2378 * inline.c
2379 */
2380 bool f2fs_may_inline_data(struct inode *);
2381 bool f2fs_may_inline_dentry(struct inode *);
2382 void read_inline_data(struct page *, struct page *);
2383 bool truncate_inline_inode(struct page *, u64);
2384 int f2fs_read_inline_data(struct inode *, struct page *);
2385 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2386 int f2fs_convert_inline_inode(struct inode *);
2387 int f2fs_write_inline_data(struct inode *, struct page *);
2388 bool recover_inline_data(struct inode *, struct page *);
2389 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2390 struct fscrypt_name *, struct page **);
2391 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2392 int f2fs_add_inline_entry(struct inode *, const struct qstr *,
2393 const struct qstr *, struct inode *, nid_t, umode_t);
2394 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2395 struct inode *, struct inode *);
2396 bool f2fs_empty_inline_dir(struct inode *);
2397 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2398 struct fscrypt_str *);
2399 int f2fs_inline_data_fiemap(struct inode *,
2400 struct fiemap_extent_info *, __u64, __u64);
2401
2402 /*
2403 * shrinker.c
2404 */
2405 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2406 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2407 void f2fs_join_shrinker(struct f2fs_sb_info *);
2408 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2409
2410 /*
2411 * extent_cache.c
2412 */
2413 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2414 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2415 void f2fs_drop_extent_tree(struct inode *);
2416 unsigned int f2fs_destroy_extent_node(struct inode *);
2417 void f2fs_destroy_extent_tree(struct inode *);
2418 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2419 void f2fs_update_extent_cache(struct dnode_of_data *);
2420 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2421 pgoff_t, block_t, unsigned int);
2422 void init_extent_cache_info(struct f2fs_sb_info *);
2423 int __init create_extent_cache(void);
2424 void destroy_extent_cache(void);
2425
2426 /*
2427 * crypto support
2428 */
2429 static inline bool f2fs_encrypted_inode(struct inode *inode)
2430 {
2431 return file_is_encrypt(inode);
2432 }
2433
2434 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2435 {
2436 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2437 file_set_encrypt(inode);
2438 #endif
2439 }
2440
2441 static inline bool f2fs_bio_encrypted(struct bio *bio)
2442 {
2443 return bio->bi_private != NULL;
2444 }
2445
2446 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2447 {
2448 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2449 }
2450
2451 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2452 {
2453 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2454 }
2455
2456 #ifdef CONFIG_BLK_DEV_ZONED
2457 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2458 struct block_device *bdev, block_t blkaddr)
2459 {
2460 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2461 int i;
2462
2463 for (i = 0; i < sbi->s_ndevs; i++)
2464 if (FDEV(i).bdev == bdev)
2465 return FDEV(i).blkz_type[zno];
2466 return -EINVAL;
2467 }
2468 #endif
2469
2470 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2471 {
2472 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2473
2474 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2475 }
2476
2477 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2478 {
2479 clear_opt(sbi, ADAPTIVE);
2480 clear_opt(sbi, LFS);
2481
2482 switch (mt) {
2483 case F2FS_MOUNT_ADAPTIVE:
2484 set_opt(sbi, ADAPTIVE);
2485 break;
2486 case F2FS_MOUNT_LFS:
2487 set_opt(sbi, LFS);
2488 break;
2489 }
2490 }
2491
2492 static inline bool f2fs_may_encrypt(struct inode *inode)
2493 {
2494 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2495 umode_t mode = inode->i_mode;
2496
2497 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2498 #else
2499 return 0;
2500 #endif
2501 }
2502
2503 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2504 #define fscrypt_set_d_op(i)
2505 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2506 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2507 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2508 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2509 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2510 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2511 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2512 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2513 #define fscrypt_process_policy fscrypt_notsupp_process_policy
2514 #define fscrypt_get_policy fscrypt_notsupp_get_policy
2515 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2516 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2517 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2518 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2519 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2520 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2521 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2522 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2523 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2524 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2525 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2526 #endif
2527 #endif