]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: release cp and dnode lock before IPU
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #ifdef CONFIG_F2FS_FS_ENCRYPTION
26 #include <linux/fscrypt_supp.h>
27 #else
28 #include <linux/fscrypt_notsupp.h>
29 #endif
30 #include <crypto/hash.h>
31
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition) \
36 do { \
37 if (unlikely(condition)) { \
38 WARN_ON(1); \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } \
41 } while (0)
42 #endif
43
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 FAULT_KMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_ALLOC_NID,
49 FAULT_ORPHAN,
50 FAULT_BLOCK,
51 FAULT_DIR_DEPTH,
52 FAULT_EVICT_INODE,
53 FAULT_TRUNCATE,
54 FAULT_IO,
55 FAULT_CHECKPOINT,
56 FAULT_MAX,
57 };
58
59 struct f2fs_fault_info {
60 atomic_t inject_ops;
61 unsigned int inject_rate;
62 unsigned int inject_type;
63 };
64
65 extern char *fault_name[FAULT_MAX];
66 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
67 #endif
68
69 /*
70 * For mount options
71 */
72 #define F2FS_MOUNT_BG_GC 0x00000001
73 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
74 #define F2FS_MOUNT_DISCARD 0x00000004
75 #define F2FS_MOUNT_NOHEAP 0x00000008
76 #define F2FS_MOUNT_XATTR_USER 0x00000010
77 #define F2FS_MOUNT_POSIX_ACL 0x00000020
78 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
79 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
80 #define F2FS_MOUNT_INLINE_DATA 0x00000100
81 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
82 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
83 #define F2FS_MOUNT_NOBARRIER 0x00000800
84 #define F2FS_MOUNT_FASTBOOT 0x00001000
85 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
86 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
87 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
88 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
89 #define F2FS_MOUNT_ADAPTIVE 0x00020000
90 #define F2FS_MOUNT_LFS 0x00040000
91
92 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
93 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
94 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
95
96 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
97 typecheck(unsigned long long, b) && \
98 ((long long)((a) - (b)) > 0))
99
100 typedef u32 block_t; /*
101 * should not change u32, since it is the on-disk block
102 * address format, __le32.
103 */
104 typedef u32 nid_t;
105
106 struct f2fs_mount_info {
107 unsigned int opt;
108 };
109
110 #define F2FS_FEATURE_ENCRYPT 0x0001
111 #define F2FS_FEATURE_BLKZONED 0x0002
112
113 #define F2FS_HAS_FEATURE(sb, mask) \
114 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
115 #define F2FS_SET_FEATURE(sb, mask) \
116 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
117 #define F2FS_CLEAR_FEATURE(sb, mask) \
118 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
119
120 /*
121 * For checkpoint manager
122 */
123 enum {
124 NAT_BITMAP,
125 SIT_BITMAP
126 };
127
128 enum {
129 CP_UMOUNT,
130 CP_FASTBOOT,
131 CP_SYNC,
132 CP_RECOVERY,
133 CP_DISCARD,
134 };
135
136 #define DEF_BATCHED_TRIM_SECTIONS 2048
137 #define BATCHED_TRIM_SEGMENTS(sbi) \
138 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
139 #define BATCHED_TRIM_BLOCKS(sbi) \
140 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
141 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
142 #define DISCARD_ISSUE_RATE 8
143 #define DEF_CP_INTERVAL 60 /* 60 secs */
144 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
145
146 struct cp_control {
147 int reason;
148 __u64 trim_start;
149 __u64 trim_end;
150 __u64 trim_minlen;
151 __u64 trimmed;
152 };
153
154 /*
155 * For CP/NAT/SIT/SSA readahead
156 */
157 enum {
158 META_CP,
159 META_NAT,
160 META_SIT,
161 META_SSA,
162 META_POR,
163 };
164
165 /* for the list of ino */
166 enum {
167 ORPHAN_INO, /* for orphan ino list */
168 APPEND_INO, /* for append ino list */
169 UPDATE_INO, /* for update ino list */
170 MAX_INO_ENTRY, /* max. list */
171 };
172
173 struct ino_entry {
174 struct list_head list; /* list head */
175 nid_t ino; /* inode number */
176 };
177
178 /* for the list of inodes to be GCed */
179 struct inode_entry {
180 struct list_head list; /* list head */
181 struct inode *inode; /* vfs inode pointer */
182 };
183
184 /* for the bitmap indicate blocks to be discarded */
185 struct discard_entry {
186 struct list_head list; /* list head */
187 block_t start_blkaddr; /* start blockaddr of current segment */
188 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
189 };
190
191 /* max discard pend list number */
192 #define MAX_PLIST_NUM 512
193 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
194 (MAX_PLIST_NUM - 1) : (blk_num - 1))
195
196 enum {
197 D_PREP,
198 D_SUBMIT,
199 D_DONE,
200 };
201
202 struct discard_info {
203 block_t lstart; /* logical start address */
204 block_t len; /* length */
205 block_t start; /* actual start address in dev */
206 };
207
208 struct discard_cmd {
209 struct rb_node rb_node; /* rb node located in rb-tree */
210 union {
211 struct {
212 block_t lstart; /* logical start address */
213 block_t len; /* length */
214 block_t start; /* actual start address in dev */
215 };
216 struct discard_info di; /* discard info */
217
218 };
219 struct list_head list; /* command list */
220 struct completion wait; /* compleation */
221 struct block_device *bdev; /* bdev */
222 unsigned short ref; /* reference count */
223 unsigned char state; /* state */
224 int error; /* bio error */
225 };
226
227 struct discard_cmd_control {
228 struct task_struct *f2fs_issue_discard; /* discard thread */
229 struct list_head entry_list; /* 4KB discard entry list */
230 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
231 struct list_head wait_list; /* store on-flushing entries */
232 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
233 struct mutex cmd_lock;
234 unsigned int nr_discards; /* # of discards in the list */
235 unsigned int max_discards; /* max. discards to be issued */
236 unsigned int undiscard_blks; /* # of undiscard blocks */
237 atomic_t issued_discard; /* # of issued discard */
238 atomic_t issing_discard; /* # of issing discard */
239 atomic_t discard_cmd_cnt; /* # of cached cmd count */
240 struct rb_root root; /* root of discard rb-tree */
241 };
242
243 /* for the list of fsync inodes, used only during recovery */
244 struct fsync_inode_entry {
245 struct list_head list; /* list head */
246 struct inode *inode; /* vfs inode pointer */
247 block_t blkaddr; /* block address locating the last fsync */
248 block_t last_dentry; /* block address locating the last dentry */
249 };
250
251 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
252 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
253
254 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
255 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
256 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
257 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
258
259 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
260 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
261
262 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
263 {
264 int before = nats_in_cursum(journal);
265
266 journal->n_nats = cpu_to_le16(before + i);
267 return before;
268 }
269
270 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
271 {
272 int before = sits_in_cursum(journal);
273
274 journal->n_sits = cpu_to_le16(before + i);
275 return before;
276 }
277
278 static inline bool __has_cursum_space(struct f2fs_journal *journal,
279 int size, int type)
280 {
281 if (type == NAT_JOURNAL)
282 return size <= MAX_NAT_JENTRIES(journal);
283 return size <= MAX_SIT_JENTRIES(journal);
284 }
285
286 /*
287 * ioctl commands
288 */
289 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
290 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
291 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
292
293 #define F2FS_IOCTL_MAGIC 0xf5
294 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
295 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
296 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
297 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
298 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
299 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
300 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
301 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
302 struct f2fs_defragment)
303 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
304 struct f2fs_move_range)
305 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
306 struct f2fs_flush_device)
307
308 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
309 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
310 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
311
312 /*
313 * should be same as XFS_IOC_GOINGDOWN.
314 * Flags for going down operation used by FS_IOC_GOINGDOWN
315 */
316 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
317 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
318 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
319 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
320 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
321
322 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
323 /*
324 * ioctl commands in 32 bit emulation
325 */
326 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
327 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
328 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
329 #endif
330
331 struct f2fs_defragment {
332 u64 start;
333 u64 len;
334 };
335
336 struct f2fs_move_range {
337 u32 dst_fd; /* destination fd */
338 u64 pos_in; /* start position in src_fd */
339 u64 pos_out; /* start position in dst_fd */
340 u64 len; /* size to move */
341 };
342
343 struct f2fs_flush_device {
344 u32 dev_num; /* device number to flush */
345 u32 segments; /* # of segments to flush */
346 };
347
348 /*
349 * For INODE and NODE manager
350 */
351 /* for directory operations */
352 struct f2fs_dentry_ptr {
353 struct inode *inode;
354 const void *bitmap;
355 struct f2fs_dir_entry *dentry;
356 __u8 (*filename)[F2FS_SLOT_LEN];
357 int max;
358 };
359
360 static inline void make_dentry_ptr_block(struct inode *inode,
361 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
362 {
363 d->inode = inode;
364 d->max = NR_DENTRY_IN_BLOCK;
365 d->bitmap = &t->dentry_bitmap;
366 d->dentry = t->dentry;
367 d->filename = t->filename;
368 }
369
370 static inline void make_dentry_ptr_inline(struct inode *inode,
371 struct f2fs_dentry_ptr *d, struct f2fs_inline_dentry *t)
372 {
373 d->inode = inode;
374 d->max = NR_INLINE_DENTRY;
375 d->bitmap = &t->dentry_bitmap;
376 d->dentry = t->dentry;
377 d->filename = t->filename;
378 }
379
380 /*
381 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
382 * as its node offset to distinguish from index node blocks.
383 * But some bits are used to mark the node block.
384 */
385 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
386 >> OFFSET_BIT_SHIFT)
387 enum {
388 ALLOC_NODE, /* allocate a new node page if needed */
389 LOOKUP_NODE, /* look up a node without readahead */
390 LOOKUP_NODE_RA, /*
391 * look up a node with readahead called
392 * by get_data_block.
393 */
394 };
395
396 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
397
398 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
399
400 /* vector size for gang look-up from extent cache that consists of radix tree */
401 #define EXT_TREE_VEC_SIZE 64
402
403 /* for in-memory extent cache entry */
404 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
405
406 /* number of extent info in extent cache we try to shrink */
407 #define EXTENT_CACHE_SHRINK_NUMBER 128
408
409 struct rb_entry {
410 struct rb_node rb_node; /* rb node located in rb-tree */
411 unsigned int ofs; /* start offset of the entry */
412 unsigned int len; /* length of the entry */
413 };
414
415 struct extent_info {
416 unsigned int fofs; /* start offset in a file */
417 unsigned int len; /* length of the extent */
418 u32 blk; /* start block address of the extent */
419 };
420
421 struct extent_node {
422 struct rb_node rb_node;
423 union {
424 struct {
425 unsigned int fofs;
426 unsigned int len;
427 u32 blk;
428 };
429 struct extent_info ei; /* extent info */
430
431 };
432 struct list_head list; /* node in global extent list of sbi */
433 struct extent_tree *et; /* extent tree pointer */
434 };
435
436 struct extent_tree {
437 nid_t ino; /* inode number */
438 struct rb_root root; /* root of extent info rb-tree */
439 struct extent_node *cached_en; /* recently accessed extent node */
440 struct extent_info largest; /* largested extent info */
441 struct list_head list; /* to be used by sbi->zombie_list */
442 rwlock_t lock; /* protect extent info rb-tree */
443 atomic_t node_cnt; /* # of extent node in rb-tree*/
444 };
445
446 /*
447 * This structure is taken from ext4_map_blocks.
448 *
449 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
450 */
451 #define F2FS_MAP_NEW (1 << BH_New)
452 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
453 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
454 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
455 F2FS_MAP_UNWRITTEN)
456
457 struct f2fs_map_blocks {
458 block_t m_pblk;
459 block_t m_lblk;
460 unsigned int m_len;
461 unsigned int m_flags;
462 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
463 };
464
465 /* for flag in get_data_block */
466 #define F2FS_GET_BLOCK_READ 0
467 #define F2FS_GET_BLOCK_DIO 1
468 #define F2FS_GET_BLOCK_FIEMAP 2
469 #define F2FS_GET_BLOCK_BMAP 3
470 #define F2FS_GET_BLOCK_PRE_DIO 4
471 #define F2FS_GET_BLOCK_PRE_AIO 5
472
473 /*
474 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
475 */
476 #define FADVISE_COLD_BIT 0x01
477 #define FADVISE_LOST_PINO_BIT 0x02
478 #define FADVISE_ENCRYPT_BIT 0x04
479 #define FADVISE_ENC_NAME_BIT 0x08
480 #define FADVISE_KEEP_SIZE_BIT 0x10
481
482 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
483 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
484 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
485 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
486 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
487 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
488 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
489 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
490 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
491 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
492 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
493 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
494 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
495
496 #define DEF_DIR_LEVEL 0
497
498 struct f2fs_inode_info {
499 struct inode vfs_inode; /* serve a vfs inode */
500 unsigned long i_flags; /* keep an inode flags for ioctl */
501 unsigned char i_advise; /* use to give file attribute hints */
502 unsigned char i_dir_level; /* use for dentry level for large dir */
503 unsigned int i_current_depth; /* use only in directory structure */
504 unsigned int i_pino; /* parent inode number */
505 umode_t i_acl_mode; /* keep file acl mode temporarily */
506
507 /* Use below internally in f2fs*/
508 unsigned long flags; /* use to pass per-file flags */
509 struct rw_semaphore i_sem; /* protect fi info */
510 atomic_t dirty_pages; /* # of dirty pages */
511 f2fs_hash_t chash; /* hash value of given file name */
512 unsigned int clevel; /* maximum level of given file name */
513 struct task_struct *task; /* lookup and create consistency */
514 nid_t i_xattr_nid; /* node id that contains xattrs */
515 loff_t last_disk_size; /* lastly written file size */
516
517 struct list_head dirty_list; /* dirty list for dirs and files */
518 struct list_head gdirty_list; /* linked in global dirty list */
519 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
520 struct mutex inmem_lock; /* lock for inmemory pages */
521 struct extent_tree *extent_tree; /* cached extent_tree entry */
522 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
523 };
524
525 static inline void get_extent_info(struct extent_info *ext,
526 struct f2fs_extent *i_ext)
527 {
528 ext->fofs = le32_to_cpu(i_ext->fofs);
529 ext->blk = le32_to_cpu(i_ext->blk);
530 ext->len = le32_to_cpu(i_ext->len);
531 }
532
533 static inline void set_raw_extent(struct extent_info *ext,
534 struct f2fs_extent *i_ext)
535 {
536 i_ext->fofs = cpu_to_le32(ext->fofs);
537 i_ext->blk = cpu_to_le32(ext->blk);
538 i_ext->len = cpu_to_le32(ext->len);
539 }
540
541 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
542 u32 blk, unsigned int len)
543 {
544 ei->fofs = fofs;
545 ei->blk = blk;
546 ei->len = len;
547 }
548
549 static inline bool __is_discard_mergeable(struct discard_info *back,
550 struct discard_info *front)
551 {
552 return back->lstart + back->len == front->lstart;
553 }
554
555 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
556 struct discard_info *back)
557 {
558 return __is_discard_mergeable(back, cur);
559 }
560
561 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
562 struct discard_info *front)
563 {
564 return __is_discard_mergeable(cur, front);
565 }
566
567 static inline bool __is_extent_mergeable(struct extent_info *back,
568 struct extent_info *front)
569 {
570 return (back->fofs + back->len == front->fofs &&
571 back->blk + back->len == front->blk);
572 }
573
574 static inline bool __is_back_mergeable(struct extent_info *cur,
575 struct extent_info *back)
576 {
577 return __is_extent_mergeable(back, cur);
578 }
579
580 static inline bool __is_front_mergeable(struct extent_info *cur,
581 struct extent_info *front)
582 {
583 return __is_extent_mergeable(cur, front);
584 }
585
586 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
587 static inline void __try_update_largest_extent(struct inode *inode,
588 struct extent_tree *et, struct extent_node *en)
589 {
590 if (en->ei.len > et->largest.len) {
591 et->largest = en->ei;
592 f2fs_mark_inode_dirty_sync(inode, true);
593 }
594 }
595
596 enum nid_list {
597 FREE_NID_LIST,
598 ALLOC_NID_LIST,
599 MAX_NID_LIST,
600 };
601
602 struct f2fs_nm_info {
603 block_t nat_blkaddr; /* base disk address of NAT */
604 nid_t max_nid; /* maximum possible node ids */
605 nid_t available_nids; /* # of available node ids */
606 nid_t next_scan_nid; /* the next nid to be scanned */
607 unsigned int ram_thresh; /* control the memory footprint */
608 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
609 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
610
611 /* NAT cache management */
612 struct radix_tree_root nat_root;/* root of the nat entry cache */
613 struct radix_tree_root nat_set_root;/* root of the nat set cache */
614 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
615 struct list_head nat_entries; /* cached nat entry list (clean) */
616 unsigned int nat_cnt; /* the # of cached nat entries */
617 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
618 unsigned int nat_blocks; /* # of nat blocks */
619
620 /* free node ids management */
621 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
622 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
623 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */
624 spinlock_t nid_list_lock; /* protect nid lists ops */
625 struct mutex build_lock; /* lock for build free nids */
626 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
627 unsigned char *nat_block_bitmap;
628 unsigned short *free_nid_count; /* free nid count of NAT block */
629
630 /* for checkpoint */
631 char *nat_bitmap; /* NAT bitmap pointer */
632
633 unsigned int nat_bits_blocks; /* # of nat bits blocks */
634 unsigned char *nat_bits; /* NAT bits blocks */
635 unsigned char *full_nat_bits; /* full NAT pages */
636 unsigned char *empty_nat_bits; /* empty NAT pages */
637 #ifdef CONFIG_F2FS_CHECK_FS
638 char *nat_bitmap_mir; /* NAT bitmap mirror */
639 #endif
640 int bitmap_size; /* bitmap size */
641 };
642
643 /*
644 * this structure is used as one of function parameters.
645 * all the information are dedicated to a given direct node block determined
646 * by the data offset in a file.
647 */
648 struct dnode_of_data {
649 struct inode *inode; /* vfs inode pointer */
650 struct page *inode_page; /* its inode page, NULL is possible */
651 struct page *node_page; /* cached direct node page */
652 nid_t nid; /* node id of the direct node block */
653 unsigned int ofs_in_node; /* data offset in the node page */
654 bool inode_page_locked; /* inode page is locked or not */
655 bool node_changed; /* is node block changed */
656 char cur_level; /* level of hole node page */
657 char max_level; /* level of current page located */
658 block_t data_blkaddr; /* block address of the node block */
659 };
660
661 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
662 struct page *ipage, struct page *npage, nid_t nid)
663 {
664 memset(dn, 0, sizeof(*dn));
665 dn->inode = inode;
666 dn->inode_page = ipage;
667 dn->node_page = npage;
668 dn->nid = nid;
669 }
670
671 /*
672 * For SIT manager
673 *
674 * By default, there are 6 active log areas across the whole main area.
675 * When considering hot and cold data separation to reduce cleaning overhead,
676 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
677 * respectively.
678 * In the current design, you should not change the numbers intentionally.
679 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
680 * logs individually according to the underlying devices. (default: 6)
681 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
682 * data and 8 for node logs.
683 */
684 #define NR_CURSEG_DATA_TYPE (3)
685 #define NR_CURSEG_NODE_TYPE (3)
686 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
687
688 enum {
689 CURSEG_HOT_DATA = 0, /* directory entry blocks */
690 CURSEG_WARM_DATA, /* data blocks */
691 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
692 CURSEG_HOT_NODE, /* direct node blocks of directory files */
693 CURSEG_WARM_NODE, /* direct node blocks of normal files */
694 CURSEG_COLD_NODE, /* indirect node blocks */
695 NO_CHECK_TYPE,
696 };
697
698 struct flush_cmd {
699 struct completion wait;
700 struct llist_node llnode;
701 int ret;
702 };
703
704 struct flush_cmd_control {
705 struct task_struct *f2fs_issue_flush; /* flush thread */
706 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
707 atomic_t issued_flush; /* # of issued flushes */
708 atomic_t issing_flush; /* # of issing flushes */
709 struct llist_head issue_list; /* list for command issue */
710 struct llist_node *dispatch_list; /* list for command dispatch */
711 };
712
713 struct f2fs_sm_info {
714 struct sit_info *sit_info; /* whole segment information */
715 struct free_segmap_info *free_info; /* free segment information */
716 struct dirty_seglist_info *dirty_info; /* dirty segment information */
717 struct curseg_info *curseg_array; /* active segment information */
718
719 block_t seg0_blkaddr; /* block address of 0'th segment */
720 block_t main_blkaddr; /* start block address of main area */
721 block_t ssa_blkaddr; /* start block address of SSA area */
722
723 unsigned int segment_count; /* total # of segments */
724 unsigned int main_segments; /* # of segments in main area */
725 unsigned int reserved_segments; /* # of reserved segments */
726 unsigned int ovp_segments; /* # of overprovision segments */
727
728 /* a threshold to reclaim prefree segments */
729 unsigned int rec_prefree_segments;
730
731 /* for batched trimming */
732 unsigned int trim_sections; /* # of sections to trim */
733
734 struct list_head sit_entry_set; /* sit entry set list */
735
736 unsigned int ipu_policy; /* in-place-update policy */
737 unsigned int min_ipu_util; /* in-place-update threshold */
738 unsigned int min_fsync_blocks; /* threshold for fsync */
739 unsigned int min_hot_blocks; /* threshold for hot block allocation */
740
741 /* for flush command control */
742 struct flush_cmd_control *fcc_info;
743
744 /* for discard command control */
745 struct discard_cmd_control *dcc_info;
746 };
747
748 /*
749 * For superblock
750 */
751 /*
752 * COUNT_TYPE for monitoring
753 *
754 * f2fs monitors the number of several block types such as on-writeback,
755 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
756 */
757 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
758 enum count_type {
759 F2FS_DIRTY_DENTS,
760 F2FS_DIRTY_DATA,
761 F2FS_DIRTY_NODES,
762 F2FS_DIRTY_META,
763 F2FS_INMEM_PAGES,
764 F2FS_DIRTY_IMETA,
765 F2FS_WB_CP_DATA,
766 F2FS_WB_DATA,
767 NR_COUNT_TYPE,
768 };
769
770 /*
771 * The below are the page types of bios used in submit_bio().
772 * The available types are:
773 * DATA User data pages. It operates as async mode.
774 * NODE Node pages. It operates as async mode.
775 * META FS metadata pages such as SIT, NAT, CP.
776 * NR_PAGE_TYPE The number of page types.
777 * META_FLUSH Make sure the previous pages are written
778 * with waiting the bio's completion
779 * ... Only can be used with META.
780 */
781 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
782 enum page_type {
783 DATA,
784 NODE,
785 META,
786 NR_PAGE_TYPE,
787 META_FLUSH,
788 INMEM, /* the below types are used by tracepoints only. */
789 INMEM_DROP,
790 INMEM_INVALIDATE,
791 INMEM_REVOKE,
792 IPU,
793 OPU,
794 };
795
796 struct f2fs_io_info {
797 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
798 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
799 int op; /* contains REQ_OP_ */
800 int op_flags; /* req_flag_bits */
801 block_t new_blkaddr; /* new block address to be written */
802 block_t old_blkaddr; /* old block address before Cow */
803 struct page *page; /* page to be written */
804 struct page *encrypted_page; /* encrypted page */
805 bool submitted; /* indicate IO submission */
806 bool need_lock; /* indicate we need to lock cp_rwsem */
807 };
808
809 #define is_read_io(rw) ((rw) == READ)
810 struct f2fs_bio_info {
811 struct f2fs_sb_info *sbi; /* f2fs superblock */
812 struct bio *bio; /* bios to merge */
813 sector_t last_block_in_bio; /* last block number */
814 struct f2fs_io_info fio; /* store buffered io info. */
815 struct rw_semaphore io_rwsem; /* blocking op for bio */
816 };
817
818 #define FDEV(i) (sbi->devs[i])
819 #define RDEV(i) (raw_super->devs[i])
820 struct f2fs_dev_info {
821 struct block_device *bdev;
822 char path[MAX_PATH_LEN];
823 unsigned int total_segments;
824 block_t start_blk;
825 block_t end_blk;
826 #ifdef CONFIG_BLK_DEV_ZONED
827 unsigned int nr_blkz; /* Total number of zones */
828 u8 *blkz_type; /* Array of zones type */
829 #endif
830 };
831
832 enum inode_type {
833 DIR_INODE, /* for dirty dir inode */
834 FILE_INODE, /* for dirty regular/symlink inode */
835 DIRTY_META, /* for all dirtied inode metadata */
836 NR_INODE_TYPE,
837 };
838
839 /* for inner inode cache management */
840 struct inode_management {
841 struct radix_tree_root ino_root; /* ino entry array */
842 spinlock_t ino_lock; /* for ino entry lock */
843 struct list_head ino_list; /* inode list head */
844 unsigned long ino_num; /* number of entries */
845 };
846
847 /* For s_flag in struct f2fs_sb_info */
848 enum {
849 SBI_IS_DIRTY, /* dirty flag for checkpoint */
850 SBI_IS_CLOSE, /* specify unmounting */
851 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
852 SBI_POR_DOING, /* recovery is doing or not */
853 SBI_NEED_SB_WRITE, /* need to recover superblock */
854 SBI_NEED_CP, /* need to checkpoint */
855 };
856
857 enum {
858 CP_TIME,
859 REQ_TIME,
860 MAX_TIME,
861 };
862
863 struct f2fs_sb_info {
864 struct super_block *sb; /* pointer to VFS super block */
865 struct proc_dir_entry *s_proc; /* proc entry */
866 struct f2fs_super_block *raw_super; /* raw super block pointer */
867 int valid_super_block; /* valid super block no */
868 unsigned long s_flag; /* flags for sbi */
869
870 #ifdef CONFIG_BLK_DEV_ZONED
871 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
872 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
873 #endif
874
875 /* for node-related operations */
876 struct f2fs_nm_info *nm_info; /* node manager */
877 struct inode *node_inode; /* cache node blocks */
878
879 /* for segment-related operations */
880 struct f2fs_sm_info *sm_info; /* segment manager */
881
882 /* for bio operations */
883 struct f2fs_bio_info read_io; /* for read bios */
884 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
885 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */
886 int write_io_size_bits; /* Write IO size bits */
887 mempool_t *write_io_dummy; /* Dummy pages */
888
889 /* for checkpoint */
890 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
891 int cur_cp_pack; /* remain current cp pack */
892 spinlock_t cp_lock; /* for flag in ckpt */
893 struct inode *meta_inode; /* cache meta blocks */
894 struct mutex cp_mutex; /* checkpoint procedure lock */
895 struct rw_semaphore cp_rwsem; /* blocking FS operations */
896 struct rw_semaphore node_write; /* locking node writes */
897 struct rw_semaphore node_change; /* locking node change */
898 wait_queue_head_t cp_wait;
899 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
900 long interval_time[MAX_TIME]; /* to store thresholds */
901
902 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
903
904 /* for orphan inode, use 0'th array */
905 unsigned int max_orphans; /* max orphan inodes */
906
907 /* for inode management */
908 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
909 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
910
911 /* for extent tree cache */
912 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
913 struct mutex extent_tree_lock; /* locking extent radix tree */
914 struct list_head extent_list; /* lru list for shrinker */
915 spinlock_t extent_lock; /* locking extent lru list */
916 atomic_t total_ext_tree; /* extent tree count */
917 struct list_head zombie_list; /* extent zombie tree list */
918 atomic_t total_zombie_tree; /* extent zombie tree count */
919 atomic_t total_ext_node; /* extent info count */
920
921 /* basic filesystem units */
922 unsigned int log_sectors_per_block; /* log2 sectors per block */
923 unsigned int log_blocksize; /* log2 block size */
924 unsigned int blocksize; /* block size */
925 unsigned int root_ino_num; /* root inode number*/
926 unsigned int node_ino_num; /* node inode number*/
927 unsigned int meta_ino_num; /* meta inode number*/
928 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
929 unsigned int blocks_per_seg; /* blocks per segment */
930 unsigned int segs_per_sec; /* segments per section */
931 unsigned int secs_per_zone; /* sections per zone */
932 unsigned int total_sections; /* total section count */
933 unsigned int total_node_count; /* total node block count */
934 unsigned int total_valid_node_count; /* valid node block count */
935 loff_t max_file_blocks; /* max block index of file */
936 int active_logs; /* # of active logs */
937 int dir_level; /* directory level */
938
939 block_t user_block_count; /* # of user blocks */
940 block_t total_valid_block_count; /* # of valid blocks */
941 block_t discard_blks; /* discard command candidats */
942 block_t last_valid_block_count; /* for recovery */
943 u32 s_next_generation; /* for NFS support */
944
945 /* # of pages, see count_type */
946 atomic_t nr_pages[NR_COUNT_TYPE];
947 /* # of allocated blocks */
948 struct percpu_counter alloc_valid_block_count;
949
950 /* writeback control */
951 atomic_t wb_sync_req; /* count # of WB_SYNC threads */
952
953 /* valid inode count */
954 struct percpu_counter total_valid_inode_count;
955
956 struct f2fs_mount_info mount_opt; /* mount options */
957
958 /* for cleaning operations */
959 struct mutex gc_mutex; /* mutex for GC */
960 struct f2fs_gc_kthread *gc_thread; /* GC thread */
961 unsigned int cur_victim_sec; /* current victim section num */
962
963 /* threshold for converting bg victims for fg */
964 u64 fggc_threshold;
965
966 /* maximum # of trials to find a victim segment for SSR and GC */
967 unsigned int max_victim_search;
968
969 /*
970 * for stat information.
971 * one is for the LFS mode, and the other is for the SSR mode.
972 */
973 #ifdef CONFIG_F2FS_STAT_FS
974 struct f2fs_stat_info *stat_info; /* FS status information */
975 unsigned int segment_count[2]; /* # of allocated segments */
976 unsigned int block_count[2]; /* # of allocated blocks */
977 atomic_t inplace_count; /* # of inplace update */
978 atomic64_t total_hit_ext; /* # of lookup extent cache */
979 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
980 atomic64_t read_hit_largest; /* # of hit largest extent node */
981 atomic64_t read_hit_cached; /* # of hit cached extent node */
982 atomic_t inline_xattr; /* # of inline_xattr inodes */
983 atomic_t inline_inode; /* # of inline_data inodes */
984 atomic_t inline_dir; /* # of inline_dentry inodes */
985 atomic_t aw_cnt; /* # of atomic writes */
986 atomic_t vw_cnt; /* # of volatile writes */
987 atomic_t max_aw_cnt; /* max # of atomic writes */
988 atomic_t max_vw_cnt; /* max # of volatile writes */
989 int bg_gc; /* background gc calls */
990 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
991 #endif
992 spinlock_t stat_lock; /* lock for stat operations */
993
994 /* For sysfs suppport */
995 struct kobject s_kobj;
996 struct completion s_kobj_unregister;
997
998 /* For shrinker support */
999 struct list_head s_list;
1000 int s_ndevs; /* number of devices */
1001 struct f2fs_dev_info *devs; /* for device list */
1002 struct mutex umount_mutex;
1003 unsigned int shrinker_run_no;
1004
1005 /* For write statistics */
1006 u64 sectors_written_start;
1007 u64 kbytes_written;
1008
1009 /* Reference to checksum algorithm driver via cryptoapi */
1010 struct crypto_shash *s_chksum_driver;
1011
1012 /* For fault injection */
1013 #ifdef CONFIG_F2FS_FAULT_INJECTION
1014 struct f2fs_fault_info fault_info;
1015 #endif
1016 };
1017
1018 #ifdef CONFIG_F2FS_FAULT_INJECTION
1019 #define f2fs_show_injection_info(type) \
1020 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1021 KERN_INFO, fault_name[type], \
1022 __func__, __builtin_return_address(0))
1023 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1024 {
1025 struct f2fs_fault_info *ffi = &sbi->fault_info;
1026
1027 if (!ffi->inject_rate)
1028 return false;
1029
1030 if (!IS_FAULT_SET(ffi, type))
1031 return false;
1032
1033 atomic_inc(&ffi->inject_ops);
1034 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1035 atomic_set(&ffi->inject_ops, 0);
1036 return true;
1037 }
1038 return false;
1039 }
1040 #endif
1041
1042 /* For write statistics. Suppose sector size is 512 bytes,
1043 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1044 */
1045 #define BD_PART_WRITTEN(s) \
1046 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1047 (s)->sectors_written_start) >> 1)
1048
1049 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1050 {
1051 sbi->last_time[type] = jiffies;
1052 }
1053
1054 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1055 {
1056 struct timespec ts = {sbi->interval_time[type], 0};
1057 unsigned long interval = timespec_to_jiffies(&ts);
1058
1059 return time_after(jiffies, sbi->last_time[type] + interval);
1060 }
1061
1062 static inline bool is_idle(struct f2fs_sb_info *sbi)
1063 {
1064 struct block_device *bdev = sbi->sb->s_bdev;
1065 struct request_queue *q = bdev_get_queue(bdev);
1066 struct request_list *rl = &q->root_rl;
1067
1068 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1069 return 0;
1070
1071 return f2fs_time_over(sbi, REQ_TIME);
1072 }
1073
1074 /*
1075 * Inline functions
1076 */
1077 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1078 unsigned int length)
1079 {
1080 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1081 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1082 int err;
1083
1084 shash->tfm = sbi->s_chksum_driver;
1085 shash->flags = 0;
1086 *ctx = F2FS_SUPER_MAGIC;
1087
1088 err = crypto_shash_update(shash, address, length);
1089 BUG_ON(err);
1090
1091 return *ctx;
1092 }
1093
1094 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1095 void *buf, size_t buf_size)
1096 {
1097 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1098 }
1099
1100 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1101 {
1102 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1103 }
1104
1105 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1106 {
1107 return sb->s_fs_info;
1108 }
1109
1110 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1111 {
1112 return F2FS_SB(inode->i_sb);
1113 }
1114
1115 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1116 {
1117 return F2FS_I_SB(mapping->host);
1118 }
1119
1120 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1121 {
1122 return F2FS_M_SB(page->mapping);
1123 }
1124
1125 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1126 {
1127 return (struct f2fs_super_block *)(sbi->raw_super);
1128 }
1129
1130 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1131 {
1132 return (struct f2fs_checkpoint *)(sbi->ckpt);
1133 }
1134
1135 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1136 {
1137 return (struct f2fs_node *)page_address(page);
1138 }
1139
1140 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1141 {
1142 return &((struct f2fs_node *)page_address(page))->i;
1143 }
1144
1145 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1146 {
1147 return (struct f2fs_nm_info *)(sbi->nm_info);
1148 }
1149
1150 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1151 {
1152 return (struct f2fs_sm_info *)(sbi->sm_info);
1153 }
1154
1155 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1156 {
1157 return (struct sit_info *)(SM_I(sbi)->sit_info);
1158 }
1159
1160 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1161 {
1162 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1163 }
1164
1165 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1166 {
1167 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1168 }
1169
1170 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1171 {
1172 return sbi->meta_inode->i_mapping;
1173 }
1174
1175 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1176 {
1177 return sbi->node_inode->i_mapping;
1178 }
1179
1180 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1181 {
1182 return test_bit(type, &sbi->s_flag);
1183 }
1184
1185 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1186 {
1187 set_bit(type, &sbi->s_flag);
1188 }
1189
1190 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1191 {
1192 clear_bit(type, &sbi->s_flag);
1193 }
1194
1195 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1196 {
1197 return le64_to_cpu(cp->checkpoint_ver);
1198 }
1199
1200 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1201 {
1202 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1203 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1204 }
1205
1206 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1207 {
1208 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1209
1210 return ckpt_flags & f;
1211 }
1212
1213 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1214 {
1215 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1216 }
1217
1218 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1219 {
1220 unsigned int ckpt_flags;
1221
1222 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1223 ckpt_flags |= f;
1224 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1225 }
1226
1227 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1228 {
1229 spin_lock(&sbi->cp_lock);
1230 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1231 spin_unlock(&sbi->cp_lock);
1232 }
1233
1234 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1235 {
1236 unsigned int ckpt_flags;
1237
1238 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1239 ckpt_flags &= (~f);
1240 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1241 }
1242
1243 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1244 {
1245 spin_lock(&sbi->cp_lock);
1246 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1247 spin_unlock(&sbi->cp_lock);
1248 }
1249
1250 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1251 {
1252 set_sbi_flag(sbi, SBI_NEED_FSCK);
1253
1254 if (lock)
1255 spin_lock(&sbi->cp_lock);
1256 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1257 kfree(NM_I(sbi)->nat_bits);
1258 NM_I(sbi)->nat_bits = NULL;
1259 if (lock)
1260 spin_unlock(&sbi->cp_lock);
1261 }
1262
1263 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1264 struct cp_control *cpc)
1265 {
1266 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1267
1268 return (cpc) ? (cpc->reason == CP_UMOUNT) && set : set;
1269 }
1270
1271 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1272 {
1273 down_read(&sbi->cp_rwsem);
1274 }
1275
1276 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1277 {
1278 up_read(&sbi->cp_rwsem);
1279 }
1280
1281 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1282 {
1283 down_write(&sbi->cp_rwsem);
1284 }
1285
1286 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1287 {
1288 up_write(&sbi->cp_rwsem);
1289 }
1290
1291 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1292 {
1293 int reason = CP_SYNC;
1294
1295 if (test_opt(sbi, FASTBOOT))
1296 reason = CP_FASTBOOT;
1297 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1298 reason = CP_UMOUNT;
1299 return reason;
1300 }
1301
1302 static inline bool __remain_node_summaries(int reason)
1303 {
1304 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1305 }
1306
1307 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1308 {
1309 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1310 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1311 }
1312
1313 /*
1314 * Check whether the given nid is within node id range.
1315 */
1316 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1317 {
1318 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1319 return -EINVAL;
1320 if (unlikely(nid >= NM_I(sbi)->max_nid))
1321 return -EINVAL;
1322 return 0;
1323 }
1324
1325 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1326
1327 /*
1328 * Check whether the inode has blocks or not
1329 */
1330 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1331 {
1332 if (F2FS_I(inode)->i_xattr_nid)
1333 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1334 else
1335 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1336 }
1337
1338 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1339 {
1340 return ofs == XATTR_NODE_OFFSET;
1341 }
1342
1343 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1344 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1345 struct inode *inode, blkcnt_t *count)
1346 {
1347 blkcnt_t diff;
1348
1349 #ifdef CONFIG_F2FS_FAULT_INJECTION
1350 if (time_to_inject(sbi, FAULT_BLOCK)) {
1351 f2fs_show_injection_info(FAULT_BLOCK);
1352 return false;
1353 }
1354 #endif
1355 /*
1356 * let's increase this in prior to actual block count change in order
1357 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1358 */
1359 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1360
1361 spin_lock(&sbi->stat_lock);
1362 sbi->total_valid_block_count += (block_t)(*count);
1363 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1364 diff = sbi->total_valid_block_count - sbi->user_block_count;
1365 *count -= diff;
1366 sbi->total_valid_block_count = sbi->user_block_count;
1367 if (!*count) {
1368 spin_unlock(&sbi->stat_lock);
1369 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1370 return false;
1371 }
1372 }
1373 spin_unlock(&sbi->stat_lock);
1374
1375 f2fs_i_blocks_write(inode, *count, true);
1376 return true;
1377 }
1378
1379 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1380 struct inode *inode,
1381 blkcnt_t count)
1382 {
1383 spin_lock(&sbi->stat_lock);
1384 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1385 f2fs_bug_on(sbi, inode->i_blocks < count);
1386 sbi->total_valid_block_count -= (block_t)count;
1387 spin_unlock(&sbi->stat_lock);
1388 f2fs_i_blocks_write(inode, count, false);
1389 }
1390
1391 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1392 {
1393 atomic_inc(&sbi->nr_pages[count_type]);
1394
1395 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1396 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1397 return;
1398
1399 set_sbi_flag(sbi, SBI_IS_DIRTY);
1400 }
1401
1402 static inline void inode_inc_dirty_pages(struct inode *inode)
1403 {
1404 atomic_inc(&F2FS_I(inode)->dirty_pages);
1405 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1406 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1407 }
1408
1409 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1410 {
1411 atomic_dec(&sbi->nr_pages[count_type]);
1412 }
1413
1414 static inline void inode_dec_dirty_pages(struct inode *inode)
1415 {
1416 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1417 !S_ISLNK(inode->i_mode))
1418 return;
1419
1420 atomic_dec(&F2FS_I(inode)->dirty_pages);
1421 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1422 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1423 }
1424
1425 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1426 {
1427 return atomic_read(&sbi->nr_pages[count_type]);
1428 }
1429
1430 static inline int get_dirty_pages(struct inode *inode)
1431 {
1432 return atomic_read(&F2FS_I(inode)->dirty_pages);
1433 }
1434
1435 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1436 {
1437 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1438 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1439 sbi->log_blocks_per_seg;
1440
1441 return segs / sbi->segs_per_sec;
1442 }
1443
1444 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1445 {
1446 return sbi->total_valid_block_count;
1447 }
1448
1449 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1450 {
1451 return sbi->discard_blks;
1452 }
1453
1454 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1455 {
1456 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1457
1458 /* return NAT or SIT bitmap */
1459 if (flag == NAT_BITMAP)
1460 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1461 else if (flag == SIT_BITMAP)
1462 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1463
1464 return 0;
1465 }
1466
1467 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1468 {
1469 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1470 }
1471
1472 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1473 {
1474 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1475 int offset;
1476
1477 if (__cp_payload(sbi) > 0) {
1478 if (flag == NAT_BITMAP)
1479 return &ckpt->sit_nat_version_bitmap;
1480 else
1481 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1482 } else {
1483 offset = (flag == NAT_BITMAP) ?
1484 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1485 return &ckpt->sit_nat_version_bitmap + offset;
1486 }
1487 }
1488
1489 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1490 {
1491 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1492
1493 if (sbi->cur_cp_pack == 2)
1494 start_addr += sbi->blocks_per_seg;
1495 return start_addr;
1496 }
1497
1498 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1499 {
1500 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1501
1502 if (sbi->cur_cp_pack == 1)
1503 start_addr += sbi->blocks_per_seg;
1504 return start_addr;
1505 }
1506
1507 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1508 {
1509 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1510 }
1511
1512 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1513 {
1514 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1515 }
1516
1517 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1518 struct inode *inode)
1519 {
1520 block_t valid_block_count;
1521 unsigned int valid_node_count;
1522
1523 spin_lock(&sbi->stat_lock);
1524
1525 valid_block_count = sbi->total_valid_block_count + 1;
1526 if (unlikely(valid_block_count > sbi->user_block_count)) {
1527 spin_unlock(&sbi->stat_lock);
1528 return false;
1529 }
1530
1531 valid_node_count = sbi->total_valid_node_count + 1;
1532 if (unlikely(valid_node_count > sbi->total_node_count)) {
1533 spin_unlock(&sbi->stat_lock);
1534 return false;
1535 }
1536
1537 if (inode)
1538 f2fs_i_blocks_write(inode, 1, true);
1539
1540 sbi->total_valid_node_count++;
1541 sbi->total_valid_block_count++;
1542 spin_unlock(&sbi->stat_lock);
1543
1544 percpu_counter_inc(&sbi->alloc_valid_block_count);
1545 return true;
1546 }
1547
1548 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1549 struct inode *inode)
1550 {
1551 spin_lock(&sbi->stat_lock);
1552
1553 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1554 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1555 f2fs_bug_on(sbi, !inode->i_blocks);
1556
1557 f2fs_i_blocks_write(inode, 1, false);
1558 sbi->total_valid_node_count--;
1559 sbi->total_valid_block_count--;
1560
1561 spin_unlock(&sbi->stat_lock);
1562 }
1563
1564 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1565 {
1566 return sbi->total_valid_node_count;
1567 }
1568
1569 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1570 {
1571 percpu_counter_inc(&sbi->total_valid_inode_count);
1572 }
1573
1574 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1575 {
1576 percpu_counter_dec(&sbi->total_valid_inode_count);
1577 }
1578
1579 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1580 {
1581 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1582 }
1583
1584 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1585 pgoff_t index, bool for_write)
1586 {
1587 #ifdef CONFIG_F2FS_FAULT_INJECTION
1588 struct page *page = find_lock_page(mapping, index);
1589
1590 if (page)
1591 return page;
1592
1593 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1594 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1595 return NULL;
1596 }
1597 #endif
1598 if (!for_write)
1599 return grab_cache_page(mapping, index);
1600 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1601 }
1602
1603 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1604 {
1605 char *src_kaddr = kmap(src);
1606 char *dst_kaddr = kmap(dst);
1607
1608 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1609 kunmap(dst);
1610 kunmap(src);
1611 }
1612
1613 static inline void f2fs_put_page(struct page *page, int unlock)
1614 {
1615 if (!page)
1616 return;
1617
1618 if (unlock) {
1619 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1620 unlock_page(page);
1621 }
1622 put_page(page);
1623 }
1624
1625 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1626 {
1627 if (dn->node_page)
1628 f2fs_put_page(dn->node_page, 1);
1629 if (dn->inode_page && dn->node_page != dn->inode_page)
1630 f2fs_put_page(dn->inode_page, 0);
1631 dn->node_page = NULL;
1632 dn->inode_page = NULL;
1633 }
1634
1635 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1636 size_t size)
1637 {
1638 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1639 }
1640
1641 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1642 gfp_t flags)
1643 {
1644 void *entry;
1645
1646 entry = kmem_cache_alloc(cachep, flags);
1647 if (!entry)
1648 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1649 return entry;
1650 }
1651
1652 static inline struct bio *f2fs_bio_alloc(int npages)
1653 {
1654 struct bio *bio;
1655
1656 /* No failure on bio allocation */
1657 bio = bio_alloc(GFP_NOIO, npages);
1658 if (!bio)
1659 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1660 return bio;
1661 }
1662
1663 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1664 unsigned long index, void *item)
1665 {
1666 while (radix_tree_insert(root, index, item))
1667 cond_resched();
1668 }
1669
1670 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1671
1672 static inline bool IS_INODE(struct page *page)
1673 {
1674 struct f2fs_node *p = F2FS_NODE(page);
1675
1676 return RAW_IS_INODE(p);
1677 }
1678
1679 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1680 {
1681 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1682 }
1683
1684 static inline block_t datablock_addr(struct page *node_page,
1685 unsigned int offset)
1686 {
1687 struct f2fs_node *raw_node;
1688 __le32 *addr_array;
1689
1690 raw_node = F2FS_NODE(node_page);
1691 addr_array = blkaddr_in_node(raw_node);
1692 return le32_to_cpu(addr_array[offset]);
1693 }
1694
1695 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1696 {
1697 int mask;
1698
1699 addr += (nr >> 3);
1700 mask = 1 << (7 - (nr & 0x07));
1701 return mask & *addr;
1702 }
1703
1704 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1705 {
1706 int mask;
1707
1708 addr += (nr >> 3);
1709 mask = 1 << (7 - (nr & 0x07));
1710 *addr |= mask;
1711 }
1712
1713 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1714 {
1715 int mask;
1716
1717 addr += (nr >> 3);
1718 mask = 1 << (7 - (nr & 0x07));
1719 *addr &= ~mask;
1720 }
1721
1722 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1723 {
1724 int mask;
1725 int ret;
1726
1727 addr += (nr >> 3);
1728 mask = 1 << (7 - (nr & 0x07));
1729 ret = mask & *addr;
1730 *addr |= mask;
1731 return ret;
1732 }
1733
1734 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1735 {
1736 int mask;
1737 int ret;
1738
1739 addr += (nr >> 3);
1740 mask = 1 << (7 - (nr & 0x07));
1741 ret = mask & *addr;
1742 *addr &= ~mask;
1743 return ret;
1744 }
1745
1746 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1747 {
1748 int mask;
1749
1750 addr += (nr >> 3);
1751 mask = 1 << (7 - (nr & 0x07));
1752 *addr ^= mask;
1753 }
1754
1755 /* used for f2fs_inode_info->flags */
1756 enum {
1757 FI_NEW_INODE, /* indicate newly allocated inode */
1758 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1759 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1760 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1761 FI_INC_LINK, /* need to increment i_nlink */
1762 FI_ACL_MODE, /* indicate acl mode */
1763 FI_NO_ALLOC, /* should not allocate any blocks */
1764 FI_FREE_NID, /* free allocated nide */
1765 FI_NO_EXTENT, /* not to use the extent cache */
1766 FI_INLINE_XATTR, /* used for inline xattr */
1767 FI_INLINE_DATA, /* used for inline data*/
1768 FI_INLINE_DENTRY, /* used for inline dentry */
1769 FI_APPEND_WRITE, /* inode has appended data */
1770 FI_UPDATE_WRITE, /* inode has in-place-update data */
1771 FI_NEED_IPU, /* used for ipu per file */
1772 FI_ATOMIC_FILE, /* indicate atomic file */
1773 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
1774 FI_VOLATILE_FILE, /* indicate volatile file */
1775 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1776 FI_DROP_CACHE, /* drop dirty page cache */
1777 FI_DATA_EXIST, /* indicate data exists */
1778 FI_INLINE_DOTS, /* indicate inline dot dentries */
1779 FI_DO_DEFRAG, /* indicate defragment is running */
1780 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1781 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
1782 FI_HOT_DATA, /* indicate file is hot */
1783 };
1784
1785 static inline void __mark_inode_dirty_flag(struct inode *inode,
1786 int flag, bool set)
1787 {
1788 switch (flag) {
1789 case FI_INLINE_XATTR:
1790 case FI_INLINE_DATA:
1791 case FI_INLINE_DENTRY:
1792 if (set)
1793 return;
1794 case FI_DATA_EXIST:
1795 case FI_INLINE_DOTS:
1796 f2fs_mark_inode_dirty_sync(inode, true);
1797 }
1798 }
1799
1800 static inline void set_inode_flag(struct inode *inode, int flag)
1801 {
1802 if (!test_bit(flag, &F2FS_I(inode)->flags))
1803 set_bit(flag, &F2FS_I(inode)->flags);
1804 __mark_inode_dirty_flag(inode, flag, true);
1805 }
1806
1807 static inline int is_inode_flag_set(struct inode *inode, int flag)
1808 {
1809 return test_bit(flag, &F2FS_I(inode)->flags);
1810 }
1811
1812 static inline void clear_inode_flag(struct inode *inode, int flag)
1813 {
1814 if (test_bit(flag, &F2FS_I(inode)->flags))
1815 clear_bit(flag, &F2FS_I(inode)->flags);
1816 __mark_inode_dirty_flag(inode, flag, false);
1817 }
1818
1819 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1820 {
1821 F2FS_I(inode)->i_acl_mode = mode;
1822 set_inode_flag(inode, FI_ACL_MODE);
1823 f2fs_mark_inode_dirty_sync(inode, false);
1824 }
1825
1826 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1827 {
1828 if (inc)
1829 inc_nlink(inode);
1830 else
1831 drop_nlink(inode);
1832 f2fs_mark_inode_dirty_sync(inode, true);
1833 }
1834
1835 static inline void f2fs_i_blocks_write(struct inode *inode,
1836 blkcnt_t diff, bool add)
1837 {
1838 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1839 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1840
1841 inode->i_blocks = add ? inode->i_blocks + diff :
1842 inode->i_blocks - diff;
1843 f2fs_mark_inode_dirty_sync(inode, true);
1844 if (clean || recover)
1845 set_inode_flag(inode, FI_AUTO_RECOVER);
1846 }
1847
1848 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1849 {
1850 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1851 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1852
1853 if (i_size_read(inode) == i_size)
1854 return;
1855
1856 i_size_write(inode, i_size);
1857 f2fs_mark_inode_dirty_sync(inode, true);
1858 if (clean || recover)
1859 set_inode_flag(inode, FI_AUTO_RECOVER);
1860 }
1861
1862 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1863 {
1864 F2FS_I(inode)->i_current_depth = depth;
1865 f2fs_mark_inode_dirty_sync(inode, true);
1866 }
1867
1868 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1869 {
1870 F2FS_I(inode)->i_xattr_nid = xnid;
1871 f2fs_mark_inode_dirty_sync(inode, true);
1872 }
1873
1874 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1875 {
1876 F2FS_I(inode)->i_pino = pino;
1877 f2fs_mark_inode_dirty_sync(inode, true);
1878 }
1879
1880 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1881 {
1882 struct f2fs_inode_info *fi = F2FS_I(inode);
1883
1884 if (ri->i_inline & F2FS_INLINE_XATTR)
1885 set_bit(FI_INLINE_XATTR, &fi->flags);
1886 if (ri->i_inline & F2FS_INLINE_DATA)
1887 set_bit(FI_INLINE_DATA, &fi->flags);
1888 if (ri->i_inline & F2FS_INLINE_DENTRY)
1889 set_bit(FI_INLINE_DENTRY, &fi->flags);
1890 if (ri->i_inline & F2FS_DATA_EXIST)
1891 set_bit(FI_DATA_EXIST, &fi->flags);
1892 if (ri->i_inline & F2FS_INLINE_DOTS)
1893 set_bit(FI_INLINE_DOTS, &fi->flags);
1894 }
1895
1896 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1897 {
1898 ri->i_inline = 0;
1899
1900 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1901 ri->i_inline |= F2FS_INLINE_XATTR;
1902 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1903 ri->i_inline |= F2FS_INLINE_DATA;
1904 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1905 ri->i_inline |= F2FS_INLINE_DENTRY;
1906 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1907 ri->i_inline |= F2FS_DATA_EXIST;
1908 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1909 ri->i_inline |= F2FS_INLINE_DOTS;
1910 }
1911
1912 static inline int f2fs_has_inline_xattr(struct inode *inode)
1913 {
1914 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1915 }
1916
1917 static inline unsigned int addrs_per_inode(struct inode *inode)
1918 {
1919 if (f2fs_has_inline_xattr(inode))
1920 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1921 return DEF_ADDRS_PER_INODE;
1922 }
1923
1924 static inline void *inline_xattr_addr(struct page *page)
1925 {
1926 struct f2fs_inode *ri = F2FS_INODE(page);
1927
1928 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1929 F2FS_INLINE_XATTR_ADDRS]);
1930 }
1931
1932 static inline int inline_xattr_size(struct inode *inode)
1933 {
1934 if (f2fs_has_inline_xattr(inode))
1935 return F2FS_INLINE_XATTR_ADDRS << 2;
1936 else
1937 return 0;
1938 }
1939
1940 static inline int f2fs_has_inline_data(struct inode *inode)
1941 {
1942 return is_inode_flag_set(inode, FI_INLINE_DATA);
1943 }
1944
1945 static inline int f2fs_exist_data(struct inode *inode)
1946 {
1947 return is_inode_flag_set(inode, FI_DATA_EXIST);
1948 }
1949
1950 static inline int f2fs_has_inline_dots(struct inode *inode)
1951 {
1952 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1953 }
1954
1955 static inline bool f2fs_is_atomic_file(struct inode *inode)
1956 {
1957 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1958 }
1959
1960 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
1961 {
1962 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
1963 }
1964
1965 static inline bool f2fs_is_volatile_file(struct inode *inode)
1966 {
1967 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1968 }
1969
1970 static inline bool f2fs_is_first_block_written(struct inode *inode)
1971 {
1972 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1973 }
1974
1975 static inline bool f2fs_is_drop_cache(struct inode *inode)
1976 {
1977 return is_inode_flag_set(inode, FI_DROP_CACHE);
1978 }
1979
1980 static inline void *inline_data_addr(struct page *page)
1981 {
1982 struct f2fs_inode *ri = F2FS_INODE(page);
1983
1984 return (void *)&(ri->i_addr[1]);
1985 }
1986
1987 static inline int f2fs_has_inline_dentry(struct inode *inode)
1988 {
1989 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1990 }
1991
1992 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1993 {
1994 if (!f2fs_has_inline_dentry(dir))
1995 kunmap(page);
1996 }
1997
1998 static inline int is_file(struct inode *inode, int type)
1999 {
2000 return F2FS_I(inode)->i_advise & type;
2001 }
2002
2003 static inline void set_file(struct inode *inode, int type)
2004 {
2005 F2FS_I(inode)->i_advise |= type;
2006 f2fs_mark_inode_dirty_sync(inode, true);
2007 }
2008
2009 static inline void clear_file(struct inode *inode, int type)
2010 {
2011 F2FS_I(inode)->i_advise &= ~type;
2012 f2fs_mark_inode_dirty_sync(inode, true);
2013 }
2014
2015 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2016 {
2017 if (dsync) {
2018 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2019 bool ret;
2020
2021 spin_lock(&sbi->inode_lock[DIRTY_META]);
2022 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2023 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2024 return ret;
2025 }
2026 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2027 file_keep_isize(inode) ||
2028 i_size_read(inode) & PAGE_MASK)
2029 return false;
2030 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
2031 }
2032
2033 static inline int f2fs_readonly(struct super_block *sb)
2034 {
2035 return sb->s_flags & MS_RDONLY;
2036 }
2037
2038 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2039 {
2040 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2041 }
2042
2043 static inline bool is_dot_dotdot(const struct qstr *str)
2044 {
2045 if (str->len == 1 && str->name[0] == '.')
2046 return true;
2047
2048 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2049 return true;
2050
2051 return false;
2052 }
2053
2054 static inline bool f2fs_may_extent_tree(struct inode *inode)
2055 {
2056 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2057 is_inode_flag_set(inode, FI_NO_EXTENT))
2058 return false;
2059
2060 return S_ISREG(inode->i_mode);
2061 }
2062
2063 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2064 size_t size, gfp_t flags)
2065 {
2066 #ifdef CONFIG_F2FS_FAULT_INJECTION
2067 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2068 f2fs_show_injection_info(FAULT_KMALLOC);
2069 return NULL;
2070 }
2071 #endif
2072 return kmalloc(size, flags);
2073 }
2074
2075 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
2076 {
2077 void *ret;
2078
2079 ret = kmalloc(size, flags | __GFP_NOWARN);
2080 if (!ret)
2081 ret = __vmalloc(size, flags, PAGE_KERNEL);
2082 return ret;
2083 }
2084
2085 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
2086 {
2087 void *ret;
2088
2089 ret = kzalloc(size, flags | __GFP_NOWARN);
2090 if (!ret)
2091 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
2092 return ret;
2093 }
2094
2095 #define get_inode_mode(i) \
2096 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2097 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2098
2099 /*
2100 * file.c
2101 */
2102 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2103 void truncate_data_blocks(struct dnode_of_data *dn);
2104 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2105 int f2fs_truncate(struct inode *inode);
2106 int f2fs_getattr(const struct path *path, struct kstat *stat,
2107 u32 request_mask, unsigned int flags);
2108 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2109 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2110 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2111 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2112 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2113
2114 /*
2115 * inode.c
2116 */
2117 void f2fs_set_inode_flags(struct inode *inode);
2118 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2119 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2120 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2121 int update_inode(struct inode *inode, struct page *node_page);
2122 int update_inode_page(struct inode *inode);
2123 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2124 void f2fs_evict_inode(struct inode *inode);
2125 void handle_failed_inode(struct inode *inode);
2126
2127 /*
2128 * namei.c
2129 */
2130 struct dentry *f2fs_get_parent(struct dentry *child);
2131
2132 /*
2133 * dir.c
2134 */
2135 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2136 unsigned char get_de_type(struct f2fs_dir_entry *de);
2137 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2138 f2fs_hash_t namehash, int *max_slots,
2139 struct f2fs_dentry_ptr *d);
2140 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2141 unsigned int start_pos, struct fscrypt_str *fstr);
2142 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2143 struct f2fs_dentry_ptr *d);
2144 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2145 const struct qstr *new_name,
2146 const struct qstr *orig_name, struct page *dpage);
2147 void update_parent_metadata(struct inode *dir, struct inode *inode,
2148 unsigned int current_depth);
2149 int room_for_filename(const void *bitmap, int slots, int max_slots);
2150 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2151 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2152 struct fscrypt_name *fname, struct page **res_page);
2153 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2154 const struct qstr *child, struct page **res_page);
2155 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2156 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2157 struct page **page);
2158 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2159 struct page *page, struct inode *inode);
2160 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2161 const struct qstr *name, f2fs_hash_t name_hash,
2162 unsigned int bit_pos);
2163 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2164 const struct qstr *orig_name,
2165 struct inode *inode, nid_t ino, umode_t mode);
2166 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2167 struct inode *inode, nid_t ino, umode_t mode);
2168 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2169 struct inode *inode, nid_t ino, umode_t mode);
2170 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2171 struct inode *dir, struct inode *inode);
2172 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2173 bool f2fs_empty_dir(struct inode *dir);
2174
2175 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2176 {
2177 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2178 inode, inode->i_ino, inode->i_mode);
2179 }
2180
2181 /*
2182 * super.c
2183 */
2184 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2185 void f2fs_inode_synced(struct inode *inode);
2186 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2187 int f2fs_sync_fs(struct super_block *sb, int sync);
2188 extern __printf(3, 4)
2189 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2190 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2191
2192 /*
2193 * hash.c
2194 */
2195 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info);
2196
2197 /*
2198 * node.c
2199 */
2200 struct dnode_of_data;
2201 struct node_info;
2202
2203 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2204 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2205 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2206 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2207 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2208 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2209 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2210 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2211 int truncate_xattr_node(struct inode *inode, struct page *page);
2212 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2213 int remove_inode_page(struct inode *inode);
2214 struct page *new_inode_page(struct inode *inode);
2215 struct page *new_node_page(struct dnode_of_data *dn,
2216 unsigned int ofs, struct page *ipage);
2217 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2218 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2219 struct page *get_node_page_ra(struct page *parent, int start);
2220 void move_node_page(struct page *node_page, int gc_type);
2221 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2222 struct writeback_control *wbc, bool atomic);
2223 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2224 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2225 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2226 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2227 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2228 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2229 void recover_inline_xattr(struct inode *inode, struct page *page);
2230 int recover_xattr_data(struct inode *inode, struct page *page,
2231 block_t blkaddr);
2232 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2233 int restore_node_summary(struct f2fs_sb_info *sbi,
2234 unsigned int segno, struct f2fs_summary_block *sum);
2235 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2236 int build_node_manager(struct f2fs_sb_info *sbi);
2237 void destroy_node_manager(struct f2fs_sb_info *sbi);
2238 int __init create_node_manager_caches(void);
2239 void destroy_node_manager_caches(void);
2240
2241 /*
2242 * segment.c
2243 */
2244 void register_inmem_page(struct inode *inode, struct page *page);
2245 void drop_inmem_pages(struct inode *inode);
2246 void drop_inmem_page(struct inode *inode, struct page *page);
2247 int commit_inmem_pages(struct inode *inode);
2248 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2249 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2250 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2251 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2252 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2253 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2254 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2255 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2256 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2257 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2258 void release_discard_addrs(struct f2fs_sb_info *sbi);
2259 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2260 void allocate_new_segments(struct f2fs_sb_info *sbi);
2261 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2262 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2263 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2264 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2265 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2266 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2267 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2268 int rewrite_data_page(struct f2fs_io_info *fio);
2269 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2270 block_t old_blkaddr, block_t new_blkaddr,
2271 bool recover_curseg, bool recover_newaddr);
2272 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2273 block_t old_addr, block_t new_addr,
2274 unsigned char version, bool recover_curseg,
2275 bool recover_newaddr);
2276 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2277 block_t old_blkaddr, block_t *new_blkaddr,
2278 struct f2fs_summary *sum, int type);
2279 void f2fs_wait_on_page_writeback(struct page *page,
2280 enum page_type type, bool ordered);
2281 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2282 block_t blkaddr);
2283 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2284 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2285 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2286 unsigned int val, int alloc);
2287 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2288 int build_segment_manager(struct f2fs_sb_info *sbi);
2289 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2290 int __init create_segment_manager_caches(void);
2291 void destroy_segment_manager_caches(void);
2292
2293 /*
2294 * checkpoint.c
2295 */
2296 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2297 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2298 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2299 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2300 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2301 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2302 int type, bool sync);
2303 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2304 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2305 long nr_to_write);
2306 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2307 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2308 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2309 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2310 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2311 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2312 void release_orphan_inode(struct f2fs_sb_info *sbi);
2313 void add_orphan_inode(struct inode *inode);
2314 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2315 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2316 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2317 void update_dirty_page(struct inode *inode, struct page *page);
2318 void remove_dirty_inode(struct inode *inode);
2319 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2320 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2321 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2322 int __init create_checkpoint_caches(void);
2323 void destroy_checkpoint_caches(void);
2324
2325 /*
2326 * data.c
2327 */
2328 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
2329 int rw);
2330 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
2331 struct inode *inode, nid_t ino, pgoff_t idx,
2332 enum page_type type, int rw);
2333 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi);
2334 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2335 int f2fs_submit_page_mbio(struct f2fs_io_info *fio);
2336 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2337 block_t blk_addr, struct bio *bio);
2338 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2339 void set_data_blkaddr(struct dnode_of_data *dn);
2340 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2341 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2342 int reserve_new_block(struct dnode_of_data *dn);
2343 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2344 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2345 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2346 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2347 int op_flags, bool for_write);
2348 struct page *find_data_page(struct inode *inode, pgoff_t index);
2349 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2350 bool for_write);
2351 struct page *get_new_data_page(struct inode *inode,
2352 struct page *ipage, pgoff_t index, bool new_i_size);
2353 int do_write_data_page(struct f2fs_io_info *fio);
2354 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2355 int create, int flag);
2356 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2357 u64 start, u64 len);
2358 void f2fs_set_page_dirty_nobuffers(struct page *page);
2359 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2360 unsigned int length);
2361 int f2fs_release_page(struct page *page, gfp_t wait);
2362 #ifdef CONFIG_MIGRATION
2363 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2364 struct page *page, enum migrate_mode mode);
2365 #endif
2366
2367 /*
2368 * gc.c
2369 */
2370 int start_gc_thread(struct f2fs_sb_info *sbi);
2371 void stop_gc_thread(struct f2fs_sb_info *sbi);
2372 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2373 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2374 unsigned int segno);
2375 void build_gc_manager(struct f2fs_sb_info *sbi);
2376
2377 /*
2378 * recovery.c
2379 */
2380 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2381 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2382
2383 /*
2384 * debug.c
2385 */
2386 #ifdef CONFIG_F2FS_STAT_FS
2387 struct f2fs_stat_info {
2388 struct list_head stat_list;
2389 struct f2fs_sb_info *sbi;
2390 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2391 int main_area_segs, main_area_sections, main_area_zones;
2392 unsigned long long hit_largest, hit_cached, hit_rbtree;
2393 unsigned long long hit_total, total_ext;
2394 int ext_tree, zombie_tree, ext_node;
2395 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2396 int inmem_pages;
2397 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2398 int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids;
2399 int total_count, utilization;
2400 int bg_gc, nr_wb_cp_data, nr_wb_data;
2401 int nr_flushing, nr_flushed, nr_discarding, nr_discarded;
2402 int nr_discard_cmd;
2403 unsigned int undiscard_blks;
2404 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2405 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2406 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2407 unsigned int bimodal, avg_vblocks;
2408 int util_free, util_valid, util_invalid;
2409 int rsvd_segs, overp_segs;
2410 int dirty_count, node_pages, meta_pages;
2411 int prefree_count, call_count, cp_count, bg_cp_count;
2412 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2413 int bg_node_segs, bg_data_segs;
2414 int tot_blks, data_blks, node_blks;
2415 int bg_data_blks, bg_node_blks;
2416 int curseg[NR_CURSEG_TYPE];
2417 int cursec[NR_CURSEG_TYPE];
2418 int curzone[NR_CURSEG_TYPE];
2419
2420 unsigned int segment_count[2];
2421 unsigned int block_count[2];
2422 unsigned int inplace_count;
2423 unsigned long long base_mem, cache_mem, page_mem;
2424 };
2425
2426 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2427 {
2428 return (struct f2fs_stat_info *)sbi->stat_info;
2429 }
2430
2431 #define stat_inc_cp_count(si) ((si)->cp_count++)
2432 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2433 #define stat_inc_call_count(si) ((si)->call_count++)
2434 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2435 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2436 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2437 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2438 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2439 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2440 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2441 #define stat_inc_inline_xattr(inode) \
2442 do { \
2443 if (f2fs_has_inline_xattr(inode)) \
2444 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2445 } while (0)
2446 #define stat_dec_inline_xattr(inode) \
2447 do { \
2448 if (f2fs_has_inline_xattr(inode)) \
2449 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2450 } while (0)
2451 #define stat_inc_inline_inode(inode) \
2452 do { \
2453 if (f2fs_has_inline_data(inode)) \
2454 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2455 } while (0)
2456 #define stat_dec_inline_inode(inode) \
2457 do { \
2458 if (f2fs_has_inline_data(inode)) \
2459 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2460 } while (0)
2461 #define stat_inc_inline_dir(inode) \
2462 do { \
2463 if (f2fs_has_inline_dentry(inode)) \
2464 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2465 } while (0)
2466 #define stat_dec_inline_dir(inode) \
2467 do { \
2468 if (f2fs_has_inline_dentry(inode)) \
2469 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2470 } while (0)
2471 #define stat_inc_seg_type(sbi, curseg) \
2472 ((sbi)->segment_count[(curseg)->alloc_type]++)
2473 #define stat_inc_block_count(sbi, curseg) \
2474 ((sbi)->block_count[(curseg)->alloc_type]++)
2475 #define stat_inc_inplace_blocks(sbi) \
2476 (atomic_inc(&(sbi)->inplace_count))
2477 #define stat_inc_atomic_write(inode) \
2478 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2479 #define stat_dec_atomic_write(inode) \
2480 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2481 #define stat_update_max_atomic_write(inode) \
2482 do { \
2483 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2484 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2485 if (cur > max) \
2486 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2487 } while (0)
2488 #define stat_inc_volatile_write(inode) \
2489 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2490 #define stat_dec_volatile_write(inode) \
2491 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2492 #define stat_update_max_volatile_write(inode) \
2493 do { \
2494 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
2495 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
2496 if (cur > max) \
2497 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
2498 } while (0)
2499 #define stat_inc_seg_count(sbi, type, gc_type) \
2500 do { \
2501 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2502 si->tot_segs++; \
2503 if ((type) == SUM_TYPE_DATA) { \
2504 si->data_segs++; \
2505 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2506 } else { \
2507 si->node_segs++; \
2508 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2509 } \
2510 } while (0)
2511
2512 #define stat_inc_tot_blk_count(si, blks) \
2513 ((si)->tot_blks += (blks))
2514
2515 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2516 do { \
2517 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2518 stat_inc_tot_blk_count(si, blks); \
2519 si->data_blks += (blks); \
2520 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2521 } while (0)
2522
2523 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2524 do { \
2525 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2526 stat_inc_tot_blk_count(si, blks); \
2527 si->node_blks += (blks); \
2528 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2529 } while (0)
2530
2531 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2532 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2533 int __init f2fs_create_root_stats(void);
2534 void f2fs_destroy_root_stats(void);
2535 #else
2536 #define stat_inc_cp_count(si) do { } while (0)
2537 #define stat_inc_bg_cp_count(si) do { } while (0)
2538 #define stat_inc_call_count(si) do { } while (0)
2539 #define stat_inc_bggc_count(si) do { } while (0)
2540 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
2541 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
2542 #define stat_inc_total_hit(sb) do { } while (0)
2543 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
2544 #define stat_inc_largest_node_hit(sbi) do { } while (0)
2545 #define stat_inc_cached_node_hit(sbi) do { } while (0)
2546 #define stat_inc_inline_xattr(inode) do { } while (0)
2547 #define stat_dec_inline_xattr(inode) do { } while (0)
2548 #define stat_inc_inline_inode(inode) do { } while (0)
2549 #define stat_dec_inline_inode(inode) do { } while (0)
2550 #define stat_inc_inline_dir(inode) do { } while (0)
2551 #define stat_dec_inline_dir(inode) do { } while (0)
2552 #define stat_inc_atomic_write(inode) do { } while (0)
2553 #define stat_dec_atomic_write(inode) do { } while (0)
2554 #define stat_update_max_atomic_write(inode) do { } while (0)
2555 #define stat_inc_volatile_write(inode) do { } while (0)
2556 #define stat_dec_volatile_write(inode) do { } while (0)
2557 #define stat_update_max_volatile_write(inode) do { } while (0)
2558 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
2559 #define stat_inc_block_count(sbi, curseg) do { } while (0)
2560 #define stat_inc_inplace_blocks(sbi) do { } while (0)
2561 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
2562 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
2563 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
2564 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
2565
2566 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2567 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2568 static inline int __init f2fs_create_root_stats(void) { return 0; }
2569 static inline void f2fs_destroy_root_stats(void) { }
2570 #endif
2571
2572 extern const struct file_operations f2fs_dir_operations;
2573 extern const struct file_operations f2fs_file_operations;
2574 extern const struct inode_operations f2fs_file_inode_operations;
2575 extern const struct address_space_operations f2fs_dblock_aops;
2576 extern const struct address_space_operations f2fs_node_aops;
2577 extern const struct address_space_operations f2fs_meta_aops;
2578 extern const struct inode_operations f2fs_dir_inode_operations;
2579 extern const struct inode_operations f2fs_symlink_inode_operations;
2580 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2581 extern const struct inode_operations f2fs_special_inode_operations;
2582 extern struct kmem_cache *inode_entry_slab;
2583
2584 /*
2585 * inline.c
2586 */
2587 bool f2fs_may_inline_data(struct inode *inode);
2588 bool f2fs_may_inline_dentry(struct inode *inode);
2589 void read_inline_data(struct page *page, struct page *ipage);
2590 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2591 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2592 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2593 int f2fs_convert_inline_inode(struct inode *inode);
2594 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2595 bool recover_inline_data(struct inode *inode, struct page *npage);
2596 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2597 struct fscrypt_name *fname, struct page **res_page);
2598 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2599 struct page *ipage);
2600 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2601 const struct qstr *orig_name,
2602 struct inode *inode, nid_t ino, umode_t mode);
2603 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2604 struct inode *dir, struct inode *inode);
2605 bool f2fs_empty_inline_dir(struct inode *dir);
2606 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2607 struct fscrypt_str *fstr);
2608 int f2fs_inline_data_fiemap(struct inode *inode,
2609 struct fiemap_extent_info *fieinfo,
2610 __u64 start, __u64 len);
2611
2612 /*
2613 * shrinker.c
2614 */
2615 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2616 struct shrink_control *sc);
2617 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2618 struct shrink_control *sc);
2619 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2620 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2621
2622 /*
2623 * extent_cache.c
2624 */
2625 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
2626 struct rb_entry *cached_re, unsigned int ofs);
2627 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
2628 struct rb_root *root, struct rb_node **parent,
2629 unsigned int ofs);
2630 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
2631 struct rb_entry *cached_re, unsigned int ofs,
2632 struct rb_entry **prev_entry, struct rb_entry **next_entry,
2633 struct rb_node ***insert_p, struct rb_node **insert_parent,
2634 bool force);
2635 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
2636 struct rb_root *root);
2637 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2638 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2639 void f2fs_drop_extent_tree(struct inode *inode);
2640 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2641 void f2fs_destroy_extent_tree(struct inode *inode);
2642 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2643 struct extent_info *ei);
2644 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2645 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2646 pgoff_t fofs, block_t blkaddr, unsigned int len);
2647 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2648 int __init create_extent_cache(void);
2649 void destroy_extent_cache(void);
2650
2651 /*
2652 * crypto support
2653 */
2654 static inline bool f2fs_encrypted_inode(struct inode *inode)
2655 {
2656 return file_is_encrypt(inode);
2657 }
2658
2659 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2660 {
2661 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2662 file_set_encrypt(inode);
2663 #endif
2664 }
2665
2666 static inline bool f2fs_bio_encrypted(struct bio *bio)
2667 {
2668 return bio->bi_private != NULL;
2669 }
2670
2671 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2672 {
2673 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2674 }
2675
2676 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2677 {
2678 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2679 }
2680
2681 #ifdef CONFIG_BLK_DEV_ZONED
2682 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2683 struct block_device *bdev, block_t blkaddr)
2684 {
2685 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2686 int i;
2687
2688 for (i = 0; i < sbi->s_ndevs; i++)
2689 if (FDEV(i).bdev == bdev)
2690 return FDEV(i).blkz_type[zno];
2691 return -EINVAL;
2692 }
2693 #endif
2694
2695 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2696 {
2697 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2698
2699 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2700 }
2701
2702 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2703 {
2704 clear_opt(sbi, ADAPTIVE);
2705 clear_opt(sbi, LFS);
2706
2707 switch (mt) {
2708 case F2FS_MOUNT_ADAPTIVE:
2709 set_opt(sbi, ADAPTIVE);
2710 break;
2711 case F2FS_MOUNT_LFS:
2712 set_opt(sbi, LFS);
2713 break;
2714 }
2715 }
2716
2717 static inline bool f2fs_may_encrypt(struct inode *inode)
2718 {
2719 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2720 umode_t mode = inode->i_mode;
2721
2722 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2723 #else
2724 return 0;
2725 #endif
2726 }
2727
2728 #endif